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A SOLOMON DESCENT THEORY
FOR THE WREATH PRODUCTS G � Sn

PIERRE BAUMANN AND CHRISTOPHE HOHLWEG

Abstract. We propose an analogue of Solomon’s descent theory for the case
of a wreath product G�Sn, where G is a finite abelian group. Our construction
mixes a number of ingredients: Mantaci-Reutenauer algebras, Specht’s theory
for the representations of wreath products, Okada’s extension to wreath prod-
ucts of the Robinson-Schensted correspondence, and Poirier’s quasisymmetric
functions. We insist on the functorial aspect of our definitions and explain
the relation of our results with previous work concerning the hyperoctaedral
group.

Introduction

The problem studied in this article has its roots in a discovery by Solomon in
1976. Let (W, (si)i∈I) be a Coxeter system. For any subset J ⊆ I, call WJ the
parabolic subgroup generated by the elements sj with j ∈ J . In each left coset
wWJ of W modulo WJ , there is a unique element of minimal length, called the
distinguished representative of that coset. We denote the set of these distinguished
representatives by XJ and we form the sum xJ =

∑
w∈XJ

w in the group ring ZW .
Finally we denote by ΣW the Z-submodule of ZW spanned by all elements xJ .

Now let R(W ) be the character ring of W and let ϕJ ∈ R(W ) be the character of
W induced from the trivial character of WJ . Given two subsets J and K of I, each
double coset C ∈ WJ\W/WK contains a unique element x of minimal length, and
a result of Kilmoyer [18], Tits [36] and Solomon [33] asserts that the intersection
x−1WJx ∩ WK is the parabolic subgroup WL(C), where

L(C) = {k ∈ K | ∃j ∈ J, x−1sjx = sk}.
Joint to Mackey’s tensor product theorem, this yields the multiplication rule in the
representation ring R(W )

ϕJϕK =
∑
L⊆I

aJKL ϕL, where aJKL =
∣∣{C ∈ WJ\W/WK | L = L(C)}

∣∣.
With these notations, Solomon’s discovery [33] is the equality

xJxK =
∑
L⊆I

aJKLxL
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in the ring ZW . It implies that ΣW is a subring of ZW and it shows the existence
a morphism of rings θW : ΣW → R(W ) such that θW (xJ ) = ϕJ . Additional details
(for instance, a more precise description of the image of θW ) can be found in the
paper [7] by F. Bergeron, N. Bergeron, Howlett and Taylor.

It is natural to look for a similar theory for groups other than Coxeter systems.
The first examples that come to mind are finite groups of Lie type and finite com-
plex reflection groups. Among the latter, the groups of type G(r, 1, n) are wreath
products (Z/rZ) � Sn of a cyclic group Z/rZ by the symmetric group Sn. One
is then led to investigate the case of a general wreath product G � Sn. To build
the theory, it is necessary to have some knowledge about the representation theory
of G itself; we assume in this paper that G is abelian. One of our main results
explains how to construct a subring MRn(ZG) inside the group ring Z

[
G �Sn] and

a surjective ring homomorphism θG from MRn(ZG) onto the representation ring
R(G � Sn) of the wreath product. Here the notation MR refers to the names of
Mantaci and Reutenauer; indeed it turns out that the remarkable subring inside
Z
[
G �Sn] discovered in 1995 by these two authors [24] is adequate for our purpose.
A usually efficient method to tackle problems with the symmetric group Sn

is to treat all n at the same time. For instance, Malvenuto and Reutenauer ob-
served in 1995 [23] that the direct sum F =

⊕
n≥0 Z[Sn] can be endowed with the

structure of a graded bialgebra in such a way that the submodule Σ =
⊕

n≥0 ΣSn

is a graded subbialgebra. A similar phenomenon appears here: the direct sum
F (ZG) =

⊕
n≥0 Z

[
G � Sn

]
can be endowed with the structure of a graded bial-

gebra, of which MR(ZG) =
⊕

n≥0 MRn(ZG) is a subbialgebra. (A particular case
of this construction was previously considered by Aguiar and Mahajan; the paper
[2] by Aguiar, N. Bergeron and Nyman presents an account of their result. Aguiar
and his coauthors view the hyperoctaedral group of order 2nn! as the wreath prod-
uct {±1} � Sn, that is, as the group of signed permutations. Then they construct
the graded bialgebra F

(
Z
[
{±1}

])
and its subbialgebra MR

(
Z
[
{±1}

])
. Using the

morphism of group ‘forgetting the signs’ from {±1} � Sn onto Sn, they compare
these graded bialgebras with Malvenuto and Reutenauer’s bialgebra F and its
subbialgebra Σ. Our construction and its functoriality generalize Aguiar’s and his
coauthors’ results to the case of all wreath products G �Sn.) This bialgebra struc-
ture on F (ZG) will be the starting point of our story; indeed we define a ‘free
quasisymmetric algebra’ F (V ) for any Z-module V and investigate its properties.

We now present the plan and the main results of this paper.
In Section 1, we define the free quasisymmetric algebra on a module V over a

commutative ground ring K: this is a graded module F (V ) =
⊕

n≥0 Fn(V ), which
we endow with an ‘external product’ and a coproduct to turn it into a graded
bialgebra (Theorem 1.1). In the case where V is endowed with the structure of a
coalgebra, F (V ) contains a remarkable subbialgebra MR(V ), the so-called Mantaci-
Reutenauer bialgebra, which is a free associative algebra as soon as V is a free
module (Propositions 1.3 and 1.4).

In Section 2, we show that the functor V � F (V ) is compatible with the duality
of K-modules, in the sense that any pairing between two K-modules V and W gives
rise to a pairing of bialgebras between F (V ) and F (W ) (Proposition 2.1). In
particular, the bialgebra F (V ) is self-dual as soon as the module V is endowed
with a perfect pairing.
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In Section 3, we investigate the case where the module V is a K-algebra. Then
F (V ) can be endowed with an ‘internal product’, which turns each of the graded
components Fn(V ) into an algebra. The interesting point here is the existence of a
splitting formula that describes the compatibility between this internal product, the
external product and the coproduct (Theorem 3.4). This formula is a generalization
of the splitting formula of Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [13];
it entails that the Mantaci-Reutenauer bialgebra MR(V ) is a subalgebra of F (V ) for
the internal product whenever V is endowed with the structure of a cocommutative
bialgebra (Corollaries 3.5 and 3.6). In Section 3.5, we consider for V the case of
the group algebra KΓ of a finite group Γ and justify that the graded component
Fn(KΓ) is canonically isomorphic to the group algebra K

[
Γ � Sn

]
, and that the

graded component MRn(KΓ) = MR(KΓ) ∩ Fn(KΓ) coincides with the subalgebra
defined by Mantaci and Reutenauer in [24].

In Section 4, we at last provide the link between these constructions and a
Solomon descent theory for wreath products. We first recall Specht’s classification
of the irreducible complex characters of a wreath product G � Sn and Zelevinsky’s
structure of a graded bialgebra on the direct sum Rep(G) =

⊕
n≥0 R(G � Sn)

for the induction product and the restriction coproduct (Section 4.2). We then
focus on the case where G is abelian. We denote the dual group of G by Γ, we
observe that the group ring ZΓ is a cocommutative bialgebra, so that the Mantaci-
Reutenauer bialgebra MR(ZΓ) is defined and is a subalgebra of F (ZΓ) for the
internal product, and we define a map θG : MR(ZΓ) → Rep(G). Then we show
that θG is a surjective morphism of graded bialgebras, and that in each degree,
θG : MRn(ZΓ) → R(G � Sn) is a surjective morphism of rings whose kernel is
the Jacobson radical of MRn(ZΓ) (Theorem 4.3). We also show that θG enjoys a
remarkable symmetry property analogous to the symmetry property of Solomon’s
homomorphisms θW proved by Jöllenbeck and Reutenauer [17] and by Blessenohl,
Hohlweg and Schocker [8] (Theorem 4.6). Finally we compare our results with the
work of Bonnafé and Hohlweg, who treated in [10] the case of the hyperoctaedral
group {±1} � Sn using methods from the theory of Coxeter groups (Section 4.5).

The questions about the bialgebras F (V ) investigated in Sections 1 to 3 are
functorial in the K-module V . As usual, the most interesting point in this assertion
is the compatibility of the constructions with the morphisms, namely here the K-
linear maps. On the contrary the questions studied in Section 5 require that V be
a free K-module and depend on the choice of a basis B of V . Such a basis B can be
viewed as the data of a structure of a pointed coalgebra on V , which yields in turn a
Mantaci-Reutenauer subbialgebra MR(V ) inside F (V ). The choice of B also gives
rise to a second subbialgebra Q(B), bigger than MR(V ), which we call the coplactic
bialgebra. The definition of Q(B) involves a combinatorial construction due to
Okada [28], which extends the well-known Robinson-Schensted correspondence to
‘coloured’ situations; at this point, we take the opportunity to provide an analogue
of the Knuth relations for Okada’s correspondence (Proposition 5.3). In the case
where B is a singleton set, the bialgebra Q(B) is one of the ‘algèbres de Hopf de
tableaux’ of Poirier and Reutenauer [30]. Extending the work of these authors,
we define a surjective homomorphism ΘB of graded bialgebras from Q(B) onto a
bialgebra Λ(B) of ‘coloured’ symmetric functions (Theorem 5.10). We then go back
to the situation investigated in Section 4 and take the group algebra ZΓ for V and
the group Γ for B; here ΘΓ can be viewed as a lift of θG : MR(ZΓ) → Rep(G)
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to Q(Γ) that yields a nice description of the simple representations of all wreath
products G � Sn. We recover Jöllenbeck’s construction of the Specht modules [16]
as the particular case where G is the group with one element; we refer the reader
to Blessenohl and Schocker’s survey [9] for additional details about Jöllenbeck’s
construction.

Finally we present in Section 6 a realization of the bialgebra F (V ) in terms of
free quasisymmetric functions. As in Section 5, the K-module V is assumed to be
free; we choose a basis B of V and endow B with a linear order. When V has
rank one, our free quasisymmetric functions coincide with the usual ones [14]. In
higher rank however, our free quasisymmetric functions are different from those
defined by Novelli and Thibon in [27]. This disagreement has its roots in the fact
that Novelli and Thibon’s construction and ours were designed with different aims:
roughly speaking, Novelli and Thibon’s goal was to find a non-commutative version
of Poirier’s quasisymmetric functions [29]; on the other side, we view the dual
algebra MR(V )∨ as a quotient of F (V ) and describe it in terms of commutative
quasisymmetric functions.

At this point, we should mention that the assignment (V, B) � MR(V )∨ enjoys a
certain functoriality property; this property and the isomorphism between MR(K)∨

and the graded bialgebra QSym of usual quasisymmetric functions yield in turn
homomorphisms of graded bialgebras from F (V ) and MR(V )∨ to QSym, which
amounts to saying that F (V ) and MR(V )∨ are ‘combinatorial Hopf algebras’ in
the sense of Aguiar, N. Bergeron and Sottile [3].

The authors wish to thank Jean-Christophe Novelli and Jean-Yves Thibon for
fruitful and instructive conversations, which took place on March 30, 2004 in Ottrott
and on May 3, 2004 at the Institut Gaspard Monge (University of Marne-la-Vallée).
Their preprint [27] influenced our writing of Sections 1 and 3. The main part of
this work was carried out when the second author was at the Institut de Recherche
Mathématique Avancée in Strasbourg.

We fix a commutative ground ring K. Connected N-graded K-bialgebras appear
everywhere in the paper. Such bialgebras are indeed automatically Hopf algebras,
at least when K is a field. However we will neither make use of this property nor
attempt to work out explicitly any antipode.

1. Free quasisymmetric bialgebras

In this section, we present our main objects of study, namely the free qua-
sisymmetric bialgebras and the generalized descent algebras, among which are the
Novelli-Thibon bialgebras and the Mantaci-Reutenauer bialgebras. Before that, we
introduce some notation pertaining to permutations.

1.1. Notation related to permutations. For each positive integer n, we denote
the symmetric group of all permutations of the set {1, 2, . . . , n} by Sn. By conven-
tion, S0 is the group with one element. The unit element of Sn is denoted by en.
The group algebra over K of Sn is denoted by KSn. In practice, a permutation
σ ∈ Sn is written as the word σ(1)σ(2) · · ·σ(n) with letters in Z>0 = {1, 2, . . .}.

Let A be a totally ordered set (an alphabet). The standardization of a word
w = a1a2 · · · an of length n with letters in A is the permutation σ ∈ Sn with the
smallest number of inversions such that the sequence(

aσ−1(1), aσ−1(2), . . . , aσ−1(n)

)
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is non-decreasing. In other words, the word σ(1)σ(2) · · ·σ(n) that represents σ is
obtained by putting the numbers 1, 2, . . . , n in place of the letters ai of w. In
this process of substitution, the diverse occurrences of the smallest letter of A get
replaced first by the numbers 1, 2, etc. from left to right. Then we replace the
occurrences of the second-smallest element of A by the following numbers, and so
on, up to the exhaustion of all letters of w. An example clarifies this explanation:
given the alphabet A = {a, b, c, . . .} with the usual order, the standardization of
the word w = bcbaba is σ = 364152.

A composition of a positive integer n is a sequence c = (c1, c2, . . . , ck) of positive
integers which sum up to n. The usual notation for that is to write c |= n. Given
two compositions c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl) of the same integer n,
we say that c is a refinement of d, and we write c � d, if there holds

{c1, c1 + c2, . . . , c1 + c2 + · · · + ck−1} ⊇ {d1, d1 + d2, . . . , d1 + d2 + · · · + dl−1}.

The relation � is a partial order on the set of compositions of n. For instance, the
following chain of inequalities holds among compositions of 5:

(5) ≺ (4, 1) ≺ (1, 3, 1) ≺ (1, 2, 1, 1) ≺ (1, 1, 1, 1, 1).

Let c = (c1, c2, . . . , ck) be a composition of n and set ti = c1 + c2 + · · · + ci for
each i. Given a k-tuple (σ1, σ2, . . . , σk) ∈ Sc1 ×Sc2 ×· · ·×Sck

of permutations, we
define σ1×σ2×· · ·×σk ∈ Sn as the permutation that maps an element a belonging
to the interval [ti−1 + 1, ti] onto ti−1 + σi(a − ti−1). This assignment defines an
embedding Sc1 × Sc2 × · · · × Sck

↪→ Sn; we denote its image by Sc. Such a Sc

is called a Young subgroup of Sn. We obtain for free an embedding for the group
algebras

KSc1 ⊗ KSc2 ⊗ · · · ⊗ KSck

�−→ KSc ⊆ KSn.

The map c 
→ Sc is an order reversing bijection from the set of compositions of
n, endowed with the refinement order, onto the set of Young subgroups of Sn,
endowed with the inclusion order.

Again let c = (c1, c2, . . . , ck) be a composition of n and set ti = c1 + c2 + · · ·+ ci.
The subset

Xc =
{
σ ∈ Sn

∣∣ ∀i, σ is increasing on the interval [ti−1 + 1, ti]
}

is a system of representatives of the left cosets of Sc in Sn. Here are some examples:

X(2,2) = {1234, 1324, 1423, 2314, 2413, 3412},
X(n) = {id},

X(1, 1, . . . , 1︸ ︷︷ ︸
n times

) = Sn.

We define an element of the group ring KSn by setting xc =
∑

σ∈Xc
σ.

Let d = (d1, d2, . . . , dl) be a composition of an integer n. Then a composition
c of n is a refinement of d if and only if c can be obtained as the concatenation
f1f2 · · · fl of a composition f1 of d1, a composition f2 of d2, . . . , and a composition
fl of dl. If this holds, then the map

(ρ, σ1, σ2, . . . , σl) 
→ ρ ◦ (σ1 × σ2 × · · · × σl)
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is a bijection from Xd ×Xf1 × Xf2 × · · · × Xfl onto Xc, for Xf1 × · · · ×Xfl is a set
of minimal coset representatives of Sc in Sd. Therefore the equality

(1.1) xc = xd (xf1 ⊗ xf2 ⊗ · · · ⊗ xfl)

holds in the group ring KSn. As a particular case of (1.1), we see that

(1.2) x(n,n′,n′′) = x(n,n′+n′′)

(
x(n) ⊗ x(n′,n′′)

)
= x(n+n′,n′′)

(
x(n,n′) ⊗ x(n′′)

)
holds true for any three positive integers n, n′ and n′′.

Let σ ∈ Sn. One may partition the word σ(1)σ(2) · · ·σ(n) that represents σ
into its longest increasing subwords; the composition of n formed by the successive
lengths of these subwords is called the descent composition of σ and is denoted by
D(σ). For instance, the descent composition of σ = 51243 is D(σ) = (1, 3, 1). Then
for any composition c of n, the assertions σ ∈ Xc and D(σ) � c are equivalent.

1.2. Definition of the free quasisymmetric bialgebra F (V ). Let V be a K-
module. The group Sn acts on the n-th tensor power V ⊗n; the submodule of
invariants, that is, the space of symmetric tensors, is denoted by TSn(V ). We may
form the tensor product of V ⊗n by kSn. To distinguish this tensor product from
those used to build the tensor power V ⊗n, we denote it with a sharp symbol. We
denote the result (V ⊗n)#(KSn) by Fn(V ). The actions defined by

π ·
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
=
[
(vπ−1(1) ⊗ vπ−1(2) ⊗ · · · ⊗ vπ−1(n))#(πσ)

]
and [

(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ
]
· π =

[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#(σπ)

]
endow Fn(V ) with the structure of a KSn-bimodule, where (v1, v2, . . . , vn) ∈ V n

and π ∈ Sn. For instance, Fn(K) is the regular KSn-bimodule.
Our aim now is to endow the space F (V ) =

⊕
n≥0 Fn(V ) with the structure

of a graded bialgebra. We define the product of two elements α ∈ Fn(V ) and
α′ ∈ Fn′(V ) of the form

α =
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
and α′ =

[
(v′1 ⊗ v′2 ⊗ · · · ⊗ v′n′)#σ′]

by the formula

α ∗ α′ = x(n,n′) ·
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ v′1 ⊗ v′2 ⊗ · · · ⊗ v′n′)#(σ × σ′)

]
.

(This formula can be made more concrete by noting that x(n,n′) (σ×σ′) is the sum
in the group algebra KSn+n′ of all permutations π such that σ is the standard-
ization of the word π(1)π(2) · · ·π(n) and σ′ is the standardization of the word
π(n + 1)π(n + 2) · · ·π(n + n′).) We extend this definition by multilinearity to an
operation defined on the whole space F (V ) and call this latter the external product.

We define the coproduct of an element α =
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
of Fn(V )

by the formula

∆(α) =
n∑

n′=0

[
(v1 ⊗ v2 ⊗ · · · ⊗ vn′)#πn′

]
⊗
[
(vn′+1 ⊗ vn′+2 ⊗ · · · ⊗ vn)#π′

n−n′
]
,

where πn′ ∈ Sn′ is the inverse of the standardization of the word

σ−1(1) σ−1(2) · · · σ−1(n′)

and π′
n−n′ ∈ Sn−n′ is the inverse of the standardization of the word

σ−1(n′ + 1) σ−1(n′ + 2) · · · σ−1(n).
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In other words, πn′ and π′
n−n′ are such that both sequences of letters

(πn′(1), πn′(2), . . . , πn′(n′))

and
(n′ + π′

n−n′(1), n′ + π′
n−n′(2), . . . , n′ + π′

n−n′(n − n′))

appear in this order in the word σ(1)σ(2) · · ·σ(n). We call the map

∆ : F (V ) → F (V ) ⊗ F (V )

the coproduct of F (V ).
We define the unit of F (V ) as the injection of the graded component F0(V ) = K

into F (V ); we define the counit of F (V ) as the projection of F (V ) onto F0(V ) =
K.

We now give an example to illustrate these definitions. Given six elements v1,
v2, v3, v4, v′1, v′2 in V , the product of α =

[
(v1⊗v2)#e2

]
and α′ =

[
(v′2⊗v′1)#21

]
=

(21) ·
[
(v′1 ⊗ v′2)#e2

]
is

α ∗ α′ = (1243 + 1342 + 1432 + 2341 + 2431 + 3421) ·
[
(v1 ⊗ v2 ⊗ v′1 ⊗ v′2)#e4

]
=
[
(v1 ⊗ v2 ⊗ v′2 ⊗ v′1)#1243

]
+
[
(v1 ⊗ v′2 ⊗ v2 ⊗ v′1)#1342

]
+
[
(v1 ⊗ v′2 ⊗ v′1 ⊗ v2)#1432

]
+
[
(v′2 ⊗ v1 ⊗ v2 ⊗ v′1)#2341

]
+
[
(v′2 ⊗ v1 ⊗ v′1 ⊗ v2)#2431

]
+
[
(v′2 ⊗ v′1 ⊗ v1 ⊗ v2)#3421

]
,

and the coproduct of α =
[
(v3⊗v1⊗v2⊗v4)#2314

]
= (2314)·

[
(v1⊗v2⊗v3⊗v4)#e4

]
is

∆(α) =
[
()#e0

]
⊗ α +

[
(v3)#1

]
⊗
[
(v1 ⊗ v2 ⊗ v4)#123

]
+
[
(v3 ⊗ v1)#21

]
⊗
[
(v2 ⊗ v4)#12

]
+
[
(v3 ⊗ v1 ⊗ v2)#231

]
⊗
[
(v4)#1

]
+ α ⊗

[
()#e0

]
=
[
()#e0

]
⊗ α +

[
(v3)#e1

]
⊗
[
(v1 ⊗ v2 ⊗ v4)#e3

]
+ (21) ·

[
(v1 ⊗ v3)#e2

]
⊗
[
(v2 ⊗ v4)#e2

]
+ (231) ·

[
(v1 ⊗ v2 ⊗ v3)#e3

]
⊗
[
(v4)#e1

]
+ α ⊗

[
()#e0

]
.

Theorem 1.1. The unit, the counit, and the operations ∗ and ∆ endow F (G) with
the structure of a graded bialgebra.

Proof. It is clear that the four operations respect the graduation. The associativity
of ∗ follows immediately from equation (1.2). A moment’s thought suffices to check
the coassociativity of ∆ and the axioms for the unit and the counit. It remains to
show the pentagon axiom, which asks that ∆ be multiplicative with respect to the
product ∗.

Following Malvenuto and Reutenauer’s method [23], we first recall a classical
construction in the theory of Hopf algebras. Let A be a set, let 〈A 〉 denote the set
of words on A , and let K〈A 〉 be the free K-module with basis 〈A 〉. The shuffle
product of two words w and w′ of length n and n′ respectively is the sum

w� w′ =
∑

ρ∈X(n,n′)

bρ−1(1)bρ−1(2) · · · bρ−1(n+n′),
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where the word b1b2 · · · bn+n′ is the concatenation of the words w and w′. This op-
eration� is then extended bilinearly to a product on K〈A 〉. The deconcatenation
is the coproduct δ on K〈A 〉 such that

δ(w) =
n∑

n′=0

a1a2 · · · an′ ⊗ an′+1an′+2 · · · an

for any word w = a1a2 · · · an. It is known that the operations � and δ endow
K〈A 〉 with the structure of a bialgebra (see Proposition 1.9 in [31] for a proof).

We are now ready to show the pentagon axiom in the case where the K-module
V is free. We take a basis B of V and we set A = Z>0 × B. We observe that the
elements (b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ form a basis of Fn(V ), where (b1, b2, . . . , bn) ∈ Bn

and σ ∈ Sn. We may thus define linear maps jk : F (G) → K〈A 〉 (depending on
the choice of a non-negative integer k) by mapping an element

α =
[
(b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ

]
to jk(α) = a1a2 · · · an, where ai = (k +σ−1(i), bi). In the other direction, we define
a linear map s : K〈A 〉 → F (V ) as follows: given a word w = a1a2 · · · an with
letters in A , we write ai = (pi, bi) and set s(w) = (b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ, where σ
is the inverse of the standardization of the word p1p2 · · · pn.

One easily checks that s ◦ jk = idF(G) and that (s ⊗ s) ◦ δ = ∆ ◦ s. Moreover,
let w = a1a2 · · · an and w′ = a′

1a
′
2 · · · a′

n′ be two words with letters in A . If we
write ai = (pi, bi) and a′

i = (p′i, b
′
i), then s(w�w′) = s(w) ∗ s(w′) as soon as every

integer pi is strictly smaller than every integer p′i.
We now take α ∈ Fn(G) and α′ ∈ Fn′(G). We compute:

∆(α ∗ α′) = ∆
[
s
(
j0(α)

)
∗ s
(
jn(α′)

)]
=
(
∆ ◦ s

)(
j0(α)� jn(α′)

)
= (s ⊗ s)

[
δ
(
j0(α)� jn(α′)

)]
= (s ⊗ s)

[
δ
(
j0(α)

)� δ
(
jn(α′)

)]
=
[
(s ⊗ s) ◦ δ ◦ j0(α)

]
∗
[
(s ⊗ s) ◦ δ ◦ jn(α′)

]
=
[
∆ ◦ s ◦ j0(α)

]
∗
[
∆ ◦ s ◦ jn(α′)

]
= ∆(α) ∗ ∆(α′).

This relation proves the pentagon axiom for F (V ) in the case where V is a free
K-module. In the general case, we may find a free K-module Ṽ and a surjective
morphism of K-modules f : Ṽ → V . Then f induces a surjective map from F (Ṽ )
onto F (V ) which is a morphism of algebras and of coalgebras. Since the operations
∗ and ∆ on Ṽ satisfy the pentagon axiom, their analogues on V also satisfy the
pentagon axiom. This completes the proof of the theorem. �

We note that the assignment V � F (V ) is a covariant functor from the category
of K-modules to the category of N-graded bialgebras over K.

The algebras F (V ) were also indirectly defined by Novelli and Thibon; in [27],
they denote our F (Kl) by FQSym(l) and state that it is a free associative algebra,
hence the name ‘free quasisymmetric bialgebras’.
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Remark 1.2. Given a K-module V , one can endow the direct sum
⊕

n≥0 V ⊗n with
two structures of a graded bialgebra: the tensor algebra, denoted by T(V ), and the
cotensor algebra, sometimes denoted by Tc(V ). (The bialgebra K〈A 〉 used in the
proof of Theorem 1.1 is indeed the cotensor algebra on the free K-module KA with
basis A .) One easily checks that the maps

ι : T(V ) → F (V ), v1 ⊗ v2 ⊗ · · · ⊗ vn 
→
∑

σ∈Sn

σ · (v1 ⊗ v2 ⊗ · · · ⊗ vn#en)

and
p : F (V ) → Tc(V ), (v1 ⊗ v2 ⊗ · · · ⊗ vn#σ) 
→ v1 ⊗ v2 ⊗ · · · ⊗ vn

are morphisms of graded bialgebras. Moreover the composition p ◦ ι is the sym-
metrization map

T(V ) → Tc(V ), v1 ⊗ v2 ⊗ · · · ⊗ vn 
→
∑

σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n).

For details and for applications of this construction, we refer the reader to [26] and
[32].

1.3. The descent subbialgebras Σ(W ). In this section, we investigate a class of
graded subalgebras of F (V ), called the descent algebras. We find a criterion for a
descent algebra to be a subbialgebra of F (V ) and give a couple of examples.

Here we fix a K-module V . To any graded submodule W =
⊕

n≥0 Wn of the
tensor algebra T(V ) =

⊕
n≥0 V ⊗n, we associate the subalgebra Σ(W ) of F (V )

generated by all elements of the form (t#en) with t ∈ Wn. We call such a subalgebra
Σ(W ) a descent algebra. A descent algebra is necessarily graded, for it is generated
by homogeneous elements.

Proposition 1.3. Assume that V is flat and that each module Wn is free of finite
rank. For each n ≥ 1, pick a basis Bn of Wn. Then Σ(W ) is the free associative
algebra on the elements (b#en), where n ≥ 1 and b ∈ Bn.

Proof. By the way of contradiction, we assume that there exists a finite non-empty
family (ui)i∈I consisting of distinct finite sequences

ui =
((

c
(i)
1 , b

(i)
1

)
,
(
c
(i)
2 , b

(i)
2

)
, . . . ,

(
c
(i)
ki

, b
(i)
ki

))
of elements in

⋃
n≥1

(
{n} × Bn

)
and a finite family (λi)i∈I of elements of K \ {0}

such that

(1.3)
∑
i∈I

λi

[(
b
(i)
1 #e

c
(i)
1

)
∗
(
b
(i)
2 #e

c
(i)
2

)
∗ · · · ∗

(
b
(i)
ki

#e
c
(i)
ki

)]
= 0.

Using the graduation, we may suppose without loss of generality that all the se-
quences ci = (c(i)

1 , c
(i)
2 , . . . , c

(i)
ki

) are compositions of the same integer n. Then (1.3)
yields

(1.4)
∑
i∈I

λi xci
·
[
(b(i)

1 ⊗ b
(i)
2 ⊗ · · · ⊗ b

(i)
ki

)#en

]
= 0.

We choose a maximal element c = (c1, c2, . . . , ck) among the set {ci | i ∈ I}
with respect to the refinement order, we set J = {i ∈ I | ci = c}, and we choose a
permutation σ ∈ Sn whose descent composition is c. Then for any i ∈ I,

σ ∈ Xci
⇐⇒ c � ci ⇐⇒ i ∈ J.
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Taking the image of (1.4) by the linear map p : Fn(V ) → V ⊗n defined by

p
(
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#ρ

)
=

{
vρ(1) ⊗ vρ(2) ⊗ · · · ⊗ vρ(n) if ρ = σ,
0 otherwise,

we obtain

(1.5)
∑
i∈J

λi b
(i)
1 ⊗ b

(i)
2 ⊗ · · · ⊗ b

(i)
k = 0.

By assumption however, the sequences (b(i)
1 , b

(i)
2 , . . . , b

(i)
k ) are distinct when i runs

over J . Therefore the elements b
(i)
1 ⊗ b

(i)
2 ⊗ · · · ⊗ b

(i)
k are linearly independent in

Wc1 ⊗Wc2 ⊗ · · · ⊗Wck
, for Bc1 ⊗Bc2 ⊗ · · · ⊗Bck

is a basis of this module. Since V

and the Wci
are flat modules, the images of the elements b

(i)
1 ⊗b

(i)
2 ⊗· · ·⊗b

(i)
k in V ⊗n

are linearly independent. We then reach a contradiction with equation (1.5). �

Before we look for a condition on W that would ensure that Σ(W ) is a subbialge-
bra of F (V ), we introduce a piece of notation that will be needed later, especially
in Section 3.3. Let c = (c1, c2, . . . , ck) be a composition (possibly with parts equal
to zero)1 of n. Since V ⊗n = V ⊗c1 ⊗ V ⊗c2 ⊗ · · · ⊗ V ⊗ck , each tensor t ∈ V ⊗n can
be written as a linear combination of products t1 ⊗ t2 ⊗ · · · ⊗ tk, where ti ∈ V ⊗ci

for each i. We denote such a decomposition by t =
∑

(t) t
(c)
1 ⊗ t

(c)
2 ⊗ · · · ⊗ t

(c)
k . In

this equation, the symbol t
(c)
i is meant as a place-holder for the actual elements ti.

With this notation, the coproduct of an element of the form t#en is

(1.6) ∆(t#en) =
n∑

n′=0

[
t
((n′,n−n′))
1 #en′

]
⊗
[
t
((n′,n−n′))
2 #en−n′

]
.

Let us now return to our study of the descent algebras. We introduce the fol-
lowing condition on a graded submodule W =

⊕
n≥0 Wn of T(V ):

(A) There holds Wn ⊆ Wc1 ⊗Wc2 ⊗· · ·⊗Wck
for any composition (possibly with

parts equal to zero) c = (c1, c2, . . . , ck) of a positive integer n.2

In other words, for any composition c = (c1, c2, . . . , ck) of a positive integer n

and any t ∈ Wn, we may assume that in the writing t =
∑

(t) t
(c)
1 ⊗ t

(c)
2 ⊗ · · · ⊗ t

(c)
k ,

all the elements of V ⊗ci represented by the place-holder t
(c)
i can be picked in Wci

.
We can now find a sufficient condition for Σ(W ) to be a subbialgebra of F (V ).

Proposition 1.4. If W satisfies condition (A), then Σ(W ) is a graded subbialgebra
of F (V ).

Proof. We have already seen that Σ(W ) is a graded subalgebra of F (V ). It remains
to prove the inclusion

Σ(W ) ⊆ {x ∈ F (V ) | ∆(x) ∈ Σ(W ) ⊗ Σ(W )}.

1It is convenient in this context to allow compositions to have parts equal to zero. We could
use a special terminology, following for example Reutenauer who in [31] coined the word pseu-
docomposition for that purpose. To limit the advent of new words, we will however simply say
‘composition (possibly with parts equal to zero)’.

2We abusively confuse Wc1⊗Wc2⊗· · ·⊗Wck with its image in V ⊗c1⊗V ⊗c2⊗· · ·⊗V ⊗ck = V ⊗n.

Of course no ambiguity arises when K is a field or V is torsion-free module over a p.i.d.
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The set E on the right of the symbol ⊆ above is a subalgebra of F (V ), because
∆ is a morphism of algebras and Σ(W ) ⊗ Σ(W ) is a subalgebra. Moreover, equa-
tion (1.6) shows that if W satisfies condition (A), then E contains all the elements
t#en with t ∈ Wn. Since these elements generate Σ(W ) as an algebra, it follows
that E contains Σ(W ). �

Besides the trivial choice W = T(V ), there are two main examples. The first
one occurs with W = TS(V ), the space of all symmetric tensors on V .3 We call
the corresponding subbialgebra Σ(W ) the Novelli-Thibon bialgebra and we denote
it by NT(V ). One may notice that the assignment V � NT(V ) is functorial.

The second interesting example concerns the case where V is the underlying
space of a coalgebra. We first fix two rather standard notations that are convenient
for dealing with coalgebras; we will use them not only in the presentation below,
but also later in Section 3.3 with the comultiplicative structure of F (V ). Let C
be a coalgebra with its coassociative coproduct δ and its counit ε. We define the
iterated coproducts δn : C → C⊗n by setting δ0 = ε, δ1 = idC , δ2 = δ, and

δn =
(
δ ⊗ (idC)⊗n−2

)
◦
(
δ ⊗ (idC)⊗n−3

)
◦ · · · ◦ δ

for all n ≥ 3. The Sweedler notation proposes to write the image of an element
v ∈ C by δn as

δn(v) =
∑
(v)

v(1) ⊗ v(2) ⊗ · · · ⊗ v(n);

in this writing, the symbol v(i) is a place-holder for an actual element of C which
varies from one term to the other.

Now we assume that the module V on which the free quasisymmetric algebra
F (V ) is constructed is endowed with the structure of a coalgebra, with a coproduct
δ and a counit ε. In this case, we may consider the image Wn of the iterated
coproduct δn : V → V ⊗n and we may set W =

⊕
n≥0 Wn. For any composition

(possibly with parts equal to zero) c = (c1, c2, . . . , ck) of n and any element v ∈ V ,
the coassociativity of δ implies

(1.7) δn(v) =
∑
(v)

δc1(v(1))︸ ︷︷ ︸
(δn(v))

(c)
1

⊗ δc2(v(2))︸ ︷︷ ︸
(δn(v))

(c)
2

⊗ · · · ⊗ δck
(v(k))︸ ︷︷ ︸

(δn(v))
(c)
k

,

which shows that Condition (A) holds. Therefore Σ(W ) is a subbialgebra of F (V ).
We call it the Mantaci-Reutenauer bialgebra of the coalgebra V , and we denote it
by MR(V ). The assignment V � MR(V ) is a covariant functor from the category
of K-coalgebras to the category of N-graded bialgebras over K. As we will see in
Section 3.3, this construction is mainly useful when V is a projective K-module
and the coproduct of V is cocommutative; in this case, MR(V ) is a subbialgebra of
NT(V ).

For convenience, we introduce the following special notation for the generators
of the Mantaci-Reutenauer bialgebra MR(V ): given any positive integer n and any
element v ∈ V , we set yn,v =

[
δn(v)#en

]
. Equations (1.6) and (1.7) entail that the

coproduct of yn,v is given by

(1.8) ∆(yn,v) =
∑
(v)

n∑
n′=0

yn′,v(1) ⊗ yn−n′,v(2) .

3Condition (A) holds for W = TS(V ) as soon as V is projective.
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Moreover, Proposition 1.3 implies that if V is a free K-module, then the associative
algebra MR(V ) is freely generated by the elements yn,v, where n ≥ 1 and v is chosen
in a basis of V .

2. Duality

The main result of this section says that the dual bialgebra F (V )∨ of the free
quasisymmetric bialgebra on V is the free quasisymmetric bialgebra F (V ∨) on the
dual module V ∨. This result is neither deep nor difficult, but has many interesting
consequences, as we will see in Sections 4 and 5. We begin by a general and easy
discussion of duality for K-modules and K-bialgebras.

2.1. Perfect pairings. We define the duality functor ?∨ as the contravariant end-
ofunctor HomK(?, K) of the category of K-modules. In particular, this functor maps
a morphism f : M → N to its transpose f∨ : N∨ → M∨. Restricted to the full sub-
category consisting of finitely generated projective K-modules, the duality functor
is an anti-equivalence of categories.

Given two K-modules M and N , there is a canonical isomorphism (M ⊕N)∨ ∼=
M∨⊕N∨ and a canonical map N∨⊗M∨ → (M⊗N)∨; the latter is an isomorphism
as soon as M or N is finitely generated and projective. Given a K-module M , there
is a canonical homomorphism M → M∨∨, which is an isomorphism if M is finitely
generated and projective.

Let H be a K-bialgebra whose underlying space is finitely generated and projec-
tive. Then the dual H∨ of H is also a bialgebra: the multiplication, the coproduct,
the unit and the counit of H∨ are the transpose of the coproduct, the multiplication,
the counit and the unit of H, respectively.

A pairing between two K-modules M and N is a bilinear form � : M ×N → K.
It gives rive to two linear maps

�� :
(
M → N∨, x 
→ �(x, ?)

)
and �# :

(
N → M∨, y 
→ �(?, y)

)
.

The pairing � is called perfect if the maps �� and �# are isomorphisms. A
pairing on a K-module M is a pairing between M and itself; such a pairing � is
called symmetric if �� = �#.

In the case where the K-modules M and N are finitely generated and projective,
we may identify M and N with their respective biduals, and for any pairing �
between M and N , the equality �# = (��)∨ holds. If moreover M and N are
bialgebras, then M∨ and N∨ are also bialgebras; in this situation, a pairing �
between M and N such that �� and �# are morphisms of bialgebras is called a
pairing of bialgebras.

The above constructions concerning biduality or bialgebras are only valid with
finitely generated projective modules. We can however relax the requirement of
finite generation by working with N-graded modules. In this situation, we must
adapt the definition for the dual module: the dual of M =

⊕
n≥0 Mn is the graded

module M∨ =
⊕

n≥0(Mn)∨, whose graded components are the dual modules in
the previous sense of the graded components of M . We must also make the further
assumptions that the morphisms preserve the graduation and that pairings make
graded components of different degrees orthogonal to each other. Then everything
works as before, and biduality and duality of bialgebras go smoothly as soon as the
modules are projective with finitely generated homogeneous components.
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2.2. Duality and the functor F . The following proposition examines the rela-
tionship between the functor F and duality.

Proposition 2.1. There is a natural transformation from the contravariant functor
F (?∨) to the contravariant functor F (?)∨, which is an isomorphism when the
domain of these functors is restricted to the full subcategory of finitely generated
projective K-modules.

In other words, for any K-module V , we can define a morphism of graded algebras
cV : F (V ∨) �−→ F (V )∨, the construction being such that the assignment V � cV

is natural in V and that cV is an isomorphism of bialgebras if V is finitely generated
and projective.

Proof. Let V be a K-module. With the help of the canonical duality bracket 〈?, ?〉
between V and V ∨, we define for each n ≥ 0 a pairing 〈?, ?〉n between Fn(V ) and
Fn(V ∨) by the following formula:

(2.1)
〈[

(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ
]
,
[
(f1 ⊗ f2 ⊗ · · · ⊗ fn)#π

]〉
n

=

{∏n
i=1〈vσ(i), fi〉, if σ = π−1,

0, otherwise,

where (v1, v2, . . . , vn) ∈ V n, (f1, f2, . . . , fn) ∈ (V ∨)n, and σ and π are elements of
Sn. If V is assumed to be finitely generated and projective, the canonical duality
between V and V ∨ is perfect and extends to a perfect pairing between V ⊗n and
(V ∨)⊗n, which implies that the pairing 〈?, ?〉n is perfect.

We combine these pieces to define a pairing 〈?, ?〉tot between F (V ) and F (V ∨)
by setting

〈α, ξ〉tot =
∑
n≥0

〈αn, ξn〉n

for all α =
∑

n≥0 αn and ξ =
∑

n≥0 ξn, where αn ∈ Fn(V ) and ξn ∈ Fn(V ∨). The
map

cV : F (V ∨) → F (V )∨, ξ 
→ 〈?, ξ〉tot
is a morphism of K-modules; it is even an isomorphism if V is finitely generated
and projective.

A straightforward verification shows that the product ∗ and the coproduct ∆ of
F (V ) are adjoint to the coproduct ∆ and to the product ∗ of F (V ∨) with respect
to the pairing 〈?, ?〉tot. Together with a similar statement about the units and the
counits, this implies that cV is a morphism of algebras, and even of bialgebras if
V is finitely generated and projective. One also checks easily the commutativity of
the diagram

F (V ∨)

cV

��

F (W∨)

cW

��

F(f∨)
��

F (V )∨ F (W )∨
F(f)∨

��

for any K-linear map f : V → W of K-modules. This means that the assignment
V � cV is a natural transformation from F (?∨) to F (?)∨, which completes the
proof. �
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Using the precise definition of the maps cV given in the proof of Proposition 2.1,
one may check the following additional property: the two compositions

F (V ) −→ F (V ∨∨)
c(V ∨)−−−→ F (V ∨)∨ and F (V ) −→ F (V )∨∨ (cV )∨−−−−→ F (V ∨)∨

are equal. Abusing the notation, we will write the above equality as c(V ∨) = (cV )∨.
Now suppose that � is a pairing between two K-modules V and W . We can then

define a pairing �tot between F (V ) and F (W ) by the equality �tot
� = cW ◦F (��);

in other words, we set

�tot(x, y) =
(
cW ◦ F (��)

)
(x)(y),

where x ∈ F (V ) and y ∈ F (W ). Then

�tot
# = (�tot

�)∨

= F (��)∨ ◦ (cW )∨

= F (��)∨ ◦ c(W∨)

= cV ◦ F
(
(��)∨

)
= cV ◦ F (�#).

The equalities �tot
� = cW ◦ F (��) and �tot

# = cV ◦ F (�#) show that �tot is a
pairing of bialgebras. Moreover if � is perfect, then so is �tot. In the case V = W ,
one can also see that the symmetry of � entails that of �tot.

2.3. Orthogonals and polars. Let M be a finitely generated projective K-mod-
ule. We view it as an ambient space and identify it with its bidual M∨∨. We define
the orthogonal of a submodule S of M as the submodule

S⊥ = {f ∈ M∨ | S ⊆ ker f}

of M∨. Then S⊥ is canonically isomorphic to (M/S)∨. Likewise, the orthogonal
of a submodule T of M∨ is a submodule T⊥ of M .

Let S be the set of all submodules S of M such that M/S is projective, or
in other words, that are direct summands of M . If S ∈ S , then both S and
M/S are finitely generated projective K-modules. Likewise, let T be the set of all
submodules T of M∨ that are direct summands of M∨. We endow both S and T
with the partial order given by the inclusion of submodules. The following results
are well-known in this context:

• The maps
(
S → T , S 
→ S⊥) and

(
T → S , T 
→ T⊥) are mutually inverse,

order decreasing bijections.
• For any S ∈ S , there is a canonical isomorphism S∨ ∼= M∨/S⊥. Moreover for

each submodule S′ ⊆ S, there is a canonical isomorphism (S/S′)∨ ∼= S′⊥/S⊥.
• Let S and S′ be two elements in S . We always have (S + S′)⊥ = S⊥ ∩ S′⊥

and S⊥ + S′⊥ ⊆ (S ∩ S′)⊥. If moreover S + S′ belongs to S , then so does S ∩ S′,
and the equality (S ∩ S′)⊥ = S⊥ + S′⊥ holds.

• Assume that M is endowed with the structure of a bialgebra. Then a sub-
module S ∈ S is a subbialgebra of M if and only if S⊥ is a biideal of M∨, and a
submodule T ∈ T is a subbialgebra of M∨ if and only if T⊥ is a biideal of M .
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Given two submodules S ∈ S and T ∈ T , we then have sequences of canonical
maps:

T/(S⊥ ∩ T ) ∼= (S⊥ + T )/S⊥ ↪→ (S ∩ T⊥)⊥/S⊥ ∼=
(
S/(S ∩ T⊥)

)∨,

S/(S ∩ T⊥) ∼= (S + T⊥)/T⊥ ↪→ (S⊥ ∩ T )⊥/T⊥ ∼=
(
T/(S⊥ ∩ T )

)∨.
(2.2)

In other words, there is a canonical pairing between S/(S ∩ T⊥) and T/(S⊥ ∩ T ),
which is perfect as soon as (S + T⊥) ∈ S and (S⊥ + T ) ∈ T .

We assume now that the module M is endowed with a symmetric and perfect
pairing �. Then to any submodule S of M we can associate its polar P ◦ =(
��
)−1
(
S⊥) with respect to �. Using ��, one can deduce properties for polar

submodules analogous to the properties for orthogonals recalled above.
One can also adapt these results to the case where the projective module M is

not finitely generated, provided it is graded with finitely generated homogeneous
components.

This material will prove useful in Sections 4.3 and 5, where we will meet instances
of the following situation. Here V is a finitely generated projective K-module, en-
dowed with a symmetric and perfect pairing �. Then F (V ) is a projective K-
module, graded with finitely generated homogeneous components, and endowed
with the perfect and symmetric pairing �tot. Moreover, let S be a graded subbial-
gebra of F (V ), assumed to be a direct summand of the graded K-module F (V ).
We then have the following commutative diagram of graded bialgebras:

(2.3)

F (V ) � ��

�� ���������
F (V )∨

�� �����
���

��

S
� �

����������

�� �����
����

� F (V )/S◦ � �� S∨.

S/(S ∩ S◦)
� �

���������
� � ��

(
S/(S ∩ S◦)

)∨� �

���������

Here the horizontal arrows are induced by �tot
�; the one at the bottom line is the

pairing on S/(S ∩S◦) defined by the sequences (2.2) with the choice T = �tot
�(S).

To conclude this section, we show that the framework above is general enough
to accomodate the case of a Mantaci-Reutenauer bialgebra, viewed as a submodule
in a free quasisymmetric bialgebra.

Proposition 2.2. For any K-coalgebra V , the submodule MR(V ) is a direct sum-
mand of F (V ).

Proof. We will show two facts:
a) The submodule Σ(T(V )) has a graded complement in F (V ).
b) The Mantaci-Reutenauer bialgebra MR(V ) has a graded complement in

Σ(T(V )).
Let n be a positive integer. The map

KSn ⊗ V ⊗n → Fn(V ), σ ⊗ t 
→ σ · (t#en),
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where σ ∈ Sn and t ∈ V ⊗n, is an isomorphism of K-modules. The submodule
Fn(V ) ∩ Σ(T(V )) is spanned by elements of the form

xc · (t#en) =
∑

σ∈Sn

D(σ)�c

σ · (t#en),

where c is a composition of n. Therefore the submodule of Fn(V ) spanned over K

by the elements (σ−π) · (t#en), where t ∈ V ⊗n and σ and π are two permutations
in Sn with D(σ) = D(π), is complementary to Fn(V ) ∩ Σ(T(V )). This proves
claim a).

Let us now denote the coproduct and the counit of V by δ and ε, respectively.
Let n be a positive integer. We denote the image of the iterated coproduct δn :
V → V ⊗n by Wn. The short exact sequence

0 → V
δn−→ V ⊗n → V ⊗n/Wn → 0

splits, because the map V ⊗n ε⊗n−1⊗idV−−−−−−−→ K⊗n−1 ⊗ V ∼= V is a retraction of δn.
Therefore we can find a complementary submodule Zn of Wn in V ⊗n. Given a
composition c = (c1, c2, . . . , ck) of n, we set

Wc = Wc1 ⊗ Wc2 ⊗ · · · ⊗ Wck
and

Zc =
k∑

i=1

V ⊗c1 ⊗ · · · ⊗ V ⊗ci−1 ⊗ Zci
⊗ V ⊗ci+1 ⊗ · · · ⊗ V ⊗ck ,

so that V ⊗n = Wc ⊕ Zc. Then

Fn(V )∩Σ(T(V )) =
⊕
c|=n

[
xc ·(V ⊗n#en)

]
=
⊕
c|=n

[
xc · (Wc#en)

]
︸ ︷︷ ︸

Fn(V )∩MR(V )

⊕
⊕
c|=n

[
xc ·(Zc#en)

]
,

which shows claim b) and completes the proof. �

3. The internal product

In this section, we consider the case where V is the underlying space of an algebra
A. This affords a new structure on F (A), called the internal product. We study
ways to construct subalgebras of F (A) for the internal product and clarify the
situation that arises when A is a symmetric algebra, that is, an algebra endowed
with a symmetric, associative and perfect pairing.

3.1. The twisted group ring Fn(A). Let A be a K-algebra. The group Sn acts
on the tensor power A⊗n by automorphisms of algebra, which allows us to construct
a twisted group ring, which we denote by (A⊗n)#(KSn). (In the language of Hopf
algebras, one says that A⊗n is a KSn-module algebra, and then the twisted group
ring (A⊗n)#(KSn) is viewed as a particular case of the smash product construction;
see for instance [25].) This twisted group ring is our KSn-bimodule Fn(A) endowed
additionally with the structure of an algebra. The associative product is given by
the rule

(3.1)
[
(a1 ⊗ a2 ⊗ · · · ⊗ an)#σ

]
·
[
(b1 ⊗ b2 ⊗ · · · ⊗ bn)#τ

]
=
[(

a1bσ−1(1) ⊗ a2bσ−1(2) ⊗ · · · ⊗ anbσ−1(n)

)
#
(
στ
)]
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and the unit is 1⊗n#en. The structure map
(
K → A⊗n, λ 
→ λ1⊗n

)
gives rise to

an embedding of the group algebra KSn = Fn(K) into Fn(A), which allows us to
represent the two-sided action of KSn on Fn(A) with the help of the product of
Fn(A).

It is convenient to extend this product to the whole F (A) by linearity: for each
α =

∑
n≥0 αn and α′ =

∑
n≥0 α′

n with αn and α′
n in Fn(A), we set α · α′ =∑

n≥0 αn · α′
n. This ‘internal product’ as it is called lacks a unit element.

More generally, given two K-modules V and W , the composition

(V ⊗n#KSn) ⊗ (W⊗n#KSn) � (V ⊗n#KSn) ⊗KSn
(W⊗n#KSn)

�−→ (V ⊗ W )⊗n#KSn

defines a canonical morphism from Fn(V ) ⊗ Fn(W ) into Fn(V ⊗ W ). Taking
the direct sum over all n ≥ 0, we define an ‘internal product’ F (V ) ⊗ F (W ) →
F (V ⊗ W ) which is natural in (V, W ). Given a third K-module X and a linear
map m : V ⊗ W → X, we obtain an internal product F (V ) ⊗ F (W ) → F (X)
by composing with F (m). We will not pursue this way for want of application,
but it is worth noticing that even the apparently simple case where V or W is the
ground ring K is not empty. We leave it to the reader to generalize the results of
Section 3.3 to this wider context.

To conclude this section, we introduce two pieces of terminology that will prove
convenient in Section 3.4. Let S and M be two graded submodules of F (A), and
set Sn = S ∩ Fn(A). We say that S is a subalgebra of F (A) for the internal
product if each Sn is a subalgebra of Fn(A). In this case, we say further that M is
a left (respectively, right) internal S-submodule of F (A) if S ·M ⊆ M (respectively,
M · S ⊆ M).

3.2. Double cosets in the symmetric group. In this section, we translate to
the case of the symmetric group a theorem of Solomon valid in the more general
context of Coxeter groups. The result will prove crucial in the proof of the splitting
formula in Section 3.3.

To begin with, let
(
W, (si)i∈I

)
be a Coxeter system. Given a subset J ⊆ I, the

parabolic subgroup WJ is the subgroup of W generated by the elements sj with
j ∈ J . In each left coset wWJ , there is a unique element with minimal length,
called the distinguished representative of that coset. We denote by XJ the set of
distinguished representatives of the left cosets modulo WJ . Given a second subset
K ⊆ I, there is likewise a unique element with minimal length in each double coset
WJwWK , unsurprisingly called the distinguished representative of the double coset.
The set of distinguished representatives of the double cosets modulo WJ and WK

is (XJ)−1 ∩ XK . The following statement is a rephrasing of Theorem 2 of [33].

Theorem 3.1. Given a double coset C ∈ WJ\W/WK , we set

L(C) = {k ∈ K | ∃j ∈ J, x−1sjx = sk},
where x ∈ C ∩ (XJ)−1 ∩ XK is the distinguished representative of C. Then XL(C)

is the disjoint union of the sets XJw, where w ∈ C ∩ XK .

We now translate this proposition in a combinatorial language more adapted to
the case of the symmetric group Sn. Let c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl)
be two compositions of n, and set ti = c1 + c2 + · · ·+ ci and uj = d1 +d2 + · · ·+dj .
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We denote by Mc,d the set of all matrices M = (mij) with non-negative integral
entries in k rows and l columns and with row-sum c and column-sum d, that is,

ci =
l∑

j=1

mij for all i and dj =
k∑

i=1

mij for all j.

There is a well-known bijection from Mc,d onto the double quotient Sc\Sn/Sd

that maps a matrix M = (mij) to the double coset

CM =
{
σ ∈ Sn

∣∣ ∀(i, j), mij =
∣∣ [ti−1 + 1, ti] ∩ σ([uj−1 + 1, uj ])

∣∣ }.
Finally, we associate to a matrix M ∈ Mc,d its column-reading composition

cr(M) = (m11, m21, . . . , mk1, m12, m22, . . . , mk2, . . . , m1l, m2l, . . . , mkl).

With these notations, Theorem 3.1 translates to the following statement.

Corollary 3.2. For any matrix M ∈ Mc,d, the set Xcr(M) is the disjoint union of
the sets Xcσ, where σ ∈ CM ∩ Xd.

Proof. We set I = {1, 2, . . . , n − 1}. For each i ∈ I, we call si the transposition
in Sn that exchanges i and i + 1. Endowed with the family (si)i∈I , the group Sn

becomes a Coxeter system W .
Set J = I \ {t1, t2, . . . , tk−1} and K = I \ {u1, u2, . . . , ul−1}. Then the Young

subgroups Sc and Sd coincide with the parabolic subgroups WJ and WK , respec-
tively; moreover the sets Xc and Xd are the sets of distinguished representatives
XJ and XK .

We now fix a matrix M ∈ Mc,d. We define a permutation ρ ∈ Sn by the
following rule: for each a ∈ [1, n], we determine the index j ∈ [1, l] such that
a ∈ [uj−1 + 1, uj ] and then the index i ∈ [1, k] such that

a − uj−1 ∈ [m1j + m2j + · · · + mi−1,j + 1, m1j + m2j + · · · + mij ],

and we set

ρ(a) = a − (uj−1 + m1j + m2j + · · · + mi−1,j) + (ti−1 + mi1 + mi2 + · · · + mi,j−1).

One checks without difficulty that ρ ∈ CM ∩ (Xc)−1 ∩ Xd, which implies that ρ is
the distinguished representative of the double coset CM ∈ Sc\Sn/Sd.

Moreover, let a ∈ [1, n] and determine the indices i and j as above. One easily
checks that

a − uj−1 ∈ [m1j + m2j + · · · + mi−1,j + 1, m1j + m2j + · · · + mij − 1]

if and only if
a ∈ K, ρ(a) ∈ J, and ρ(a + 1) = ρ(a) + 1.

(The key point here is to observe that if a = uj−1 + m1j + m2j + · · · + mij and
a ∈ K, then the inequalities ρ(a + 1) > ti ≥ ρ(a) hold.)

For any j ∈ J , the permutation ρ−1sjρ is the transposition that exchanges
ρ−1(j) and ρ−1(j + 1), with necessarily ρ−1(j) < ρ−1(j + 1) because ρ−1 ∈ XJ .
The definition

L(CM ) = {k ∈ K | ∃j ∈ J, ρ−1sjρ = sk}
therefore translates to the equality

L(CM ) =
l⋃

j=1

k⋃
i=1

[uj−1+m1j +m2j +· · ·+mi−1,j +1, uj−1+m1j +m2j +· · ·+mij−1],
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or, in other words, to

L(CM ) = I \ {f1, f1 + f2, . . . , f1 + f2 + · · · + fm−1}
if the parts of cr(M) form the sequence (f1, f2, . . . , fm). This implies that the sets
XL(C) and Xcr(M) coincide.

This completes the dictionary that allows us to deduce the corollary from The-
orem 3.1. �

3.3. The splitting formula. The splitting formula, due to Gelfand, Krob, Las-
coux, Leclerc, Retakh and Thibon [13] in the case of F (K) and to Novelli and
Thibon [27] in the general case, is the tool that enables us to show that certain
graded subbialgebras Σ(W ) of Section 1.3 are subalgebras of F (A) for the internal
product. We begin with a lemma.

Lemma 3.3. Let V be a projective K-module,4 let n be a positive integer, let
c = (c1, c2, . . . , ck) and d be two compositions of n, and for each i ∈ [1, k], let
ai ∈ TSci(V ) be a symmetric tensor of degree ci. The i-th line of a matrix M =
(mij) in Mc,d can be seen as a composition (possibly with parts equal to zero) of
ci. According to the decomposition

TSci(V ) ⊆ TSmi1(V ) ⊗ TSmi2(V ) ⊗ · · · ⊗ TSmil(V ),

we write ai as a linear combination
∑

(ai)
a
(M)
i1 ⊗ a

(M)
i2 ⊗ · · · ⊗ a

(M)
il with a

(M)
ij ∈

TSmij (V ). Then in the KSn-bimodule Fn(V ), there holds

(3.2) xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#xd

]
=

∑
M∈Mc,d

∑
(a1), (a2), ..., (ak)

xcr(M) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
k1

⊗a
(M)
12 ⊗ a

(M)
22 ⊗ · · · ⊗ a

(M)
k2 ⊗ · · ·

⊗ a
(M)
1l ⊗ a

(M)
2l ⊗ · · · ⊗ a

(M)
kl

)
#en

]
.

Proof. We set ti = c1 + c2 + · · · + ci and uj = d1 + d2 + · · · + dj . We take
M ∈ Mc,d and σ ∈ Sn. If σ belongs to the double coset CM , then for each j, the
set σ([uj−1 + 1, uj ]) has m1j elements in [1, t1], m2j elements in [t1 + 1, t2], . . . ,
mkj elements in [tk−1 + 1, tk]. On the other hand, if σ belongs to Xd, then it is an
increasing map on the interval [uj−1 + 1, uj ]. Therefore, if σ belongs to CM ∩ Xd,
the mij elements of the set

σ([uj−1 + m1j + m2j + · · · + mi−1,j + 1, uj−1 + m1j + m2j + · · · + mij ])

belong to [ti−1 + 1, ti], so that

(a1 ⊗ a2 ⊗ · · · ⊗ ak)#σ

=
∑

(a1), (a2), ..., (ak)

σ ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
k1

⊗a
(M)
12 ⊗ a

(M)
22 ⊗ · · · ⊗ a

(M)
k2 ⊗ · · ·

⊗ a
(M)
1l ⊗ a

(M)
2l ⊗ · · · ⊗ a

(M)
kl

)
#en

]
,

4The assuption that V is projective guarantees the existence of decompositions ai =∑
(ai)

a
(M)
i1 ⊗ a

(M)
i2 ⊗ · · · ⊗ a

(M)
il below, as mentioned in footnote 3.
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because each ai is symmetric. Using the notations of Section 3.2, we decompose
Xd as the disjoint union

∐
M∈Mc,d

(
CM ∩ Xd

)
. Then

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#xd

]
=

∑
M∈Mc,d

∑
σ∈CM∩Xd

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#σ

]
=

∑
M∈Mc,d

∑
σ∈CM∩Xd

∑
(ai)

(xcσ) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
kl

)
#en

]

=
∑

M∈Mc,d

∑
(ai)

xcr(M) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
kl

)
#en

]
,

the last equality coming from Corollary 3.2. This calculation proves Lemma 3.3. �

In the remainder of this section, the letter A denotes a K-algebra, whose under-
lying module is projective. We now state and prove the splitting formula.

Theorem 3.4. Let y be an element in NT(A) and z1, z2, . . . , zl be elements in
F (A). Then

(3.3) y · (z1 ∗ z2 ∗ · · · ∗ zl) =
∑
(y)

(y(1) · z1) ∗ (y(2) · z2) ∗ · · · ∗ (y(l) · zl).

Proof. By linearity, it is sufficient to prove formula (3.3) for elements y of the form

y = (a1#ec1) ∗ (a2#ec2) ∗ · · · ∗ (ak#eck
) = xc ·

[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

]
,

where c = (c1, c2, . . . , ck) is a composition of a positive integer n and where a1,
a2, . . . , ak are symmetric tensors on A of degree c1, c2, . . . , ck, respectively. By
formula (1.6), the l-th iterated coproduct of the element (ai#ei) is

∆l(ai#eci
) =

∑
f

∑
(ai)

(
(ai)

(f)
1 #ef1

)
⊗
(
(ai)

(f)
2 #ef2

)
⊗ · · · ⊗

(
(ai)

(f)
l #efl

)
,

where the first sum runs over all compositions f = (f1, f2, . . . , fl) of ci in l parts
(possibly equal to zero). Multiplying these expressions for i = 1, 2, . . . , k and ex-
panding, we obtain

∆l(y)(3.4)

=
∑
g

∑
M∈Mc,g

∑
(a1), (a2), ..., (ak)

[(
a
(M)
11 #em11

)
∗
(
a
(M)
21 #em21

)
∗ · · · ∗

(
a
(M)
k1 #emk1

)]

⊗
[(

a
(M)
12 #em12

)
∗
(
a
(M)
22 #em22

)
∗ · · · ∗

(
a
(M)
k2 #emk2

)]
⊗ · · ·

⊗
[(

a
(M)
1l #em1l

)
∗
(
a
(M)
2l #em2l

)
∗ · · · ∗

(
a
(M)
kl #emkl

)]
,

where the first sum runs over all compositions (possibly with zero parts) g of n in
l parts and where for each matrix M ∈ Mc,g, the tensors ai are decomposed as in
the statement of Lemma 3.3.

Now let d = (d1, d2, . . . , dl) be a composition (possibly with parts equal to zero)
of n and consider the equality proved in Lemma 3.3. The left-hand side of (3.2) is
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equal to

(3.5) xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

]
· (1⊗n#xd) = y · (1⊗n#xd).

On the other hand, equation (3.4) joint to formula (1.1) shows that the right-hand
side of (3.2) is equal to

(3.6)
∑
(y)

(
y(1) · (1⊗d1#ed1)

)
∗
(
y(2) · (1⊗d2#ed2)

)
∗ · · · ∗

(
y(l) · (1⊗dl#edl

)
)
.

We conclude that the quantities (3.5) and (3.6) are equal.
By linearity, we may assume that the elements zj are of the form zj = (bj#σj),

where bj ∈ A⊗dj and σj ∈ Sdj
. For degree reasons, both sides of (3.3) vanish

unless n = d1 + d2 + · · · + dl. We may therefore assume without loss of generality
that d = (d1, d2, . . . , dl) is a composition of n. We now multiply both (3.5) and
(3.6) on the right by

[
(b1 ⊗ b2 ⊗ · · · ⊗ bl)#(σ1 × σ2 × · · · × σl)

]
, using the internal

product. These multiplications yield the left-hand and the right-hand sides of (3.3),
respectively. The theorem follows. �

As a first application of this formula, we consider the two following conditions
for a graded submodule B =

⊕
n≥0 Bn of T(A):

(B) Each Bn is a subalgebra of A⊗n.
(C) Each space Bn consists of symmetric tensors, that is, B ⊆ TS(A).

Corollary 3.5. For any graded submodule B of T(A) satisfying conditions (A),
(B) and (C), the descent bialgebra Σ(B) is a subalgebra of F (A) for the internal
product.

Proof. We have to prove that for any elements y and z in Σ(B), the product y · z
belongs to Σ(B). We first consider the case where z is of the form (b#en), where
b ∈ Bn. The homogeneous components of y whose degree is different from n do
not contribute to the product y · z; they can therefore be put aside. We then write
y as a linear combination of products (a1#ec1) ∗ (a2#ec2) ∗ · · · ∗ (ak#eck

), where
c = (c1, c2, . . . , ck) is a composition of n and a1 ∈ Bc1 , a2 ∈ Bc2 , . . . , ak ∈ Bck

. By
condition (A), we may find a decomposition b =

∑
(b) b

(c)
1 ⊗ b

(c)
2 ⊗· · ·⊗ b

(c)
k for each

composition c that arises in the expression of y, where the elements represented by
the place-holder b

(c)
i belong to Bci

. Therefore y · (b#en) is a linear combination of
elements of the form(

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

])
·
[
(b1 ⊗ b2 ⊗ · · · ⊗ bk)#en

]
= xc ·

[
((a1b1) ⊗ (a2b2) ⊗ · · · ⊗ (akbk))#en

]
= (a1b1#ec1) ∗ (a2b2#ec2) ∗ · · · ∗ (akbk#eck

).

Since each element aibi appearing here belongs to Bci
by condition (B), y · (b#en)

is in Σ(B).
In the general case, we may write z as a linear combination of products z1 ∗

z2 ∗ · · · ∗ zl, where each zj is of the form bj#edj
, where dj is a positive integer

and bj ∈ Bdj
. We apply the splitting formula (3.3). Since Σ(B) is a subcoalgebra

of F (A) (Proposition 1.4), we may require that in the decomposition ∆l(y) =∑
(y) y(1) ⊗ y(2) ⊗ · · · ⊗ y(l) used, all elements represented by the placeholders y(j)

belong to Σ(B). By the first case, each product y(j) · zj belongs to Σ(B), which
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entails that y · (z1 ∗ z2 ∗ · · · ∗ zl) belongs to Σ(B). We conclude that y · z belongs
to Σ(B). �

Again there are two main examples to which Corollary 3.5 can be applied. The
first one is the case of the Novelli-Thibon algebra: the sequence Bn = TSn(A)
satisfies conditions (A), (B) and (C), so the submodule NT(A) is a subalgebra of
F (A) for the internal product.

The second example arises when A is a cocommutative bialgebra. Each iterated
coproduct δn : A → A⊗n is a morphism of algebras, therefore its image is a subal-
gebra Bn of A⊗n. The submodule B =

⊕
n≥0 Bn therefore satisfies condition (B).

It also satisfies conditions (A) and (C), because the coproduct of A is coassociative
and cocommutative. It thus follows from Corollary 3.5 that the submodule Σ(B),
which is of course the Mantaci-Reutenauer bialgebra MR(A), is a subalgebra of
F (A) for the internal product.

The following corollary gives the rule to compute internal products in a Mantaci-
Reutenauer algebra. It generalizes Corollary 6.8 and Theorem 6.9 of [24].

Corollary 3.6. Let A be a cocommutative bialgebra with coproduct δ, let n be a
positive integer, let c = (c1, c2, . . . , ck) and d = (d1, d2, . . . dl) be two compositions
of n, and let a1, a2, . . . , ak, b1, b2, . . . , bl be elements of A. Then

(yc1,a1 ∗ yc2,a2 ∗ · · · ∗ yck,ak
) · (yd1,b1 ∗ yd2,b2 ∗ · · · ∗ ydl,bl

)

=
∑

(ai),(bj)

∑
M∈Mc,d

⎛
⎝ l∏

j=1

k∏
i=1

ymij ,ai(j)bj(i)

⎞
⎠ ,

where the first summation symbol on the right comes from the Sweedler notation for
writing the iterated coproducts δl(ai) and δk(bj), where the two successive symbols∏

stand for the external product ∗, and where the factors of this external product
are formed by reading column by column the entries of the matrix M = (mij).

Proof. An easy induction based on formula (1.8) implies that

∆l(yci,ai
) =

∑
(ai)

∑
f

yf1,ai(1) ⊗ yf2,ai(2) ⊗ · · · ⊗ yfl,ai(l) ,

where the second sum runs over all compositions (possibly with zero parts) f =
(f1, f2, . . . , fl) of ci in l parts. Setting y = yc1,a1 ∗ yc2,a2 ∗ · · · ∗ yck,ak

, it follows that

(3.7) ∆l(y)

= ∆l(yc1,a1) ∗ ∆l(yc2,a2) ∗ · · · ∗ ∆l(yck,ak
)

=
∑

(a1), (a2), ..., (ak)

∑
M

(
k∏

i=1

ymi1,ai(1)

)
⊗
(

k∏
i=1

ymi2,ai(2)

)
⊗ · · · ⊗

(
k∏

i=1

ymil,ai(l)

)
,

where the second sum is over all matrices M with non-negative integral entries in
k rows and l columns and with row-sum c.

We now use the splitting formula

(3.8) y ·(yd1,b1 ∗yd2,b2 ∗· · ·∗ydl,bl
) =

∑
(y)

(y(1) ·yd1,b1)∗(y(2) ·yd2,b2)∗· · ·∗(y(l) ·ydl,bl
)

and substitute in it the expression for the iterated coproduct ∆l(y) found in (3.7).
For degree reasons, each term in (3.7) that yields a non-zero contribution to the
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right-hand side of (3.8) corresponds to a matrix M whose column sum is equal to
d, so that we may restrict the sum to the matrices M in Mc,d. The result of the
substitution is a sum of products; in each product, the j-th factor is

y(j) · ydj ,bj

=
[
(ym1j ,a1(j)) ∗ (ym2j ,a2(j)) ∗ · · · ∗ (ymkj ,ak(j))

]
· ydj ,bj

= x(m1j ,m2j ,...,mkj) ·
[(

δm1j
(a1(j))⊗δm2j

(a2(j))

⊗· · ·⊗ δmkj
(ak(j))

)
#edj

]
·
[
δdj

(bj)#edj

]
=
∑
(bj)

x(m1j ,m2j ,...,mkj) ·
[(

δm1j
(a1(j)bj(1)) ⊗ δm2j

(a2(j)bj(2))

⊗ · · ·⊗ δmkj
(ak(j)bj(k))

)
#edj

]
=
∑
(bj)

ym1j ,a1(j)bj(1) ∗ ym2j ,a2(j)bj(2) ∗ · · · ∗ ymkj ,ak(j)bj(k) .

The corollary follows immediately. �

3.4. Frobenius structures. In this section, we put together the structures defined
in Sections 2.2 and 3.1.

We begin by recalling some terminology. Let A be an associative K-algebra
with unit. A pairing � on A is said to be associative if �(ab, c) = �(a, bc) for all
(a, b, c) ∈ A3. A trace form on A is a linear map τ : A → K such that τ (ab) = τ (ba)
for all (a, b) ∈ A2. The data of a symmetric and associative pairing is equivalent to
the data of a trace form: to the trace form τ corresponds the pairing � : (a, b) 
→
τ (ab), and conversely τ is given by τ = ��(1). One says that an algebra A is a
Frobenius algebra if it can be endowed with an associative and perfect pairing; if
one can choose this pairing symmetric, then one calls A a symmetric algebra.

Now let A be a such a symmetric algebra, endowed with a symmetric, associative
and perfect pairing �. Then the graded bialgebra F (A) is endowed with the
symmetric and perfect pairing �tot (Section 2.2) and each graded piece Fn(A) is
an associative algebra for the internal product · (Section 3.1).

Proposition 3.7. For any degree n, the pairing �tot

∣∣
Fn(A)×Fn(A)

is associative
and endows Fn(A) with the structure of a symmetric algebra.

Proof. We denote the linear form ��(1) by τ and define a linear form τtot : F (A) →
K by setting

τtot

(
(a1 ⊗ a2 ⊗ · · · ⊗ an)#σ

)
=

{∏n
i=1 τ (ai) if σ = en,

0 otherwise,

for any n ∈ N, any (a1, a2, . . . , an) ∈ An and any σ ∈ Sn. A straightforward
verification based on formula (2.1) shows that �tot(x, y) = τtot(x·y) for any (x, y) ∈
F (A)2. It follows in particular that the pairing �tot

∣∣
Fn(A)×Fn(A)

is associative.
Since this pairing is also symmetric and perfect, the algebra Fn(A) is a symmetric
algebra. �

We add to these ingredients the data of a graded subbialgebra S of F (A), as-
sumed to be a subalgebra of it for the internal product. The polar S◦ of S satisfies

�tot(S, S · S◦) = �tot(S · S, S◦) ⊆ �tot(S, S◦) = 0,



1498 PIERRE BAUMANN AND CHRISTOPHE HOHLWEG

so that S · S◦ ⊆ S◦. A similar argument shows the inclusion S◦ · S ⊆ S◦, and we
conclude that S◦ is a two-sided internal S-submodule of F (A). Assuming that A
is a projective K-module and that S is a direct summand of the graded K-module
F (A), we construct the diagram (2.3), with F (V ) replaced by F (A); besides
being a diagram of graded bialgebras, it is then a diagram of two-sided internal
S-submodules.

3.5. The case of a group algebra. Group algebras are at the same time co-
commutative bialgebras and symmetric algebras. They therefore give examples to
which the constructions of Sections 3.3 and 3.4 can be applied. We study this
situation here.

Let Γ be a finite group. We endow the algebra KΓ with the pairing � defined
by

�(γ, δ) =

{
1 if γ = δ−1,
0 otherwise.

This pairing is associative, symmetric and perfect; the corresponding trace form
τ = ��(1) is the linear form that maps an element γ ∈ Γ to 1 if γ is the unit and to
0 otherwise. (One may observe that the familiar trace map of KΓ, i.e. the regular
character of Γ, is a scalar multiple of τ .)

We now construct the graded bialgebra F (KΓ) and endow it with the pairing of
bialgebras �tot. By Proposition 3.7, each graded component Fn(KΓ) is a symmet-
ric algebra for the pairing �tot

∣∣
Fn(KΓ)×Fn(KΓ)

. This property can also be explained
in the following way.

Let us first recall that the wreath product Γ � Sn is the semidirect product
Γn � Sn for the usual permutation action of Sn on Γn. Thus an element Γ � Sn

can always be written as the product of an element of Sn and an element of Γn,
and the commutation rule between these two kinds of elements is

σ · (γ1, γ2, . . . , γn) = (γσ−1(1), γσ−1(2), . . . , γσ−1(n)) · σ.

A comparison with equation (3.1) which defines the product in the twisted group
ring Fn(KΓ) = (KΓ)⊗n#(KSn) shows the existence of an isomorphism of algebras

K
[
Γ � Sn

]
→ Fn(KΓ),

[
(γ1, γ2, . . . , γn) · σ

]

→
[
(γ1 ⊗ γ2 ⊗ · · · ⊗ γn)#σ

]
.

Now the group algebra K
[
Γ �Sn

]
has a standard structure of a symmetric algebra,

whose trace form τn is given by

τn

[
(γ1, γ2, . . . , γn) · σ

]
=

{
1 if γ1 = γ2 = · · · = γn is the unit of Γ and σ = en,
0 otherwise.

Under the previous isomorphism, this trace form coincides with the linear form
τtot

∣∣
Fn(KΓ)

used in the proof of Proposition 3.7. We conclude that the pairing
�tot

∣∣
Fn(KΓ)×Fn(KΓ)

on Fn(KΓ) corresponds to the usual associative, symmetric
and perfect pairing on the group algebra K

[
Γ � Sn

]
.

4. A Solomon descent theory for the wreath products G � Sn

In this section, we study a particular case of the following problem, inspired by
Solomon’s article [33]: given a finite group H, is it possible to find a subalgebra of
the group algebra KH of which the representation ring of H is a quotient? More
precisely, we use the theory developed in the previous sections to give a positive
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answer in the case where the group H is the wreath product G�Sn of the symmetric
group with a finite abelian group G.

4.1. Representation rings. We first set up the notation we plan to use concerning
representation rings. Let H be a finite group. We denote the algebra of complex-
valued functions on H by CH . The Z-submodule of CH spanned by the characters of
H is called the ring of complex linear representations of H and is denoted by R(H).
The involutive map f 
→ f∗ which sends a function in CH to its complex-conjugate
leaves R(H) stable. The assignment H � R(H) is a contravariant functor from
the category of finite groups to the category of commutative rings with involution.

Elements of R(H) are usually called virtual characters. The set Irr(H) of irre-
ducible characters of H is a basis of the Z-module R(H). A virtual character is
called effective if all its coordinates with respect to the basis Irr(H) are positive.

The linear form on CH that maps a complex-valued function f to its mean
value 1

|H|
∑

h∈H f(h) restricts to a Z-valued additive form ϕ on R(H), which is
called the fundamental linear form on R(H). Its value at an irreducible character
ζ ∈ Irr(H) is 1 if ζ is the trivial character of H and 0 otherwise. We define
the fundamental bilinear form β : R(H) × R(H) → Z by β(f, g) = ϕ(fg) for
any (f, g) ∈ R(H)2. The usual inner product of characters is the bilinear form
(f, g) 
→ β(f, g∗). Given two irreducible characters ζ and ψ in Irr(H), the number
β(ζ, ψ) is thus 1 if ζ = ψ∗ and 0 otherwise. As a consequence, the fundamental
bilinear form β is an associative, symmetric and perfect pairing; endowed with it,
R(H) becomes a symmetric commutative algebra.

We conclude this section with a proposition which is probably well-known.

Proposition 4.1. The representation ring R(H) has trivial Jacobson radical.

Proof. Let L be a number field big enough to contain all the roots of unity of order
|H| in C, and let O be the integral closure of Z in L. Let X be the set of maximal
ideals of O. Since O is a Dedekind ring, there holds⋂

m∈X

m = {0}.

For any h ∈ H, the evaluation ζ(h) of a virtual character ζ ∈ R(H) at h belongs
to O. The image of the evaluation map evh : ζ 
→ ζ(h) is therefore a subring
of O, over which O is integral. This implies that for any m ∈ X, the intersection
(im evh)∩m is a maximal ideal in (im evh), and thus that the inverse image ev−1

h (m)
is a maximal ideal of R(H). The desired result now follows from the equality

⋂
h∈H

⋂
m∈X

ev−1
h (m) =

⋂
h∈H

[
ev−1

h

( ⋂
m∈X

m

)]
=
⋂

h∈H

ker evh = {0},

because the Jacobson radical of R(H) is the intersection of all its maximal (left)
ideals. �

4.2. The characters of the wreath products G�Sn. Let G be a finite group, not
necessarily abelian. We discuss in this section Specht’s results about the characters
of the wreath products G � Sn. Our presentation follows the appendix of [21],
Appendix B of Chap. I in [22] and §7 in [37], to which we refer the reader for the
proofs.
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The wreath product G � Sn is the semidirect product Gn � Sn for the usual
permutation action of Sn on Gn. (By convention, the notation G � S0 denotes the
group with one element.) An element of G �Sn can always be written in two ways
as the product of an element of Sn and an element of Gn, namely

σ · (g1, g2, . . . , gn) = (gσ−1(1), gσ−1(2), . . . , gσ−1(n)) · σ.

Given a CG-module V , we construct a complex representation ηn(V ) of G�Sn on
the space V ⊗n by letting a product (g1, . . . , gn) ·σ act on a pure tensor v1⊗· · ·⊗vn

in the following way:

((g1, g2, . . . , gn)·σ)·(v1⊗v2⊗· · ·⊗vn) = (g1·vσ−1(1))⊗(g2·vσ−1(2))⊗· · ·⊗(gn·vσ−1(n)).

The character of ηn(V ) does not actually depend on V but only on its character; if
ζ denotes the latter, then we will denote the former by ηn(ζ). Two particular cases
are worth mentioning.

• If γ is a linear character of G, that is, a character of degree 1, then ηn(γ) is
the linear character ((g1, g2, . . . , gn) · σ) 
→ γ(g1g2 · · · gn) of G � Sn.

• If ζ is the regular character of G, then ηn(ζ) is the character induced from the
trivial representation of the subgroup Sn to G � Sn.

Let c = (c1, c2, . . . , ck) be a composition of n. The Young subgroup Sc of Sn

acts on Gn, and the semidirect product Gn � Sc can be seen as the subgroup of
G �Sn generated by Gn and Sc. By analogy, we denote it by G �Sc and we call it
a Young subgroup of G �Sn. The natural isomorphism Sc1 ×Sc2 ×· · ·×Sck

∼= Sc

gives rise to an isomorphism (G � Sc1) × (G � Sc2) × · · · × (G � Sck
) ∼= (G � Sc).

A partition is an infinite non-increasing sequence λ = (λ1, λ2, . . .) of non-negative
integers, all of whose terms but a finite number vanish. As usual, we denote the
sum of the parts of λ by |λ|; if |λ| = n, then we say that λ is a partition of n. To a
partition λ of n, we associate in the usual way an irreducible complex representation
Sλ of Sn, the so-called Specht module. Thus for instance the characters of S(n)

and S(1,1,...,1) (with n terms equal to 1) are the trivial and signature characters of
Sn, respectively.

An Irr(G)-partition is a family λ = (λγ)γ∈Irr(G) indexed by Irr(G) of partitions.
The size of an Irr(G)-partition λ is the number ‖λ‖ =

∑
γ∈Irr(G) |λγ |. We define

the dual of λ as the Irr(G)-partition λ∗ =
(
γ 
→ λγ∗

)
.

Given an Irr(G)-partition λ of size n, one constructs a complex representation of
G�Sn as follows. One enumerates the irreducible characters γ1, γ2, . . . , γr of G and
picks up CG-modules V1, V2, . . . , Vr that afford them. Let us set ci = |λγi

|. Since
Sci

is a quotient of G�Sci
, we may view the Specht module Sλγi

as a representation
of G � Sci

and we may then multiply it by ηci
(Vi). The outer product(

Sλγ1
⊗ ηc1(V1)

)
⊗
(
Sλγ2

⊗ ηc2(V2)
)
⊗ · · · ⊗

(
Sλγr

⊗ ηcr
(Vr)

)
is then a representation of (G �Sc1)× (G �Sc2)×· · ·× (G �Scr

) ∼=
(
G �S(c1,c2,...,cr)

)
,

which we can induce to G � Sn. The result of this induction does not depend up
to isomorphism on the choice of the enumeration γ1, γ2, . . . , γr. Its character
depends therefore only on λ; we denote it by χλ. The map λ 
→ χλ affords a
bijection from the set of Irr(G)-partitions of size n onto the set Irr

(
G � Sn

)
. The

complex-conjugate of the character χλ is the character χλ∗
.

Each representation ring R(G �Sn) is a ring endowed with its fundamental linear
and bilinear forms ϕ and β, this latter being an associative, symmetric and perfect



A SOLOMON DESCENT THEORY FOR THE WREATH PRODUCTS G � Sn 1501

pairing. Considering all n at the same time yields in addition extra structures. We
therefore consider the direct sum Rep(G) =

⊕
n≥0 R(G � Sn).

We define the induction product ψ ∗ ψ′ of two characters ψ of G � Sn and ψ′ of
G � Sn′ as the induction

ψ ∗ ψ′ = IndG�Sn+n′

(G�Sn)×(G�Sn′ )

(
ψ ⊗ ψ′),

where (G �Sn)× (G �Sn′) is viewed as the subgroup G �S(n,n′) of G �Sn+n′ . The
bilinear extension of the induction product to Rep(G) × Rep(G) endows the space
Rep(G) with the structure of a graded associative and commutative algebra.

Likewise, the restriction coproduct ∆(ψ) of a character ψ of G �Sn is defined to
be the sum over n′ ∈ {0, 1, . . . , n} of the restrictions

ResG�Sn

(G�Sn′ )×(G�Sn−n′ )

(
ψ
)
.

This notation implicitly identifies characters of the group (G�Sn′)×(G�Sn−n′) with
elements of R(G �Sn′)⊗R(G �Sn−n′), so that ∆(ψ) ∈ Rep(G)⊗Rep(G). The linear
extension of ∆ to the whole space Rep(G) endows the latter with the structure of
a graded coassociative and cocommutative coalgebra. Mackey’s subgroup theorem
implies that (Rep(G), ∗, ∆) is a graded commutative cocommutative bialgebra.

In order to make the situation more alike to the structures seen in Sections 2
and 3, we extend the product and the fundamental linear and bilinear forms ϕn

and βn defined on each R(G �Sn) to operations defined on the whole space Rep(G)
by setting

fg =
∑
n≥0

fngn, ϕtot(f) =
∑
n≥0

ϕn(fn) and βtot(f, g) = ϕtot(fg) =
∑
n≥0

βn(fn, gn)

for any f =
∑

n≥0 fn and g =
∑

n≥0 gn, where fn and gn in R(G�Sn). Then βtot is a
perfect symmetric pairing on Rep(G), with respect to which the induction product ∗
and the restriction coproduct ∆ are adjoint to each other by Frobenius reciprocity.
Moreover, Mackey’s tensor product theorem (more precisely, the particular case
stated in Corollary (10.20) of [11]) implies the following splitting formula: for any
f , g1, g2, . . . , gl in Rep(G), there holds

(4.1) f(g1 ∗ g2 ∗ · · · ∗ gl) =
∑
(f)

(f(1)g1) ∗ (f(2)g2) ∗ · · · ∗ (f(l)gl).

We denote by Λ the ring of symmetric functions. This is indeed a graded bialge-
bra (see I, 5, Ex. 25 in [22]). As is well-known, the complete symmetric functions
hn are algebraically independent generators of the commutative Z-algebra Λ. On
the other hand, the Schur functions sλ, where λ is a partition, is a basis of the
Z-module Λ. For each γ ∈ Irr(G), we consider a copy Λ(γ) of Λ and we denote
the isomorphism Λ �→ Λ(γ) by P 
→ P (γ). Then we form the tensor product
Λ(Irr(G)) = ⊗γ∈Irr(G)Λ(γ). Given an Irr(G)-partition λ = (λγ)γ∈Irr(G), we set

sλ =
∏

γ∈Irr(G)

sλγ
(γ).

Then the elements hn(γ) are algebraically independent generators of the commuta-
tive Z-algebra Λ(Irr(G)), where n ≥ 1 and γ ∈ Irr(G), and the elements sλ form a
basis of the Z-module Λ(Irr(G)), where λ is an Irr(G)-partition. Finally we endow
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the graded bialgebra Λ(Irr(G)) with a perfect symmetric pairing 〈?, ?〉 defined on
the basis of Schur functions by

〈sλ, sλ′〉 =

{
1 if λ′ = λ∗,
0 otherwise.

Our interest in Λ(Irr(G)) is that it gives a model that allows us to calculate in
Rep(G). More precisely, there is an isomorphism of graded bialgebras

ch : Rep(G) �−→ Λ(Irr(G)),

called the Frobenius characteristic, such that

ch
(
ηn(γ)

)
= hn(γ) and ch

(
χλ
)

= sλ

for any n ≥ 1, any γ ∈ Irr(G) and any Irr(G)-partition λ. Moreover ch is compatible
in the obvious sense with the perfect symmetric pairings βtot on Rep(G) and 〈?, ?〉
on Λ(Irr(G)).

What precedes implies that

Rep(G) ∼=
⊗

γ∈Irr(G)

Z
[
η1(γ), η2(γ), . . .

]
.

The following proposition, which will be used in Section 4.5, explains how to find
the expression of ηn(ζ) as a polynomial in the ηn(γ) when the effective character
ζ is not irreducible. In order to state it, we introduce a last notation: viewing the
signature character sgn of Sn as a character of G � Sn through the quotient map
(G � Sn) → Sn, we denote the product sgn · ηn(ζ) in the ring R(G � Sn) by εn(ζ).

Proposition 4.2. There exists a morphism of groups H : R(G) →
(
Rep(G)[[u]]

)×
such that

(4.2) H(ζ) =
∑
n≥0

ηn(ζ)un and H(−ζ) =
∑
n≥0

(−1)nεn(ζ)un

for all effective characters ζ.

Proof. We extend the Frobenius characteristic ch to an isomorphism of rings from
Rep(G)[[u]] onto Λ(Irr(G))[[u]]. Since R(G) is a free Z-module with basis Irr(G),
there exists a homomorphism of abelian group H : R(G) →

(
Rep(G)[[u]]

)× such
that for each γ ∈ Irr(G),

H(γ) =
∑
n≥0

ηn(γ)un.

Now let ζ =
∑

γ∈Irr(G) aγγ be an effective character of G. A slight modification
of the calculation made in Appendix B of Chap. I, (8.3) in [22] yields

ch

⎛
⎝∑

n≥0

ηn(ζ)un

⎞
⎠ =

∏
γ∈Irr(G)

⎛
⎝∑

n≥0

hn(γ)un

⎞
⎠aγ
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and

ch

⎛
⎝∑

n≥0

(−1)nεn(ζ)un

⎞
⎠ =

∏
γ∈Irr(G)

⎛
⎝∑

n≥0

(−1)nen(γ)un

⎞
⎠aγ

(4.3)

=
∏

γ∈Irr(G)

⎛
⎝∑

n≥0

hn(γ)un

⎞
⎠−aγ

,

where en ∈ Λ is the elementary symmetric function of degree n. It follows that

ch

⎛
⎝∑

n≥0

ηn(ζ)un

⎞
⎠ =

∏
γ∈Irr(G)

⎛
⎝∑

n≥0

ch
(
ηn(γ)

)
un

⎞
⎠aγ

= ch

⎛
⎝ ∏

γ∈Irr(G)

⎛
⎝∑

n≥0

ηn(γ)un

⎞
⎠aγ

⎞
⎠

= ch
(
H(ζ)

)
,

and likewise ch
(∑

n≥0(−1)nε(ζ)un
)

= ch
(
H(−ζ)

)
. We conclude that (4.2) holds,

as required. �

4.3. The Solomon homomorphism. The representation theory presented in
Section 4.2 allows the use of the model Λ(Irr(G)) to compute the character ta-
bles of all the groups G � Sn and to study the inductions and the restrictions with
respect to the Young subgroups. However Λ(Irr(G)) does not make the compu-
tation of the ring structure of R(G � Sn) particularly easy. In this section, we
construct explicitly a surjective ring homomorphism from a subring of Z

[
G � Sn

]
onto R(G �Sn). However, we must restrict ourselves to the case where G is abelian.
As usual, it is convenient to do this simultaneously for all n.

In this section and in the following one, K is the ring Z. Some variants are indeed
possible, but this choice slightly simplifies the notation. The letter G denotes a
finite abelian group. The dual group of G, denoted by G∧ or by Γ, is the set Irr(G)
endowed with the ordinary product of characters. Although G and Γ are isomorphic
as abstract groups, we do not identify them. On the other hand, we observe that the
group ring ZΓ coincides with the representation ring R(G); indeed even the pairings
and the trace forms which turn these rings into symmetric Z-algebras agree.

We construct the graded bialgebra F (ZΓ) with its external product ∗ and its
coproduct ∆; it is further endowed with the internal product ·, the linear form τtot

and the pairing �tot (see Section 3.5). On the other hand, we have the graded
bialgebra Rep(G) with the induction product ∗ and the coproduct ∆, with also the
fundamental linear and bilinear forms ϕtot and βtot; moreover the graded compo-
nents R(G � Sn) of Rep(G) are symmetric algebras. Our aim now is to show that
Rep(G) is a subquotient of F (ZΓ).

Since ZΓ is a cocommutative bialgebra, the Mantaci-Reutenauer subbialgebra
MR(ZΓ) of F (ZΓ) is defined. This is a graded subbialgebra, whose homogeneous
component of degree n, say, will be denoted by MRn(ZΓ). By Corollary 3.5, each
MRn(ZΓ) is a subalgebra of Fn(ZΓ) for the internal product. Moreover, it follows
from Proposition 1.3 that with respect to the external product, the associative
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algebra MR(ZΓ) is freely generated by the elements yn,γ , where n ≥ 1 and γ ∈ Γ.
Thus there is a unique morphism of algebras θG : MR(ZΓ) → Rep(G) that maps
yn,γ to ηn(γ). We call this map θG the Solomon homomorphism.

Theorem 4.3. (i) The Solomon homomorphism θG is a surjective homomor-
phism of graded bialgebras with respect to the products ∗ and the coproducts
∆ on MR(ZΓ) and Rep(G); its kernel is the ideal generated by the elements
(ym,γ ∗ yn,δ − yn,δ ∗ ym,γ), where m ≥ 1, n ≥ 1, and (γ, δ) ∈ Γ2.

(ii) For every degree n, the restriction of the Solomon map θG : MRn(ZΓ) →
R(G�Sn) is a surjective homomorphism of rings; its kernel is the Jacobson
radical of the ring MR(ZΓ).

(iii) The Solomon homomorphism is compatible with the linear and bilinear
forms τtot and �tot on MR(ZΓ) and ϕtot and βtot on R(G � Sn), in the
sense that

(4.4) τtot = ϕtot ◦ θG and �tot = βtot

(
θG(?), θG(?)

)
.

The kernel of θG is equal to the kernel MR(ZΓ) ∩ MR(ZΓ)◦ of the pairing
�tot

∣∣
MR(ZΓ)×MR(ZΓ)

, where the polar MR(ZΓ)◦ is defined in the ambient
space F (ZΓ) with respect to the perfect pairing �tot.

Proof. (i) The algebra MR(ZΓ) is the free associative Z-algebra generated by the
elements yn,γ , where n ≥ 1 and γ ∈ Γ, whilst Rep(G) is the free associative commu-
tative Z-algebra generated by the elements ηn(γ). It follows that θG is surjective and
that its kernel is the ideal generated by the commutators (ym,γ ∗ yn,δ − yn,δ ∗ ym,γ).
Moreover θG is graded, for yn,γ and hn(γ) both have degree n.

It is easy to see that

ResG�Sn

(G�Sn′ )×(G�Sn−n′ )

(
ηn(γ)

)
= ηn′(γ) ⊗ ηn−n′(γ)

for any γ ∈ Γ and any integers n and n′ with 0 ≤ n′ ≤ n, and therefore

(4.5) ∆
(
ηn(γ)

)
=

n∑
n′=0

ηn′(γ) ⊗ ηn−n′(γ)

in Rep(G). It follows then by comparison with equation (1.8) that the set

{x ∈ MR(ZΓ) | ∆ ◦ θG(x) = (θG ⊗ θG) ◦ ∆(x)}
contains the elements yn,γ . Since this set is a subalgebra, it is the whole MR(ZΓ).
The compatibility of θG with the counit is trivial, and we conclude that θG is a
morphism of coalgebras. Assertion (i) is proved.

(ii) We first prove that θG maps the internal product of MRn(ZΓ) to the or-
dinary product of characters in R(G � Sn). This fact may be shown by a direct
computation using Mantaci and Reutenauer’s rule (Corollary 3.6) and Mackey’s
tensor product theorem; it may also be obtained by the following reasoning, that
is actually grounded on the same combinatorial foundations.

A straightforward calculation, based on equations (3.3) and (4.1) and on the fact
that θG is a morphism of bialgebras for the operations ∗ and ∆, shows that

E = {z ∈ MR(ZΓ) | ∀y ∈ MR(ZΓ), θG(y · z) = θG(y)θG(z)}
is a subalgebra of MR(ZΓ) for the external product ∗. On the other hand, every
generator yn,δ of MR(ZΓ) belongs to E. Indeed any element in MRn(ZΓ) is a linear
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combination of elements of the form

y = yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk
,

where c = (c1, c2, . . . , ck) is a composition of n and γ1, γ2, . . . , γk are elements of
Γ, and for such a y, formulas (4.1) and (4.5) imply

θG(y · yn,δ) = θG

(
xc ·

[
(γ⊗c1

1 ⊗ γ⊗c2
2 ⊗ · · · ⊗ γ⊗ck

k )#en

]
· (δ⊗n#en)

)
= θG

(
xc ·

[
((γ1δ)⊗c1 ⊗ (γ2δ)⊗c2 ⊗ · · · ⊗ (γkδ)⊗ck)#en

])
= θG

(
yc1,γ1δ ∗ yc2,γ2δ ∗ · · · ∗ yck,γkδ

)
= ηc1(γ1δ) ∗ ηc2(γ2δ) ∗ · · · ∗ ηck

(γkδ)

=
(
ηc1(γ1)ηc1(δ)

)
∗
(
ηc2(γ2)ηc2(δ)

)
∗ · · · ∗

(
ηck

(γk)ηck
(δ)
)

=
∑

(ηn(δ))

(
ηc1(γ1)(ηn(δ))(1)

)
∗
(
ηc2(γ2)(ηn(δ))(2)

)
∗· · ·∗

(
ηck

(γk)(ηn(δ))(k)

)
=
(
ηc1(γ1) ∗ ηc2(γ2) ∗ · · · ∗ ηck

(γk)
)

ηn(δ)

= θG(y) θG(yn,δ).

Therefore E = MR(ZΓ). Observing moreover that θG maps the unit element of
MRn(ZΓ), namely (1⊗n#en) = yn,1, to the unit of R(G � Sn), namely the trivial
character ηn(1) of G �Sn, we conclude that the degree n part of θG is a homomor-
phism of rings from MRn(ZΓ) to R(G � Sn).

Assertion (i) implies that this homomorphism is surjective, which entails that the
Jacobson radical of MRn(ZΓ) is mapped by θG into the Jacobson radical of R(G �
Sn). By Proposition 4.1, this translates readily into the inclusion radMRn(ZΓ) ⊆
ker θG

∣∣
MRn(ZΓ)

.
To prove the reverse inclusion, we will use the result stated in assertion (iii).

(Though its validity has not yet been established, no vicious circle arises in the
reasoning.) So let us suppose that some element x ∈ MRn(ZΓ) belongs to the
kernel of θG. This element x acts by left multiplication on the algebra Fn(ZΓ).
Since this latter is a free Z-module, this action can be represented by a matrix with
entries in Z. For any positive integer k, the k-th power of this matrix represents
the action of the left multiplication by xk and therefore its trace is

rk Fn(ZΓ) τtot(xk)

by the interpretation of τtot given at the end of Section 3.5. However our assumption
that x ∈ ker θG and assertion (iii) yield

τtot(xk) = �tot(x, xk−1) = βtot

(
θG(x), θG

(
xk−1

))
= 0

for all k ≥ 1. It follows that our matrix is nilpotent, and therefore that x itself is
nilpotent. This argument shows that all elements of the ideal ker θG

∣∣
MRn(ZΓ)

of
MRn(ZΓ) are nilpotent. This kernel is thus contained in the Jacobson radical of
MRn(ZΓ), which completes the proof of assertion (ii).

(iii) Elements of the form

x = yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk
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span the Z-module MR(ZΓ). Putting n = c1 + c2 + · · ·+ ck and c = (c1, c2, . . . , ck),
we observe that

τtot(x) = τtot

(
xc ·

[
(γ⊗c1

1 ⊗ γ⊗c2
2 ⊗ · · · ⊗ γ⊗ck

k )#en

])
is 1 if all the elements γi are equal to 1 and is 0 otherwise. On the other hand,
Frobenius reciprocity implies that

ϕtot ◦ θG(x) = dim HomG�Sn

(
ηc1(γ1) ∗ ηc2(γ2) ∗ · · · ∗ ηck

(γk), 1G�Sn

)
= dim HomG�Sn

(
IndG�Sn

G�Sc

(
ηc1(γ1) ⊗ ηc2(γ2) ⊗ · · · ⊗ ηck

(γk)
)
, 1G�Sn

)
= dim HomG�Sc

(
ηc1(γ1) ⊗ ηc2(γ2) ⊗ · · · ⊗ ηck

(γk), 1G�Sc

)
.

The character ηc1(γ1)⊗ηc2(γ2)⊗· · ·⊗ηck
(γk) of G�Sc is one-dimensional. Therefore

ϕtot ◦ θG(x) is 1 if this character is trivial, that is, if all the elements γi are equal to
1, and is 0 otherwise. The equality τtot(x) = ϕtot ◦ θG(x) being valid for each x in
a spanning set for MR(ZΓ), we conclude that τtot = ϕtot ◦ θG. In turn, this implies
that

�tot(x, y) = τtot(x · y) = ϕtot ◦ θG(x · y) = ϕtot(θG(x)θG(y)) = βtot(θG(x), θG(y))

for any (x, y) ∈ MR(ZΓ)2.
An immediate consequence of this last equality is that ker θG is contained in

the kernel MR(ZΓ) ∩ MR(ZΓ)◦ of the symmetric pairing �tot

∣∣
MR(ZΓ)×MR(ZΓ)

. The
reverse inclusion also holds because θG is surjective and βtot is a perfect pairing on
Rep(G). Assertion (iii) is proved. �

Assertion (ii) of Theorem 4.3 says that the representation ring R(G �Sn) can be
obtained as a quotient of the subring MRn(ZΓ) of Fn(ZΓ) ∼= Z

[
Γ � Sn

]
. Since Γ

and G are isomorphic, this entails that the representation ring of the group G �Sn

can be realized as a quotient of a subring of its group algebra. In other words, there
exists a Solomon descent theory for the wreath product G � Sn. However it is not
canonical, for it depends on the choice of an isomorphism between G and its dual.

The notation used above suggests the existence of some kind of functoriality.
In order to state a precise statement, we define a category V . Objects of V are
N-graded abelian groups A =

⊕
n≥0 An; each graded piece An is further endowed

with the structure of a ring, and the whole space A is endowed with the structure
of a graded Z-bialgebra through another, graded product, a unit, a coproduct and
a counit. Morphisms in V are maps that respect the N-graduation, all products
with their units and the coproduct with its counit. In the statement below, we
denote the dual of a finite abelian group G by G∧; the assignment G � G∧ is a
contravariant endofunctor of the category of finite abelian groups.

Proposition 4.4. The assignments G � F (Z[G∧]), G � MR(Z[G∧]) and G �
Rep(G) are contravariant functors from the category of finite abelian groups to the
category V . The assignment G � θG is a natural transformation from MR(Z[?∧])
to Rep(?).

We leave the proof as a (rather tedious) exercise. The naturality of G � θG

means that for each morphism f : G → G′ between two finite abelian groups, the
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diagram

F (Z[G∧]) F (Z[(G′)∧])
F(Z[f∧])

��

MR(Z[G∧])
��

��

θG

����

MR(Z[(G′)∧])
��

��

θG′
����

MR(Z[f∧])
��

Rep(G) Rep(G′)
Rep(f)

��

is commutative.
To conclude this section, let us observe that formula (4.4) implies the commuta-

tivity of the diagram

(4.6)

F (ZΓ) �

��
tot

�� F (ZΓ)∨

�� ������������

MR(ZΓ)
� �

������������

θG 		 		����������
MR(ZΓ)∨.

Rep(G) �

βtot
�

�� Rep(G)∨
� � (θG)∨



����������

(The surjectivity of the map F (ZΓ)∨ → MR(ZΓ)∨ comes from Proposition 2.2.)
By Theorem 4.3, θG is surjective with kernel MR(ZΓ) ∩ MR(ZΓ)◦, which implies
that θG defines an isomorphism of graded bialgebras

θG : MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦) �−→ Rep(G).

We can therefore add a horizontal line in the middle of diagram (4.6) and get

F (ZΓ)
�

�tot
�

�� F (ZΓ)∨

�� ����������������

MR(ZΓ)
� 	

���������������
�� ��

θG


 

													 MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦)

� θG

��

(
MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦)

)∨ � � �� MR(ZΓ)∨.

Rep(G)
�

βtot
�

�� Rep(G)∨

�θG
∨

��


 � (θG)∨

��















This is of course an occurence of diagram (2.3) with V = ZΓ and S = MR(ZΓ).
As a bonus, we see that the pairing induced by �tot on S/(S ∩S◦) is perfect in the
present situation.

Remark 4.5. In this remark, we consider the case G = Z/rZ. Hivert, Novelli and
Thibon [15] found an embodiment of the lower half of the diagram (4.6) in terms
of the representation theory of a suitable limit at q = 0 of the Ariki-Koike algebra
Hn,r(q). More precisely, these authors explain that one may identify as Z-modules
the degree n components MRn(ZΓ) and MRn(ZΓ)∨ with the Grothendieck groups
K0(Hn,r(0)) and G0(Hn,r(0)), respectively. On the other hand, the degree n com-
ponent R(G �Sn) of Rep(G) is isomorphic to the Grothendieck group K0(Hn,r(q))
of the semisimple category of finitely generated modules over the Ariki-Koike al-
gebra with generic parameter. Hivert, Novelli and Thibon prove that the maps
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θG and θ∨G can then be interpreted as the arrows e and d in a Cartan-Brauer cde
triangle

K0(Hn,r(0)) c ��

e
��������������

G0(Hn,r(0))

K0(Hn,r(q))
d

��������������

,

and that the composition θ∨G ◦ θG is the Cartan homomorphism c which describes
the Jordan-Hölder multiplicities of the simple modules in a projective module.

4.4. Symmetry property of the Solomon homomorphism. Given any finite
group H, the data of a complex-valued function on H is the same thing as the
data of a Z-linear map from ZH into C; we can therefore evaluate an element
of R(H) on an element of ZH. Applying this remark to the case of the group
G � Sn, we can evaluate an element θG(y) with y ∈ MRn(ZΓ) on an element of
Z
[
G � Sn

]
= Fn(ZG), and in particular on an element x ∈ MRn(ZG). Now G and

Γ play symmetric roles, so that the problem of comparing θG(y)(x) and θΓ(x)(y)
arises.

Theorem 4.6. For any n ≥ 1, x ∈ MRn(ZG) and y ∈ MRn(ZΓ), there holds
θG(y)(x) = θΓ(x)(y).

Proof. In order to better put in evidence the symmetry between G and Γ, we denote
the evaluation of a character γ ∈ Γ at a point g ∈ G by a bracket 〈γ, g〉; the same
notation can then also be used to denote the evaluation of g, viewed as a character
of Γ, at the point γ.

We check the property asserted by the theorem for x = yc1,g1 ∗ yc2,g2 ∗ · · · ∗ yck,gk

and y = yd1,γ1 ∗yd2,γ2 ∗· · ·∗ydk,γk
, where c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl)

are two compositions of n, (g1, g2, . . . , gk) ∈ Gk and (γ1, γ2, . . . , γl) ∈ Γl. Let us set

g̃ = g̃1 ⊗ g̃2 ⊗ · · · ⊗ g̃n = (g⊗c1
1 ) ⊗ (g⊗c2

2 ) ⊗ · · · ⊗ (g⊗ck

k ),

γ̃ = γ̃1 ⊗ γ̃2 ⊗ · · · ⊗ γ̃n = (γ⊗d1
1 ) ⊗ (γ⊗d2

2 ) ⊗ · · · ⊗ (γ⊗dl

l ).

We first compute θG(y)(x). Let ρ ∈ Xc. Noting that the composed map

Sn ↪→ G � Sn � (G � Sn)/(G � Sd)

induces a bijection from Sn/Sd onto (G �Sn)/(G �Sd) and setting uj = d1 + d2 +
· · · + dj , we compute

θG(y)(ρ · (g̃#en)) = IndG�Sn

G�Sd

(
ηd1(γ1) ⊗ ηd2(γ2) ⊗ · · · ⊗ ηdl

(γl)
)(

ρ · (g̃#en)
)

=
∑

π∈Sn/Sd

π−1ρπ∈Sd

(
ηd1(γ1) ⊗ ηd2(γ2) ⊗ · · · ⊗ ηdl

(γl)
)(

π−1ρ · (g̃#en) · π
)

=
∑

π∈Sn/Sd

π−1ρπ∈Sd

l∏
j=1

〈γj , g̃π(uj−1+1)g̃π(uj−1+2) · · · g̃π(uj)〉

=
∑

π∈Xd

ρπSd=πSd

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉.
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Taking the sum for all ρ ∈ Xc, we find
(4.7)
θG(y)(x) =

∑
ρ∈Xc

θG(y)(ρ · (g̃#en)) =
∑

ρ∈Xc, π∈Xd

ρπSd=πSd

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉.

In Section 3.2, we have parametrized double cosets C ∈ Sc\Sn/Sd by matrices
M ∈ Mc,d: to the matrix M = (mij) corresponds the double coset CM . We now
aim at splitting the sum in the right-hand side of (4.7) according to the double
coset C containing π. For that, we set

F(c,d, M) =
{
(ρ, π) ∈ Xc × (Xd ∩ CM )

∣∣ ρπSd = πSd

}
and we observe that

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉 =
k∏

i=1

l∏
j=1

〈gi, γj〉mij

if π ∈ CM . Then (4.7) reads

θG(y)(x) =
∑

M∈Mc,d

[ ∣∣F(c,d, M)
∣∣ k∏

i=1

l∏
j=1

〈gi, γj〉mij

]
,

and by symmetry,

θΓ(x)(y) =
∑

N∈Md,c

[ ∣∣F(d, c, N)
∣∣ l∏

j=1

k∏
i=1

〈γj , gi〉nji

]

=
∑

M∈Mc,d

[ ∣∣F(d, c, MT )
∣∣ k∏

i=1

l∏
j=1

〈gi, γj〉mij

]
,

where MT denote the transpose of the matrix M . Now observing that the double
coset CMT ∈ Sd\Sn/Sc is equal to C−1

M = {π−1 | π ∈ CM}, we deduce from
Theorem 1.2 and Corollary 2.2 of [8], applied to the group Sn, that∣∣F(c,d, M)

∣∣ = ∣∣F(d, c, MT )
∣∣

for each matrix M ∈ Mc,d. The theorem follows. �
This kind of question was first investigated by Jöllenbeck and Reutenauer in [17];

their result corresponds to the (already non-trivial) case where G is the group with
one element. A similar symmetry result also holds for the original Solomon descent
algebra and the original Solomon homomorphism of an arbitrary finite Coxeter
group (see [8]); the critical point in the proof above is a theorem from this latter
work.

4.5. The particular case G = Z/2Z. In this section, we apply our results to the
case where G = {±1} is the group with two elements. The peculiarity of this case is
that Wn = G �Sn is then the Coxeter group of type Bn. Thus Solomon’s construc-
tions [33] can be applied to it: there is a certain subring Σ̃ of the group ring ZWn

and a certain homomorphism of rings θ̃ from Σ̃ to the representation ring R(Wn).
This map θ̃ is not surjective, but Bonnafé and Hohlweg [10] manage to correct the
situation. They notice that the subring Σ̃ of ZWn

∼= Fn(ZG) is contained in the
Mantaci-Reutenauer algebra MRn(ZG) and show how to extend θ̃ to MRn(ZG).
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The resulting map, still denoted by θ̃, is a surjective homomorphism of rings from
MRn(ZG) onto R(Wn). The situation now looks like our Theorem 4.3 (ii), which
says that the homomorphism θG is a surjective ring homomorphism from MRn(ZΓ)
onto R(G � Sn) = R(Wn). Indeed we may identify G and Γ in the present case
G = {±1}, because there is a unique isomorphism between G and Γ. Then both θ̃
and θG are surjective ring homomorphisms from MRn(ZΓ) onto R(Wn); our aim in
this section is to explain the relationship between them.

We begin by setting the notation, following [10]. Let n be a non-negative integer.
We set G = {±1} and Wn = G � Sn. The group Wn contains Sn as a subgroup; it
is generated by the simple transpositions si ∈ Sn (see the proof of Corollary 3.2)
and the element (−1, 1, 1, . . . , 1) ∈ Gn. Endowed with this system of generators,
Wn becomes a Coxeter system.

We agree to denote the subgroup Sn of Wn by the somewhat strange convention
W−n. Likewise, we denote the trivial subgroup with one element of Gc by G−c,
for any positive integer c. We define a signed composition of n as a finite sequence
C = (c1, c2, . . . , ck) of non-zero integers such that |c1| + |c2| + · · · + |ck| = n; then
the sequence C+ = (|c1|, |c2|, . . . , |ck|) is a composition of n. Given such a sequence
C, we observe that the Young subgroup SC+ of Sn, acting on Gn, leaves stable the
subgroup GC = Gc1 × Gc2 × · · · × Gck . We can thus make the semidirect product
WC = GC

� SC+ ; this is a subgroup of Gn
� SC+ = G � SC+ , hence of Wn. For

instance, W(−n) = Sn = W−n.
Let C be a signed composition of n. By Proposition 2.8 of [10], each left coset

wWC of Wn contains a unique element of minimal length, called the distinguished
representative of this coset. Following [10], we denote the set of all these distin-
guished representatives by XC and we define the element x̃C =

∑
w∈XC

w in the
group ring ZWn.

The dual group Γ of G has also two elements, namely the trivial character t
and the sign character s. Since Γ is canonically isomorphic to G, the group ring
Z
[
Γ � Sn

]
= Fn(ZΓ) is canonically isomorphic to ZWn. The elements x̃C can

therefore be viewed as elements in Fn(ZΓ). To complete the notation, we set

zn = (s, s, . . . , s︸ ︷︷ ︸
n times

) · [n(n − 1) · · · 1]

for any n ≥ 1, where [n(n−1) · · · 1] is the longest permutation in Sn, and we agree
that x̃(0), y0,s, y0,t and z0 are all equal to the unit of F0(ZΓ) = Z.

Proposition 4.7. (i) We have the following relations:

x̃(n) = yn,t,(4.8)

x̃(−n) =
n∑

i=0

zi ∗ yn−i,t,(4.9)

n∑
i=0

(−1)i zi ∗ yn−i,s =
n∑

i=0

(−1)i yn−i,s ∗ zi =

{
1 if n = 0,
0 if n > 0,

(4.10)

x̃C = x̃(c1) ∗ x̃(c2) ∗ · · · ∗ x̃(ck),(4.11)

for any non-negative integer n and any signed composition C = (c1, c2,
. . . , ck) of n.
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(ii) The elements x̃C form a basis of MRn(ZΓ), where C is a signed composi-
tion of n.

Proof. (i) formula (4.8) holds because both members are equal to the unit of the
ring ZWn, by definition.

By Example 2.23 in [10], we know that X(−n) is the set of all elements w ∈ Wn

of the form
w = σ · (−1,−1, . . . ,−1︸ ︷︷ ︸

i times

, 1, 1, . . . , 1︸ ︷︷ ︸
n−i times

),

where σ ∈ Sn is decreasing on the interval [1, i] and increasing on the interval
[i + 1, n]. This entails formula (4.9), since in the identification of G with Γ, the
elements 1 and −1 correspond to t and s, respectively.

Let n be a positive integer. The set of all compositions of n is a ranked poset
when endowed with the refinement order �; here the rank function is the map
which associates to a composition d its number of parts l(d). The equality

xc =
∑
d|=n

d�c

∑
σ∈Sn

D(σ)=d

σ,

valid for each composition c of n, entails by Möbius inversion

(4.12)
∑

σ∈Sn

D(σ)=c

σ =
∑
d|=n

d�c

(−1)l(c)−l(d) xd.

Taking c = (1, 1, . . . , 1) (n times) in formula (4.12) and multiplying by (s, s, . . . , s),
we obtain

zn =
∑
d|=n

d=(d1,d2,...,dl)

(−1)n−l yd1,s ∗ yd2,s ∗ · · · ∗ ydl,s.

From there, one easily deduces formula (4.10).
Finally formula (4.11) is Example 5.3 in [10].
(ii) Formula (4.10) implies that each element zn belongs to MR(ZΓ). Using

formulas (4.8), (4.9) and (4.11), we then deduce that each element x̃C belongs to
MR(ZΓ), where C is a signed composition. In other words, the submodule MR′ of
F (ZΓ) spanned over Z by the elements x̃C is contained in MR(ZΓ). Formula (4.11)
shows furthermore that MR′ is a subalgebra for the external product ∗. Observing
then that MR′ contains all the elements yn,t and x̃(−n), an easy induction based on
formulas (4.9) and (4.10) shows that each zn and each yn,s is in MR′. This implies
that MR′ contains MR(ZΓ) because the latter is generated as an algebra by the
elements yn,t and yn,s. It follows that the Z-module MR(ZΓ) = MR′ is spanned by
the elements x̃C .

Now Proposition 1.3 (or more precisely, its consequence stated at the end of
Section 1.3) implies that MRn(ZΓ) is a free Z-module whose rank r is equal to the
number of words yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk

, where (c1, c2, . . . , ck) is a composition
of n and each γi ∈ {t, s}. Then any generating family of MRn(ZΓ) with r elements
is a basis thereof. We conclude that the family of elements x̃C , where C is a signed
composition of n, is a basis of MRn(ZΓ). �

Bonnafé and Hohlweg call the submodule spanned by the elements x̃C the ‘gener-
alized descent algebra’ and observe that it coincides with the Mantaci-Reutenauer



1512 PIERRE BAUMANN AND CHRISTOPHE HOHLWEG

algebra MRn(ZΓ) (see §3.1 in [10]). Assertion (ii) of Proposition 4.7 is roughly
equivalent to this observation, and indeed our proof follows closely the analysis in
[10].

The associative algebra MR(ZΓ) is freely generated by the elements yn,t and yn,s,
where n ≥ 1. On the other side, we have defined in Section 4.2 the characters ηn(t)
and εn(s). Thus there exists a unique morphism of algebras θ̃ : MR(ZΓ) → Rep(G)
that maps yn,t and yn,s to ηn(t) and εn(s), respectively.

Proposition 4.8. (i) The map θ̃ enjoys all the properties stated in Theo-
rem 4.3 for the map θG.

(ii) For any signed composition C of a positive integer n, θ̃(x̃C) is the character
of Wn induced from the trivial character of WC .

Proof. (i) The graded bialgebra Λ of symmetric functions has a canonical involu-
tion ω, which exchanges the complete symmetric function hn with the elementary
symmetric function en of the same degree (see I, (2.7) in [22]). Now Λ(Irr(G)) is the
tensor product Λ(t)⊗Λ(s) of two copies of Λ, so that idΛ(t)⊗ω(s) is an involutive
automorphism of Λ(Irr(G)). Equation (4.3) shows that the Frobenius characteris-
tic ch maps εn(s) to the element en(s) of Λ(Irr(G)). Therefore the homomorphism
ch ◦ θ̃ maps the two elements yn,t and yn,s to hn(t) and en(s), respectively, while
ch ◦ θG maps these elements to hn(t) and hn(s). Thus the diagram

Rep(G) �
ch �� Λ(Irr(G))

idΛ(t)⊗ω(s)

��

MR(ZΓ)

θG

������������

θ̃ 		����������

Rep(G) �
ch �� Λ(Irr(G))

is commutative. Since ch and idΛ(t)⊗ω(s) are isomorphisms of graded bialgebras,
θ̃ inherits from θG the properties stated in assertion (i) of Theorem 4.3. The proof
of assertions (ii) and (iii) of Theorem 4.3 presented in Section 4.3 can be repeated
with evident adjustments to the case of θ̃; the main difference lies in the proof of
the multiplicativity of θ̃ with respect to the internal product of MRn(ZΓ) and the
ordinary product of R(Wn), where one must use the equalities ηn(t)εn(s) = εn(s)
and εn(s)εn(s) = ηn(t).

(ii) Let u be an indeterminate. Applying θ̃ to formulas (4.9) and (4.10) and
summing over n, we find⎡
⎣∑

n≥0

θ̃(zn)un

⎤
⎦∗
⎡
⎣∑

n≥0

(−1)n θ̃(yn,s)un

⎤
⎦=

⎡
⎣∑

n≥0

(−1)n θ̃(yn,s)un

⎤
⎦∗
⎡
⎣∑

n≥0

θ̃(zn)un

⎤
⎦=1,

∑
n≥0

θ̃(x̃(−n))un =

⎡
⎣∑

n≥0

θ̃(zn)un

⎤
⎦ ∗

⎡
⎣∑

n≥0

θ̃(yn,t)un

⎤
⎦ .
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In Proposition 4.2, we have constructed a homomorphism H from the additive
group R(G) into

(
Rep(G)[[u]]

)× such that

H(t) =
∑
n≥0

ηn(t)un =
∑
n≥0

θ̃(yn,t)un,

H(−s) =
∑
n≥0

(−1)nεn(s)un =
∑
n≥0

(−1)nθ̃(yn,s)un.

Then ∑
n≥0

θ̃(zn)un =

⎡
⎣∑

n≥0

(−1)nθ̃(yn,s)un

⎤
⎦−1

= H(−s)−1 = H(s),

which in turn implies∑
n≥0

θ̃(x̃(−n))un = H(s) ∗ H(t) = H(t + s) =
∑
n≥0

ηn(t + s)un.

It follows that θ̃(x̃(−n)) = ηn(t + s). Now the character ηn(t + s) of G � Sn is
induced from the trivial character of Sn, because t + s is the regular character of
G. Therefore θ̃(x̃(−n)) is the character of Wn induced from the trivial character of
W−n.

On the other side, θ̃(x̃(n)) = θ̃(yn,t) = ηn(t) is the trivial character of Wn.
Using the transitivity of induction, we thus find that for any signed composition
C = (c1, c2, . . . , ck) of n,

θ̃(x̃C) = θ̃
(
x̃(c1)

)
∗ θ̃
(
x̃(c2)

)
∗ · · · ∗ θ̃

(
x̃(ck)

)
= IndG�Sn

G�SC+

(
Ind

W|c1|
Wc1

1 ⊗ Ind
W|c2|
Wc2

1 ⊗ · · · ⊗ Ind
W|ck|
Wck

1
)

= IndWn

WC
1,

taking into account the identifications

G � Sn = Wn, G � SC+ ∼= W|c1| × W|c2| × · · · × W|ck|

and
Wc1 × Wc2 × · · · × Wck

∼= WC .

This concludes the proof. �

Assertion (ii) of this proposition says that our homomorphism θ̃ is equal to the
homomorphism defined by Bonnafé and Hohlweg in §3.1 of [10]. It then follows
from the results of these authors that θ̃ extends Solomon’s original homomorphism.

On the contrary, θG does not extend Solomon’s original homomorphism. In-
deed we observe that the parabolic subgroups of the Coxeter system Wn are the
subgroups WC , where the signed composition C = (c1, c2, . . . , ck) has all its parts
negative with the possible exception of c1. Therefore the original Solomon algebra
of Wn is the submodule Σ̃ of the group ring ZWn spanned by the elements x̃C for
such signed compositions. Taking n = 2 and using relations (4.8)–(4.11), we check
that the element y2,s = x̃(−1,−1) − x̃(1,−1) + x̃(2) − x̃(−2) belongs to Σ̃. Its image
under ch ◦ θG, namely ch(η2(s)) = h2(s), is different from its image under ch ◦ θ̃,
namely ω(h2(s)) = e2(s); it follows that θG

∣∣
Σ̃

does not coincide with Solomon’s
original homomorphism θ̃

∣∣
Σ̃
.
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On the other side, our map θG shares with Solomon’s original homomorphism
a property that Bonnafé and Hohlweg’s extension θ̃ does not have, namely the
symmetry property of Theorem 4.6. Again a counterexample can already be found
for n = 2: one can indeed check that the value of the character θ̃(x̃(−2)) on the
element x̃(1,1) is 6, while the value of θ̃(x̃(1,1)) on x̃(−2) is 4.

5. Coloured combinatorial Hopf algebras

In the previous sections, we have presented our main constructions and the appli-
cations which motivated them. In the case where G is the group with one element,
the diagram (4.6) is the usual diagram which relates the different kinds of symmet-
ric functions: ordinary, non-commutative, quasisymmetric, free quasisymmetric.
This diagram can be enriched with other bialgebras: the plactic and the coplactic
bialgebras [30], the Loday-Ronco bialgebra [20], the peak algebra [34], etc.

Here we define analogues of some of the plactic and the coplactic bialgebras,
and we insert them in (4.6). The analogue of the coplactic bialgebra presents two
interests: first, the Solomon homomorphism θG can be extended to it in a natural
way; second it is related to a construction already present in the literature, which
we call the Robinson-Schensted-Okada correspondence.

5.1. Categorical framework. We start by quickly setting up a clean framework
adapted to our goal. We define a category E as follows. The objects of E are pairs
(B, ?∗), where B is a finite set and ?∗ : b 
→ b∗ is an involutive map from B to B.
We generally omit the involution in the notation, writing just B. Given two objects
B and C of E , a homomorphism from B to C is the data of a bijection ϕ from a
subset B′ of B onto a subset C ′ of C.

Any finite group Γ can be considered as an object of E , where the involution ?∗ is
the map γ 
→ γ−1. The set Irr(H) of irreducible characters of a finite group H can
also be considered as an object of E , with the complex conjugation as involution ?∗.

An object (B, ?∗) of E is viewed as the basis of the free K-module KB. We
define a pairing � on KB by setting �(b, b′) equal to 1 if b′ = b∗ and equal to
0 otherwise; this pairing is perfect and symmetric, for b 
→ b∗ is involutive. A
morphism f : B → C induces a linear map Kf : KB → KC as follows: if f is
defined by the bijection ϕ : B′ → C ′, then Kf maps an element b of the basis B to
ϕ(b) if b ∈ B′ and to 0 otherwise.

Let B be an object of E . We can trace the constructions of Section 1 at the level
of bases. In more detail, the group Sn acts by permutation on Bn. We denote
the cartesian product of Bn with Sn by B � Sn and endow it with the following
two-sided action of Sn:

π · (b1, b2, . . . , bn; σ) = (bπ−1(1), bπ−1(2), . . . , bπ−1(n); πσ),

(b1, b2, . . . , bn; σ) · π = (b1, b2, . . . , bn; σπ),

where (b1, b2, . . . , bn; σ) ∈ B �Sn and π ∈ Sn. We can view B �Sn as a basis of the
free K-module Fn(KB) by identifying the element (b1, b2, . . . , bn; σ) of B �Sn with
the element [(b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ

]
of Fn(KB).

We can then continue the construction and obtain from B the free quasisym-
metric graded bialgebra F (KB) and the Novelli-Thibon algebra NT(KB). Now the
construction of the Mantaci-Reutenauer bialgebra additionally requires the data of
a coalgebra structure. But given a finite set B, one can always define a structure
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of a coalgebra on KB by requiring that the elements of B are group-like; in other
words, one agrees that the coproduct δ and the counit ε are defined by

δ(b) = b ⊗ b and ε(b) = 1

for any b ∈ B. Endowing KB with this structure, we can construct the Mantaci-
Reutenauer bialgebra MR(KB); to translate into the notation the fact that this
bialgebra depends on the choice of the basis B of KB, we denote it by D(B). By
Proposition 1.3, the associative algebra D(B) is freely generated by the elements
yn,b with n ≥ 1 and b ∈ B. The assignments B � F (KB) and B � D(B) are
covariant functors from the category E to the category of graded bialgebras.

Finally, given an object B of E , the perfect symmetric pairing � on KB can be
extended to a perfect symmetric pairing �tot on F (KB) (see Section 2.2). The
basis B �Sn is dual to itself with respect to �tot; more precisely, the basis element
dual to α = (b1, b2, . . . , bn; σ) is α∗ =

[
σ−1 · (b∗1, b∗2, . . . , b∗n; en)

]
.

5.2. Coloured descent compositions. Let B be an object of E . Since D(B)
is a direct summand of F (KB) by Proposition 2.2, the dual bialgebra D(B)∨ is
canonically isomorphic to the quotient F (KB)/D(B)◦. Our aim is to study the
subbialgebra D(B) and the quotient bialgebra F (KB)/D(B)◦ of F (KB) on the
level of basis in a combinatorial way.

We begin with definitions. A B-composition is a finite sequence

c = ((c1, b1), (c2, b2), . . . , (ck, bk))

of elements of Z>0 × B. The size of c is the integer ‖c‖ = c1 + c2 + · · · + ck.
The dual of c is the B-composition c∗ = ((c1, b

∗
1), (c2, b

∗
2), . . . , (ck, b∗k)). Given two

B-compositions

c = ((c1, b1), (c2, b2), . . . , (ck, bk)) and d = ((d1, b
′
1), (d2, b

′
2), . . . , (dl, b

′
l))

of the same size n, we say that c is a refinement of d, and we write c � d, if there
holds

(c1, c2, . . . , ck) � (d1, d2, . . . , dl),

(b1, . . . , b1︸ ︷︷ ︸
c1 times

, b2, . . . , b2︸ ︷︷ ︸
c2 times

, . . . , bk, . . . , bk︸ ︷︷ ︸
ck times

) = (b′1, . . . , b
′
1︸ ︷︷ ︸

d1 times

, b′2, . . . , b
′
2︸ ︷︷ ︸

d2 times

, . . . , b′k, . . . , b′l︸ ︷︷ ︸
dl times

).

The relation � is a partial order on the set of B-compositions of n.
We associate to each element α ∈ B �Sn two B-compositions D(α) and R(α) of

size n. The ‘descent composition’ D(α) is constructed by the following procedure,
due to Mantaci and Reutenauer [24]. We first write α as(

bσ−1(1), bσ−1(2), . . . , bσ−1(n); σ
)

=
[
σ · (b1, b2, . . . , bn; en)

]
.

Then one decomposes the interval [1, n] into the largest subintervals on which the
map i 
→ bi is constant, and after that, one decomposes each such subinterval
into the largest subsubintervals on which the map i 
→ σ(i) is increasing. Each
subsubinterval yields a pair formed by its length and the value taken by the map
i 
→ bi. Then D(α) is the ordered list of all these pairs. We define the ‘receding
composition’ of α by the equality R(α) = D(α∗)∗. An example illustrates these
definitions. We take a and b in B, n = 7 and α = (a, a, b, a, b, b, a; 1426735) =[
1426735 · (a, a, a, b, a, b, b; e7)

]
; then D(α) = ((2, a), (1, a), (1, b), (1, a), (2, b)) and

R(α) = ((2, a), (1, b), (1, a), (1, b), (1, b), (1, a)).
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For any i ∈ {1, 2, . . . , n − 1}, we denote by si the transposition in Sn that
exchanges i and i + 1. We say that two elements α and α′ of B �Sn are related by
an Atkinson relation, and we write α ∼

A
α′, if there exists an index i such that:

• α′ = α · si;
• writing α = (b1, b2, . . . , bn; σ), the map j 
→ bj is not constant on the interval

[σ(i), σ(i + 1)] or the inequality |σ(i + 1) − σ(i)| > 1 holds.
(In the case where σ(i + 1) < σ(i), the notation [σ(i), σ(i + 1)] means the interval
[σ(i + 1), σ(i)].) The Atkinson relation is clearly symmetric.

The following proposition explains the relation between these combinatorial def-
initions and the maps D(B) ↪→ F (KB) and F (KB) � F (KB)/D(B)◦.

Proposition 5.1. Let B be an object of E and let n be a non-negative integer.
(i) The submodule D(B) ∩ Fn(KB) of Fn(KB) is spanned over K by the

elements ∑
α∈B�Sn

D(α)=c

α,

where c is a B-composition.
(ii) Two elements α and α′ in B � Sn have the same receding composition if

and only if there exists a sequence of elements α1, α2, . . . , αk such that

α = α1 ∼
A

α2 ∼
A
· · · ∼

A
αk = α′.

(iii) The module D(B)◦ ∩ Fn(KB) is spanned over K by the set

{α − α′ | α and α′ in B � Sn with α ∼
A

α′}.

Proof. (i) We observe that for any B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk))
of n,

yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
= x(c1,c2,...,ck) · (b⊗c1

1 ⊗ b⊗c2
2 ⊗ · · · ⊗ b⊗ck

k #en)

(5.1)

=
∑

σ∈Sn

D(σ)�(c1,c2,...,ck)

σ · (b⊗c1
1 ⊗ b⊗c2

2 ⊗ · · · ⊗ b⊗ck

k #en)

=
∑

α∈B�Sn

D(α)�c

α.

Assertion (i) follows easily from (5.1) and from the fact that D(B) ∩ Fn(KB) is
spanned over K by such products yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk

.
(ii) For any two elements α and α′ in B �Sn, the relation α∗ ∼

A
α′∗ is equivalent

to the existence of an index i ∈ {1, 2, . . . , n − 1} such that:
• α′ = si · α;
• writing α =

[
σ · (b1, b2, . . . , bn; en)

]
, the map j 
→ bj is not constant on the

interval [σ−1(i), σ−1(i + 1)] or the inequality |σ−1(i + 1) − σ−1(i)| > 1 holds.
An easy verification then shows that D(α) = D(α′) as soon as α∗ ∼

A
α′∗, and

therefore as soon as α∗ and α′∗ are related by a sequence of Atkinson relations.
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Now let c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be a B-composition of n and set

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1︸ ︷︷ ︸
c1 times

, b2, b2, . . . , b2︸ ︷︷ ︸
c2 times

, . . . , bk, bk, . . . , bk︸ ︷︷ ︸
ck times

).

For each element α in B � Sn with D(α) = c, there is a permutation σ such that
α =

[
σ · (b̃1, b̃2, . . . , b̃n; en)

]
. We now apply successive Atkinson relations to α∗ to

reduce as much as possible the number of inversions of σ, eventually obtaining an
element α∗

0. By the previous paragraph, the descent composition is preserved at
each step of the process, so that D(α0) = c.

We now observe that α0 depends only on c and not on the element α from
which we started or on the choices made during the reduction process. Indeed let
us write α0 =

[
σ0 · (b̃1, b̃2, . . . , b̃n; en)

]
. The equality D(α0) = c holds, and there

is no permutation σ′ ∈ Sn with a smaller number of inversions than σ0 such that
α∗ ∼

A
α′∗, where α′ =

[
σ′ · (b̃1, b̃2, . . . , b̃n; en)

]
. Setting tj = c1 + c2 + · · · + cj for

each j ∈ {1, 2, . . . , k − 1}, these constraints in turn imply the equivalence of the
three following assertions for each i ∈ [1, n − 1]:

• there exists an index j ∈ {1, 2, . . . , k − 1} such that i = tj and bj = bj+1;
• σ(i) > σ(i + 1);
• σ(i) = σ(i + 1) + 1.

The uniqueness of σ0, hence of α0, can easily be derived from this.
Summarizing, we have seen that for any two elements α and α′ in B � Sn:
• If α∗ and α′∗ are related by a sequence of Atkinson relations, then D(α) =

D(α′).
• If D(α) = D(α′), then starting from α∗ as well as α′∗, one may reach the same

element α∗
0 by applying a sequence of Atkinson relations.

Therefore α∗ and α′∗ are related by a sequence of Atkinson relations if and only if
D(α) = D(α′). This fact is equivalent to assertion (ii).

(iii) Let x =
∑

α∈B�Sn
aα α be an element of Fn(KB), where aα ∈ K. Then for

any B-composition c of size n,

�tot

⎛
⎜⎜⎜⎝x,

∑
α∈B�Sn

D(α)=c

α

⎞
⎟⎟⎟⎠ =

∑
α∈B�Sn

D(α)=c

aα∗ =
∑

α∈B�Sn

R(α)=c∗

aα.

The element x is orthogonal to D(B) if and only if this quantity vanishes for all c.
Assertion (iii) is then a direct consequence of assertion (ii). �

The result stated in Proposition 5.1 (ii) above was first obtained by Atkinson
(see [4], Corollary on p. 352) for the case where B has only one element.

We already mentioned in Section 5.1 that the assignments B � F (KB) and
B � D(B) are covariant functors from the category E to the category of graded
bialgebras. By Proposition 5.1 (iii), the biideal D(B)◦ of F (KB) is functorial in
B, which implies that B � F (KB)/D(B)◦ is a covariant functor from E to the
category of graded bialgebras. One may also observe that B � D(B)∨ is a con-
travariant functor between the same categories, and that the two graded bialgebras
F (KB)/D(B)◦ and D(B)∨ are isomorphic.
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5.3. Tableaux and the Robinson-Schensted-Knuth correspondence. In this
section, we recall some classical stuff to fix the notation needed to present the
Robinson-Schensted-Okada correspondence.

Let A be a totally ordered set (an alphabet). An A -weight is a finite multiset of
A , that is, a map µ : A → N with finite support. Thus for instance a Z>0-weight
is an infinite sequence µ = (µ1, µ2, . . .) of non-negative integers, all of whose terms
but a finite number vanish. The size of a weight µ is the sum of its values; we
denote it by |µ|. The weight of a word w = a1a2 · · · an with letters in A is the
A -weight µ such that any letter a ∈ A occurs µ(a) times in w; we denote it by
wt(w).

A tableau T with entries in A is a Young diagram whose boxes are labelled by
letters in A in such a way that the rows are weakly increasing from left to right
and the columns are strictly increasing from top to bottom. The shape of T is the
partition λ = (λ1, λ2, . . .) such that T has λ1 boxes in the first row, λ2 boxes in the
second row, and so on; we denote it by sh(T ). The weight of T is the A -weight µ
such that any letter a ∈ A occurs µ(a) times as the label in a box of T ; we denote
it by wt(T ). A tableau T filled with positive integers is said to be standard if its
weight is

(1, 1, . . . , 1︸ ︷︷ ︸
| sh(T )| times

, 0, 0, . . .).

To a word w = a1a2 · · · an with letters in A , the Robinson-Schensted corre-
spondence associates a pair (P, Q) of tableaux with the same shape, such that
wt(P ) = wt(w) and Q is standard. The insertion tableau P is constructed induc-
tively using the well-known ‘bump’ procedure; the label in a box of the recording
tableau Q indicates the number of the step at which this box appears during the
making of P .

One says that two words w = a1a2 · · · an and w′ = a′
1a

′
2 · · · a′

n with letters in A
and of the same length are related by a Knuth relation, and one writes w ∼

K
w′,

if one can find two decompositions w = xuy and w′ = xu′y of w and w′ as the
concatenation of subwords in such a way that one of the two following conditions
hold:

(a) There exist three letters a ≤ b < c in A such that {u, u′} = {acb, cab}.
(b) There exist three letters a < b ≤ c in A such that {u, u′} = {bac, bca}.

The following results can be found in [19].

Proposition 5.2. (i) Let (P, Q) be the image of the word w = a1a2 · · · an

under the Robinson-Schensted correspondence. Then ai > ai+1 if and only
if the box of Q that contains the label i + 1 appears south or south-west to
the box that contains the label i.

(ii) Two words w and w′ with letters in A have the same insertion tableau P
under the Robinson-Schensted correspondence if and only if there exists a
sequence of words w1, w2, . . . , wk such that

w = w1 ∼
K

w2 ∼
K

· · · ∼
K

wk = w′.

Knuth extended the scope of the Robinson-Schensted correspondence to a slightly
more general situation, which we recall now. Let B be a second alphabet. Given
an A -weight µ and a B-weight ν, we denote by Mµ,ν the set of matrices M =
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(mab)(a,b)∈A ×B with non-negative integral entries and with row-sum µ and column-
sum ν, that is,

µa =
∑
b∈B

mab for all a and νb =
∑
a∈A

mab for all b.

(This condition tacitly implies that all but a finite number of entries of M vanish
and that µ and ν have the same size. The notation Mc,d used in Section 3.2 is a
particular case of this one.)

We order the product B × A lexicographically. A matrix M ∈ Mµ,ν can be
seen as a finite multiset of B × A , whose elements can be listed in increasing
order: ((b1, a1), (b2, a2), . . . , (bn, an)). In this way, M determines two words wA =
a1a2 · · · an and wB = b1b2 · · · bn, with the obvious property that µ = wt(wA ) and
ν = wt(wB). The Robinson-Schensted correspondence applied to wA yields a pair
of tableaux (P, Q̃). Substituting in each box of Q̃ the label j by the letter bj , we
obtain a tableau Q with entries in B. With these notations, Knuth showed in [19]
that the map T 
→ (P, Q) is a bijection from Mµ,ν onto⎧⎪⎨

⎪⎩(P, Q)

∣∣∣∣∣
P and Q tableaux with entries in A and B,

respectively, such that sh(P ) = sh(Q),

wt(P ) = µ and wt(Q) = ν

⎫⎪⎬
⎪⎭ .

Furthermore the transposition of M corresponds to the exchange of P and Q. It is
usual to call this map the RSK correspondence.

5.4. The Robinson-Schensted-Okada correspondence. Let B be an object of
E . We define a B-partition as a family λ = (λb)b∈B of partitions. The size of λ is
the integer ‖λ‖ =

∑
b∈B |λb|. The dual of λ is the B-partition λ∗ =

(
b 
→ λb∗

)
.

Now let A be an alphabet. We define a B-tableau with entries in A as a family
T = (Tb)b∈B of tableaux whose boxes are filled by elements of A . The shape of T
is the B-partition sh(T) = (sh(Tb))b∈B . A B-tableau T with entries in Z>0 is said
to be standard if ∑

b∈B

wt(Tb) = (1, 1, . . . , 1︸ ︷︷ ︸
‖ sh(T)‖ times

, 0, 0, . . .).

In other words, all the labels 1, 2, . . . , n are used once and only once to fill the
boxes of the tableaux Tb, where n = ‖ sh(T)‖ is the total number of boxes in T.

Now let w = x1x2 · · ·xn be a word whose letters xi = (ai, bi) belong to A × B.

For each b ∈ B, we form a matrix M (b) =
(
m

(b)
aj

)
(a,j)∈A ×[1,n]

by setting m
(b)
aj equal

to 1 if (aj , bj) = (a, b) and equal to 0 otherwise. From the matrix M (b), the RSK
correspondence produces a pair of tableaux (Pb, Qb) with the same shape. The
family P = (Pb)b∈B is a B-tableau with entries in A such that

∑
b∈B wt(Pb) is the

weight of the word a1a2 · · · an; the family Q = (Qb)b∈B is a standard B-tableau;
the tableaux P and Q have the same shape. We say that P and Q are the insertion
and recording tableaux of w, respectively, and we call the map w 
→ (P,Q) the
RSO correspondence (for Robinson-Schensted-Okada).

One can adapt the Knuth relations to the RSO correspondence in the following
way. We say that two words w = x1x2 · · ·xn and w′ = x′

1x
′
2 · · ·x′

n of the same
length with letters xi = (ai, bi) and x′

i = (a′
i, b

′
i) are related by a Knuth relation,
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and we write w ∼
K

w′, if there exists an index i such that one of the following two

conditions holds:
(c) bi �= bi+1, xi = x′

i+1, xi+1 = x′
i, and xj = x′

j for all j �∈ {i, i + 1}.
(d) bi = bi+1 = bi+2 = b′i = b′i+1 = b′i+2, the two words u = aiai+1ai+2 and

u′ = a′
ia

′
i+1a

′
i+2 are as in conditions (a) or (b), and xj = x′

j for all j �∈ {i, i+1, i+2}.
Then we have the following analogue of Knuth’s theorem.

Proposition 5.3. Two words w and w′ with letters in A × B have the same
insertion tableau P under the RSO correspondence if and only if there exists a
sequence of words w1, w2, . . . , wk such that

w = w1 ∼
K

w2 ∼
K

· · · ∼
K

wk = w′.

Proof. Let w = x1x2 · · ·xn be a word with the letters xi = (ai, bi) and let P =
(Pb)b∈B be the insertion tableau of w. For each b ∈ B, we form the word w(b) =
aj1aj2 · · · ajk

, where (j1, j2, . . . , jk) is the list in increasing order of all indices j for
which bj = b. By construction, Pb is the insertion tableau in the RSK image of the
matrix M (b), so Pb is the insertion tableau of the word w(b).

Now let w′ be a word with the same length as w. We produce the words w′(b)

for b ∈ B in the same way as we formed w(b) from w. The words w and w′ are
related by a sequence of Knuth relations of type (c) or (d) if and only if for each
b ∈ B, the words w(b) and w′(b) are related by a sequence of Knuth relations as in
Section 5.3. On the other hand, w and w′ have the same insertion tableau P if and
only if for each b ∈ B, the words w(b) and w′(b) have the same insertion tableau.
The desired result now follows directly from Proposition 5.2 (ii). �

We now explain why we have added Okada’s name after those of Robinson and
Schensted. Any element α ∈ B � Sn can be written uniquely in the form α =[
σ · (b1, b2, . . . , bn; en)

]
, where σ ∈ Sn and (b1, b2, . . . , bn) ∈ Bn. It thus determines

the word
w(α) = (σ(1), b1)(σ(2), b2) · · · (σ(n), bn)

with letters in [1, n] × B. We denote the RSO correspondent of this word w(α)
by (P(α),Q(α)). The element α can be recovered from the data of w(α); it is
therefore characterized by (P(α),Q(α)). Finally, we define the dual of a B-tableau
T = (Tb)b∈B as the B-tableau T∗ =

(
b 
→ Tb∗

)
, where b 
→ b∗ is the involution on

B. The following result is in substance a theorem of Okada [28].

Proposition 5.4. The map α 
→ (P(α),Q(α)) is a bijection from B � Sn onto
the set of pairs of standard B-tableaux with the same shape. For any element α of
B � Sn, there holds Q(α∗) = P(α)∗.

As an example, we consider the same situation as in Section 5.2, that is, we take
a, b in B, n = 7 and α =

[
1426735 · (a, a, a, b, a, b, b; e7)

]
. Then the matrices M (a)

and M (b) are

M (a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and M (b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and we find

Pa = 1 2 7
4

, Qa = 1 2 5
3

, Pb = 3 5
6

, Qb = 4 7
6

.

We will write α ∼
K

α′ whenever the words w(α) and w(α′) are related by a Knuth

relation. Writing α = (b1, b2, . . . , bn; σ), one easily checks that α ∼
K

α′ if and only if

α′ = α · si for an index i such that at least one of the following three conditions is
satisfied:

• bσ(i) �= bσ(i+1);
• σ(i − 1) ∈ [σ(i), σ(i + 1)] and bσ(i−1) = bσ(i) = bσ(i+1);
• σ(i + 2) ∈ [σ(i), σ(i + 1)] and bσ(i+2) = bσ(i) = bσ(i+1).

(Here again the notation [σ(i), σ(i + 1)] means the interval [σ(i + 1), σ(i)] if ever
σ(i + 1) < σ(i).) It then follows from Proposition 5.3 that the insertion tableaux
P(α) and P(α′) of two elements α and α′ in B � Sn are equal if and only if there
exists a sequence α1, α2, . . . , αk such that

α = α1 ∼
K

α2 ∼
K

· · · ∼
K

αk = α′.

5.5. The plactic and the coplactic bialgebras. In this section, we fix an object
B of the category E and we use the Robinson-Schensted-Okada correspondence to
define a subbialgebra and a quotient bialgebra of F (KB), respectively called the
coplactic and the plactic bialgebra.

Given a standard B-tableau T = (Tb)b∈B , we define an element tT of F (KB)
by setting

tT =
∑

α∈B�Sn

Q(α)=T

α,

where n = ‖ sh(T)‖ is the total number of boxes in T. Clearly, the elements tT
are linearly independent, and the K-submodule Q(B) that they span is a direct
summand of F (KB). This submodule depends on B and not only on KB. The
following result is the analogue of Proposition 5.1 (iii).

Proposition 5.5. Let B be an object of E and let n be a non-negative integer.
(i) The module Q(B)◦ ∩ Fn(KB) is spanned over K by the set

{α − α′ | α and α′ in B � Sn with α ∼
K

α′}.

(ii) The submodules Q(B) and Q(B)◦ are respectively a graded subbialgebra
and a graded biideal of the graded bialgebra (F (KB), ∗, ∆).

(iii) The submodule Q(B) ∩ Q(B)◦ is spanned over K by the set

{tT − tT′ | T and T′ standard B-tableaux with sh(T) = sh(T′)}.

(iv) The submodule Q(B) + Q(B)◦ is a direct summand of F (KB).

Proof. Let x =
∑

α∈B�Sn
aαα be an element of Fn(KB), where each aα ∈ K. Then

for any standard B-tableau T,

�tot(x, tT) =
∑

α∈B�Sn

Q(α∗)=T

aα =
∑

α∈B�Sn

P(α)=T∗

aα.
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The element x is orthogonal to Q(B) if and only if these quantities vanish for
all T. Assertion (i) now follows from Proposition 5.3, or more precisely, from its
consequence explained at the end of Section 5.4.

Now let α = (b1, b2, . . . , bn; σ) and α′ = (b′1, b′2, . . . , b′n; σ′) be two elements
in B � Sn that are related by a Knuth relation. Then for each element α′′ =
(b′′1 , b′′2 , . . . , b′′n′ ; σ′′) in B � Sn′ and each permutation ρ ∈ X(n,n′), the two elements

ρ·(b1, b2, . . . , bn, b′′1 , b′′2 , . . . , b′′n′ ; σ×σ′′) and ρ·(b′1, b′2, . . . , b′n, b′′1 , b′′2 , . . . , b′′n′ ; σ′×σ′′)

of B �Sn+n′ are related by a Knuth relation, because ρ is increasing on the interval
[1, n]. Therefore (α−α′) ∗α′′, which is the sum over all ρ ∈ Xn,n′ of the quantities

ρ · (b1, b2, . . . , bn, b′′1 , b′′2 , . . . , b′′n′ ; σ × σ′′) − ρ · (b′1, b′2, . . . , b′n, b′′1 , b′′2 , . . . , b′′n′ ; σ′ × σ′′),

belongs to Q(B)◦. Since Q(B)◦ is spanned by differences such as α − α′, we
conclude that Q(B)◦ is a right ideal of F (KB). A similar reasoning shows that
Q(B)◦ is a left ideal.

Again consider an element α = (b1, b2, . . . , bn; σ) in B �Sn. Given an integer n′ ∈
[0, n], we denote the standardizations of the words σ−1(1) σ−1(2) · · · σ−1(n′) and
σ−1(n′+1) σ−1(n′+2) · · · σ−1(n) by πn′ ∈ Sn′ and π′

n−n′ ∈ Sn−n′ , respectively. A
straightforward but tedious verification shows that whenever α undergoes a Knuth
relation, either both of

(b1, b2, . . . , bn′ ; πn′) and (bn′+1, bn′+2, . . . , bn; π′
n−n′)

are left unchanged, or one of them remains the same and the other undergoes a
Knuth relation. This fact implies that the class modulo Q(B)◦⊗F (KB)+F (KB)⊗
Q(B)◦ of

∆(α) =
n∑

n′=0

(b1, b2, . . . , bn′ ; πn′) ⊗ (bn′+1, bn′+2, . . . , bn; π′
n−n′)

does not change when α undergoes a Knuth relation. We conclude that

(5.2) ∆
(
Q(B)◦

)
⊆ Q(B)◦ ⊗ F (KB) + F (KB) ⊗ Q(B)◦.

Then observing that all homogeneous elements of Q(B)◦ have positive degree, we
see that the counit of F (KB) vanishes on Q(B)◦. Jointly with equation (5.2), this
means that Q(B)◦ is a coideal of F (KB).

We have therefore proved that Q(B)◦ is a graded biideal of F (KB). Since
Q(B) is a direct summand of F (KB), this is equivalent to the fact that Q(B) is a
subbialgebra of F (KB), which concludes the proof of assertion (ii).

Proposition 5.4 implies that for each positive integer n and each pair (T,T′) of
standard B-tableaux with n boxes,

�tot(tT, tT′) =
∣∣{α ∈ B � Sn | Q(α) = T, Q(α∗) = T′}

∣∣
=
∣∣{α ∈ B � Sn | Q(α) = T, P(α) = T′∗}

∣∣
=

{
1 if T and T′∗ have the same shape,
0 otherwise.

Assertion (iii) follows easily from this fact.
Given an finite index set I, we denote by MatI(K) the set of matrices with

lines and columns indexed by I and with entries in K. The subspace Matr
I(K)
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of matrices (mij)(i,j)∈I2 such that all row sums
∑

j∈I mij are equal is a direct
summand of MatI(K).

For each B-partition λ = (λb)b∈B, let Tλ be the set of all standard B-tableaux
of shape λ. Let n be a positive integer and let PartB(n) be the set of B-partitions
of size n. Using the RSO correspondence, we define a linear bijection between
Fn(KB) and

∏
λ∈PartB(n) MatTλ

(K) as follows: to an element
∑

α∈B�Sn
aαα in

Fn(KB) corresponds the family of matrices (Mλ)λ∈PartB(n) such that for each
α ∈ B � Sn, the coefficient aα is equal to the entry in Mλ with row index P(α)
and column index Q(α), where λ = sh(P(α)). One checks without much diffi-
culty that

(
Q(B) + Q(B)◦

)
∩ Fn(KB) is mapped by this bijection to the product∏

λ∈PartB(n) Matr
Tλ

(K). Assertion (iv) follows. �

The subbialgebra Q(B) is called the coplactic bialgebra. We denote the quotient
F (KB)/Q(B)◦ by P(B) and we name it the plactic bialgebra. Both assignments
B � Q(B) and B � P(B) are covariant functors from E to the category of graded
bialgebras, and moreover the graded bialgebras P(B) and Q(B)∨ are isomorphic
for each B.

Remark 5.6. It turns out that Q(B) is neither a left nor a right internal D(B)-
submodule of F (KB). Indeed there is the following counterexample in degree 4.
The set B does not play any role here; we take it reduced to one element and
abbreviate D(B) and Q(B) to D and Q, respectively. We consider the standard
tableau T = 1 3

2 4
and the elements tT = 3142 + 2143 and

y = x(1,2,1) − x(3,1) − x(1,3) + x(4) = 3142 + 2143 + 4132 + 4231 + 3241.

Then tT belongs to Q and y belongs to D . A direct computation yields

y · tT = 4321 + 4231 + 1324 + 1234 + 3421 + 3412 + 4312 + 1423 + 2413 + 2314.

We observe that the permutation 3421 appears with a positive coefficient in y ·
tT , which is not the case of the permutation 1432, although they have the same
recording tableau. Therefore y · tT does not belong to Q. One checks similarly that
tT · y does not belong to Q.

5.6. A homomorphism onto a bialgebra of coloured symmetric functions.
Our aim now is to extend the work of Poirier and Reutenauer [30] to the present
framework. We compare the coplactic bialgebra Q(B) and the plactic bialge-
bra P(B) with the Mantaci-Reutenauer algebra D(B) and its dual D(B)∨ ∼=
F (KB)/D(B)◦, and we insert them in a commutative diagram similar to (4.6).

We need some preparation, and to begin with, we define the descent composition
D(T) of a standard B-tableau T = (Tb)b∈B in the following way. Let n be the total
number of boxes in T and let β : {1, 2, . . . , n} → B be the map which sends a label
i to the element b such that i appears in a box of Tb. We decompose the interval
[1, n] into the largest subintervals on which the map β takes a constant value; in
turn we decompose each subinterval into the largest possible subsubintervals, so
that for any two numbers i and j located in the same subsubinterval, i < j if and
only if i is located west or south-west to j. For each subsubinterval, we form the
pair consisting of its length c and the value b taken on it by the map β. The ordered
list of all these pairs is the B-composition D(T). For instance, with B = {a, b},
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the descent composition of the B-tableau T given by

Ta = 1 2 5
3

and Tb = 4 7
6

is D(T) = ((2, a), (1, a), (1, b), (1, a), (2, b)).

Lemma 5.7. (i) The descent composition of an element α ∈ B �Sn coincides
with the descent composition of its recording tableau Q(α).

(ii) Let λ = (λb)b∈B be a B-partition and c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be
a B-composition, both of the same size. For each b ∈ B, we define a Z>0-
weight µ(b) = (µ(b)

1 , µ
(b)
2 , . . . , µ

(b)
k , 0, 0, . . .) by setting µ

(b)
j = cj if bj = b and

µ
(b)
j = 0 otherwise. Then the two sets{

T

∣∣∣∣∣ T standard B-tableau with

sh(T) = λ and D(T) � c

}

and {
U

∣∣∣∣∣ U = (Ub)b∈B B-tableau with entries in Z>0

such that sh(U) = λ and ∀b, wt(Ub) = µ(b)

}

are equipotent.

Proof. Assertion (i) is a direct consequence of Proposition 5.2 (i). Let us prove
assertion (ii). We set ti = c1 + c2 + · · · + ci; we denote the first set by X and the
second set by Y . Our aim is to construct mutually inverse bijections from X onto
Y and from Y onto X.

First let T = (Tb)b∈B be an element of X. For each b, we construct a tableau
Ub by substituting in each box of Tb the label j it contains by the index i such that
j ∈ [ti−1 +1, ti]. Since D(T) � c, each index i appears ci times in Ubi

and does not
appear in the other tableaux Ub. Therefore each tableau Ub has µ(b) for weight. It
follows that the B-tableau U = (Ub)b∈B , which has visibly the same shape as T,
namely λ, belongs to Y .

In the other direction, let U = (Ub)b∈B be an element of Y . By definition, any
label i ∈ {1, 2, . . . , k} appears ci times in Ubi

. We replace these entries i in the
boxes of Ubi

by the numbers ti−1 + 1, ti−1 + 2, . . . , ti, proceeding in increasing
order whilst going south-west to north-east. These substitutions transform the B-
tableau U in a standard B-tableau T. By construction, T has the same shape as
U, namely λ, and satisfies D(T) � c; it thus belongs to X.

Routine verifications show that these correspondences are inverse bijections,
which entails assertion (ii). �

Corollary 5.8. The inclusion D(B) ⊆ Q(B) holds.

Proof. By Proposition 5.1 (i), the module D(B) is spanned by elements of the form∑
α∈B�Sn

D(α)=c

α,
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where n is a positive integer and c is a B-composition of n. By Lemma 5.7 (i), such
a sum may be rewritten as

(5.3)
∑

α∈B�Sn

D(α)=c

α =
∑

T standard B-tableau
D(T)=c

∑
α∈B�Sn

Q(α)=T

α =
∑

T standard B-tableau
D(T)=c

tT.

It therefore belongs to Q(B). The corollary follows. �

Slightly changing the notation used in Section 4.2, we now use the symbol Λ
to denote the algebra of symmetric functions with coefficients in K. It is indeed
a bialgebra (see I, 5, Ex. 25 in [22]). We keep the notation hn and sλ to denote
the complete symmetric functions and the Schur functions, where n is a positive
integer and λ is a partition. We consider a family (Λ(b))b∈B of copies of Λ: given
b ∈ B, we denote by P (b) the image in Λ(b) of an element P ∈ Λ. We carry out
the tensor product Λ(B) =

⊗
b∈B Λ(b). Given a B-partition λ = (λb)b∈B, we set

sλ =
∏

b∈B sλb
(b); these elements sλ form a basis of the K-module Λ(B). The

pairing 〈?, ?〉 on Λ(B) defined on this basis by

〈sλ, sλ′〉 =

{
1 if λ′ = λ∗,
0 otherwise,

is then a perfect and symmetric pairing.
Let ΘB : Q(B) → Λ(B) be the K-linear map such that ΘB(tT) = ssh(T), for

each standard B-tableau T. The following lemma will help us to understand the
behaviour of ΘB on the subspace D(B) of Q(B).

Lemma 5.9. For any B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk)), there holds

ΘB(yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
) = hc1(b1)hc2(b2) · · ·hck

(bk).

Proof. It is known (see I, (6.4) in [22] for a proof) that in the ring Λ of symmetric
functions,

(5.4) hµ1hµ2 · · · =
∑

λ partition

∣∣∣∣∣
{

U

∣∣∣∣∣ U tableau with entries in Z>0

such that sh(U) = λ and wt(U) = µ

}∣∣∣∣∣ sλ

for any Z>0-weight µ = (µ1, µ2, . . .).
We fix a B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk)) as in the statement of

the lemma, of size say n, and we construct a family (µ(b))b∈B of Z>0-weights as
in Lemma 5.7 (ii). Regrouping the factors in the product hc1(b1)hc2(b2) · · ·hck

(bk)
that correspond to the different indices b and applying formula (5.4), we find

hc1(b1)hc2(b2) · · ·hck
(bk)

=
∑

λ B-partition

∣∣∣∣∣
{

U

∣∣∣∣∣ U = (Ub)b∈B B-tableau with entries in Z>0

such that sh(U) = λ and ∀b, wt(Ub) = µ(b)

}∣∣∣∣∣ sλ.

On the other hand, equation (5.1) and Lemma 5.7 (i) imply that

yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
=

∑
α∈B�Sn

D(α)�c

α =
∑

T standard B-tableau
D(T)�c

tT,
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so that

ΘB(yc1,b1∗yc2,b2∗· · ·∗yck,bk
) =

∑
λ B-partition

∣∣∣∣∣
{

T

∣∣∣∣∣ T standard B-tableau with

sh(T) = λ and D(T) � c

}∣∣∣∣∣ sλ.

The desired result now follows from Lemma 5.7 (ii). �

We can now state and prove the main properties of ΘB .

Theorem 5.10. The map ΘB : Q(B) → Λ(B) is a surjective morphism of graded
bialgebras, with kernel Q(B) ∩ Q(B)◦. It is compatible with the pairings �tot on
Q(B) and 〈?, ?〉 on Λ(B), in the sense that

�tot = 〈ΘB(?), ΘB(?)〉.

The restriction of ΘB to D(B) is the unique algebra homomorphism that maps yn,b

to hn(b), where n is a positive integer and b ∈ B; this restriction is also surjective,
with kernel D(B) ∩ D(B)◦.

Proof. Lemma 5.9 implies that the restriction of ΘB to D(B) is a morphism of
graded algebras, for the associative algebra D(B) is generated by the elements
yn,b, and that this restriction is surjective, for the algebra Λ(B) is generated by
the elements hn(b). The coproducts of D(B) and Λ(B) being characterized by the
equations

∆(yn,b) =
n∑

n′=0

yn′,b ⊗ yn−n′,b and ∆(hn(b)) =
n∑

n′=0

hn′(b) ⊗ hn−n′(b)

(with the convention that y0,b and h0(b) are the unit of the algebras D(B) and
Λ(B), respectively), we also see that ΘB

∣∣
D(B)

preserves the coproducts. To sum
up, ΘB

∣∣
D(B)

is a surjective morphism of graded bialgebras.
We saw in the proof of Proposition 5.5 (iii) that for each pair (T,T′) of standard

B-tableaux with the same number of boxes, there holds

�tot(tT, tT′) =

{
1 if sh(T) = sh(T′)∗,
0 otherwise.

This implies that �tot(tT, tT′) = 〈ssh(T), ssh(T′)〉 = 〈ΘB(tT), ΘB(tT′)〉. Therefore
ΘB is compatible with the pairings �tot and 〈?, ?〉.

This compatibility, the fact that 〈?, ?〉 is a perfect pairing on Λ(B), and the
surjectivity of ΘB imply that the kernel of ΘB is equal to Q(B) ∩ Q(B)◦. The
surjectivity of the restriction ΘB

∣∣
D(B)

implies, by the same reasoning, that ker ΘB

is also equal to Q(B) ∩ D(B)◦. Thus

kerΘB = Q(B) ∩ Q(B)◦ = Q(B) ∩ D(B)◦.

Intersecting with D(B), we deduce that

ker
(
ΘB

∣∣
D(B)

)
= D(B) ∩ Q(B)◦ = D(B) ∩ D(B)◦.

Since ΘB and its restriction to D(B) have the same image, the injective map
D(B)/ ker(ΘB

∣∣
D(B)

) ↪→ Q(B)/ kerΘB is surjective.
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We thus arrive at the following commutative diagram of graded bialgebras:

D(B)
ΘB

∣∣
D(B)

����
























� � ��

����

Q(B)

����

Λ(B) D(B)/(D(B) ∩ Q(B)◦) � ����� Q(B)/(Q(B) ∩ Q(B)◦).

The map ΘB : Q(B) → Λ(B), being the unique extension to Q(B) with kernel
Q(B) ∩ Q(B)◦ of the morphism of bialgebras ΘB

∣∣
D(B)

, is thus a morphism of
bialgebras. This concludes the proof of the theorem. �

We now have a big commutative diagram of graded bialgebras
(5.5)

F (KB) �

�tot
�

��

�� ����
��

��
��

�
F (KB)∨

�� ����
��

��
��

�

Q(B)
� 


�����������

ΘB �� ����
��

��
��

�
P(B) � �� Q(B)∨

�� ����
��

��
��

�

D(B) �� ��
� 


�����������
Λ(B) �

〈?,?〉�

��
� 


�����������
Λ(B)∨ � � ��

� 
 ΘB
∨

�����������
D(B)∨.

Given a standard B-tableau T, let us denote by uT the class modulo Q(B)◦ of
an α ∈ B �Sn such that P(α) = T (this class does not depend on the choice of α).
Using the pairings, one checks rather easily that for any B-partition λ, the map
from Λ(B) to P(B) in diagram (5.5) sends an element sλ to∑

T standard B-tableau
sh(T)=λ

uT.

Finally, one may observe that the sequences (2.2) of homomorphisms, applied
to the case M = F (KB), S = Q(B) and T = �tot

�(Q(B)), show the existence of
a symmetric pairing on Q(B)/(Q(B)∩Q(B)◦), which is perfect thanks to Propo-
sition 5.5 (iv). This pairing is of course equal to 〈?, ?〉 under the isomorphism
Q(B)/(Q(B) ∩ Q(B)◦) ∼= Λ(B) defined by ΘB .

5.7. Consequences for the Solomon descent theory. We now use the con-
struction presented in the previous section to complement the results of Section 4.3.
We take K = Z, we consider a finite abelian group G, we call Γ = Irr(G) its dual,
and we view Γ as an object of E as explained in Section 5.1. The Frobenius char-
acteristic ch is an isomorphism of graded bialgebras from Rep(G) onto Λ(Γ), and
there holds ΘΓ

∣∣
D(Γ)

= ch ◦ θG because both members are homomorphisms of alge-
bras which map yn,γ to hn(γ), where n is a positive integer and γ ∈ Γ. In other
words, the diagram

MR(ZΓ)

θG

����

D(Γ) � � �� Q(Γ)

ΘΓ
����

Rep(G) �
ch

�� Λ(Γ)

is commutative.
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Recall from Section 4.2 the construction of the irreducible characters χλ of the
wreath product G � Sn, indexed by the Γ-partitions λ of n. We may define a
homomorphism of Z-modules θ̃G : Q(Γ) → Rep(G) by requiring that θ̃G(tT) =
χsh(T) for any standard Γ-tableau T. Since this definition is equivalent to the
equation θ̃G = ch−1 ◦ΘΓ, the map θ̃G is a graded morphism of bialgebras which
extends θG and which is compatible with the pairings �tot on Q(Γ) and βtot on
Rep(G).

Let n be a positive integer. We say that a representation of G � Sn is a descent
representation if its character has the form

θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

D(α)=c

α

⎞
⎟⎟⎟⎠

for some Γ-composition c of n. This terminology agrees with that introduced by
Adin, Brenti and Roichman in [1] for the case G = {±1} and extended by Bagno and
Biagioli in [6] to the more general context of complex reflection groups G(r, p, n).
Indeed formula (5.3) and the equality θ̃G(tT) = χsh(T) yield the decomposition into
irreducible characters

θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

D(α)=c

α

⎞
⎟⎟⎟⎠ =

∑
λ Γ-partition

‖λ‖=‖c‖

∣∣∣∣∣
{

T

∣∣∣∣∣ T standard Γ-tableau with

sh(T) = λ and D(T) = c

}∣∣∣∣∣ χλ,

whereas Theorem 10.5 in [6] asserts that the right-hand side above also describes
the characters of Bagno and Biagioli’s descent representations.

To conclude this section, we sketch without proof a construction of descent rep-
resentations in the spirit of Section 4.2. We fix an n-tuple γ̃ = (γ̃1, γ̃2, . . . , γ̃n) of
elements of Γ. There is a unique Γ-composition c = ((c1, γ1), (c2, γ2), . . . , (ck, γk))
of n such that γ1 �= γ2 �= · · · �= γk and

γ̃ = (γ1, . . . , γ1︸ ︷︷ ︸
c1 times

, γ2, . . . , γ2︸ ︷︷ ︸
c2 times

, . . . , γk, . . . , γk︸ ︷︷ ︸
ck times

).

We set c+ = (c1, c2, . . . , ck). A Γ-composition d = ((d1, δ1), (d2, δ2), . . . , (dl, δl))
satisfies

γ̃ = (δ1, . . . , δ1︸ ︷︷ ︸
d1 times

, δ2, . . . , δ2︸ ︷︷ ︸
d2 times

, . . . , δl, . . . , δl︸ ︷︷ ︸
dl times

)

if and only if it refines c.
For each i ∈ [1, k] we pick a CG-module Vi that affords the character γi and we

build the representation ηci
(Vi) of G � Sci

as in Section 4.2. The tensor product
ηc1(V1)⊗ ηc2(V2)⊗ · · · ⊗ ηck

(Vk) is a representation of (G �Sc1)× (G �Sc2)× · · · ×
(G �Sck

) ∼= (G �Sc+). Endowed with the action of G �Sn by right translations, the
space W of all Gn-equivariant maps from G �Sn to ηc1(V1)⊗ηc2(V2)⊗· · ·⊗ηck

(Vk)
becomes a linear representation of G�Sn. Now let d = ((d1, δ1), (d2, δ2), . . . , (dl, δl))
be a Γ-composition finer than c and set d+ = (d1, d2, . . . , dl). Formula (5.1) shows
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that the character

θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

D(α)�d

α

⎞
⎟⎟⎟⎠

is equal to

θG

(
yd1,δ1 ∗ yd2,δ2 ∗ · · · ∗ ydl,δl

)
= IndG�Sn

G�Sd+

(
ηd1(δ1) ⊗ ηd2(δ2) ⊗ · · · ⊗ ηdl

(δl)
)

and is therefore afforded by the subrepresentation

Wd = {f ∈ W | ∀(x, y) ∈ (G � Sd+) × (G � Sn), f(xy) = x · f(y)}
of W . The map d 
→ Wd from the poset of refinements of c to the poset of
subrepresentations of W is increasing, and a short reasoning shows that for any
Γ-compositions e1, e2, . . . , em which refine c, the subrepresentations We1 ∩We2 ∩
· · · ∩ Wem

and We1 + We2 + · · · + Wem
of W have characters

θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

∀i, D(α)�ei

α

⎞
⎟⎟⎟⎠ and θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

∃i, D(α)�ei

α

⎞
⎟⎟⎟⎠ ,

respectively. From there, one easily concludes that the descent character

θG

⎛
⎜⎜⎜⎝ ∑

α∈Γ�Sn

D(α)=d

α

⎞
⎟⎟⎟⎠

is afforded by the representation

Wd

/⎛
⎜⎜⎝ ∑

e Γ-composition
c�e≺d

We

⎞
⎟⎟⎠ .

6. Coloured quasisymmetric functions

Motivated by problems of enumeration of permutations having a given descent
type, Gessel discovered in 1984 a link between Solomon’s descent algebra for the
symmetric group and symmetric functions. More precisely, he introduces in [14] an
algebra QSym of ‘quasisymmetric functions’, which are polynomials in a countable
and totally ordered set of variables that enjoy a certain symmetry property. The
algebra QSym is graded by the degree of polynomials (that is, the homogeneous
components of a quasisymmetric function are quasisymmetric), which we write
QSym =

⊕
n≥0 QSymn. Gessel endows each graded component QSymn with the

structure of a coalgebra and observes that the dual algebra QSym∨
n can be identified

with Solomon’s descent algebra ΣSn
for the symmetric group. Gessel observes

further that QSymn contains the set Λn of homogeneous symmetric polynomials of
degree n. Now Λn is isomorphic to its dual, thanks to the usual inner product on
symmetric polynomials, and it is also isomorphic to the character ring R(Sn) of
the symmetric group Sn, thanks to the characteristic map. The inclusion Λn ↪→
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QSymn then gives by duality a surjection ΣSn
∼= QSym∨

n � Λ∨
n
∼= R(Sn), which

Gessel identifies with the Solomon map θSn
:

ZSn

ΣSn

� �

�����������

θSn �� ����
��

��
��

�
� �� QSym∨

n

�� ����
��

��
��

�
QSymn.

R(Sn) � �� Λ∨
n

∼ Λn

� 


�����������

This picture was completed in 1995 by two independent groups of people. On
the one hand, Malvenuto and Reutenauer [23] endow the space F =

⊕
n≥0 ZSn

with the structure of a graded bialgebra by defining the external product and the
coproduct. They show that Σ =

⊕
n≥0 ΣSn

is a graded subbialgebra of F . They
endow Gessel’s algebra QSym with a second coproduct, different from Gessel’s, and
they observe that this operation turns the algebra QSym into a graded bialgebra,
which they identify with the graded dual of Σ.

On the other hand, Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [13] in-
troduce a graded module Sym =

⊕
n≥0 Symn of ‘non-commutative symmetric func-

tions’. They endow each graded component Symn with an associative product with
unit, which they call the internal product, and they find an explicit isomorphism
between the resulting algebra Symn and Solomon’s descent algebra ΣSn

. Defining
an external product and a coproduct, they also endow Sym with the structure of a
graded bialgebra, in such a way that Sym can be identified as a graded bialgebra
to Σ and to the graded dual of QSym. The pairing between Sym and QSym is
made explicit through the use of bases; it is reminiscent of the inner product on
the bialgebra Λ of symmetric functions. Finally Λ can be recovered as the quotient
of Sym obtained by making commutative the variables.

We want to generalize these works to the multidimensional case. To this aim, we
fix a finite set B endowed with a linear order. As in Section 5.1, we denote the free
K-module with basis B by KB and define a Mantaci-Reutenauer subbialgebra D(B)
in F (KB). In Section 6.1, we present a realization of the algebra F (KB) in terms
of ‘coloured’ free quasisymmetric functions. The dependence of our realization
on the linear order on B may seem cumbersome, but is a necessary step so that
the quotient map F (KB) → F (KB)/D(B)◦ corresponds to make the variables
commutative. In Section 6.2, we show that our construction yields some of Poirier’s
quasisymmetric functions.

We fix for the whole Section 6 an infinite alphabet A , and we endow the product
A × B with the lexicographical order.

6.1. The word realization of F (KB). Let w = x1x2 · · ·xn be a word with letters
xi = (ai, bi) in A ×B. Denoting by σ ∈ Sn the standardization of w, we may form
the element

stdB(w) = σ · (b1, b2, . . . , bn; en) = (bσ−1(1), bσ−1(2), . . . , bσ−1(n); σ)

of B � Sn; we call it the B-standardization of w. (This element stdB(w) is called
‘standard signed permutation’ of w by Poirier; see [29], p. 322.) As an example, let
B = { ,̄ ¯̄} with ¯ < ¯̄, and let A = {u, v, w, . . .} with the usual alphabetical order.
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We denote the letters (u,¯), (u, ¯̄ ), etc. by ū, ¯̄u, etc. Then the standardization of
the word w = ūv̄ū¯̄vw̄ ¯̄uv̄ is stdB(w) =

[
(1426735) · ( ,̄ ,̄ ,̄ ¯̄, ,̄ ¯̄, ;̄ e7)

]
.

We denote the algebra of non-commutative formal power series on the set A ×B
with coefficients in K by K〈〈A × B〉〉; thus elements of K〈〈A × B〉〉 are (possibly
infinite) linear combinations of words on the alphabet A × B. We denote the
algebra of commutative formal power series on the set A ×B with coefficients in K

by K[[A ×B]]; elements of this algebra may be viewed as (possibly infinite) linear
combinations of A ×B-weights. There is an obvious morphism of K-algebras from
K〈〈A × B〉〉 onto K[[A × B]], which maps each word w on the alphabet A × B to
its weight.

We denote by Φ : F (KB) → K〈〈A × B〉〉 the map which sends an element
α ∈ B � Sn to the sum of all words w such that α is the B-standardization of w:

Φ(α) =
∑

w∈〈A ×B〉
stdB(w)=α

w.

Theorem 6.1. (i) The map Φ is an injective morphism of algebras from
F (KB) to K〈〈A × B〉〉.

(ii) Let I be the kernel of the canonical morphism from K〈〈A × B〉〉 onto
K[[A × B]]. Then Φ−1(I) = D(B)◦.

Proof. (i) Let n and n′ be two positive integers and let w and w′ be two words on the
alphabet A ×B of length n and n′, respectively. If we denote by σ ∈ Sn, σ′ ∈ Sn′

and π ∈ Sn+n′ the standardizations of the words w, w′ and ww′, respectively, then
σ is the standardization of the word π(1)π(2) · · ·π(n) and σ′ is the standardization
of the word π(n + 1)π(n + 2) · · ·π(n + n′); in other words, there exists ρ ∈ X(n,n′)

such that π = ρ(σ × σ′).
Now let α ∈ B � Sn and α′ ∈ B � Sn′ . We write α = σ · (b1, b2, . . . , bn; en),

α′ = σ′ · (b′1, b′2, . . . , b′n′ ; en′), w = x1x2 · · ·xn and w′ = x′
1x

′
2 · · ·xn′ . Given a letter

x = (a, b) in A × B, we say that b is the colour of x. Then

α = stdB(w) and α′ = stdB(w′)

⇐⇒
{

σ is the standardization of w, σ′ is the standardization of w′,

bi is the colour of xi and b′j is the colour of x′
j

⇐⇒
{
∃ρ ∈ X(n,n′) such that ρ(σ × σ′) is the standardization of ww′,

bi is the colour of xi and b′j is the colour of x′
j

⇐⇒
{
∃ρ ∈ X(n,n′) such that

stdB(ww′) = ρ(σ × σ′) · (b1, b2, . . . , bn, b′1, b
′
2, . . . , b

′
n′ ; en+n′).

This proves that Φ is a morphism of algebras. The injectivity of Φ is an obvious
consequence of the fact that A was chosen infinite.

(ii) Let n be a positive integer and let α = (b1, b2, . . . , bn; σ) and α′ be two
elements in B � Sn such that α ∼

A
α′. Then there exists a simple transposition

si ∈ Sn such that α′ = α · si, the index i ∈ {1, 2, . . . , n− 1} enjoying moreover the
property that the map j 
→ bj is not constant on the interval [σ(i), σ(i+1)] or that
the inequality |σ(i + 1) − σ(i)| > 1 holds.
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Then in each word w = x1x2 · · ·xn of length n on the alphabet A × B whose
B-standardization is α, the letters xi and xi+1 differ. The word

w′ = x1x2 · · ·xi−1xi+1xixi+2 · · ·xn

obtained from w by exchanging the letters xi and xi+1 thus has α · si = α′ for
B-standardization, and the map w 
→ w′ is a bijective correspondence{

w

∣∣∣∣∣ w word on A × B such

that stdB(w) = α

}
�−→
{

w′

∣∣∣∣∣ w′ word on A × B such

that stdB(w′) = α′

}
.

Therefore Φ(α) and Φ(α′) have the same image in K[[A × B]], for w and w′ have
the same weight. By Proposition 5.1 (iii), this implies that Φ

(
D(B)◦

)
⊆ I.

The morphism Φ therefore defines a map Φ from F (KB)/D(B)◦ to K[[A ×B]].
Assertion (ii) will then be proved as soon as the injectivity of Φ is established.

We associate a B-composition C(µ) to each (A × B)-weight µ as follows: we
list in increasing order (a1, b1) < (a2, b2) < · · · < (ak, bk) the elements (a, b) in the
support of the multiset µ, and we then define C(µ) as the sequence

((µ(a1, b1), b1), (µ(a2, b2), b2), . . . , (µ(ak, bk), bk)).

One checks that R(stdB(w)) � C(wt(w)) for any word w on the alphabet A × B.
Let z be a non-zero element in F (KB)/D(B)◦. By Proposition 5.1, z has an an-

tecedent in F (KB) of the form
∑

j∈J ajαj , where J is a finite non-empty index set,
aj ∈ K \ {0}, and the elements αj ∈ B �Sn are such that all B-compositions R(αj)
are different. We may then find j0 ∈ J such that R(αj0) is a minimal element of the
set {R(αj) | j ∈ J} with respect to the refinement order �, and we may find a word
w on the alphabet A ×B such that stdB(w) = αj0 and C(wt(w)) = R(αj0). Then
wt(w) appears in Φ(z) with the coefficient aj0 �= 0, which entails that Φ(z) �= 0.

Therefore Φ is injective, which completes the proof. �
Assertion (i) of Theorem 6.1 says that we can find a realization of the alge-

bra F (KB) in terms of free (non-commutative) quasisymmetric functions. Asser-
tion (ii) says that the quotient map from F (KB) onto F (KB)/D(B)◦ ∼= D(B)∨ is
obtained in this realization by making commutative all words w ∈ 〈A × B〉. This
can be translated into the commutative diagram

(6.1)

F (KB) � � Φ ��

����

K〈〈A × B〉〉

����

F (KB)/D(B)◦ � � Φ �� K[[A × B]].

One can find a similar description of all the algebras that appear in the dia-
gram (5.5); for instance, the quotient map from F (KB) onto F (KB)/Q(B)◦ =
P(B) amounts to looking at the words w ∈ 〈A × B〉 modulo the Knuth relation
∼
K

of Section 5.4.

6.2. Poirier’s quasisymmetric functions. Let QSym(B) denote the image in
K[[A ×B]] of the map Φ in the diagram (6.1). In this section, we describe QSym(B)
explicitly and compare it with Poirier’s algebra of quasisymmetric functions.

By Proposition 5.1, the class modulo D(B)◦ of an element α ∈ B � Sn is deter-
mined by its receding composition R(α). A stronger assertion holds: it is possible
to find a combinatorial description of Φ

(
α+D(B)◦

)
based on the sole data of R(α).



A SOLOMON DESCENT THEORY FOR THE WREATH PRODUCTS G � Sn 1533

Indeed let c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be a B-composition of size say n,
set ti = c1 + c2 + · · · + ci for each i, and set

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1︸ ︷︷ ︸
c1 times

, b2, b2, . . . , b2︸ ︷︷ ︸
c2 times

, . . . , bk, bk, . . . , bk︸ ︷︷ ︸
ck times

).

From c, we construct the set Sc of all n-tuples (x1, x2, . . . , xn) ∈ (A ×B)n satisfy-
ing the three following conditions: the sequence (x1, x2, . . . , xn) is non-decreasing;
xti

< xti+1 for each i ∈ {1, 2, . . . , k−1}; the second component of xi ∈ A ×B is b̃i.
In other words, a n-tuple (x1, x2, . . . , xn) belongs to Sc if and only if each xi can
be written (ai, b̃i), where (a1, a2, . . . , an) is a non-decreasing sequence of elements
of A such that

∀i ∈ {1, 2, . . . , k − 1}, bi ≥ bi+1 =⇒ ati
< ati+1.

By analogy with formula (2) on p. 324 in [29], we define the formal series
in K[[A × B]]

Fc =
∑

(x1,x2,...,xn)∈Sc

x1x2 · · ·xn.

For instance if B is the set { ,̄ ¯̄} with the order ¯ < ¯̄, then

F((2,¯ )) =
∑

(x,y)∈A 2

x≤y

x̄ȳ, F((2,¯̄ )) =
∑

(x,y)∈A 2

x≤y

¯̄x¯̄y, F((1,¯),(1,¯ )) =
∑

(x,y)∈A 2

x<y

x̄ȳ,

F((1,¯),(1,¯̄ )) =
∑

(x,y)∈A 2

x≤y

x̄¯̄y, F((1,¯̄ ),(1,¯ )) =
∑

(x,y)∈A 2

x<y

¯̄xȳ, F((1,¯̄ ),(1,¯̄ )) =
∑

(x,y)∈A 2

x<y

¯̄x¯̄y.

The following result is a rewriting of Lemma 11 in [29]; it implies that the
elements Fc form a basis of the K-module QSym(B), where c is a B-composition.

Proposition 6.2. For each element α ∈ B �Sn, there holds FR(α) = Φ
(
α+D(B)◦

)
.

Proof. We take an element α ∈ B � Sn, we write

α = (b̃1, b̃2, . . . , b̃n; σ) and R(α) = ((c1, b1), (c2, b2), . . . , (ck, bk)),

and we set ti = c1 + c2 + · · · + ci for each i. The definition of R(α) implies that

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1︸ ︷︷ ︸
c1 times

, b2, b2, . . . , b2︸ ︷︷ ︸
c2 times

, . . . , bk, bk, . . . , bk︸ ︷︷ ︸
ck times

),

that the permutation σ−1 is increasing on each interval [ti−1 + 1, ti], and that

∀i ∈ {1, 2, . . . , k − 1}, bi = bi+1 =⇒ σ−1(ti) > σ−1(ti + 1).

Each sequence (x1, x2, . . . , xn) ∈ SR(α) yields a word w = xσ(1)xσ(2) · · ·xσ(n)

with letters in A ×B. The definition of SR(α) is so shaped that the standardization
of w is σ; it follows that the B-standardization of w is σ·

(
b̃σ(1), b̃σ(2), . . . , b̃σ(n); en

)
=

α. Conversely, each word w with letters in A × B whose B-standardization is α
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can be written w = xσ(1)xσ(2) · · ·xσ(n), where the sequence (x1, x2, . . . , xn) belongs
to SR(α).

We conclude that the image of

Φ(α) =
∑

w∈〈A ×B〉
stdB(w)=α

w

under the canonical map from K〈〈A × B〉〉 to K[[A × B]] is equal to∑
(x1,x2,...,xn)∈SR(α)

xσ(1)xσ(2) · · ·xσ(n) =
∑

(x1,x2,...,xn)∈SR(α)

x1x2 · · ·xn = FR(α).

The proposition follows. �

Now let us enumerate the elements of B in increasing order: b̄1, b̄2, . . . , b̄l, where
l is the cardinality of B, and let us review the definitions of a combinatorial nature
that are needed to introduce Poirier’s theory of coloured quasisymmetric functions.
Since Poirier made a slight mistake (in [29], Lemma 8 does not always agree with
formulas (1) and (2) on p. 324), we will follow Novelli and Thibon’s presentation
in [27].

A l-partite number is an element of N
l; we view it as a column matrix. Given

a positive integer k, an l-vector composition of length k is a k-tuple of non-zero l-
partite numbers; it can be viewed as a sequence of column matrices, or more simply
as a matrix with non-negative integral entries in l rows and k columns which has
at least one non-zero element in each column.

Each l-vector composition I produces a formal power series in K[[A ×B]] called
a monomial quasisymmetric function of level l and defined by

MI =
∑

(a1,a2,...,ak)∈A k

a1<a2<···<ak

⎛
⎝ l∏

i=1

k∏
j=1

(aj , b̄i)mij

⎞
⎠ ,

where k is the length of I and (mij) is the matrix that represents I. For instance in
the case where B is the set { ,̄ ¯̄} with the order ¯ < ¯̄, the monomial quasisymmetric
functions of level l = 2 and of degree 2 are

M( 2
0 ) =

∑
x∈A

x̄2, M( 1
1 ) =

∑
x∈A

x̄¯̄x, M( 0
2 ) =

∑
x∈A

¯̄x2,

M( 1 1
0 0 ) =

∑
(x,y)A 2

x<y

x̄ȳ, M( 1 0
0 1 ) =

∑
(x,y)A 2

x<y

x̄¯̄y, M( 0 1
1 0 ) =

∑
(x,y)A 2

x<y

¯̄xȳ,

M( 0 0
1 1 ) =

∑
(x,y)A 2

x<y

¯̄x¯̄y.

Let I be an l-vector composition, represented by the matrix (mij). We form the
list of all pairs (mij , b̄i), reading columnwise the entries of (mij) from top to bottom
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and from left to right. Erasing in this list all the pairs whose first component mij

is zero, we obtain a B-composition, which we call the sequential reading of I and
which we denote by sr(I). For instance with our favorite set B = { ,̄ ¯̄} with the
order ¯ < ¯̄, the l-vector compositions represented by the matrices(

1 0 4
3 2 1

)
and

(
1 0 0 4
0 3 2 1

)
both have sequential reading ((1,¯), (3, ¯̄), (2, ¯̄), (4,¯), (1, ¯̄)). We see therefore that
the map I 
→ sr(I) is not injective.

This definition allows us to express each formal power series Fc as a linear
combination of monomial quasisymmetric functions.

Proposition 6.3. For each B-composition c, there holds

Fc =
∑

I l-vector composition

c�sr(I)

MI.

Proof. Let S be the set of all non-decreasing finite sequences (x1, x2, . . . , xn) of
elements of A ×B. We define a map ψ from S to the set of all l-vector compositions
by the following recipe. Let (x1, x2, . . . , xn) in S; write xi = (ai, bi) for each i; let ã1,
ã2, . . . , ãk be the (distinct) elements of {ai | 1 ≤ i ≤ n} enumerated in increasing
order. Then ψ(x1, x2, . . . , xn) is the l-vector composition of length k represented
by the matrix (mij), where each mij counts the number of times that the element
(ãj , b̄i) appears in the sequence (x1, x2, . . . , xn).

Given an l-vector composition I, we set TI = ψ−1
(
{I}
)
. Then by definition

MI =
∑

(x1,x2,...,xn)∈TI

x1x2 · · ·xn.

Now let c be a B-composition. Routine arguments show that

∀x ∈ S, x ∈ Sc ⇐⇒ c � sr(ψ(x)).

In other words, Sc is the disjoint union of the sets TI, where I is an l-vector
composition such that c � sr(I). It follows that

Fc =
∑

(x1,x2,...,xn)∈Sc

x1x2 · · ·xn

=
∑

I l-vector composition

c�sr(I)

⎛
⎝ ∑

(x1,x2,...,xn)∈TI

x1x2 · · ·xn

⎞
⎠

=
∑

I l-vector composition

c�sr(I)

MI,

which proves the proposition. �

Paraphrasing a construction of Poirier, Novelli and Thibon endow the set of l-
vector compositions with a partial order ≤ and define for each l-vector composition
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I the formal power series

FI =
∑

J l-vector composition

I≤J

MJ,

which they call a quasi-ribbon function of level l. On the other side, one can
show quite easily that for each B-composition c, there exists a unique l-vector
composition K(c) such that{

J

∣∣∣∣∣ J l-vector composition

such that c � sr(J)

}
=

{
J

∣∣∣∣∣ J l-vector composition

such that K(c) ≤ J

}
.

With these notations, Proposition 6.3 asserts that the formal power series Fc coin-
cides with the quasi-ribbon function FK(c).

Let us denote by QSym(l) the submodule of K[[A ×B]] spanned by the monomial
quasisymmetric functions of level l. Novelli and Thibon claim in [27] that QSym(l) is
a subalgebra of K[[A ×B]], and moreover that QSym(l) has the structure of a graded
bialgebra, whose dual can be identified to the Novelli-Thibon bialgebra NT(KB).
In this context, Propositions 6.2 and 6.3 imply that QSym(B) is a subalgebra of
QSym(l). It is amusing to note here that the graded algebra QSym(B), which
is isomorphic to the dual of the graded bialgebra D(B), can also be viewed as a
quotient of QSym(l), since D(B) is a graded subbialgebra of NT(KB).

We conclude this paper by mentioning that Aval, F. Bergeron and N. Bergeron
recently observed that coloured quasisymmetric functions of level l = 2 appear in
a completely different context. We refer the reader to their paper [5] for additional
details.
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