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HEEGNER DIVISORS IN THE MODULI SPACE
OF GENUS THREE CURVES

MICHELA ARTEBANI

ABSTRACT. S. Kondo used periods of K3 surfaces to prove that the moduli
space of genus three curves is birational to an arithmetic quotient of a complex
6-ball. In this paper we study Heegner divisors in the ball quotient, given
by arithmetically defined hyperplane sections of the ball. We show that the
corresponding loci of genus three curves are given by hyperelliptic curves,
singular plane quartics and plane quartics admitting certain rational “splitting
curves”.

INTRODUCTION

The degree four cyclic cover of the projective plane branched along a smooth
plane quartic is a K3 surface endowed with an automorphism group G = Z4. This
simple geometric construction relates the moduli space M3 of genus three curves to
a moduli space M of polarized K3 surfaces. A generator o for G can be chosen such
that the period point of the polarized K3 surface (X, o) belongs to the i-eigenspace
We of o* in H?(X,C). This implies that the period domain is a six dimensional
complex ball B C P(W¢) and the moduli space M is obtained by taking the quotient
of B by the action of an arithmetic group I". The correspondence between genus
three curves and polarized K3 surfaces is thus described by a period map

P Ms\Mh — M= BT,

where M# denotes the hyperelliptic locus. In fact, in [7] S. Kondo proves that this
map is birational and induces an isomorphism:

M\ ME = M\(D,, UDy,),

where D,,,D;, are two irreducible divisors, called mirrors.

The Q-vector space H2(X,Q) and the action of o naturally give a vector space
W over k = Q[i] such that W = W ®;, C. An interesting class of divisors in M is
then given by quotients of hyperplane sections of B defined over k. These divisors
are again arithmetic quotients of a (five dimensional) complex ball and are called
Heegner divisors. This kind of divisor has been introduced and studied in a more
general setting in [8].

The first examples of Heegner divisors are the two mirrors D,,, Dy,. In [7] it is
proved that the generic points in the mirrors correspond, via the period map P,
to a plane quartic with a node and to a smooth hyperelliptic genus three curve
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respectively. The aim of this paper is to describe all Heegner divisors in terms
of genus three curves. We prove indeed that any Heegner divisor which is not a
mirror can be interpreted as the locus of plane quartics admitting a splitting curve
i.e. an irreducible plane curve whose inverse image by the degree four cyclic cover
is the union of four distinct curves on the K3 surface. More precisely, we show that
the splitting curve can be chosen to be rational. The simplest example of Heegner
divisor of this kind is the divisor of plane quartics with a hyperflex line.

The paper is organized as follows.

In the first section we introduce some basic notations for genus three curves, Del
Pezzo surfaces and K3 surfaces.

The geometric construction by Kondo and its main theorem are recalled in the
second section.

In the third section we define Heegner divisors and show how they are connected
to the problem of embedding a rank two lattice in a non-unimodular lattice. In
fact, we introduce two natural invariants associated to such embeddings: the type
n € Z, n > 0 and the index m € {1,2}. We also provide an existence result for
Heegner divisors with fixed type and index.

In the following section Heegner divisors are interpreted in terms of genus three
curves. The main theorem states that the generic point in a Heegner divisor of type
n > 1 corresponds to a smooth plane quartic having a splitting rational curve with
smooth preimages in the Del Pezzo surface. Moreover, we give the minimal degree
of such a splitting curve as a function of n and m (it turns out that it is even if
m =1 and odd if m = 2).

Some examples of Heegner divisors are provided in the last section for splitting
curves of degree 1, 2 and 3.

1. NOTATION AND PRELIMINARIES

In this section we introduce the three geometric objects of main interest in this
paper and fix the relative notations: genus three curves, Del Pezzo surfaces and K3
surfaces. Our main references are [9], [4] and [2].

Let M3 be the coarse moduli variety parametrizing isomorphism classes of
smooth genus three curves. We denote by M2 the hyperelliptic divisor in M.

A Del Pezzo surface is a smooth surface with an ample anti-canonical bundle.
These surfaces can be equivalently defined as the blowing up of P? in a set of m < 8
distinct points “in general position”. We are interested in Del Pezzo surfaces of
degree two i.e. the blowing up of P? in seven points pi,...,p7. In this case, a
natural basis for the Picard lattice of the surface S is given by

Pic(S) = {eg, €1, ., e7),

where e is the pull-back of the hyperplane bundle of P? and e; is the exceptional
divisor corresponding to p;, ¢ = 1,...,7. In this basis, the anti-canonical bundle of
S is given by:
—k:360—(61+"'+67).

The morphism ¢_p) : S — P? associated to the anti-canonical linear system is
a double cover of the plane branched along a smooth plane quartic curve Q(S).
There are exactly 56 effective divisors in Pic(S) with self-intersection —1, given by
the preimages of the 28 bitangents of Q(.S). Now consider the lattice:

R=k* = {z € Pic(S) : (x, k) = 0},
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where (, ) denotes the intersection form on Pic(S). This a root lattice of type Ex
and a root basis is given by:

Qg = eg — (61 + e2 +63),
Q; = € — €441, iZl,...,G.
We denote by W (Er7) the associated Weyl group.

Let 7 be the covering involution of ¢(_g; then the induced involution i* on
Pic(S) generates the center of the Weyl group W(E7) (see 4., Ch.VII, [4]). It is
easy to see that

i*(ei)z—k—ei, iZl,...,?,
’i*(eo) = -3k — €q.
The eigenlattices H4 of ¢* relative to +1 are given by
H, =(k), H. = R.

Let X be a K3 surface i.e. a surface with ¢(X) = 0 and trivial canonical bundle.
We denote by wx a generator for the vector space H>°(X) of holomorphic two-
forms on X, with Pic(X) the Picard lattice and with T'(X) the transcendental
lattice of X. We recall that the cohomology group H?(X,Z) is an even unimodular
lattice isometric to Lxs = U3 @ E§B2. The intersection form on Lg3 is denoted

bY(v)'

2. THE MODEL BY KONDO

2.1. Geometric construction. We briefly recall the geometric construction in-
troduced by Kondo in [7]. Let C be a smooth quartic curve in P? defined by a
homogeneous polynomial f € Clz,y, z] of degree 4:

C={(z,y,2) €P*: f(z,y,2) = 0}.
Consider the 4:1 cyclic cover of P2 branched along the divisor C:

m: Xco &1 p2,
The surface X¢ is a K3 surface with a degree four polarization; in coordinates it
can be given by:

Xo={(z,y,z,t) e PP : t* = f(z,y,2)}.
Let o be a generator for the covering transformation group of 7 and 7 = 2. We
can assume that:
o(x,y,z,t) = (x,y, 2, it).

Then the morphism 7 factors naturally through the double cover of P? branched
along C":

o SC A ]P)Q,
where S¢ = X¢ /() is a Del Pezzo surface of degree 2 and m = ¢y is the
morphism associated to the anti-canonical linear system of Sz. The geometry of
the above construction is then described by the following commutative diagram:

T

X — Sc

T T

N\ 7
PQ

The K3 surface X¢ is Li-polarized, where L, denotes the pull-back of Pic(S¢)
and the isometry ¢* induced by ¢ on the cohomology lattice acts as a 4-th root
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of unity on the vector space of holomorphic two-forms. In other words, the period
point of X belongs to P(W¢), where We is an eigenspace of ¢* in L}r ®C. In fact,
if L_ = Li, then We 2 L_ ®z R and the action of ¢* gives to W = L_ ® Q the
structure of a vector space over k = QJi].

The vector space W¢ is equipped with the hermitian form

@(zv ’LU) = (Z7 ’Lf))
of signature (1,6). The period domain M for polarized K3 surfaces (X¢,0*) is

then an arithmetic quotient of the six dimensional complex ball B in P(W¢) defined
by ¢(z,2) < 0:

M = B/T,
F={y€O(L_):yo0" =00y} 2 U(p) N M(7,Z][i]).
The above construction defines a period map:
P Ma\Mj — M,

where M?% denotes the hyperelliptic locus. In fact, the image of the period map
lies in the complement of two divisors D,,, Dy, called mirrors, corresponding to
non-ample polarized K3 surfaces. The main result in [7] is:

Theorem 2.1 (S. Kondo, Theorem 2.5, [7]). The period map gives an isomorphism.:
P Ms\ME — M\(D,, UDy,).

2.2. Isometries. Given a lattice L we will denote with r(L) its rank and with
(s4,s_) its signature. Moreover let A;, = L*/L be the discriminant group, ¢(L) be
the minimal number of generators of A;, and ¢;, be the quadratic form on it. We
also introduce the invariant

5 — 0 ifqr(z)eZiorallze Ap,
L= 1  otherwise.

We now describe the action of covering transformations on the cohomology lat-
tice. Let 7* be the involution on H2(S¢, Z) induced by 7; its eigenlattices are given
by:

Ly ={zxec H (X¢,Z): 7*(x) = +x}.

In fact, the invariant lattice L is the Picard lattice of the generic K3 surface X¢
and L_ = Li. The isomorphism classes of the eigenlattices can be easily computed:

Lemma 2.2.
Li~2) @AY, L.~ (2)% ¢ DP.

Proof. From Theorem 4.2.2, [10] and Theorem 3.6.2, [11] it follows that L, is a
2-elementary lattice of signature (1,7) with r(Ly) = ¢(Ly) = 8 and 0(Ly) = 1.
Hence obviously: r(L_) = 14, ¢(L_) = 8 and §(L_) = 1. By Theorem 3.6.2, [11]
the isomorphism classes of the two lattices are determined uniquely by the set of
invariants (s4,s—,¢,4). Hence it is enough to check that the lattices in the right
hand sides have the same set of invariants; this follows easily since £(A41) = 6(A;) =
1 and ¢(Dy4) = 2, 6(D4) = 0. For the proof of the first isomorphism see also §2,
[7]. O
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From Lemma 2.2 it follows that L = 75 Pic(S¢). For z € Pic(Sc) we define:
Z=my(x) € Ly.

In particular, fixing a blowing-up morphism b : S¢ — P? with the notation in
section 1, a basis for L, is given by:

éo,él,...,€7.

The action of ¢* on L, is clearly the pull-back along ms of the action of the
involution i* on Pic(S) defined in the previous section. In particular, let R = 75 (R)
and H. be the eigenlattices of o* on L.

From the remarks in section 1 there immediately follows:

Lemma 2.3.
Hy= (=), B = R=EQ).
Moreover, the action of the Weyl group W (E?7) lifts to L, giving a subgroup:
W (Er) € O(Ly)

of isometries commuting with o*.
A natural basis for L_ is given by:

1 2 2 r3 3
tlthafllv"'7f47f1)'"af4af17"'7f47

where t1,t, is a root basis for (2)®2 and f{,..., fi is a root basis for the i-th copy
of Dy. Then we have

Lemma 2.4. There exists an isomorphism L_ = (2)®? @D?S such that the action
of the isometry o* on L_ preserves (2)%% and each copy of Dy. In fact it is given
by the matriz J; ® J&3, where:

0

0 1 -1
J1:<—1 0>’J2: 1

= O O =
N = OO
= =0 o

with respect to the previously defined basis of L_.
Proof. See [1]. O

The discriminant groups of the eigenlattices of 7* are given by (Proposition 3.2.2,
[10]):
A, 2 A, =738
In fact, we consider the natural bases:

AL+ = <éO/2aél/2a'i'7é7/2>a
Ap_ = (t1/2,t2/2,01, 03, i =1,2,3),

where ai,ad generate the discriminant group of the i-th copy of Dy in L_. By
Proposition 1.6.1, [10], the primitive embedding of L in L3 is determined by an
isomorphism

viAp, — Ap_ with qp_oy=qr,.
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Lemma 2.5. The isomorphism v is given by the matrix

01 111111
10000000
10100000
10010000

M=119 0900100 0
10000T100
10000010
1000000 1

up to the action of O(Ar_ ) (with respect to the previously defined bases).

Proof. The primitive embedding of L in Lks is unique by Theorem 1.14.4, [10].
Hence, by Proposition 1.6.1, [10], the isomorphism + is unique up to the action of
the image of the natural homomorphism

b:0(Ls) — O(AL).
In fact, by Theorem 1.14.2, [10], the homomorphism ¢ is surjective. Hence, it

is enough to check that M(~) defines an isomorphism preserving the quadratic
forms. O

The following result describes all vectors in A, . with assigned self-intersection
with respect to the quadratic form gz, and the action of ¢* on them:

Lemma 2.6 (Lemma 2.1, [7]). The vectors in Ar_ can be divided in four classes
accordingly to their self-intersection:

Cr=A{ze AL, |qv, (v) =-1/2},
Co={r e AL, |qr,(x) =1/2},
Cs={r e AL, |qr, () =1},
04 = {l‘ S 14LJr ‘ qL+(x) = 0}
o An element in Cy is represented uniquely by one of the following 56 vectors:

e k—e¢; }
— 1<3<7
2 ) 2 ) — 1 — )
€~0—€;—6~j’k‘—€~0—|2—éi+éj’ 1<i<j<T.
o An element in Cs is represented uniquely by one of the following 72 vectors:
éo l~€ — €~0
27 2

éi+éj+ék k*éiféjfek
2 ’ 2 ’
o An element in C3 is represented uniquely by one of the following 64 vectors:

1<i<ji<k<T.

1<i<j<T,

1<i<gi<k<T,

1<j<T.
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o An element in Cy is represented uniquely by one of the following 64 vectors:

l~€—|—éi—e]

0, 5 , 1<i<j <7,

f+ 8 — & — & — é
2 )
k+2860— 3,6 +é;
2 Y

1<i<ji<k<T,

I<j<7.
The isometry o* acts as:

" k/2—x ifxeCiUC,,
a(x){ /m i;xeC;UCz.
Let

Ny ={xec L’ : qr, (x) € Z/2Z}.

Notice that:
Ny/Ly = (k/2,d1/2,...,d6/2).

We denote by O(Ar_ ) the group of automorphisms of Ay, respecting the discrim-
inant quadratic form gz, . Then we have

Lemma 2.7. The natural homomorphism W (E7) — O(Ap,) is surjective. More-
over, the action of O(Ar_ ) on vectors in Lemma 2.6 is transitive on classes Cy and
C5 and has two orbits on classes C3 and Cy.

Proof. The first assertion follows from Lemma 2.3, [7]. The elements of C; are of
the form Z/2 where « is the class of a (—1)-curve on the Del Pezzo surface S. The
Weyl group W (E7) acts transitively on (—1)-curves (see for example Lemma 4, Ch.
V, [4]), hence the action of O(Ar, ) is transitive on C;. Now consider the elements
in the class Csy:
é0/2, Vijk = (éz + éj + ék)/2
Let Qijl = €0 — Vijk, then:
o (Vijk) = 3€0 — 20;51/2 = €9/2 (mod L.).

Similarly, two vectors v;;, and vy ;i are interchanged by the isometry obtained as
a composition of the three reflections with respect to e; —e;y/, e; —ej/, ex, —epr. This
gives the assertion for Cs.

The element k& /2 in the class Cj is preserved by the Weyl group. The other 63
classes are of the form /2 where x is a (positive) root of E7. Since W(Ey;) acts
transitively on roots (see for example [4]), the action is transitive on Cj.

The elements in C; are obtained from those in C5 by adding l;:/ 2, hence the
assertion follows easily. |

3. HEEGNER DIVISORS AND EMBEDDINGS

Definition 3.1. Let r € L_ be a primitive vector and let H, be the hyperplane
section of B orthogonal to r:

H.={z€B: (z,r) =0}

The Heegner divisor D, associated to r is the image of H, in M. A Heegner divisor
D, is of type n if r? = —2n.
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Remark 3.2. i) For r € L_ let z(r) = r —i0*(r). Then z(r) € W and
HT" = {Z € W QO(Z,Z(’/’)) = O}a

where ¢ is the hermitian form on W defined in section 2. This implies that a
Heegner divisor can be equivalently defined as the image in M of a hyperplane
section of B defined over k = Q[i]. In the language of [8], Heegner divisors are
quotients of an arithmetically defined arrangement of hyperplanes in the ball.

ii) It can be easily seen that H, = H,(,y and H, = 0ifn<O0.

We have a lattice isomorphism:
Ay = (r,o™(r)) = Ay (n)®2.

Hence, giving a Heegner divisor of type n > 1 in M is equivalent to assigning a
primitive embedding of the lattice A;(n)®? in L_ up to the action of the group I'.
Given such an embedding, let A: be the orthogonal complement of A, in L_ and
P be the orthogonal complement of A;- in Lx3. We have an embedding

Li®A CP
with finite quotient group
M, =P/(Ly @ A,).
We now start describing the structure of the group M,..
Proposition 3.3. Let r € L_ and M, as above. Then:
a) if n is even, then M, = Zy and (r,L_) = Z;
b) if n is odd, then:

M. =~ Zg D Zg Zf (’I", L_) = 2Z,
"\ Ze if  (rL_)=1Z.

Proof. The group M, has a natural embedding in Ar, ® Aa,. Moreover, since
the embedding of A, in P is primitive, the projections on the two factors are
isomorphisms (see [11]):
M, = M, CAL+, M, = M, CAAT
such that
QLJrM/I1 = —4A. |0y

Since

AL+ = Z?Sa AAr = ZganQ
it follows that:

M, =275 0<m, <2.

We first prove that the case m, = 0 does not appear i.e. Ly & A, cannot be
primitively embedded in Lg3. This means that for any embedding L, ® A, — Lgs3
there is a primitive element (z,y) € Ly @ A, such that (x,y)/2 € Liks. For this, it
suffices to prove that, for some y € A,, y/2 is not trivial in Ay,_, since in this case
(see §2.2):

v (y/2) +y/2 € Lks.

Note that a vector in D4 can be written as

d=aie1 + ...+ aseq, Zai = 0(mod?2),
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where (e; - e;) = —0;;. If d is primitive in D4 (in particular not all a;’s are even),
then:
a) if a; is odd for ¢ = 1,...,4, then d/2 is non-trivial in Ap,;

b) if a1, a3 are odd and as, a4 are even, then (d+c*(d))/2 has integer coefficients
but either 1 or 3 of the coefficients are odd, hence it is a non-trivial element in Ap,;

c) if aj,as are odd and as, a4 are even, then all coefficients of (d + 0*(d)) are
odd integers, so (d + 0*(d))/2 is non-trivial in Ap,.

Let r = (t,dy,ds2,d3) € L_ be a primitive vector with ¢t € (2)%? and d; € Dy,
i = 1,2,3, according to the direct sum decomposition of L_ given in Lemma 2.2.
It follows from the previous remark that we have these cases:

i) if dy,ds, d3 are divisible by two, then ¢ is not divisible by two, hence r/2 = ¢/2
is not trivial in Ar_;

i) if at least one among dy, da, d3 is not divisible by two and not all its coefficients
are odd, then r + 0*(r)/2 is non-trivial in Ap,_;

iii) if at least one among dy, da, ds is not divisible by two and the non-two divisible
d;’s all have odd coefficients, then /2 is in L* and it is non-trivial in Ay, .
Hence m,. € {1,2}.

We now characterize the remaining cases. According to the previous discussion,
there are two possibilities:
i)ifr/2 € Ar_ ie. (r,L_) = 2Z, then

M, ={r/2,0%(r)/2).
Since A, is primitive in L_, we have that o*(r)/2 # r/2 in A;_. In particular n
is not even, since otherwise ¢(r/2) = —n/2 € Z (hence ¢*(r)/2 = r/2 in A, by
Lemma 2.6). Therefore m, = 2.
i)ifr/2¢ A ie. (r,L_) =Z, then m, =1 and

M, = ((r+07(r)/2).

We call m,. the index of the Heegner divisor D,., r € L_.

Proposition 3.4 (Existence).
i) There exist Heegner divisors of type n and index 1 for every n > 1;
it) there exist Heegner divisors of type n and index 2 for every odd n > 1.
(Note that the case of even type and index 2 is excluded by Proposition 3.3).

Proof. Consider the following vectors in L_:

ri(1) = fi + f7, (k) = k=Dt +kff + 7 (k>1),
) =K+ DR

ra(k) = (k= Dts + kff + [+ f7,

ra(k) =ty + 2kty + (k+ 1) (f] + f3) + k(fT + f3),

with respect to the basis of L_ defined in section 2. It is easy to check that the
rank two lattice A;(k) = (r;(k),o*(r;(k))) is primitive in L_, since the rank two
minors of the matrix with rows r;(k), c*(r;(k)) have no common factor. Moreover,
notice that
—2(2k) i i=1,
ri(k)? =< —2(2k+1) if i=2,3,
—2(4k+1) if Q=4



1590 MICHELA ARTEBANI

in particular the Heegner divisor D, () has even type n = 2k for ¢ = 1 and odd
type otherwise. By Proposition 3.3 the Heegner divisor D, 1) has index 1ifi = 1,3
since (r;(k), L_) = 7Z, hence i) is proved.

For i = 2 it can be easily checked that the index is 2 iff k£ is odd i.e. the type
n=2k+1=3(mod4). For i = 4 the type is n = 4k +1 =1 (mod4) and the index
is 2 by Proposition 3.3, hence ii) is proved. (]

The following remark will be useful in the next section
Lemma 3.5. Let D, be a Heegner divisor of even type, then /;/2 Z M,.

Proof. Since D, has index 1 by Proposition 3.3 we have M, = ((r+o*(r))/2). From
Lemma 2.5 it follows that the isomorphism v : Ap, — Ar_ sends k/2 to

v(k/2) = (1/2,1/2,0,...,0)
(in the usual coordinates for L_). Consider a vector:
T = (hl,hg,a,l,...761,4,b1,...7174701,...,04)7

such that A, is primitive in L_ and assume that (r + o*(r))/2 = v(k/2) in Aj_.
This means that:

i) hy and he are odd,

ii) as, bs and c3 are even,

iii) a1 + a2 + a4, by + ba + by and ¢1 + co + ¢4 are even.
In this case it can be easily checked that (r, L_) = 2Z, giving a contradiction by
Proposition 3.3. O

4. HEEGNER DIVISORS AND GENUS 3 CURVES

Let X, be the generic K3 surface with period point in a Heegner divisor D,.,
then its Picard number is equal to 10 and

Ly ® A, C Pic(X,).

In this section we describe the loci of genus three curves corresponding to Heegner
divisors of given type and index. We first recall the special role of Heegner divisors
of type 1 in Kondo’s construction.

4.1. Type 1.

Lemma 4.1. A period point in M belongs to a Heegner divisor of type 1 iff the
corresponding K3 surface is not the four cyclic cover of the plane branched along a
smooth plane quartic.

Proof. See Theorem 2.5, [7]. O

Proposition 4.2. The mirrors D,,, D}, are the unique Heegner divisors of type 1:

e D, has index 1, and its generic point corresponds to a plane quartic with a
node;

e Dy, has index 2, and its generic point corresponds to a smooth hyperelliptic
genus three curve.

Proof. By Lemma 3.3, Theorem 4.3 and Theorem 5.4 in [7]. |
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Remark 4.3. 1) In [1] it is proved that the period map P can be defined on the blow-
up of the GIT moduli space of semistable plane quartics in one point. This period
map gives an isomorphism between D,, and the locus of stable singular quartics.
Besides, it is proved that the Baily-Borel compactification of Dj, is isomorphic to
the GIT moduli space of semistable sets of eight unordered points in P! (see also
[6]).
ii) The transcendental lattices of the generic K3 surface in D,, and Dj, are given
respectively by:

T, = U®? ¢ AP,

T, 2 U(2)%2 @ Ds.

4.2. Type n > 1.

Definition 4.4. Let C be a plane quartic and let 7 : X — P? be the four cyclic
cover of the plane branched along C'. An irreducible plane curve D is a splitting
curve for C if the inverse image 7~ !(D) is the union of four distinct curves.

It is easy to see that a smooth plane curve D is a splitting curve for C' if and only
if the restricted cover m,-1(p) is trivial. If the curve is not smooth it can happen
that it is partially normalized by the cover  i.e. the four curves in 7#=1(D) are not
isomorphic to D and they can intersect each other outside the ramification curve.
We will see examples of this behaviour in the last section.

With X, as before, we call 7 : X,, — P? the four cyclic cover of P2, C, the
corresponding branch quartic and 75 : X, — S,. the associated double cover of
the Del Pezzo surface S, (see section 2). We start with a simple remark

Lemma 4.5. If D, is a Heegner divisor of type n > 1, then C,. admits a splitting
curve of even degree.

Proof. As noticed before, we have Ly @ A, C Pic(X,). Consider a class of the
form w = & + r where ¥ € L, with £ > 2n — 2. Then w? > —2, hence w or —w
is effective by the Riemann Roch Theorem. Assume that w is effective and write
w =Y a;w;, where a; are positive integers and w; are irreducible curves. Then we
can assume that w; = &1 + 1 with r; #% 0. The o*-orbit of w; clearly contains
four distinct elements: wy, o* (wy), 7*(w1) = #1 — r1, (0) (w1) = 0% (F1) — o* (w1).
Hence the image 7(R) of a curve R in the class w; is a splitting curve for C. The

degree of R is given by deg(R) = (21, —k) = 2(z1, —k). O

Theorem 4.6. Let D, be a Heegner divisor of typen > 1 (sor € L_, 1> = —2n)
with index m, € {1,2}. Then there exists a rational splitting curve D for C, with
the following properties:

1)
deg(p) = { 20 =

2) The inverse image 77 *(D) in S, is the union of two smooth rational curves
(hence 7=1(D) is the union of four smooth rational curves in X,.).

Proof. The idea is to construct the class of a (—2)-curve in Pic(X,)\L; & A,
starting from the information given by the structure of the group M,..
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i) If m, =1 (i.e. M, = Zy), then there exists £ € L such that:
(@ + f)/2 € Pic(X,)

where f = r + 0*(r). Notice that (2’ + f)/2 € Pic(X,) for any &' € L% with
#'/2=1/21in Ap_ . Moreover

q(2/2) = —q(f/2) = n.
Then /2 € Ap, belongs to the class C3 in Lemma 2.6 if n is odd and to the class
Cy if n is even.
If n is odd we can assume (up to the action of the Weyl group; see Lemma 2.7
and Lemma 3.5) that:
53/2 = (él — ég)/? S AL+.
Let 2’ = (n — 1)eg — (n — 2)e; — ez € Pic(S,), then #'/2 = /2 in A7, . Hence by
a previous remark
y= (7' + f)/2 € Pic(X,)
and y? = (2')%/2 — n = —2. Notice that y + 7*(y) = 2’ and the arithmetic genus
pa(2') is zero by the adjunction formula.
The class y can be written as y = 22:1 a;y;, where a; are positive integers and
y; are irreducible curves. Since p,(z’) = 0, there exists an irreducible component
y1 of y which is a smooth rational curve and doesn’t belong to L. This can be
written as
Y1 = (i‘l +f1)/2, Ty € Ly, fie A, f 75 0.
Since y? = y§ = —2 and f? < f? we have 27 > (2/)? = 2(n — 2). Moreover, since
x1 is a component of 2'; its arithmetic genus is zero. This gives

ot +;:c1,k) 1> 2(n—2>2+ (1, k)

0=pu(z1) = +1,

hence
(y1, —k) = (x1,—k) > 2(n — 1) = (y, —k).

This implies that y; = y i.e. y is a (—2)-curve. If R be the curve in the class v,
then the plane curve D = 7(R) is a rational splitting curve for C,. and:

deg(D) = —(2',k) = 2(n — 1).
If n is even, then we can assume (up to the action of the Weyl group; see Lemma
2.7) that:
B/2=(k+280— Y &+é1)/2=(6)—&1)/2€ AL, .

The proof follows as in the odd case with the choice 2’ = (n —1)eg —e; — (n — 2)es.
ii) If m, =2 (i.e. M, 2 Zo ® Zs), then there exists & € L such that:

(Z+1)/2, c*(Z+71)/2 € Pic(X,),
where
q(2/2) = —q(r/2) = n/2.
Then /2 € Ar, belongs to the class C; in Lemma 2.6 if n = 3 (mod4) and to the

class Cy if n = 1(mod4).
If n = 3 (mod4), then we can assume that:

i/2=¢é/2.
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Let n = 4s+ 3 and consider the vector 2’ = 2seg — (25 — 1)e1. Note that p,(z') =0
by the adjunction formula. Then
y= (2’ +7)/2 € Pic(X,)

and y? = —2.

It can be proved as in i) that y is a smooth (—2)-curve and if R is a curve
representing y, then D = w(R) is a rational splitting curve with

deg(D) = —(2', —k) =n — 2.
If n =1 (mod4), then we can assume that:
7/2 = éy/2.

Let n = 4s 4+ 1 and consider the class 2’ = (s — 1)(ep — e1). Defining y as above,
similar computations give a rational splitting curve D with:

deg(D) = —(2', k) =n — 2. O

Remark 4.7. Note that in the proof of Theorem 4.6 (the classes of) the preimages
of the splitting curves in the Del Pezzo surface are given explicitly up to the action
of the Weyl group.

Corollary 4.8. The Picard lattice of the K3 surface X, is generated by L, and
two smooth rational curves R,o0*(R) with R ¢ Ly & A,.

Proof. Obviously Pic(X,) D (Ly,R,0*(R)). Let R = ( +y)/2, where & € L
and y € A, are primitive. Then the thesis follows since the embedding of Ly in
Pic(X,) is primitive and the classes R, o*(R) are not divisible in Lgs. O

We also give a partial converse to the previous result:

Proposition 4.9. Let C' be a plane quartic admitting a rational splitting curve D
such that the inverse image of D in Sc is the union of two smooth rational curves
with primitive classes in Pic(S¢). Let d be the minimal degree of a curve D with
this property. Then X¢o belongs to a Heegner divisor

i) of index m = 2 and type n = d + 2 if d is odd;

ii) of index m =1 and type n = (d+2)/2 if d is even.

Proof. Let R be one of the inverse images of D in X¢. Notice that:
R = (z+y)/2 € Pic(Xc),

where

r=R+71"(R)e Ly, y=R—7"(R) € L_N Pic(X¢).
An easy computation gives:

2?2 =2(d-2), y* = —2(d+2).
Notice that y # 0 in L_ since otherwise x = 2R (which is the class of a preimage
of D in S¢) would be divisible in L. Thus X¢ belongs to a Heegner divisor D,
with y € A,. Let A} be the orthogonal complement of A, in L_ and P, be the
orthogonal complement of ATl in Lg3. Then we define
M, =P./Ly ®A,.

Notice that:

3
> (0"){(R) = —dk.

=0
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Then we have the following cases:
i) If d is odd, then:

3
S 0"V (R)/2 = (¢ + 0" (2))/2 = F/2 £ 0 € Ap,.
i=0
Hence x/2 # 0*(x)/2 € Ar, . Therefore
M, = (x/2,0"(x)/2) C AL, ;

this means that D, has index m, = 2. By Theorem 4.6 (see also the proof)
the curve C admits a rational splitting curve D’ of degree d’ = —r?/2 — 2 with
smooth and primitive preimages in the Del Pezzo surface such that 7*(D’) =
S (0)(R), i=1,...,4, with R — 7*(R') = r. Then:

(R =" (R))* = =2(d' +2)

is maximal i.e. d’ is minimal. Then d = d’ and D,. has type n =d + 2.
ii) If d is even, then:

Z (c")'(R)/2=(z+0"(2))/2=0€ ApL,.
Hence:
r/2=0"(x)/2€ AL,
The case /2 = 0 in Ay, (i.e. © = 22’ € L;) can be excluded since otherwise
the inverse images of D in Sc would belong to divisible classes. Then the Heegner
divisor D, has index m,. = 1:

M, = (z/2) C Ay .

By applying Theorem 4.6 as in i), the minimality condition on the degree gives that
D, has type n = (d + 2)/2. O

Corollary 4.10. A plane quartic C admits a splitting curve of odd degree if and
only if X¢ belongs to a Heegner divisor of index 2.

Proof. The result follows from Theorem 4.6 and the proof of Proposition 4.9 if one
notices that in the odd degree case the inverse images of the splitting curve in
Pic(S¢) always have primitive classes. O

Remark 4.11. i) Splitting curves of even degree do not always give rise to Heegner
divisors. From the proof of Proposition 4.9 it follows that this happens iff a inverse
image R of the splitting curve in the K3 surface satisfies:

R—71*(R) =0.

For example, let C' be the generic plane quartic with equation fy(x,y,z) = 0. It is
easy to prove that a plane quartic D of the form I(z,y, 2)* = fi(z,y, z), where [ is
linear, is a splitting curve for C'. The inverse image of D in X¢ splits in four genus
three curves (¢*)"(R), i = 0,...,3, which are hyperplane sections of X¢ in P? (i.e.
they all belong to the class —k € Ly).

ii) If the splitting curve has even degree d Z 2 (mod4) an easy computation shows
that its inverse images have primitive classes in the Del Pezzo surface.

iii) Theorem 4.6 and Proposition 4.9 describe the loci of plane quartics correspond-
ing to the union of all Heegner divisors of given type and index. However, it is not
clear if these loci are irreducible. In other words, it is unknown if a Heegner divisor
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is determined uniquely by its type and index. Note that this problem is equivalent
to classifying the embeddings of the lattice A, in L_ up to the action of T

iv) In [6] Heegner divisors in Dy, (in fact, this is a union of our Heegner divisors
with fixed type and index intersected with D},) are introduced and the existence of
an automorphic form vanishing exactly on them is proved.

5. EXAMPLES

In this section we give some examples of Heegner divisors corresponding to plane
quartics with splitting curves of degree one, two and three. We will usually identify
Heegner divisors in M and their inverse image by P in Msj.

Let C' C P2 be a plane curve of degree dd’ with d = 2,4 and let 74 : Z — P? be
the d:1 cover of P2 branched along C. We start recalling the following result:

Proposition 5.1 (Proposition 1.7, Ch.3, [12]). Let D C P? be a curve not con-
taining components of C. Let D = T;l(D). The restriction of the cover:

Td|p D—D
is trivial if and only if there exists a curve B C P? of degree d’ such that:
C-D=dB-D.

By the remark after Definition 4.4, this result characterizes smooth splitting
curves of C.

5.1. Quartics with a hyperflex. Let C be a generic smooth plane quartic with
a hyperflex line L i.e.

L-C=4p, peC.

After a projective transformation we can assume that the line L is given by the
equation z = 0 and that the quartic C' is of the form:

(1) C: xfg(x,y,z)+z4:0,

where f3 is a cubic polynomial in Clz,y, z]. It is known that the locus of plane
quartics with at least one hyperflex line is an irreducible closed subvariety of codi-
mension one in the moduli space of genus three curves (see Proposition 4.9, Ch.I,
[12]). As usual, let 71 : S¢ — P? and 7 : X¢ — P? be the double and the 4:1 cover
of P? branched along C' respectively.

Proposition 5.2. The locus of plane quartics with a hyperflex line is the unique
Heegner divisor of type 3 and indez 2.

Proof. Let C' be a plane quartic with a hyperflex line L. By Proposition 5.1 both
w1 and 7 are trivial over L. Hence the line L is a splitting curve for C', moreover it
splits in the union of two smooth rational curves on the Del Pezzo surface S¢. By
Proposition 4.9 it follows that X belongs to a Heegner divisor of type n = 3 and
index 2 (the degree of L is obviously minimal). The converse follows from Theorem
4.6. Since the locus of plane quartics with a hyperflex line is irreducible in M3,
there is only one Heegner divisor of type 3 and index 2. ]

We denote this Heegner divisor with Dy, and with X the generic K3 surface in
it.



1596 MICHELA ARTEBANI

Let M, M’ be the inverse images of L in the Del Pezzo surface S. Each of them
splits in the union of two smooth rational curves on X:

FQ*(M) = Ml + MQ, ’/TQ*(M,) = M{ —+ Mé
Notice that
My + My e Ly, My — My € L_N Pic(X).
If r = My — Mo, it is easy to check that r2 = —6. Hence the period point of X lies
in the hyperplane section of B determined by the vector » € L_. By Corollary 4.8
we have:
Pic(X) = (L4, My, My).
Notice that M, M’ are two (—1)-curves on S with:
M+ M' =m*(L) = —k.
Hence we can assume, up to the action of the Weyl group, that:
M = e, M/:360—(61+~'~+66+267).

Then the intersection matrix of the Picard lattice with respect to the basis €y, ..., €7,
My, M7 can be easily computed.

5.2. Quartics with splitting conics. We consider the locus of smooth plane
quartics C' such that there exists an irreducible conic T with intersection divisor of
the form:

T-C =4p+4q,

where p # q. After a projective transformation we can assume that the conic T is
given by:

T: a2y—22=0
and that p = (0,1,0), ¢ = (1,0,0). Then, up to projectivities, the equation of the
quartic C' is of the form:

C: (xy - ZZ)f?(xay7Z) + Z4 = 07

where f is a quadratic polynomial in C[z,y, z]. It is known (see [5]) that a smooth
plane quartic C' has 63 one dimensional families of tangent conics and that each
family contains six reducible conics (i.e. the union of two bitangents). We now
prove that

Lemma 5.3. The locus of plane quartics with an irreducible splitting conic is a
codimension one closed irreducible subvariety of Ms.

Proof. Let A C P be the discriminant locus corresponding to singular plane
quartics. Notice that polynomials like the one defining C' give a 6 dimensional
irreducible subvariety A of PM\A. Let ¢ : P*\A — M3\ M% be the natural
morphism to the moduli space of non-hyperelliptic genus three curves. This is a
closed and surjective morphism (see Proposition 4.7, [12]). In particular, V = ¢(A)
is an irreducible closed subvariety of M3\ MH%. Note that the dimension of the
fibers of ¢ over V is equal to one. In fact, it equals the dimension of:

{9 € PGL(3,C) : g(p) = p, g(q) = q, g(T) =T}.

Thus V has codimension one in M3\ M?%. In fact, it can be proved as in [12] that
V is also closed in M3. O
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Similarly to Proposition 5.2 it can be proved

Proposition 5.4. The locus of plane quartics with an irreducible splitting conic is
the unique Heegner divisor of type 2 and index 1.

We denote this divisor with Dg,,. As in the previous example, the Picard lattice
of the generic K3 surface in D,,, can be easily computed.

5.3. Quartics with splitting cubics. A simple remark is the following:

Lemma 5.5. A plane quartic C has a hyperflex line if and only if there exists a
cubic D such that the 4:1 cover of P? branched along C is trivial over D.

Proof. Notice that a quartic C' has a hyperflex line L if and only if there is a point
p € C with
4p €] Oc(1) |=| K¢ | -
In this case, let M be a line through p, M # L, then M - C — p = p1 + p2 + ps.
Hence
A(p1 +p2 +ps) €| 4Kc — 4p [=| 3K |

i.e. there exists a cubic curve D intersecting C' with multiplicity 4 in each point
and such that the points in C - D lie on the line M. Equivalently, by Proposition
5.1, the 4:1 cover of P? branched along C' is trivial over D.

Conversely, if there exists a cubic D with D - C = 4(py + p2 + p3) and a line M
with M - D = p; + p2 + ps3, then

M-C=p+p2+ps+p
hence d4p =4M -C — D - C €] O¢(1) | i.e. p is a hyperflex point. a
Remark 5.6. In fact, Lemma 5.5 follows immediately if we recall that, up to a

projective transformation, the equation of a quartic C' with a hyperflex line is of
the form:

xfs(x,y,2) + 24 =0,
where f3 is a cubic polynomial in C|x,y, 2].
In general, a (singular) plane cubic D can be a splitting curve for a quartic
C even if the 4:1 cover branched along C' is not trivial over D i.e. the irreducible

components of 771 (D) are not isomorphic to D. Let 7 : X¢ — P? and 7 : S¢ — P?
be the 4:1 and the double cover branched along C' respectively.

Proposition 5.7. Let C be a plane quartic with a splitting nodal cubic D. Then
X¢ belongs to a Heegner divisor of index 2 and

i) type 3 if w is trivial over D (i.e. X¢ lies in Dyies ),

it) type 7 if my is trivial over D,

i11) type 5 otherwise.

Proof. Up to projectivities we can assume that D is defined by the equation:
2 = 2%+ a2,
A parametrization for D is given by:
¢:C— D, t— (t* —1,t(t* - 1)),
where ¢(1) = ¢(—1) is the node of D.
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The plane quartic C with equation f4(z,y, z) = 0 intersects D in the points ¢(¢),
with:
fa(t? = 1,t(t* = 1),1) = 0.
In particular, if the intersection multiplicity of each point in C'N D is a multiple of
four, then:
fa(# = 1,t(#* = 1),1) = ¢*,
where ¢ € C[t] and ¢* € C[t? — 1,¢(t?> — 1)]. It can be easily proved that

Clt* = L,t(t* = )] = {p e Clt] : p(1) = p(-1)}.

Hence:
q(1) =i%q(-1), a=0,...,3.
The 4:1 cover of the plane branched along C'is given by:
Xe = {w' = F(z,y,2)} c P2
Notice that the map ¢ lifts to four distinct maps to X¢:
r:C— X, t— (2 —1:t1t>—1):1:i%q(t)),
hence the inverse image of D in X¢ has four isomorphic irreducible components:
Dk = ¢k(C), a:O,...,3.

We now study the restriction of the cover 7 to D for all values of a.
i) If a = 0, then ¢(1) = ¢(—1), hence each component Dy, is a nodal curve and 7
is trivial over D. By Lemma 5.5 the plane quartic C' has a hyperflex line and X¢
belongs to the Heegner divisor Dy,
ii) If a = 2, then ¢(1) = —¢(—1), hence the curves Dy are smooth rational curves.
Note that ¢g(1) = ¢2(—1) and ¢o(—1) = ¢2(1), so Dy and D meet in two points
over the singular point p = (0: 0: 1) € D. Similarly, D; and D3 meet in two points
over p. In this case the double cover 7 of P2 branched along C is trivial over D, in
particular the inverse image of D in S¢ is the union of two singular curves. Note
that:

T:D()*T*(DO) =Dy — D> GPiC(Xc)ﬁL_
and 72 = —4 —2-2 — 2.3 = —14. We have a lattice embedding:

A= (r,0*(r)) C Pic(Xc)NL_ = A;(n)®2.

In particular —14 = —2n(a® + b%), a,b € Z. Thus we have n = 7 and X belongs
to a Heegner divisor of type 7 and index 2.

iii) If @ = 1, then ¢(1) = ig(—1), hence the curves Dy, are smooth. In this case we
also have ¢g(1) = ¢1(—1) and ¢o(—1) = ¢3(1), so Dy meets Dy and D3. Similarly,
Dy meets D3 and D;. In particular, the inverse image of D in S is the union of
two smooth rational curves. Note that:

r =Dy —71(Dy) = Dy — Dy € Pie(Xc)NL_
and
r?=—4-2.3=-10.
Then:
A= {(r,o"(r)) C Pic(Xc)NL_.
In fact (since —r2/2 is prime and n # 1) we easily get that this is an equality.
Hence X¢ belongs to a Heegner divisor of type 5 and index 2. This could also be
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proved by applying Proposition 4.9 (note that the degree is minimal since m = 2
and we can assume that C' has no hyperflex lines).
iv) The case a = 3 is analogous to case iii). O

Remark 5.8. A similar description could be given more generally for any rational
splitting curve.
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