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KLESHCHEV’S DECOMPOSITION NUMBERS
AND BRANCHING COEFFICIENTS IN THE FOCK SPACE

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. We give combinatorial descriptions of some coefficients of the

canonical basis of the q-deformed Fock space representation of Uq(ŝle) and
of some matrix entries for the action of the Chevalley generators fr with re-
spect to the canonical basis. These are q-analogues of results of Kleshchev on
decomposition numbers and branching coefficients for symmetric groups and
Schur algebras.

1. Introduction

Throughout we fix an integer e ≥ 2. Lascoux, Leclerc, and Thibon [7, 9] used
the representation theory of the quantum affine algebra Uq(ŝle) to introduce for ev-
ery pair of partitions λ and σ a polynomial dλσ(q) with integer coefficients (which
depends on e). They conjectured these polynomials to be q-analogues of decomposi-
tion numbers for Hecke algebras and quantized Schur algebras at complex e-th roots
of unity. These conjectures were proved by Ariki [1] and by Varagnolo and Vasserot
[16] respectively, and these polynomials are now often called q-decomposition num-
bers.

Leclerc’s lectures [8] are a good introduction to this subject as well as a conve-
nient reference for the results we need here.

In [6, Theorem 1.10], Kleshchev gave a combinatorial description in terms of
what he calls ‘latticed subsets’ of the decomposition numbers of symmetric groups
(i.e., multiplicities of simple modules Dµ in Specht modules Sλ) in cases where the
partition µ is obtained from λ by moving a single node. He also provided a descrip-
tion in terms of ‘normal nodes’ of the branching coefficient (i.e., the multiplicity
of the simple module Dν in the restricted simple module Dµ↓Sn−1) when ν is ob-
tained from µ by removing a node ([6, Theorem 1.4]). This branching coefficient
may also be described as the multiplicity of the projective cover P (Dµ) in a direct
sum decomposition of the induced projective cover P (Dν)↑Sn . In this paper, we
give analogues of these results for the q-decomposition numbers. When we apply
Ariki’s and Varagnolo-Vasserot’s theorems, we then obtain the corresponding de-
composition numbers and branching coefficients for Hecke algebras and quantized
Schur algebras at complex e-th roots of unity.

This paper is organized as follows. In section 2, we introduce the background
theory and obtain some useful preliminary results. In section 3, we review the
theory of sign sequences and set up the machinery necessary for the proof of the
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main theorems of this paper. We then state and prove the main theorems in section
4 and finally conclude with an example illustrating the main theorems.

2. Background

2.1. Partitions. Let Pn be the set of partitions of a nonnegative integer n, and let
P =

⋃
n Pn be the set of all partitions. The standard dominance ordering on Pn is

denoted by �. We identify a partition λ = (λ1, λ2, . . . ) with its Young diagram{
(j, k) ∈ Z

+ × Z
+ | 1 ≤ k ≤ λj

}
.

The residue of a node (j, k) in a Young diagram µ is the residue class of (k − j)
modulo e. If (j, k) has residue r, we say that (j, k) is an r-node. If in removing
(j, k) from µ, we obtain a Young diagram λ, then (j, k) is both a removable r-node
of µ and an indent1 r-node of λ.

2.2. The Fock space representation. The algebra Uq(ŝle) is the associative al-
gebra over C(q) with generators er, fr, kr, k−1

r (0 ≤ r ≤ e − 1), d, d−1 subject to
some relations (see, for example, [8, §4]). An important Uq(ŝle)-module is the Fock
space representation F [3, 14], which has a basis {s(λ) | λ ∈ P} as a C(q)-vector
space. In fact, F admits another action by the Heisenberg algebra which commutes
with the action of Uq(ŝle), and these two actions in effect make F a Uq(ĝle)-module.

For our purposes an explicit description of the action of just the fr’s on F will
suffice.

Let λ be a partition with indent r-node (j, k), and write µ for the partition
obtained from λ by adding (j, k). Let N(λ, µ) be the number of indent r-nodes of
λ that are situated to the right of (j, k) minus the number of removable r-nodes of
λ situated to the right of (j, k). We have

fr(s(λ)) =
∑

µ

qN(λ,µ)s(µ),

where the sum is over all Young diagrams µ obtained from λ by adding an indent
r-node.

In [9], Leclerc and Thibon introduced an involution x �→ x on F , having the
following properties (among others):

a(q)x = a(q−1)x and fr(x) = fr(x) (a ∈ C(q), x ∈ F).

There is a distinguished basis {G(σ) | σ ∈ P} of F having the following character-
ization ([9, Theorem 4.1]):

(1) G(σ) ≡ s(σ) (mod qL), where L is the Z[q]-lattice in F generated by {s(λ) |
λ ∈ P};

(2) G(σ) = G(σ).

This basis is in fact the canonical basis of F as a Uq(ĝle)-module in the sense of [9].
Let 〈−,−〉 denote the inner product on F for which {s(λ) | λ ∈ P} is or-

thonormal. Then the q-decomposition number dλσ(q) is defined as 〈G(σ), s(λ)〉,
the coefficient of s(λ) in G(σ).

1We are following the terminlogy used in [6] and [8]; Kleshchev has since used the term addable
nodes in more recent papers.
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The q-decomposition numbers enjoy the following property:

Theorem 2.1 ([15, 3.1], [8, Theorem 9, Proposition 11, Corollary 14]). We have

dσσ(q) = 1,

dλσ(q) ∈ qN0[q] for all λ �= σ.

Furthermore, dλσ(q) �= 0 only if σ � λ and λ and σ have the same e-core.

The deepest part of this theorem is the positivity of the q-decomposition num-
bers, which follows from Lusztig’s geometric approach to canonical bases. We shall
require another positivity property of the canonical basis of F . While it is a direct
consequence of Lusztig’s work [11, 12] and Schiffmann’s solution [15] to Varagnolo-
Vasserot’s conjecture [16], we could not find a convenient reference, so we briefly
review the argument here.

Let U−
e be the generic Hall algebra of type A

(1)
e−1. It contains the negative part

of Uq(ŝle) as a proper subalgebra. Lusztig [11] defines a canonical basis B of U−
e

in terms of perverse sheaves.

Theorem 2.2 (Lusztig). For any two canonical basis elements b and b′ of U−
e ,

the coefficients of the expansion of bb′ in terms of the canonical basis belong to
N0[q, q−1].

This result is stated explicitly by Lusztig [11, 11.5(a)], at least for the canonical
basis in the negative part of Uq(ŝle); the argument for the Hall algebra is the same.
To explain this we use the notation in the proof of [16, 7.5]. The point is that the
convolution ∗ is defined by Lusztig on the categories Dss

GU
(EU ) themselves. So the

convolution product of simple perverse sheaves on EU and EW is a direct sum of
shifts of simple perverse sheaves on EV . As the elements of B are defined (see, e.g.,
[16, 3.5]) as Frobenius traces of simple perverse sheaves on various EU ’s, we get the
claim.

The Chevalley generators fr of the negative part of Uq(ŝle) are, via the embed-
ding into U−

e , elements of B (see, e.g., [16, 7.5]). Hence we have

Corollary 2.3. For any canonical basis element b ∈ B and any Chevalley gener-
ator fr of U−

e , each coefficient of the expansion of frb in terms of the canonical
basis B belongs to N0[q, q−1].

Now Varagnolo and Vasserot [16, 6.2] described an action of the Hall algebra
U−

e on the Fock space F extending the action of the negative part of Uq(ŝle), and
their conjecture that

Bs(∅) = {G(λ) | λ ∈ P}
was proved by Schiffmann [15]. We deduce the following positivity result.

Proposition 2.4. If we write fr(G(σ)) =
∑

ρ aρ(q)G(ρ), then aρ(q) ∈ N0[q, q−1]
for all ρ. We also have aρ(q) = aρ(q−1).

Proof. For σ ∈ P choose bσ ∈ B such that bσs(∅) = G(σ). Then, by Corollary 2.3
we can write

frbσ =
∑
m

cm(q)bm,
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where cm(q) ∈ N0[q, q−1]. Since∑
m

cm(q)bms(∅) = frbσs(∅) = frG(σ)

and each bms(∅) = G(ρ) for some ρ, we are done with the first assertion. The second
assertion follows from the fact that fr(G(σ)) and G(ρ) are all bar-invariant. �

2.3. Some other useful results. We collate together some results which we shall
require.

Theorem 2.5 ([2, Theorem 1]). Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be
partitions.

(1) (Row removal) Suppose that λ1 + · · · + λr = µ1 + · · · + µr for some r and
let

λ(0) = (λ1, . . . , λr), µ(0) = (µ1, . . . , µr),

λ(1) = (λr+1, λr+2, . . . ), µ(1) = (µr+1, µr+2, . . . ).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).
(2) (Column removal) Suppose that λ′

1 + · · · + λ′
r = µ′

1 + · · · + µ′
r for some r

and let

λ(0)′ = (λ′
1, . . . , λ

′
r), µ(0)′ = (µ′

1, . . . , µ
′
r),

λ(1)′ = (λ′
r+1, λ

′
r+2, . . . ), µ(1)′ = (µ′

r+1, µ
′
r+2, . . . ).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).

The following lemma is clear.

Lemma 2.6. Suppose a1(q) + f1(q) = a2(q) + f2(q), with a1, a2 ∈ C[q, q−1],
a1(q−1) = a1(q), a2(q−1) = a2(q) and f1, f2 ∈ qC[q]. Then a1 = a2 and f1 = f2.

Proposition 2.7. Suppose fr(G(λ)) =
∑

ν aν(q)G(ν) and 〈aµ(q)G(µ), s(λ̂)〉 �= 0
where λ̂ is the partition obtained from λ by adding an indent r-node lying on row b.
Then µ is obtained from λ by adding k+1 indent r-nodes, on rows a0, a1, a2, . . . , ak

say, and removing k removable r-nodes, on rows b1, b2, . . . , bk say, (k ≥ 0) with

a0 < b1 < a1 < b2 < a2 < · · · < bk < ak ≤ b.

Proof. As 〈aµ(q)G(µ), s(λ̂)〉 �= 0, we have aµ(q), dλ̂µ(q) �= 0, so that µ � λ̂ by
Theorem 2.1. Furthermore, 〈fr(G(λ)), s(µ)〉 �= 0 by Proposition 2.4. Since

〈fr(G(λ)), s(µ)〉 =
∑

µ̃

dµ̃λ(q)〈fr(s(µ̃)), s(µ)〉,

where the sum runs over all partitions µ̃ obtained from µ by removing a removable
r-node, we have dµ̃λ(q) �= 0 for at least one such µ̃. Fix one such µ̃, say the one
obtained from µ by removing the r-node on row a. We have λ � µ̃ by Theorem
2.1, and together with µ � λ̂, we see that

j∑
i=1

λi ≥
j∑

i=1

µ̃i ≥
j∑

i=1

λi
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whenever j < min(a, b) or j ≥ max(a, b), so that λi = µ̃i whenever i < min(a, b) or
i > max(a, b). Furthermore, if b < a, then

b∑
i=1

λi ≥
b∑

i=1

µ̃i ≥
b∑

i=1

λi + 1,

giving λb ≥ µ̃b ≥ λb + 1, a contradiction. Thus b ≥ a. Furthermore, for each
a ≤ j < b, we have

∑j
i=a µ̃i + 1 ≥

∑j
i=a λi ≥

∑j
i=a µ̃i, which simplifies to

0 ≤
j∑

i=a

(λi − µ̃i) ≤ 1.

Hence, we conclude that µ̃ is obtained from λ by adding k indent nodes, on rows
a1, a2, . . . , ak say, and removing k removable nodes, on rows b1, b2, . . . , bk say, with

a ≤ b1 < a1 < b2 < a2 < · · · < bk < ak ≤ b.

It remains to show that all the removable and indent nodes involved have residue
r.

Let λ(i) = (λbi
, λbi+1, . . . , λai

) and µ̃(i) = (µ̃bi
, µ̃bi+1, . . . , µ̃ai

) for each 1 ≤ i ≤
k. Then since dµ̃λ(q) �= 0, we have dµ̃(i)λ(i)(q) �= 0 for all i by the row removal
theorem (Theorem 2.5(1)). Thus, for each i, µ̃(i) and λ(i) have the same e-core
by Theorem 2.1, and hence the nodes (bi, λbi

) and (ai, λai
+ 1) have the same

residue. As λ̂ is obtained from µ by adding indent nodes on rows b1, b2, . . . , bk, b
and removing removable nodes on rows a, a1, a2, . . . , ak, and dλ̂µ(q) �= 0, we can
apply an argument similar to the above to conclude that the nodes (bi, µbi

+1) and
(ai−1, µai−1) have the same residue, where bk+1 = b and a0 = a. But

(bi, µbi
+ 1) =

{
(bi, λbi

), if i ≤ k,

(b, λb + 1), if i = k + 1;

(ai−1, µai−1) =

{
(ai−1, λai−1+1), if i ≥ 2,

(a, µa), if i = 1.

Thus all the nodes involved have the same residue, which must be r as this is the
residue of (b, λb + 1) and (a, µa). �

3. Sign sequences

In this section, we review the theory of sign sequences introduced by Kleshchev
in [6] and set up the machinery necessary for the proof of the main theorems of the
next section.

Definition 3.1. Let T = (t1, . . . , tu) be a finite sequence with each tv ∈ {±1}. We
call T a sign sequence.

For 0 ≤ i < j ≤ u + 1, we denote the sign subsequence (ti+1, ti+2, . . . , tj−1) of T

by T j
i . (Thus, Tu+1

0 = T .)
The set (of integers) associated to T j

i , denoted by S(T j
i ), is {i+1, i+2, . . . , j−1}.

We also write |T | for
∑u

i=1 ti.

Note. Our notation T j
i equals the notation T (i+1, j − 1) used by Kleshchev in [6].

We pair up the elements of S(T ) using the following algorithm:
(1) v is paired with v + 1 whenever tv = 1 and tv+1 = −1;
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(2) whenever v and w are as yet unpaired, with v < w, tv = 1 and tw = −1,
and v + 1, v + 2, . . . , w − 1 are all paired, we pair v with w.

Definition 3.2. Denote the sets of paired and unpaired v ∈ S(T ) by P (T ) and
U(T ) respectively. Furthermore, for ∆ ∈ {S, P, U}, write ∆+(T ) for {v ∈ ∆(T ) |
tv = 1}, and similarly define ∆−(T ).

The pairing of elements of S(T ) induces an involution pT on P (T ).

Example. Let T = (1, 1,−1,−1,−1, 1,−1, 1). Then U−(T ) = {5}, U+(T ) = {8},
P−(T ) = {3, 4, 7}, P+(T ) = {1, 2, 6}, and pT (1) = 4, pT (2) = 3, pT (6) = 7.

We note the following easy consequences arising from this pairing:

Lemma 3.3.
(1) If v ∈ P+(T ) and v < w < pT (v), then w ∈ P (T ) with v < pT (w) < pT (v).
(2) If v, w ∈ P+(T ) with v < w, then either v < w < pT (w) < pT (v) or

v < pT (v) < w < pT (w).
(3) For all v ∈ U−(T ) and for all w ∈ U+(T ), we have v < w.
(4) |T | = |U+(T )| − |U−(T )|.

Given a subsequence T j
i of T , we can also pair the elements of S(T j

i ) using the
same algorithm. We note that this process is just a ‘restriction’ of the pairing of
elements of S(T ). More precisely, we have

P (T j
i ) = {v ∈ P (T ) | i < v, pT (v) < j}.

Definition 3.4. We say that T j
i is latticed if U−(T j

i ) = ∅ (equivalently, if S−(T j
i ) =

P−(T j
i )).

Note. The empty sign sequence is latticed.

Lemma 3.5. Let T = (t1, t2, . . . , tu) be a sign sequence, and suppose v ∈ S+(T ).
Then v ∈ U+(T ) if and only if Tu+1

v is latticed.

Proof. If Tu+1
v is latticed, then v has no pair in S(T ), i.e., v ∈ U+(T ). Conversely,

if v ∈ U+(T ), and w ∈ S−(Tu+1
v ), then w ∈ P−(T ) by Lemma 3.3(3). Furthermore,

by Lemma 3.3(1), v < pT (w), so that w ∈ P−(Tu+1
v ). �

Lemma 3.6. If T j
i is latticed, then T v

i is latticed for all v with i < v ≤ j.

Proof. If w ∈ S−(T v
i ), then w ∈ S−(T j

i ) = P−(T j
i ). Thus i < pT (w) < w < v, so

that w ∈ P−(T v
i ). �

Definition 3.7. A set A = {a1, a2, . . . , as} (a1 < a2 < · · · < as) is a latticed subset
for T j

i if the following conditions hold:

(1) A ⊆ S−(T j
i );

(2) T
ak+1
ak is latticed for all 0 ≤ k ≤ s (where a0 = i and as+1 = j).

We allow the possibility of s = 0 which corresponds to the case A = ∅.

Note. If w ∈ U−(T j
i ), then w ∈ U−(T l

k) for all i ≤ k < w < l ≤ j. Thus any
latticed subset for T j

i necessarily contains U−(T j
i ) as a subset.

Remark. Our definitions of latticed sign sequences and latticed subsets are equiva-
lent to those given in Definitions 1.2 and 1.8 of [6] respectively.
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As an immediate consequence of Lemma 3.6, we have

Corollary 3.8. If A is a latticed subset for T j
i , then A∩S(T v

i ) is a latticed subset
for T v

i for all v with i < v ≤ j.

Proposition 3.9. Let A = {a1, a2, . . . , as} ⊆ S−(T j
i ) (a1 < a2 < · · · < as). Then

A = A ∪
s⋃

k=0

U−(T ak+1
ak

)

is a latticed subset for T j
i (where a0 = i and as+1 = j), and is the unique minimal

latticed subset for T j
i containing A.

We call A the closure of A for T j
i .

Proof. It is easy to see that A is a latticed subset for T j
i . Let B be a latticed subset

for T j
i containing A. If w ∈ U−(T ak+1

ak ), then w ∈ U−(T l2
l1

) for all ak ≤ l1 < w <

l2 ≤ ak+1; thus w ∈ B. This shows that A ⊆ B. �
Definition 3.10. Let N−(T ) denote the set of maximal elements of latticed subsets
for T , i.e.,

N−(T ) = {v ∈ S−(T ) | v = max(A) for some latticed subset A for T}.
Lemma 3.11.

(1) We have v ∈ N−(T ) if and only if v ∈ S−(T ) and Tu+1
v is latticed.

(2) If U−(T ) �= ∅, then max(U−(T )) ∈ N−(T ). Moreover, w /∈ N−(T ) for all
other w ∈ U−(T ).

(3) If x ∈ S(T ), then N−(T ) ∩ S(Tu+1
x ) = N−(Tu+1

x ).

Proof. For part (1), the forward direction is clear from the definition; conversely,
if Tu+1

v is latticed, then v is the maximal element of the closure of {v} in T . Part
(2) follows since U−(T ) is the closure of ∅ for T , while part (3) follows immediately
from part (1). �

Given a latticed subset A for Tw
0 with w ∈ S+(T ), write Â for A ∪ U−(Tu+1

w ).
Then Â is a latticed subset for T . Note that, by Lemma 3.5, we have Â = ∅ if and
only if A = ∅ and w ∈ U+(T ).

Given a nonempty latticed subset B for T , write τ (B) for B \ {max(B)}. Then
τ (B) is a latticed subset for T

max(B)
0 by Corollary 3.8. Let

L+ = {(A, w) | A is a latticed subset for Tw
0 , w ∈ S+(T )}

\ {(∅, w) | w ∈ U+(T )},
L− = {(B, x) | B is a latticed subset for T x

0 , x ∈ N−(T )}.
Note that if (B, x) ∈ L−, then B ∪ {x} is a latticed subset for T ; in particular,
U−(T ) ⊆ B ∪ {x}, with equality if and only if

(B, x) = (τ (U−(T )), max(U−(T ))).

Proposition 3.12. Let α : L+ → L−, (A, w) �→ (τ (Â), max(Â)) and let (B, x) ∈
L−. Then

α−1{(B, x)} = {(B ∪ {x}, w) | w ∈ U+(T ), w > x} ∪ M,

where M = {(B ∩ S(Tw0
0 ), w0)} with w0 = max{y ∈ P+(T ) | pT (y) ∈ B ∪ {x} }

unless B ∪ {x} = U−(T ), in which case M = ∅.
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Proof. Observe first that α(A, w) = (B, x) if and only if

Â = A ∪ U−(Tu+1
w ) = B ∪ {x}.

If w ∈ U+(T ), then this condition reduces to A = B ∪ {x}, since U−(Tu+1
w ) = ∅

by Lemma 3.5; thus, α(A, w) = (B, x) if and only if A = B ∪ {x} and x < w.
Furthermore, if α(A1, w1) = (B, x) = α(A2, w2) for some w1, w2 ∈ P+(T ) with
w1 < w2, then pT (w2) > w2 > w1, so that pT (w2) ∈ Â2 \ Â1, contradicting
Â1 = B ∪ {x} = Â2. Thus, there exists at most one (A, w) with w ∈ P+(T ) such
that α(A, w) = (B, x). As pT (w) ∈ Â\U−(T ) if w ∈ P+(T ), we see that there does
not exist (A, w) with w ∈ P+(T ) such that α(A, w) = (B, x) if B ∪ {x} = U−(T ).
It remains then to show that α(A0, w0) = (B, x) whenever B∪{x} �= U−(T ), where
A0 = B ∩ S(Tw0

0 ).
By Corollary 3.8, A0 is a latticed subset of Tw0

0 . Since U(T pT (w0)
w0 ) = ∅ by Lemma

3.3(1), we have

U−(Tu+1
w0

) = {pT (w0)} ∪ U−(Tu+1
pT (w0)

).

Thus Â0 = A0 ∪ U−(Tu+1
w0

) is the closure of A0 ∪ {pT (w0)} for T , and since A0 ∪
{pT (w0)} ⊆ B ∪ {x}, we have Â0 ⊆ B ∪ {x} by Proposition 3.9. Conversely, if
b ∈ B∪{x}\A0, then b > w0. If b ∈ P−(T ), then pT (b) ≤ w0 by maximality of w0, so
that b ∈ U−(Tu+1

w0
). On the other hand, if b ∈ U−(T ), then certainly b ∈ U−(Tu+1

w0
).

Thus B ∪ {x} \ A0 ⊆ U−(Tu+1
w0

), so that B ∪ {x} ⊆ A0 ∪ U−(Tu+1
w0

) = Â0. Hence
Â0 = B ∪ {x}. �

In the corollary below, we use the notation [k] to denote q1−k + q3−k + · · · +
qk−3 + qk−1 for k ∈ Z

+.

Corollary 3.13. Let (B, x) ∈ L−. Then∑
(A,w)∈α−1{(B,x)}

q1+2|A|+|T w
0 |−|T u+1

w | = [1 + |Tu+1
x |]q1+2|B|+|T x

0 | − ε,

where ε = 0 unless B ∪ {x} = U−(T ), in which case ε = q−|T |.

Proof. By Proposition 3.12, for each (A, w) ∈ α−1{(B, x)} with w ∈ U+(T ), we
have w > x and A = B ∪ {x}, so that

q1+2|A|+|T w
0 |−|T u+1

w | = q1+2|B|+|T x
0 |+|T u+1

x |−2|T u+1
w |.

Moreover, the only other possible element of α−1{(B, x)} is (B∩S(Tw0
0 ), w0) where

w0 = max{y ∈ P+(T ) | pT (y) ∈ B ∪ {x} }, and this contributes

q1+2|B|+|T x
0 |−|T u+1

x |

to the sum. Note further that if B ∪ {x} = U−(T ), then

q1+2|B|+|T x
0 |−|T u+1

x | = q−|T |.

The corollary thus follows. �
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4. Main results

Throughout this section, we fix a residue class r modulo e. We denote the set
of indent (resp. removable) r-nodes of a partition λ by I(λ) (resp. R(λ)). We label
the elements of I(λ) ∪ R(λ) as follows: I(λ) ∪ R(λ) = {c1, c2, . . . , cu} such that if
cv is situated to the left of cw then v < w. The partition λ induces a sign sequence
T (λ) = (t1, t2, . . . , tu) where tv = 1 if cv ∈ R(λ), and tv = −1 if cv ∈ I(λ). If
cv ∈ I(λ) (resp. R(λ)), we denote the partition obtained from λ by adding (resp.
removing) cv as λ↑v (resp. λ↓v).

In the statements of the main theorems below, λ ∈ P with T (λ) = (t1, . . . , tu),
and [k] = q1−k + q3−k + · · · + qk−3 + qk−1 for any k ∈ Z+.

Theorem 4.1. Suppose fr(G(λ)) =
∑

µ aµ(q)G(µ). Let v ∈ S−(T (λ)). Then

aλ↑v(q) =

{
[1 + |T (λ)u+1

v |], if v ∈ N−(T (λ));
0, otherwise.

Furthermore, if ik ∈ S−(T (λ)), jk ∈ S+(T (λ)) for k = 1, 2, . . . , s with i1 < j1 <
i2 < j2 < · · · < is < js < v, then

aλ↑i1↓j1 ···↑
is↓js↑

v (q) = 0.

Remark. Note that aµ(q) is the q-analogue of branching coefficients. The first
assertion of Theorem 4.1 agrees with Theorem 1.4 of [6] upon specialization at
q = 1 with e = p and λ p-regular, since a removable r-node cw of λ is normal if
and only if T (λ)u+1

w is latticed, so that cv is a normal node of λ↑v if and only if
v ∈ N−(T (λ)) by Lemma 3.11(1).

Theorem 4.2. Let v ∈ S−(T (λ)) and w ∈ S+(T (λ)) with v < w. Then

dλ↑v↓w,λ(q) =
∑
A

q1+2|A|+|T (λ)w
v |,

where the sum runs over all latticed subsets A for T (λ)w
v .

Proof. We prove Theorems 4.1 and 4.2 simultaneously by induction. For λ = ∅ ∈
P0, Theorem 4.2 holds trivially.

Let λ ∈ Pn and v ∈ S−(T (λ)), and suppose that Theorem 4.2 holds for all
partitions µ ∈ Pm with m ≤ n, and Theorem 4.1 holds for all x ∈ S−(T (λ)) with
x > v. Let fr(G(λ)) =

∑
µ aµ(q)G(µ). Write T for T (λ)u+1

v .
By Proposition 2.7, Lemma 3.11(3) and the induction hypothesis, we have

〈fr(G(λ)), s(λ↑v)〉 =
∑

µ

〈aµ(q)G(µ), s(λ↑v)〉

=
∑

x∈N−(T )∪{v}
〈aλ↑x(q)G(λ↑x), s(λ↑v)〉

= aλ↑v(q) +
∑

x∈N−(T )

[1 + |T (λ)u+1
x |]dλ↑v ,λ↑x(q).(∗)
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On the other hand, we also have

〈fr(G(λ)), s(λ↑v)〉 = 〈fr(s(λ)), s(λ↑v)〉+
∑

w∈S+(T )

dλ↑v↓w,λ(q)〈fr(s(λ↑v↓w)), s(λ↑v)〉

= q−|T | +
∑

w∈S+(T )

∑
A

q1+2|A|+|T (λ)w
v |−|T (λ)u+1

w |,(1)

where A runs over all the latticed subsets for T (λ)w
v .

If v /∈ N−(T (λ)), then U−(T ) �= ∅ by Lemma 3.11(1), so that ∅ is not a latticed
subset for Tw

v for all w ∈ U+(T ). By Corollary 3.13, (1) can be rewritten as

(2)
∑

x∈N−(T )

∑
B

[1 + |T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |,

where B runs over all the latticed subsets for T (λ)x
v . By the induction hypothesis

and the row removal theorem (Theorem 2.5(1)), we have∑
B

q1+2|B|+|T (λ)x
v | = dλ↑v,λ↑x(q),

except possibly when x indexes the indent r-node in the top row of λ. Comparing (2)
with (∗) and using Lemma 2.6, we see that aλ↑v(q) = 0, and

∑
B q1+2|B|+|T (λ)x

v | =
dλ↑v ,λ↑x(q) even when x indexes the indent r-node in the top row of λ.

If v ∈ N−(T (λ)), then U−(T ) = ∅ by Lemma 3.11(1), and hence ∅ is a latticed
subset for T (λ)w

v for all w ∈ U+(T ). Thus, by Corollary 3.13, (1) can be rewritten
as

q−|T | +
∑

w∈U+(T )

q1+|T (λ)w
v |−|T (λ)u+1

w | +
∑

x∈N−(T )

∑
B

[1 + |T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |

= [1 + |T |] +
∑

x∈N−(T )

∑
B

[1 + |T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |,

where B runs over all the latticed subsets for T (λ)x
v . Using arguments similar to

the above, we get aλ↑v (q) = [1 + |T |], and
∑

B q1+2|B|+|T (λ)x
v )| = dλ↑v,λ↑x(q) for all

x ∈ N−(T ).
Now, let ρ = λ↑i1↓j1 · · · ↑is↓js

, with i1 < j1 < · · · < is < js < v. Then by the
row removal theorem (Theorem 2.5(1)), we have

〈fr(G(λ)), s(ρ↑v))〉 =
∑

x∈S+(T )

dρ↑v↓x,λ(q)〈fr(s(ρ↑v↓x)), s(ρ↑v)〉

=
∑

x∈S+(T )

dρλ(q)dλ↑v↓x,λ(q)〈fr(s(λ↑v↓x)), s(λ↑v)〉

= dρλ(q)〈fr(G(λ)), s(λ↑v)〉

= dρλ(q)
∑

y∈N−(T )∪{v}
aλ↑y(q)dλ↑v,λ↑y (q)

=
∑

y∈N−(T )∪{v}
aλ↑y(q)dρ↑v,λ↑y(q)

= 〈
∑

y∈N−(T )∪{v}
aλ↑y(q)G(λ↑y), s(ρ↑v)〉.
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This implies that 〈aρ↑v(q)G(ρ↑v), s(ρ↑v)〉 = 0 by Proposition 2.4, so that aρ↑v(q) =
0. Thus Theorem 4.1 holds for v.

Now, suppose µ ∈ Pn+1. Note that the decomposition number dµ↑v↓w,µ(q) can
be obtained by the induction hypothesis and Theorem 2.5, except when w indexes
the removable node in the top row of the Young diagram of µ and v indexes the
bottom indent node in the first column. For this case, let λ = µ↓w; then we have
seen above that

dµ↑v↓w,µ(q) = dλ↑v ,λ↑w(q)

=
∑
B

q1+2|B|+|T (λ)w
v |

=
∑
A

q1+2|A|+|T (µ)w
v |,

where A runs over the latticed subsets for T (µ)w
v . Thus Theorem 4.2 holds for µ,

and this completes our proof. �

We thank the referee for the following remark.

Remark. Since both dλµ(q) and the decomposition numbers of symmetric groups
obey the row removal theorem, it follows from Theorem 4.2, Theorem 1.10 of [6]
and Ariki’s theorem [1] that the decomposition number indexed by partitions λ and
µ (with µ p-regular) of the Hecke algebra at a complex p-th root of unity coincide
with that of the symmetric group in characteristic p when λ is obtained from µ
by alternately removing removable nodes and adding indent nodes. This further
implies that the corresponding adjustment matrix entry indexed by such a pair of
partitions is zero. As Theorem 1.10 of [6] can be extended to an analogue for the
Schur algebras, the adjustment matrix entry, from the quantized Schur algebra at a
complex p-th root of unity to the classical Schur algebra in characteristic p, indexed
by such a pair of partitions (where µ need not be p-regular), is also zero.

We conclude this paper with an example illustrating the main theorems.

Example. Let e = 2, λ = (5, 32, 1), and r = 0.

0

0
0

0
0

Young diagram of λ = (5, 32, 1).

Then T (λ) = (−1,−1, 1,−1, 1). Let f0(G(λ)) =
∑

µ aµ(q)G(µ). Then

a(5,4,3,1)(q) = a(5,32,2)(q) = [2] = q + q−1,

a(5,32,12)(q) = a(5,4,22)(q) = a(5,4,2,12)(q) = 0,
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and

d(42,3,1),(5,32,1)(q) = d(5,3,22),(5,32,1)(q) = q,

d(5,3,2,12),(5,32,1)(q) = q2,

d(4,32,2),(5,32,1)(q) = q + q3,

d(4,32,12),(5,32,1)(q) = q2 + q4.

Using the row removal theorem (Theorem 2.5(1)), we further have

d(42,22),(5,32,1)(q) = q2 and d(42,2,12),(5,32,1)(q) = q3.
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