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INDECOMPOSABLE MODULES OF LARGE RANK
OVER COHEN-MACAULAY LOCAL RINGS

WOLFGANG HASSLER, RYAN KARR, LEE KLINGLER, AND ROGER WIEGAND

Abstract. A commutative Noetherian local ring (R, m, k) is called Dedekind-

like provided R is one-dimensional and reduced, the integral closure R is gen-
erated by at most 2 elements as an R-module, and m is the Jacobson radical of
R. If M is an indecomposable finitely generated module over a Dedekind-like
ring R, and if P is a minimal prime ideal of R, it follows from a classification
theorem due to L. Klingler and L. Levy that MP must be free of rank 0, 1 or
2.

Now suppose (R, m, k) is a one-dimensional Cohen-Macaulay local ring that
is not Dedekind-like, and let P1, . . . , Pt be the minimal prime ideals of R. The
main theorem in the paper asserts that, for each non-zero t-tuple (n1, . . . , nt)
of non-negative integers, there is an infinite family of pairwise non-isomorphic

indecomposable finitely generated R-modules M satisfying MPi
∼= (RPi

)(ni)

for each i.

§1. Introduction

In 1911, E. Steinitz determined the structure of all finitely generated modules
over Dedekind domains. This structure is so simple that one is tempted to try
to generalize Steinitz’s result to a larger class of commutative rings. Indeed, in a
recent series of papers [KL1], [KL2], [KL3] L. Klingler and L. Levy presented a
classification, up to isomorphism, of all finitely generated modules over a class of
commutative rings they call “Dedekind-like”.

We recall that a commutative Noetherian local ring (R, m, k) is Dedekind-like
[KL1, Definition 2.5] provided R is one-dimensional and reduced, the integral clo-
sure R is generated by at most 2 elements as an R-module, and m is the Jacobson
radical of R. (In [KL2, (1.1.3)] a further requirement is imposed: If R/m is a field,
then it is a separable extension of k. Klingler and Levy prove their classification
theorem only under this additional hypothesis. In the present paper, however, we
do not require that Dedekind-like rings satisfy this separability condition.) Al-
though Dedekind-like rings are very close to their normalizations, their module
structure is much more complicated than that of Dedekind domains. Klingler and
Levy dash any hope of a further extension of their classification theorem by showing
that, if R is not a homomorphic image of a Dedekind-like ring or a special type
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of Artinian ring which they call a Klein ring, then R must be “finite-length wild”.
This means, roughly speaking, that a classification of finite-length modules over
R would yield, for some field k, a classification of finite-dimensional modules over
every finite-dimensional k-algebra. The apparent hopelessness of obtaining such a
classification makes any further generalizations of Steinitz’s result unlikely.

One of the peculiarities of Dedekind-like rings is that there is a bound on the
torsion-free ranks of their indecomposable finitely generated modules; in fact, these
torsion-free ranks are always bounded by two. Recently W. Hassler and R. Wiegand
[HaW] constructed an indecomposable finitely generated module of torsion-free rank
two over the cusp k[[X2, X3]] (where k is an arbitrary field) and over some related
rings. The approach they used to build this module resembles the construction of
rank-two indecomposable modules over unsplit Dedekind-like rings in [KL2]. Al-
though the cusp k[[X2, X3]] is not Dedekind-like, it is a Bass ring [LevW]; therefore
all of its indecomposable finitely generated torsion-free modules have torsion-free
rank one [B]. In this situation it is natural to ask whether there exist indecompos-
able finitely generated modules of even higher rank over k[[X2, X3]] and over other
non-Dedekind-like rings. The results of the current paper grew out of an attempt
to answer this question.

In this paper all rings commute, and local and semi-local rings are assumed to
be Noetherian. In order to state our main result, we need to define precisely what
we mean by the “rank” of a module.

Definition 1.1. Let R be a Noetherian ring with total quotient ring K = {non-
zerodivisors of R}−1R. A finitely generated R-module is called generically free
if K ⊗R M is a projective K-module; equivalently, MP is RP -free for every P ∈
Ass(R). If MP

∼= R
(nP )
P for every P ∈ Ass(R), we say that the tuple (nP )P∈Ass(R)

is the torsion-free rank of M . Further, we say that M has constant rank r, if M
has torsion free rank (nP )P∈Ass(R), and nP = r for all P ∈ Ass(R).

If R is Cohen-Macaulay, then Ass(R) consists only of the minimal primes P1, . . . ,
Pt of R. Hence K = K1 × . . .×Kt, where Ki = RPi

. We are now prepared to state
our main theorem:

Theorem 1.2 (Main Theorem). Let (R, m, k) be a Cohen-Macaulay local ring of
dimension one, and assume R is not Dedekind-like. Let K = K1 × . . . × Kt be
as above. For each non-zero t-tuple (r1, . . . , rt) of non-negative integers, there is
an infinite family of pairwise non-isomorphic indecomposable finitely generated R-
modules of torsion-free rank (r1, . . . , rt).

To prove this result we pass to an auxiliary ring Ω between R and its normaliza-
tion R. We take cyclic modules over Ω as our building blocks, some of finite length
and some of infinite length. These blocks undergo a process of “top-gluing” and
“bottom-gluing”, and eventually we obtain the desired indecomposable R-modules.
An important tool for our construction is the theory of “separated covers” developed
in [KL2]. By using separated covers, one can study finitely generated R-modules
and their R-homomorphisms by means of Ω-modules and Ω-homomorphisms.

It is often possible to build large indecomposable torsion-free modules. Suppose
(R, m, k) is a one-dimensional reduced local ring with finite normalization R. Then
there is a bound on the ranks of all finitely generated torsion-free indecomposable
R-modules if and only if R has finite Cohen-Macaulay type, equivalently, R satisfies



INDECOMPOSABLE MODULES OF LARGE RANK 1393

the Drozd-Rŏıter conditions [DR]:

(1) R is generated by at most 3 elements as an R-module, and
(2) mR+R

R is a cyclic R-module.

See [CWW] for a survey article on this result. We note [CWW] that if a one-
dimensional reduced local ring R, with finite normalization, does not satisfy the
Drozd-Rŏıter conditions, then there even exist finitely generated indecomposable
torsion-free R-modules with arbitrarily large constant rank. Further results on
the existence of large indecomposable torsion-free modules can be found in [LW1],
[LW2].

The paper is organized as follows: §2 is devoted to the proof of the Main Theo-
rem. In §3 we briefly discuss rings of arbitrary dimension and ponder the case of
one-dimensional rings that are not Cohen-Macaulay.

§2. Constructions in dimension one

We begin with the preparations for the proof of Theorem 1.2.

§2a. Module-finite overrings. Let R be a commutative Noetherian ring (not
necessarily one-dimensional or Cohen-Macaulay or local), with total quotient ring
K. Given a faithful ideal I of R, we note that I must contain a non-zerodivisor
of R, or else I would be contained in the union of the associated primes of R and
hence in some associated prime of R. But this would imply that some non-zero
element of R annihilates I. Therefore KI = K, so the canonical isomorphism from
K ⊗R I to KI shows that each R-endomorphism of I extends uniquely to a K-
endomorphism of K. That is, we can make a canonical identification of EndR(I)
with (I :K I) = {γ ∈ K | γI ⊆ I}. Now I finitely generated as an R-module implies
that EndR(I) = (I :K I) is also finitely generated as an R-module, which makes
(I :K I) integral over R and hence contained in the normalization R of R. (Note
that we are allowing for the possibility that R might not be finitely generated as
an R-module.) We denote by J(R) the Jacobson radical of the ring R.

Lemma 2.1. Let R be a one-dimensional, semi-local Cohen-Macaulay ring with
total quotient ring K, and assume that R �= R. Then R � (J(R) :K J(R)); that is,
there is some element γ ∈ R − R such that γ J(R) ⊆ J(R).

Proof. We can harmlessly assume that R is indecomposable. Since the prime spec-
trum of an indecomposable ring must be connected, and a height zero maximal
ideal would be both open and closed in Spec(R), it follows that every maximal
ideal of R must have height one. We claim that there is some maximal ideal m

such that Rm �= Rm. Suppose first that R is reduced. Then Rm = Rm for each
maximal ideal m by [HaW, Lemma 2.1]; in this case we choose any maximal ideal
m such that Rm �= Rm, proving the claim. If, on the other hand, R is not reduced,
we choose a non-zero element x with x2 = 0. Let m be a maximal ideal such that
(the image of) x is non-zero in Rm. Since Rm is Cohen-Macaulay of dimension one,
there is a non-zerodivisor t ∈ mRm, and then x

tn ∈ Rm for every n ≥ 1. Choosing
n so large that x /∈ Rmtn, we have x

tn /∈ Rm as desired.
Thus we may assume that (R, m, k) is local. We claim that m does not have a

direct summand isomorphic to R. Suppose, by way of contradiction, that m = X⊕Y
with X ∼= R. Then XY = 0, and since X is faithful we have Y = 0. But then
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m = X ∼= R is principal, which implies that R is a discrete valuation ring, and
hence R = R, contradiction.

Since depth(R) = 1 we have HomR(k, R) = 0 and Ext1R(k, R) �= 0. Applying
HomR( , R) to the short exact sequence 0 → m → R → k → 0, we get an exact
sequence

(2.1.1) 0 → R → HomR(m, R) → Ext1R(k, R) → 0.

As shown above, m does not have a direct summand isomorphic to R, so that the
image of every R-homomorphism from m to R must be contained in the unique
maximal ideal m of R. That is, HomR(m, R) = EndR(m) = (m :K m). Therefore,
since Ext1R(k, R) �= 0, the exact sequence (2.1.1) shows that the inclusion R →
(m :K m) is proper, as desired. �

Proposition 2.2. Let (R, m, k) be a one-dimensional Cohen-Macaulay local ring,
and assume that R is not Dedekind-like. Then at least one of the following holds.

(1) There is a local ring (Ω, n, k), with R ⊂ Ω ⊆ R, such that m is the conductor
of R in Ω, m � n, and Ω is generated by 2 elements as an R-module. In
particular, dimk(Ω/m) = 2.

(2) R is reduced, R is finitely generated as an R-module, m is the conductor of
R in R, m = J(R), and dimk(R/m) ≥ 3.

Proof. We first observe that, if R is not reduced, then R is not finitely generated
as an R-module. To see this, suppose x is a non-zero nilpotent element. Choosing
a non-zerodivisor t ∈ m, we get an infinite strictly ascending chain Rx

t ⊂ R x
t2 ⊂

R x
t3 ⊂ . . . of submodules of R. (If x

tn+1 ∈ R x
tn , write x

tn+1 = r x
tn , getting x(1−rt) =

0, which forces x = 0.)
In particular, if R were equal to R, then R would be a discrete valuation domain,

contradicting our assumption that R is not Dedekind-like. Therefore R � R, and
now Lemma 2.1 implies that Γ := (m :K m) is a proper extension of R. Since
mΓ = m, it follows that m is the conductor of R in Γ.

Suppose first that m �= J(Γ). Since R ∩ J(Γ) = m, J(Γ) � R, so we can choose
an element δ ∈ J(Γ) − R. Since Γ/m is Artinian, we can replace δ by one of its
powers and assume that δ /∈ R but δ2 ∈ R. Then δ2 ∈ R ∩ J(Γ) = m. We set
Ω = R[δ] = R + Rδ. Then Ω is a ring and is two-generated as an R-module.
Further, m is the conductor of R in Ω. Clearly Ω is local, with maximal ideal
n := m + Rδ � m. Therefore (1) holds.

Suppose instead that m = J(Γ). Since Γ ∼= EndR(m) (see the paragraph preced-
ing Lemma 2.1), Γ is finitely generated as an R-module. Thus Γ is semilocal, and
(J(Γ) :K J(Γ)) = (m :K m) = Γ. Since J(Γ) contains a non-zerodivisor, Γ is Cohen-
Macaulay, and now Lemma 2.1 implies that Γ = Γ = R. By the first paragraph
of the proof, R is reduced. If dimk(R/m) ≤ 2, then R would be Dedekind-like (by
Nakayama’s lemma), contrary to our assumption. Therefore dimk(R/m) ≥ 3, and
(2) holds. �

For consistency with the notation in [KL1]–[KL3], we shall always write maps
on the right for the remainder of §2. The proof of Theorem 1.2 divides naturally
into the two cases of Proposition 2.2. Thus, we handle Case (1) in §2b, and Case
(2) in §2c. We retain the notation established in Definition 1.1 and Theorem 1.2.
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§2b. The ramified case (Case (1) of Proposition 2.2).

Theorem 2.3. Let (R, m, k) and (Ω, n, k) be as in Case (1) of Proposition 2.2,
and let r1, . . . , rt be non-negative integers, not all zero. Then there is an infinite
family of pairwise non-isomorphic finitely generated indecomposable R-modules of
torsion-free rank (r1, . . . , rt).

Proof. Let Qi be the kernel of the composition Ω ↪→ R ↪→ K � Ki = RPi
�

RPi
/PiRPi

. (The Qi are the minimal prime ideals of Ω.) Choose

δ ∈ n − (m ∪ Q1 ∪ . . . ∪ Qt).

Then δ is a unit of K and therefore a non-zerodivisor of Ω. Moreover, δ �∈ R since
n∩R = m. Therefore δ̄ := δ +m ∈ Ω/m−k, so that Ω/m = k+kδ̄. By Nakayama’s
lemma, Ω = R + Rδ. Since δ̄ is nilpotent, we must have δ̄2 = 0, that is, δ2 ∈ m.
We have a conductor square

(2.3.1)

R −−−−→ Ω⏐⏐� ⏐⏐�
k

⊂−−−−→ Ω/m,

in which the right-hand vertical arrow is the natural surjection.
Fix an integer n ≥ max{r1, . . . , rt}. We will construct an indecomposable finitely

generated R-module Mn with torsion-free rank (r1, . . . , rt) requiring exactly 4n
generators.

Since K = K1 × . . . × Kt is the total quotient ring of R (cf. the paragraph
preceding Theorem 1.2), we can choose an element λi ∈ K×

i ∩R (where K×
i denotes

the group of units of Ki) for each index i ∈ {1, . . . , t}. For any subset C ⊆ {1, . . . , t},
let wC := δ8 ·

∑
i �∈C λi ∈ δ8Ω; then the module Ω/wCΩ has torsion-free rank

(c1, . . . , ct), where ci = 1 if i ∈ C and ci = 0 otherwise. For each index j, 1 ≤ j ≤ n,
let Cj = {i | 1 ≤ i ≤ t and ri ≥ j}. If 1 ≤ i ≤ t, then i is an element of
C1 ∩ . . . ∩ Cri

but not an element of Cri+1 ∪ . . . ∪ Cn. Although the sets Cj are
not necessarily distinct, we see that for each i ≤ t there are exactly ri indices j
for which i ∈ Cj . It follows that the module X1 := Ω/wC1Ω ⊕ . . . ⊕ Ω/wCn

Ω has
torsion-free rank (r1, . . . , rt). Moreover, since each wCj

is in m, the natural map
Ω(n) � (Ω/m)(n) induces a natural surjection ν1 : X1 � (Ω/m)(n), which induces
a natural identification X1/mX1 = (Ω/m)(n).

Next, let X2 = (Ω/δ4m)(n), X3 = (Ω/δ2m)(n), and X4 = (Ω/m)(n). Again, the
natural map Ω(n) � (Ω/m)(n) provides a natural surjection νi : Xi � (Ω/m)(n) and
allows us to identify each Xi/mXi with (Ω/m)(n) = X4. Let X = X1⊕X2⊕X3⊕X4

and ν = ν1 ⊕ ν2 ⊕ ν3 ⊕ ν4 : X � (Ω/m)(4n). We define an R-module S by the
following pullback square:

(2.3.2)

S
⊂−−−−→ X

π

⏐⏐� ⏐⏐�ν

k(4n) A−−−−→ (Ω/m)(4n)
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Here the elements of k(4n) are viewed as row vectors, subjected to right multiplica-
tion by the matrix

A :=

⎛
⎜⎜⎝

I 0 0 0
δ̄I 0 I 0
0 I 0 0
0 δ̄I δ̄I I

⎞
⎟⎟⎠ ,

where I denotes the n × n identity matrix.
In fact S is a separated R-module [KL2, Definition 4.3], which just means that S

is an R-submodule of some Ω-module (namely X). Also, ΩS = X (computed inside
X), as can be easily seen from the definition of S as pullback in (2.3.2), together
with the fact that the rows of A span (Ω/m)(4n) as an Ω/m-module. The maps π
and ν in (2.3.2) have the same kernel, namely mS = mΩS = mX; therefore π and
ν are just the natural surjections S � S/mS and X � X/mX. Moreover, there is
a natural isomorphism Ω ⊗R S ∼= ΩS = X by [KL2, Lemma 5.2]. (Actually, that
lemma assumes that R is a Dedekind-like ring, but for the proof of the direction
we are applying here, the only facts used are that R is local, its maximal ideal m

is the conductor, and S/mS and X/mX are free k- and Ω/m-modules, respectively,
of the same rank.)

Next, multiplication by δ4 defines a homomorphism Ω → Ω/δ4m with kernel m

(since δ is a non-zerodivisor). This homomorphism, in turn, induces an injection
ξ : Ω/m → Ω/δ4m; moreover, Im ξ = δ4Ω/δ4m. We let σ2 be the direct-sum
map ξ(n) : (Ω/m)(n) → (Ω/δ4m)(n) = X2, so that σ2 is injective, and Imσ2 =
δ4X2 ⊆ mX2. Similarly, multiplication by δ2 from Ω to Ω/δ2m induces an injection
η : Ω/m → Ω/δ2m with Im η = δ2Ω/δ2m. We let σ3 be the direct-sum map η(n) :
(Ω/m)(n) → (Ω/δ2m)(n) = X3, so that σ3 is injective, and Imσ3 = δ2X3 ⊆ mX3.
Since mX2 ⊕ mX3 ⊂ mX = mΩS = mS, we obtain a commutative diagram:

(2.3.3)

(Ω/m)(2n) σ2⊕σ3−−−−→ X2 ⊕ X3⏐⏐� ↘ σ
⏐⏐�⊂

mS
⊂−−−−→ X

where σ =
(

0 σ2 0 0
0 0 σ3 0

)
.

Now let B : k(2n) → (Ω/m)(2n) be right multiplication by the matrix

B =
(

I δ̄H
0 I

)
,

where I is the n × n identity matrix and H is the indecomposable nilpotent n × n
Jordan block:

(2.3.4) H :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠
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Noting that Im σ ⊂ mX ⊂ S, we define τ to be the composition Bσ : k(2n) → S,
as in the following commutative diagram:

(2.3.5)

k(2n) B−−−−→ (Ω/m)(2n)

τ

⏐⏐� ⏐⏐�σ

S
⊂−−−−→ X

Finally, we define Mn := S/ Im τ .
Since Im τ = Im(Bσ) ∼= k(2n) is a torsion R-module, we see that K ⊗R Mn

∼=
K ⊗R S. As noted above, Ω ⊗R S ∼= X, so that

K ⊗R S ∼= K ⊗Ω Ω ⊗R S ∼= K ⊗Ω X.

But X2, X3, and X4 are torsion, being annihilated by δ6, so that

K⊗ΩX ∼= K⊗ΩX1 = K⊗Ω(Ω/wC1Ω⊕. . .⊕Ω/wCn
Ω) ∼= K/wC1K⊕. . .⊕K/wCn

K.

By the choice of the elements wCj
, Mn has torsion-free rank (r1, . . . , rt).

Since Im τ ⊆ mS, it follows that Mn/mMn = (S/ Im τ )/(mS/ Im τ ) ∼= S/mS =
S/mX ∼= k(4n), by (2.3.2). Thus the sequence {Mn | n ≥ max{r1, . . . , rt}} is an
infinite family of pairwise non-isomorphic R-modules, each with torsion-free rank
(r1, . . . , rt).

To complete the proof of Theorem 2.3, we show that Mn is indecomposable.
Suppose that f is an idempotent R-endomorphism of Mn and that f is not surjec-
tive. We will show that f = 0. By Nakayama’s lemma, it will suffice to show that
Im f ⊆ mMn.

One easily checks that the R-submodule Im B of (Ω/m)(2n) does not contain
a non-zero Ω-submodule of (Ω/m)(2n). Hence no non-zero Ω-submodule of X is
contained in Im τ . Since, in addition, Im τ ⊆ mS, the module S is a separated
cover of Mn [KL2, Lemma 4.9]. Therefore, by [KL2, Theorem 4.12], f lifts to an
R-endomorphism θ of S, and θ in turn extends to an Ω-endomorphism θ′ = 1Ω⊗R θ
of Ω ⊗R S = X. Then θ and θ′ induce endomorphisms θ̄ and θ̄′ of S/mS = k(4n)

and X/mX = (Ω/m)(4n), respectively. We assemble these maps in the following
cube, in which the inner and outer squares are the pullback diagram (2.3.2):

(2.3.6)

S
⊂→ X

↖ θ θ′ ↗
S

⊂→ X
π ↓ π ↓ ↓ ν ↓ ν

k(4n) A→ (Ω/m)(4n)

θ̄ ↙ ↘ θ̄′

k(4n) A→ (Ω/m)(4n)

Since all faces except possibly the bottom trapezoid commute, and since the map
π : S → k(4n) is surjective, it follows that the bottom trapezoid commutes as well,
that is, θ̄A = Aθ̄′.

The map θ̄ : k(4n) → k(4n) is right multiplication by a 4n × 4n matrix over
k, which we write in block form as (Pij), where 1 ≤ i, j ≤ 4 and each Pij is an
n × n matrix over k. Similarly, we can represent the map θ′ as a matrix in block
form (Qij), where again 1 ≤ i, j ≤ 4 and each Qij is a map from Xi to Xj . Now
Qij induces a map Q̄ij : Xi/mXi → Xj/mXj . Since Xi/mXi = (Ω/m)(n), each
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Q̄ij can be viewed as an n × n matrix over Ω/m, and the map θ̄′ becomes right
multiplication by the 4n × 4n block matrix (Q̄ij). In fact, the homomorphism
ν is a diagonal map—reduction modulo m. Therefore, viewing the map θ′ as a
matrix of maps between cyclic indecomposable Ω-modules (via the given direct-
sum decomposition of X), we see that the matrix (Q̄ij) can be obtained from the
matrix (Qij) by simply reducing all entries modulo m.

We can say more about some of the matrices Q̄ij . Since δ6X2 = 0 and Q21 :
X2 → X1, we see that δ6 · Im Q21 = 0. But X1 = Ω/wC1Ω ⊕ . . . ⊕ Ω/wCn

Ω,
and wCi

Ω ⊆ δ8Ω for each index i. Since δ is a regular element of Ω, we see that
Im Q21 ⊆ δ2X1 ⊆ mX1. That is, the entries of Q21 reduced modulo m are 0, and
hence Q̄21 = 0. Similar arguments show that in fact Q̄ij = 0 whenever i > j. In
other words, the matrix (Q̄ij) is block upper triangular. The equation θ̄A = Aθ̄′

now reads as follows:

⎛
⎜⎜⎝

P11 + δ̄P12 P13 + δ̄P14 P12 + δ̄P14 P14

P21 + δ̄P22 P23 + δ̄P24 P22 + δ̄P24 P24

P31 + δ̄P32 P33 + δ̄P34 P32 + δ̄P34 P34

P41 + δ̄P42 P43 + δ̄P44 P42 + δ̄P44 P44

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

Q̄11 Q̄12 Q̄13 Q̄14

δ̄Q̄11 δ̄Q̄12 δ̄Q̄13 + Q̄33 δ̄Q̄14 + Q̄34

0 Q̄22 Q̄23 Q̄24

0 δ̄Q̄22 δ̄Q̄23 + δ̄Q̄33 δ̄Q̄24 + δ̄Q̄34 + Q̄44

⎞
⎟⎟⎠ .

Working column by column in order, comparing entries and using the fact that
{1, δ̄} is linearly independent over k, one shows that the Pij have entries in k, and
that δ̄2 = 0. We see easily that P11 = P22 = P33 = P44, and for convenience we put
∆ := P11. Moreover, Q̄ii = ∆+ δ̄Vi for suitable matrices Vi with entries in k. Thus,
if we reduce θ′ modulo n = m + δΩ, the resulting endomorphism of X/nX = k(4n)

is right multiplication by a block upper-triangular matrix over k with four identical
n × n diagonal blocks ∆.

We shall show that in fact ∆ itself is upper triangular with constant diagonal.
To see this, we look at the matrix B and its relation to θ and θ′. Since the
map θ : S → S induces the R-endomorphism f of Mn = S/ Im τ , it follows that
(Im τ )θ ⊆ Im τ . Therefore θ can be lifted to an R-homomorphism θ̃ : k(2n) → k(2n)

such that τθ = θ̃τ . Moreover, since B is invertible, Im(Bσ) generates Im σ as an Ω-
submodule of X. Since the map θ′ : X → X extends θ, it follows that (Im(σ))θ′ ⊆
Im(σ). Therefore θ′ lifts to an Ω-homomorphism θ̃′ : (Ω/m)(2n) → (Ω/m)(2n) such
that σθ′ = θ̃′σ. (A preliminary peek at the diagram below is helpful here.) These
maps yield a cube

(2.3.7)

k(2n) B→ (Ω/m)(2n)

↖ θ̃ θ̃′ ↗
k(2n) B→ (Ω/m)(2n)

τ ↓ τ↓ ↓ σ ↓ σ

S
⊂→ X

θ ↙ ↘ θ′

S
⊂→ X
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in which the left, right and bottom trapezoids commute. Also, the inside and
outside squares commute by (2.3.5). Since the map σ is injective, it follows that
the top trapezoid commutes as well, and we have the identity θ̃B = Bθ̃′.

The map θ̃ is right multiplication by a 2n × 2n matrix over k. We write this
matrix in block form as (Rij), where 1 ≤ i, j ≤ 2, and each Rij is an n × n matrix

over k. Similarly, θ̃′ is right multiplication by a matrix
(

Q̃22 Q̃23

Q̃32 Q̃33

)
, where each Q̃ij

is an n × n matrix over (Ω/m). (The strange numbering is for compatibility with
σ, whose image is contained in X2 ⊕ X3.) We have already written θ′ as a matrix
(Qij), where each Qij is a map from Xi to Xj .

As above, we can say more about some of the matrices Q̃ij . Since the ho-
momorphism σ is the diagonal map σ2 ⊕ σ3, commutativity of the right-hand
trapezoid of (2.3.7) implies that Q̃23σ3 = σ2Q23. Now Im σ2 = δ4X2, so that
Im(σ2Q23) ⊆ δ4(X2)Q23 ⊆ δ4X3 = 0 (since δ2 ∈ m and X3 = (Ω/δ2m)(n)). But
σ3 is injective, so it follows that Q̃23 = 0; that is, the matrix (Q̃ij) is block lower
triangular.

Similarly, for the diagonal block Q22, commutativity of the right-hand trapezoid
of (2.3.7) yields the equation Q̃22σ2 = σ2Q22, but now we want to use the fact
that σ2 is itself a diagonal map ξ(n) : (Ω/m)(n) → (Ω/δ4m)(n). Thus, if we write
Q22 = (qij) and Q̃22 = (q̃ij), then commutativity of (2.3.7) yields equal maps
q̃ijξ = ξqij from Ω/m to Ω/δ4m, for each pair of indices i, j (1 ≤ i, j ≤ n). Now
we can view q̃ij as multiplication by an element q̃ij ∈ Ω (modulo the ideal m),
and qij as multiplication by an element qij ∈ Ω (modulo the ideal δ4m). Then
the equality of maps q̃ijξ = ξqij implies that q̃ij − qij annihilates the module
Im ξ = δ4Ω/δ4m ∼= Ω/m; that is, q̃ij − qij ∈ m. In other words, reducing the entries
of the matrix Q22 modulo m yields exactly the matrix Q̃22. But we have already
noted that Q22 modulo m equals the matrix Q̄22. Therefore Q̃22 = Q̄22 = ∆ + δ̄V2.
By a similar argument, Q̃33 = Q̄33 = ∆ + δ̄V3.

Since δ̄2 = 0, the equation θ̃B = Bθ̃′, written in matrix form, now reads
(

R11 δ̄R11H + R12

R21 δ̄R21H + R22

)
=

(
∆ + δ̄(V2 + HQ̃32) δ̄H∆

Q̃32 ∆ + δ̄V3

)
.

Since the matrices Rij have entries in k, the (1,1)-entries show that R11 = ∆,
while the (1,2)-entries show that R11H = H∆. Thus ∆H = H∆; since H is non-
derogatory, ∆ ∈ k[H]. In particular, ∆ is an upper-triangular matrix over k, with
constant diagonal. Therefore, when we reduce θ′ modulo n = m + δΩ, the resulting
endomorphism of X/nX = k(4n) is right multiplication by an upper-triangular
matrix Ξ with constant diagonal.

On the other hand, θ′ restricts to the R-endomorphsim θ of S, which in turn
induces the R-endomorphism f of Mn. But f is not surjective, by assumption,
and hence θ cannot be surjective. If θ′ were surjective, it would induce a surjective
endomorphism of the Noetherian module X/S and hence an automorphism of X/S,
but since (S)θ′ = Im θ ⊆ S, this would force Im θ = S, a contradiction. Therefore
θ′ cannot be surjective either. Then, by Nakayama’s lemma, the endomorphism of
X/nX = k(4n) induced by θ′ is not surjective. Since this endomorphism is given
by right multiplication by the upper-triangular matrix Ξ above, we see that the
constant element on the diagonal must be 0, and hence Ξ is a nilpotent 4n × 4n
matrix. That is, Im(θ′)4n ⊆ nX = (m + Rδ)X. Since δ2 ∈ m, we have Im θ8n ⊆
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Im(θ′)8n ⊆ mX = mS. Now θ8n induces the map f8n = f on Mn. Therefore
Im f ⊆ mMn, as desired. �

§2c. The unramified case (Case (2) of Proposition 2.2). Let the notation
be as in Theorem 1.2. In particular K = K1× . . .×Kt is the total quotient ring and
R the normalization of R. Our goal is the following theorem, which will complete
the proof of Theorem 1.2.

Theorem 2.4. Let (R, m, k) and R be as in Case (2) of Proposition 2.2. Then,
for each t-tuple (r1, . . . , rt) of non-negative integers, there is an infinite family of
pairwise non-isomorphic finitely generated indecomposable R-modules of torsion-
free rank (r1, . . . , rt).

Proof. Put D := R/m. Since m = J(R), we have D = F1 × . . . × Fm, where
each Fi is a field of finite degree over k. We number the components so that
[F1 : k] ≥ . . . ≥ [Fm : k]. Since R is reduced and R is finitely generated as
an R-module, R is a finite product of semilocal Dedekind domains, so that m (the
number of maximal ideals of R) is greater than or equal to t (the number of minimal
prime ideals of R). Most possibilities for R are covered by a single construction
(“the basic case”), which we present in detail. The remaining cases seem to require
different constructions, which we outline at the end of this proof.

The basic case. For the basic construction we shall assume that, at one extreme,
if m = 1 (so that [F1 : k] ≥ 3) and the characteristic of F1 is 2, then F1 is a
separable extension of k. At the other extreme we shall assume that, if [F1 : k] = 1
(so that m ≥ 3), then |k| > 3. With these additional assumptions, we claim that
there is a unit ū ∈ D such that the set {1, ū, ū2} is linearly independent over k. If
m = 1, then the assumed restriction on F1 ensures that there is an element ū ∈ F1

of degree at least 3 over k. If [F1 : k] = 1, then the assumed restriction on k
ensures that we can take ū = (a, b, c, 1, . . . , 1) for some distinct non-zero elements
a, b, c ∈ k. (By a Vandermonde determinant argument it follows that 1, u, u2 are
linearly independent over k.) This leaves the case where m > 1 and [F1 : k] > 1.
In this case we put ū = (α, 1, . . . , 1), where α is any element of F1 −k. If p, q, r ∈ k
with pū2 +qū+r = 0, then both α and 1 are roots of the polynomial pX2 +qX +r,
and it follows easily that p = q = r = 0. This proves the claim.

Choose an element u ∈ R whose image in D is ū, and set Ω := R[u]. Clearly m

is an ideal of Ω and hence is the conductor of R in Ω. Now Ω/m is a k-subalgebra
of D and therefore is a finite-dimensional semisimple k-algebra. Since m ⊆ J(Ω), it
follows that m = J(Ω). Thus we again obtain the conductor square (2.3.1) for R.

As in the proof of Theorem 2.3, choose an element λi ∈ K×
i ∩ R for each in-

dex i. For any subset C ⊆ {1, . . . , t} let wC :=
∑

i �∈C λi. Also, choose subsets
C1, . . . , Cn ⊆ {1, . . . , t} such that i is in exactly ri sets Cj for each i. The module
X1 := Ω/wC1m

5⊕ . . .⊕Ω/wCn
m5 then has torsion-free rank (r1, . . . , rt). The natu-

ral map Ω(n) � (Ω/m)(n) allows us to make the identification X1/mX1 = (Ω/m)(n).
The inclusion Ω/m ⊆ R/m = D (of modules over the semisimple k-algebra Ω/m)

splits, so there is an Ω-submodule Y ⊆ D, such that D/Y ∼= Ω/m. Since m is a
principal ideal of R generated by a non-zerodivisor, we have ms/ms+1 ∼= R/m = D,
for each positive integer s. Thus, for each positive integer s, there exists an Ω-
module Ys such that

(2.4.1) m
s ⊆ Ys ⊆ m

s−1 and m
s−1/Ys

∼= Ω/m.
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Put X2 := (Ω/Y4)(n) and X3 := (Ω/Y2)(n). The natural map Ω(n) � (Ω/m)(n)

allows the identifications X2/mX2 = (Ω/m)(n) and X3/mX3 = (Ω/m)(n). Let
X = X1 ⊕ X2 ⊕ X3, and let ν : X � X/mX = (Ω/m)(3n) be the natural map.

We define an R-module S by the following pullback square:

(2.4.2)

S
⊂−−−−→ X

π

⏐⏐� ⏐⏐�ν

k(3n) A−−−−→ (Ω/m)(3n)

Here the elements of k(3n) are viewed as row vectors, subjected to right multiplica-
tion by the matrix

A :=

⎛
⎝ I 0 0

ūI I 0
0 ūI I

⎞
⎠ ,

where I denotes the n × n identity matrix. As in the proof of Theorem 2.3, S is
a separated R-module, and there is a natural isomorphism Ω ⊗R S ∼= ΩS = X by
[KL2, Lemma 5.2].

Since m3/Y4
∼= Ω/m ∼= m/Y2, we can fix injections ξ : Ω/m → Ω/Y4 and η :

Ω/m → Ω/Y2 such that Im ξ = m3/Y4 and Im η = m/Y2. Then let σ2 be the direct-
sum map ξ(n) : (Ω/m)(n) → (Ω/Y4)(n) = X2, so that σ2 is injective, and Imσ2 =
(m3/Y4)(n) = m3X2. Similarly, let σ3 be the direct-sum map η(n) : (Ω/m)(n) →
(Ω/Y2)(n) = X3, so that σ3 is injective, and Imσ3 = (m/Y2)(n) = mX3. Thus,
Im σ2⊕Im σ3 = m3X2⊕mX3 ⊂ mX = mΩS = mS, so we again get the commutative
diagram (2.3.3), where now σ =

(
0 σ2 0
0 0 σ3

)
.

Let B : k(2n) → Ω(2n) be right multiplication by the matrix

B =
(

H I
ū2I ūI

)
,

where I is the n × n identity matrix, and H is the nilpotent matrix in (2.3.4).
Again, we define τ : k(2n) → S by diagram (2.3.5) and put Mn := S/ Im τ . As in
the proof of Theorem 2.3, K ⊗R Mn

∼= K/wC1K ⊕ . . . ⊕ K/wCn
K, and hence Mn

has torsion-free rank (r1, . . . , rt).
Also as in the proof of Theorem 2.3, since Im τ ⊆ mS, it follows that Mn/mMn =

(S/ Im τ )/(mS/ Im τ ) ∼= S/mS = S/mX ∼= k(3n), by (2.4.2). Thus, the sequence
of R-modules Mn (for n ≥ max{r1, . . . , rt}) is an infinite family of pairwise non-
isomorphic R-modules, each with torsion-free rank (r1, . . . , rt).

The proof of the basic case will be complete once we verify the indecomposability
of the R-module Mn just constructed. The proof that Mn is indecomposable is
much the same as in Theorem 2.3; we summarize the argument and focus only
on the points where slight changes are needed. Thus, we suppose that f is an
idempotent R-endomorphism of Mn and that f is not surjective, and we show that
Im f ⊆ mMn.

As in the proof of Theorem 2.3, one easily checks, from the form of the matrix
B, that no non-zero Ω-submodule of X is contained in Im τ . Since Im τ ⊆ mS,
it follows that S is a separated cover of Mn. Thus f lifts to an R-endomorphism
θ of S, which in turn lifts to an Ω-endomorphism θ′ of X. The maps θ and θ′

then induce endomorphisms θ̄ and θ̄′ of S/mS = k(3n) and X/mX = (Ω/m)(3n),
respectively, yielding a commutative cube similar to (2.3.6), the only difference



1402 W. HASSLER, R. KARR, L. KLINGLER, AND R. WIEGAND

being that “(4n)” is replaced by “(3n)” everywhere. The bottom trapezoid of this
diagram gives the identity θ̄A = Aθ̄′.

We write θ̄ as right multiplication by the block matrix (Pij), where 1 ≤ i, j ≤ 3,
and each Pij is an n × n matrix over k. Similarly, we write θ′ as a matrix in block
form (Qij), where 1 ≤ i, j ≤ 3, and each Qij is a map from Xi to Xj . Reduced
modulo m, each Qij becomes an n × n matrix Q̄ij over Ω/m, right multiplication
by which is the induced map from Xi/mXi

∼= (Ω/m)(n) to Xj/mXj
∼= (Ω/m)(n).

As before, we will show that the matrix (Q̄ij) is block upper triangular. Since
m2 ⊆ Y2 by (2.4.1), m2X3 = 0; therefore m2 annihilates ImQ32 ⊆ X2. But X2 =
(Ω/Y4)(n), and Y4 ⊆ m3 by (2.4.1). It follows that ImQ32 ⊆ (m/Y4)(n) = mX2.
Thus Q̄32 = 0. Similarly, since m4X2 = m4X3 = 0 while X1 = Ω/wC1m

5 ⊕ . . . ⊕
Ω/wCn

m5, it follows easily that ImQ21 and ImQ31 are contained in mX1; therefore
Q̄21 = Q̄31 = 0, as desired. The equation θ̄A = Aθ̄′ now looks like this:

⎛
⎝P11 + ūP12 P12 + ūP13 P13

P21 + ūP22 P22 + ūP23 P23

P31 + ūP32 P32 + ūP33 P33

⎞
⎠ =

⎛
⎝ Q̄11 Q̄12 Q̄13

ūQ̄11 ūQ̄12 + Q̄22 ūQ̄13 + Q̄23

0 ūQ̄22 ūQ̄23 + Q̄33

⎞
⎠ .

Again, we work column by column and compare entries, using the facts that the
set {1, ū, ū2} is linearly independent over k and that the Pij have entries in k. In
this case, we find that Q̄ij = 0 if i �= j and that Q̄11 = Q̄22 = Q̄33 = P11. Putting
∆ := P11, we have

(2.4.3) θ̄′ =

⎛
⎝∆ 0 0

0 ∆ 0
0 0 ∆

⎞
⎠ .

Also as in the proof of Theorem 2.3, we can construct the commutative cube
(2.3.7). (Note that B is equivalent to

(
H−ūI 0

0 ūI

)
, and is therefore invertible.)

Exactly as in the proof of Theorem 2.3, we write θ̃ = (Rij) and θ̃′ = (Q̃ij) (again
indexing the Q̃ij by the subscripts 2 and 3). Then commutativity of the right-
hand trapezoid of (2.3.7) implies that Q̃23σ3 = σ2Q23, from which we deduce that
Q̃23 = 0; that is, (Q̃ij) is block lower triangular. Commutativity of (2.3.7) also
implies, for i = 2, 3, that Q̃iiσi = σiQii, and, exactly as in the proof of Theorem
2.3, the diagonal form of the map σi leads to the equality Q̃ii = Q̄ii = ∆. Now we
invoke the equation θ̃B = Bθ̃′ (from the top trapezoid of (2.3.7)), getting

(
R11H + ū2R12 R11 + ūR12

R21H + ū2R22 R21 + ūR22

)
=

(
H∆ + Q̃32 ∆

ū2∆ + ūQ̃32 ū∆

)
.

Comparing the second columns of these matrices, we see that θ̃ = ( ∆ 0
0 ∆ ). Now

from the first column, since ū is a unit, we get that Q̃32 = 0, and hence ∆H = H∆.
It follows that ∆ is an upper-triangular matrix over k, with constant diagonal, and
hence from (2.4.3) we see that θ̄′ (which is the reduction modulo m of the map θ′)
is also an upper-triangular matrix with constant diagonal.

Finally, the last paragraph of §2b completes the proof of Theorem 2.4, in the
basic case.

There remain the two extreme possibilities not covered by the basic case.
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Inseparable case. (That is, m = 1, and F1 is of characteristic 2 and inseparable
over k.) These hypotheses imply that t = 1 and [F1 : k] ≥ 4. By [Wi, Theorem 2.1]
there is, for each positive integer n, an indecomposable finitely generated torsion-
free R-module of rank n. Since it is not immediately clear how to modify the
construction in [Wi] so as to obtain infinitely many non-isomorphic modules of
each rank, we will again build mixed modules.

Using the fact that [F1 : k] ≥ 4, we can select units ū, v̄ ∈ D = R/m such that
the set {1, ū, v̄, ūv̄} is linearly independent over k. Choose elements u, v ∈ R whose
images in D are ū and v̄, respectively, and set Ω := R[u, v]. As in the basic case, m

is the conductor of R in Ω, Ω/m is a finite-dimensional semisimple k-subalgebra of
D, and m = J(Ω).

The remainder of the proof in the inseparable case is almost identical to that of
the basic case, except that we need to use a different matrix A in the definition of
the module S in (2.4.2), and we need to use a different matrix B in diagram (2.3.5)
in order to define τ = Bσ and Mn = S/ Im τ . Specifically, let

A =

⎛
⎝ I 0 0

ūI I 0
v̄I 0 I

⎞
⎠ and B =

(
H I
v̄I ūI

)
,

where I is the n×n identity matrix, and H is the nilpotent matrix in (2.3.4). The
details of the proof in this case are left as an exercise for the interested reader.

Small residue field case. (That is, [F1 : k] = 1, and |k| ≤ 3.) Now the hypotheses
imply that m ≥ 3, so there are idempotents ē1 = (1, 0, . . . , 0), ē2 = (0, 1, 0, . . . , 0)
and ē3 = (0, 0, 1, 0, . . . , 0) in D. Choose elements e1, e2, e3 ∈ R whose images in D
are ē1, ē2, and ē3, respectively, and set Ω = R[e1, e2, e3]. Then m is the conductor
of R in Ω, Ω/m ∼= k × k × k, and J(Ω) = m.

Just as in the basic case, fix elements λi ∈ K×
i ∩ R for each index i, set wC =∑

i �∈C λi for any subset C ⊆ {1, . . . , t}, and choose subsets C1, . . . , Cn ⊆ {1, . . . , t}
such that i is in exactly ri sets Cj for each i. Then the module X1 := Ω/wC1m

5 ⊕
. . . ⊕ Ω/wCn

m5 has torsion-free rank (r1, . . . , rt), and the natural map Ω(n) �
(Ω/m)(n) provides an identification X1/mX1 = (Ω/m)(n). Again, since Ω/m is a
semisimple k-algebra, there is an Ω-module Ys as in (2.4.1), for each positive integer
s. We put X2 := (Ω/Y4)(n) and X3 := (Ω/Y2)(n); then the natural map Ω(n) �
(Ω/m)(n) allows the identifications X2/mX2 = (Ω/m)(n) and X3/mX3 = (Ω/m)(n).
Let X = X1 ⊕ X2 ⊕ X3, and let ν : X � X/mX = (Ω/m)(3n) be the natural map.

We define an R-module S by means of the pullback square (2.4.2), where now
the elements of k(3n) are row vectors subjected to right multiplication by the matrix

A = ē1 ·

⎛
⎝I 0 0

0 I 0
0 0 I

⎞
⎠ + ē2 ·

⎛
⎝0 I 0

I 0 0
0 0 I

⎞
⎠ + ē3 ·

⎛
⎝0 0 I

0 I 0
I 0 0

⎞
⎠ ,

and I again denotes the n × n identity matrix.
As in the basic case, S is a separated R-module, and Ω ⊗R S = ΩS = X.

Moreover, we can fix injections ξ : Ω/m → Ω/Y4 and η : Ω/m → Ω/Y2 such that
Im ξ = m3/Y4 and Im η = m/Y2. Let σ2 be the direct-sum map ξ(n) : (Ω/m)(n) →
(Ω/Y4)(n) = X2 and σ3 be the direct-sum map η(n) : (Ω/m)(n) → (Ω/Y2)(n) = X3.
Also as in the basic case, σ2 and σ3 are both injective, and Imσ2 = (m3/Y4)(n) =
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m3X2 and Imσ3 = (m/Y2)(n) = mX3. So again Imσ2 ⊕ Im σ3 ⊂ mS, and we get
the commutative diagram (2.3.3) with σ =

(
0 σ2 0
0 0 σ3

)
.

Let B : k(2n) → (Ω/m)(2n) be right multiplication by the matrix

B = ē1 ·
(

I 0
0 I

)
+ ē2 ·

(
0 I
I 0

)
+ ē3 ·

(
I H
0 I

)
,

where H is the nilpotent matrix in (2.3.4). Define τ to be the composition Bσ :
k(2n) → S as in (2.3.5), and put Mn = S/ Im τ . Again as in the basic case,
Mn has torsion-free rank (r1, . . . , rt), from the choice of wC1 , . . . , wCn

; moreover,
Mn/mMn

∼= k(3n), yielding an infinite sequence of pairwise non-isomorphic R-
modules, each with torsion-free rank (r1, . . . , rt).

The proof that Mn is indecomposable proceeds much the same as in the proof
of the preceding case, using commutative cubes analogous to (2.3.6) and (2.3.7).
In this case, however, we make repeated use of the fact that the ēi are orthogonal
idempotents with sum 1, rather than the linear independence of the units 1, ū, and
ū2. The first part of the argument, which uses the equation θ̄A = Aθ̄′, leads to an
equation slightly different from (2.4.3), namely

θ̄′ =

⎛
⎝∆1 0 0

0 ∆2 0
0 0 ∆3

⎞
⎠ ,

where ∆1, ∆2, ∆3 are matrices over Ω/m satisfying the following equations:

(2.4.4)

ē1∆1 = ē2∆2 = ē3∆3,

ē1∆2 = ē2∆1 = ē3∆2,

ē1∆3 = ē2∆3 = ē3∆1.

The second part of the argument, which uses the equation θ̃B = Bθ̃′, yields the
equations

(2.4.5)
ē1∆2 = ē2∆3 = ē3∆2,

ē3∆2H = ē3H∆3.

Combining (2.4.4) and (2.4.5), we easily deduce that ∆1 = ∆2 = ∆3 =: ∆ is in fact
a matrix over k, and that ∆H = H∆.

We note two more important facts concerning our choice of the matrix B. First,
from the form of the matrix B, one checks easily that no non-zero Ω-submodule
of X is contained in Im τ = Im(Bσ). Since Im τ ⊆ mS, S is a separated cover of
Mn. Second, one also checks easily that B is invertible, so that Im(Bσ) generates
Im σ as an Ω-submodule of X. Therefore the Ω-homomorphism θ′ lifts to the Ω-
homomorphism θ̃′ in (2.3.7).

The remaining details of the proof in this case are also left as an exercise for the
interested reader. �

§3. Rings of higher dimension and non-Cohen-Macaulay rings

If R is a one-dimensional local ring that is not Cohen-Macaulay, then R is equal to
its own total quotient ring K. Therefore there is no hope of building indecomposable
generically free (that is, projective) R-modules of large rank. Thus, in the non-
Cohen-Macaulay case, we use another measure of the size of a module M , namely,
the multiplicity eR(M). Recall [M, p. 107] that, for a finitely generated module M
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over a d-dimensional local ring (R, m, k), the multiplicity is defined by eR(M) =
eR(m, M) = limn→∞

d!
nd 
R(M/mnM). (Here 
R denotes length as an R-module.)

From [M, Theorem 14.7], we have the following:

Remark 3.1. If M has constant rank r, eR(M) = r · eR(R).

Thus the existence of indecomposables of large constant rank implies that there
are indecomposables with large multiplicity; for domains the converse is true.

There are two obstacles to determining which one-dimensional local rings have
a bound on the multiplicities of indecomposable finitely generated modules. One
is the irksome case of an imperfect residue field of characteristic 2, which dis-
rupts the tame-wild dichotomy in [KL3]. Another is that our construction of
large indecomposable modules seems not to extend to one-dimensional non-Cohen-
Macaulay rings. Note that there exist one-dimensional local rings, e.g., R =
C[[X, Y ]]/(X2, XY ), that are not Dedekind-like but that can be expressed in the
form D/I for a suitable Dedekind-like ring D and non-zero ideal I. Such rings
cannot be Cohen-Macaulay. (To see this, note that D is not a domain and thus has
exactly two minimal prime ideals P and Q, with P∩Q = 0. Since dim(D/I) = 1, we
may assume that (0) � I � P and I �⊆ Q. Then (P/I)P = (0) and (P/I)Q = (0).
Therefore P/I is a “non-zero finite-length submodule of D/I, and depth(D/I) = 0.)
Since D is not a domain, the separability condition from the second paragraph of
the introduction is vacuously satisfied. The results of [KL2] then show that every
indecomposable finitely generated D-module has torsion-free rank (1, 0), (0, 1) or
(1, 1), and it follows that the multiplicity of every indecomposable finitely gener-
ated D/I-module is at most 2.

On the other hand, there are one-dimensional local non-Cohen-Macaulay rings,
for example, R = C[[X, Y ]]/(X2, XY 2), that are not homomorphic images of
Dedekind-like rings. (This ring maps onto the Drozd ring C[[X, Y ]]/(X2, XY 2, Y 3),
and therefore by [KL1, Theorem 3.1] is not a homomorphic image of a Dedekind-like
ring.) Using completely different methods, the authors of the present paper have
recently shown that every one-dimensional non-Cohen-Macaulay ring that is not a
homomorphic image of a Dedekind-like ring has indecomposable finitely generated
modules of arbitrarily large multiplicity. This theorem implies the following result,
which almost characterizes the local rings having a bound on the multiplicities of
finitely generated modules. We refer the reader to our forthcoming paper [HKKW]
for the details.

Theorem 3.2. Suppose (R, m, k) is a local ring such that there is a bound on the
multiplicities of the indecomposable finitely generated R-modules.

(1) Either dim(R) = 1, or else R is an Artinian principal ideal ring (in which
case every indecomposable finitely generated module is cyclic and hence has
multiplicity at most eR(R) = 
R(R)).

(2) Assume R is one-dimensional. Then R is a homomorphic image of a
Dedekind-like ring. If, further, k is perfect or of characteristic different
from 2, then every indecomposable R-finitely generated module has multi-
plicity bounded by 4.
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