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R-EQUIVALENCE IN ADJOINT CLASSICAL GROUPS
OVER FIELDS OF VIRTUAL COHOMOLOGICAL DIMENSION 2

AMIT KULSHRESTHA AND R. PARIMALA

Dedicated to our teacher Professor R. Sridharan on his seventieth birthday.

Abstract. Let F be a field of characteristic not 2 whose virtual cohomological
dimension is at most 2. Let G be a semisimple group of adjoint type defined
over F . Let RG(F ) denote the normal subgroup of G(F ) consisting of elements
R-equivalent to identity. We show that if G is of classical type not containing
a factor of type Dn, G(F )/RG(F ) = 0. If G is a simple classical adjoint group

of type Dn, we show that if F and its multi-quadratic extensions satisfy strong
approximation property, then G(F )/RG(F ) = 0. This leads to a new proof
of the R-triviality of F -rational points of adjoint classical groups defined over
number fields.

Introduction

In [Ma, Chapter II, §14] Manin introduced the notion of R-equivalence on a vari-
ety X over a field F as follows : two points x, y ∈ X(F ) are R-equivalent if there ex-
ist x = x0, x1, x2, · · · , xn = y ∈ X(F ) and F -rational maps fi : P1 ��� X, 1 ≤ i ≤ n,
regular at 0 and 1 such that fi(0) = xi−1 and fi(1) = xi. If X is the underlying
variety of a connected algebraic group G, then the set of elements of G(F ) which
are R-equivalent to 1 is a normal subgroup RG(F ) of G(F ). We denote the quotient
G(F )/RG(F ) by G(F )/R. A connected algebraic group is called R-trivial, if for all
field extensions E of F , we have G(E)/R = 0. Colliot-Thélène and Sansuc [CTS]
proved that if the variety of a connected algebraic group G is stably rational, then
G is R-trivial. For example, if G is an adjoint classical group of type 1An, 2A2n

[VK, pp. 240] or Bn, then G is rational, and hence R-trivial.

Let G be a classical group of adjoint type defined over a number field and G̃ be
a simply connected cover of G.

(i) [Y, CM] If G̃ is of type 2An, then G̃(F )/R = 0.
(ii) [PR, Theorem 9.5] The group G̃(F ) is projectively simple provided G̃ does

not contain a factor of type An. In particular the non-central normal sub-
group RG̃(F ) coincides with G̃(F ).

Further by [G, Corollaire III.4.2], the natural map G̃(F )/R → G(F )/R is surjec-
tive. In view of this together with (i) and (ii) above, we deduce that G(F )/R = 0

Received by the editors July 31, 2005.
2000 Mathematics Subject Classification. Primary 20G15, 14G05.
Key words and phrases. Adjoint classical groups, R-equivalence, algebras with involutions,

similitudes.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1193



1194 AMIT KULSHRESTHA AND R. PARIMALA

for classical groups G of adjoint type over number fields. The proof of Gille for
the surjectivity of G̃(F )/R → G(F )/R for number fields uses besides his results on
the norm principle, deep arithmetic results due to Kato-Saito [KS, Theorem 4] and
Sansuc [S, Corollaire 3.5.c], which do not admit analogues over general fields of vir-
tual cohomological dimension two. In fact, simply connected groups G̃ of type Cn

are rational, and a surjectivity statement G̃(F )/R � G(F )/R would immediately
lead to the triviality of G(F )/R for adjoint groups G of type Cn.

Number fields are examples of fields of virtual cohomological dimension two. The
aim of this paper is to study the group G(F )/R where G is a classical group of
adjoint type defined over a field of virtual cohomological dimension two.

Let ΓF be the Galois group Gal(Fs/F ), where Fs is the separable closure of
F . The cohomological dimension of F is the least positive integer n such that for
all discrete torsion ΓF -modules M , the Galois cohomology groups Hi(ΓF , M) are
zero for all i ≥ n + 1. A field F is said to have virtual cohomological dimension
n if the cohomological dimension of F (

√
−1) is n. We write cd(F ) to denote the

cohomological dimension and vcd(F ) to denote the virtual cohomological dimension
of F . We prove that G(F )/R = 0 for adjoint groups G of type 2An and Cn over
a field F of virtual cohomological dimension at most 2. For classical groups of
type Dn, we prove that if the cohomological dimension of F is at most 2, then
G(F )/R = 0. Further, if the virtual cohomological dimension of F is at most
2, then we show that G(F )/R = 0, provided F satisfies certain approximation
properties. These results, in particular, lead to a new proof of the triviality of
G(F )/R for adjoint classical groups over number fields.

The main ingredients in proofs of our results are Merkurjev’s computation of
G(F )/R for all adjoint groups of classical type [Me2, Th. 1], as well as results
on the classification of hermitian forms over division algebras with involution over
fields of virtual cohomological dimension two [BP2].

1. Some known results

In this section, we record some known results which are used in the paper. Let
F be a field with char(F ) �= 2. Let Z = F , or a quadratic extension of F . Let A
be a central simple algebra over Z and σ be an involution on A of either kind. If
σ is of the second kind, let Zσ = F . An element a ∈ A∗ is said to be a similitude
of (A, σ) if σ(a)a ∈ F ∗. The similitudes of (A, σ) form a group which we denote by
Sim(A, σ). The map µ(a) = σ(a)a is a homomorphism µ : Sim(A, σ) → F ∗ whose
image is denoted by G(A, σ). Elements of G(A, σ) are called multipliers. Let σ be
adjoint to a hermitian form h. Then λ ∈ G(A, σ) if and only if λh � h [KMRT,
Prop. 12.20]. Let Sim(A, σ) denote the algebraic group whose F rational points
are given by Sim(A, σ). Let Sim+(A, σ) be the connected component of identity of
Sim(A, σ). Let Sim+(A, σ) denote the F -rational points of Sim+(A, σ). Elements
of Sim+(A, σ) are called proper similitudes. We denote the group µ(Sim+(A, σ))
by G+(A, σ). Let RZ/F denote the Weil restriction to F . The group of projective
similitudes is the quotient group

Sim(A, σ)/RZ/F (Gm)

which we denote by PSim(A, σ). The group of F -rational points of PSim(A, σ) is
Sim(A, σ)/Z∗. The connected component of the identity of the group PSim(A, σ)
is denoted by PSim+(A, σ)
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Let N(Z) = F ∗2 or NZ/F (Z∗) according to whether σ is of the first kind or second
kind, respectively. Let Hyp(A, σ) be the subgroup of F ∗ generated by the norms
from all those finite extensions of F , where the involution σ becomes hyperbolic.
If A is split, the involution σ is adjoint to a quadratic form q over F . The group
G+(A, σ) is then denoted by G+(q), and the group G(A, σ) is denoted by G(q).
In fact G+(q) = G(q), because of the existence of hyperplane reflections in the
orthogonal group.

Theorem 1.1 ([Me2, Th. 1]). With notation as above, N(Z). Hyp(A, σ) is a
subgroup of G+(A, σ) and further,

PSim+(A, σ)(F )/R � G+(A, σ)/N(Z). Hyp(A, σ).

We now record a lemma due to Dieudonné.

Lemma 1.2 (Dieudonné, [KMRT, Lemma 13.22]). Let q be a quadratic form of
even rank and d = disc(q). Let L = F (

√
d). Then G(q) ⊆ NL/F (L∗).

The following result of Merkurjev-Tignol extends Dieudonné’s lemma.

Lemma 1.3 ([MT, Th. A]). Let A be a central simple algebra of even degree
with an orthogonal involution σ. Let d = disc(σ) and let L = F (

√
d). Then

G+(A, σ) ⊆ NL/F (L∗).

Let q be a non-degenerate quadratic form of rank r over F . Let τq be the
adjoint involution on Mr(F ). Then Hyp(Mr(F ), τq) = Hyp(q), the subgroup of F ∗

generated by NL/F (L∗), with L varying over finite extensions of F where q becomes
hyperbolic. If r is odd, then Hyp(q) = 1.

Theorem 1.4 ([Me2, pp. 200]). Let A be a central simple algebra of odd degree
with an orthogonal involution σ. Let q be a quadratic form over F such that σ is
adjoint to q. Then G+(A, σ) = G(q) = Hyp(q).F ∗2 = Hyp(A, σ).F ∗2 = F ∗2.

We now record a result due to Knebusch which describes the group of spinor
norms of a quadratic form. Let q be a quadratic form over F and sn(q) denote the
subgroup of F ∗ generated by F ∗2 and representatives of the square classes in the
image of the spinor norm map sn : SO(q) → F ∗/F ∗2. For a central simple algebra
A over F , let Nrd : A → F denote the reduced norm map. For S ⊆ F ∗, we denote
by

〈
S

〉
, the subgroup generated by S in F ∗.

Theorem 1.5 (Knebusch’s norm principle, [L, Theorem VII.5.1]). For a quad-
ratic form q over F we have:

sn(q) =
〈
{NL/F (L∗) : L/F is a quadratic extension over F and qL is isotropic}

〉
.

The two results recorded below describe the group G(A, σ) in the case when σ
is unitary or symplectic under further assumptions on the degree of A.

Theorem 1.6 ([Me2, §2]). Let F be a field with char(F ) �= 2. Let A be a central
simple algebra over Z of odd degree with an involution σ of second kind with Zσ = F .
Then G+(A, σ) = G(A, σ) = Hyp(A, σ) = N(Z).

Theorem 1.7 ([Me2, §2, Lemma 3]). Let F be a field with char(F ) �= 2. Let A
be a central simple algebra over F of degree 2n with n odd. Let σ be a symplectic
involution on A. Then G+(A, σ) = G(A, σ) = Hyp(A, σ) = Nrd(A).
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The next results we record are local criteria for elements to be reduced norms
or spinor norms for formally real fields F with vcd(F ) ≤ 2.

Theorem 1.8 ([BP2, Theorem 2.1]). Let F be a formally real field with vcd(F ) ≤ 2.
Let Ω denote the set of orderings on F . Let A be a central simple algebra over F
and Av = A⊗F Fv, Fv denoting the real closure of F at v. Let λ ∈ F ∗ be such that
λ >v 0 at those orderings v ∈ Ω where Av is non-split. Then λ ∈ Nrd(A∗).

Theorem 1.9 ([BP2, Cor. 7.10]). Let F be a formally real field with vcd(F ) ≤ 2.
Let q be a quadratic form over F . Then sn(q) consists of elements of F ∗ which are
positive at each v ∈ Ω such that q is definite at Fv.

We say that a quadratic form q over F is locally isotropic if over each real closure
Fv, v ∈ Ω, the form q is isotropic.

Corollary 1.10. With notation as in 1.9, if is q locally isotropic, then sn(q) = F ∗.

Let ΓF denote the Galois group Gal(Fs/F ). For a discrete ΓF -module M , let
Hn(F, M) denote the Galois cohomology group Hn(Gal(Fs/F ), M). We now record
some results of Arason which we shall use in the paper.

Theorem 1.11 (Corollary 4.6, [A1]). Let Z = F (
√

δ) be a quadratic extension of
F . Then we have a long exact sequence of abelian groups

· · · → Hn(F, µ2)
res−→ Hn(Z, µ2)

cores−→ Hn(F, µ2)
⋃

n,1(δ)−→ Hn+1(F, µ2) → · · ·
where res and cores denote the restriction and corestriction maps respectively.

In view of 1.11 and the isomorphism H2(F, µ2) � 2 Br(F ), we have the following.

Proposition 1.12. Let Z = F (
√

δ) be a quadratic extension of F and let A be a
central simple algebra over Z with exp(A) = 2 and coresZ/F ([A]) = 0 ∈ H2(F, µ2).
Then there exists a central simple algebra A0 over F such that A0 ⊗F Z is Brauer
equivalent to A.

We say that a field extension L/F is a quadratic tower over F if there exist
fields Fi such that F = F0 ⊆ F1 ⊆ · · · ⊆ Fr = L and each Fi/Fi−1 is a quadratic
extension for 1 ≤ i ≤ r. We denote by F2(F ) the set of quadratic towers of F in
an algebraic closure of F . Let I(F ) denote the fundamental ideal of the Witt ring
W (F ) of F . For each n ≥ 1, we denote by In(F ), the ideal I(F )n.

Lemma 1.13 ([A1, Satz 3.6]). Let I3(F ) = 0 and L/F be a quadratic tower. Then
I3(L) = 0.

Theorem 1.14 ([A2, Prop. 2]). Let F be a field with cd(F ) ≤ 2. Then I3(F ) = 0.

A non-trivial element χ ∈ Hr(F, µ2) is called (−1)-torsion-free if for every s ≥ 1,
the element χ∪ (−1)∪ (−1)∪· · ·∪ (−1) ∈ Hr+s(F, µ2) is non-trivial. The following
is a consequence of 1.11

Proposition 1.15. Let F be a field with vcd(F ) ≤ n. Then Hn+1(F, µ2) is (−1)-
torsion-free.

The following lemma relates the conditions vcd(F ) ≤ 2 and I3(F ) being torsion-
free.

Lemma 1.16 ([BP2, Lemma 2.4]). Let F be a field with virtual cohomological
dimension at most two. Then I3(F ) is torsion-free.
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Proof. Since vcd(F ) ≤ 2, by [AEJ] the invariants er : Ir(F ) → Hr(F, µ2) have
kernel Ir+1(F ) for each r ≥ 0 and Hr(F (

√
−1), µ2) = 0 for r ≥ 3. Then it is

evident from Arason exact sequence 1.11 for the quadratic extension F (
√
−1)/F

that Hr(F, µ2)
∪(−1)−→ Hr+1(F, µ2) is an isomorphism for r ≥ 3. Let q ∈ I3(F ) be

a torsion-element. Then 2s.q = 0 ∈ W (F ) for some integer s ≥ 0. As a conse-

quence e3(q) ∪ (−1) ∪ (−1) ∪ · · · ∪ (−1) = 0 ∈ H3+s(F, µ2). Since Hr(F, µ2)
∪(−1)−→

Hr+1(F, µ2), r ≥ 3, are isomorphisms, we conclude that e3(q) = 0; i.e. q ∈
ker(e3) = I4(F ). By a similar argument q ∈ Ir(F ) for each r ≥ 3 and hence
q ∈

⋂
r Ir(F ). By a theorem of Arason-Pfister [L, Cor. X.3.2], q = 0 ∈ W (F ) and

hence I3(F ) is torsion-free. �

The following result is a weaker form of [Se, Prop. 10, §II.4.1].

Theorem 1.17. Let F be a field and cd(F ) �= vcd(F ). Then F has orderings.

2. Some norm principles

Let F be a field with char(F ) �= 2 and I3(F ) = 0. Let A be a central simple
algebra with exp(A) = 2. Then by [Me1], there are quaternion algebras Hi, 1 ≤
i ≤ r, such that A ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr. We define an integer r(A) associated to
A as follows:

r(A) := min{r : A ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr}.
If A is split, then we define r(A) = 0. Given a central simple algebra B over a field
Z with [Z : F ] ≤ 2 and a field extension L of F , we set BL = B ⊗F L.

Proposition 2.1. Let I3(F ) = 0 and A be a central simple algebra over F . If
exp(A) is a power of 2, then

F ∗ =
〈
{NL/F (L∗) : L is a quadratic tower of F with AL split}

〉
= Nrd(A∗).

In fact, for each λ ∈ F ∗ there is a quadratic tower L/F and α ∈ L∗ such that
λ = NL/F (α).

Proof. By the classical norm principle for reduced norms, over any field we have
the inclusion〈

{NL/F (L∗) : L is a quadratic tower of F with AL split}
〉
⊆ Nrd(A∗).

Thus to complete the proof, it suffices to show that under the assumption I3(F ) = 0,

F ∗ ⊆
〈
{NL/F (L∗) : L is a quadratic tower of F with AL split}

〉
.(1)

Let exp(A) = 2m. We prove the lemma by induction on m. Suppose m = 1. Then
exp(A) = 2 and hence by Merkurjev’s Theorem [Me1], we write A ∼ H1 ⊗ H2 ⊗
· · · ⊗ Hr, where r = r(A) and each Hi is a quaternion algebra over F . We proceed
further by induction on r. If r = 1 the result holds by [BP2, Prop. 2.7]. Let r ≥ 2
and λ ∈ F ∗. By [BP2, Prop. 2.7] there exists a quadratic extension L of F which
splits H1 and λ ∈ NL/F (L∗). Then r(AL) < r and by 1.13 we have I3(L) = 0.
Induction on r leads to (1).

Suppose that m ≥ 2. Then exp(A ⊗F A) = 2m−1. Let λ ∈ F ∗. By induction,
there exists a quadratic tower L over F and α ∈ L∗ such that λ = NL/F (α) and
(A ⊗F A)L is split. Then exp(AL) = 2 and by 1.13, I3(L) = 0. By the previous
case, there exists a quadratic tower M of L with α ∈ NM/L(M∗) and AM is split.
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Thus M is a quadratic tower of F such that λ ∈ NM/F (M∗) and AM is split. This
completes the proof. �

Proposition 2.2. Let I3(F ) = 0 and let Z be a quadratic extension of F . Let A
be a central simple algebra over Z such that coresZ/F ([A]) = 0 and exp(A) = 2m.
Then for each λ ∈ F ∗, there exists a quadratic tower L/F such that λ ∈ NL/F (L∗)
and AL is split.

Proof. We prove this by induction on m. Suppose m = 1. Since exp(A) = 2 and
coresZ/F ([A]) = 0, by 1.12 there exists a central simple algebra A0 of exponent 2
over F such that A ∼ A0 ⊗F Z. Let λ ∈ F ∗. Since I3(F ) = 0, by 2.1, there exists
a quadratic tower L/F such that (A0)L is split and λ ∈ NL/F (L∗). Clearly the
extension L splits A and the proposition follows.

Suppose m ≥ 2. Let λ ∈ F ∗. Since exp(A ⊗Z A) = 2m−1, by induction there
exists a quadratic tower L/F such that λ = NL/F (α) for some α ∈ L∗, and
(A ⊗Z A)L splits. Clearly exp(AL) = 2, and by the previous case we have a
quadratic tower M/L such that AM splits and α ∈ NM/L(M∗). Then M/F is a
quadratic tower such that λ ∈ NM/F (M∗) and AM is split. This completes the
proof. �

We shall now describe norm principles for fields F with vcd(F ) ≤ 2. If F has no
orderings by 1.17, cd(F ) ≤ 2, and the results follow from the previous discussion.
We shall assume in the rest of the section that F has orderings. We denote by Ω
the set of orderings on F . If A is a central simple algebra over F , then A is said to
be locally split if A ⊗F Fv = Av is split for each v ∈ Ω.

Proposition 2.3. Let vcd(F ) ≤ 2 and let A be a central simple algebra over F
with exp(A) = 2m. Then

F ∗ =
〈
{NM/F (M∗) : M ∈ F2(F ) and index(AM ) ≤ 2}

〉
.

Proof. We prove the proposition by induction on m. Let m = 1. Then exp(A) = 2
and we proceed by further induction on r(A). The statement is obvious if r(A) ≤ 1.
Let r(A) ≥ 2 and A ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr with r = r(A) and Hi, 1 ≤ i ≤ r,
quaternion algebras over F . Let H1 = (a, b) and H2 = (c, d). Then to the algebra
H1 ⊗ H2 is associated the Albert form (cf. [KMRT, §16.A])

q = 〈−a,−b, ab, c, d,−cd〉.
Since disc(q) = 1 and dim(q) = 6, the form q is isotropic at Fv for each v ∈ Ω.
Thus by 1.10, sn(q) = F ∗ and by 1.5 we have

F ∗ = sn(q) =
〈
{NL/F (L∗) : L is a quadratic extension of F and qL is isotropic}

〉
.

Let L be a quadratic extension of F with qL isotropic. By Albert’s Theorem
[KMRT, Th. 16.5], we have r((H1 ⊗ H2)L) ≤ 1. Thus r(AL) < r(A) and by
induction we have

L∗ =
〈
{NM/L(M∗) : M ∈ F2(L) and index(AM ) ≤ 2}

〉
,

and therefore taking norms from L to F we have

F ∗ = sn(q) =
〈
{NL/F (L∗) : L is a quadratic extension of F and qL is isotropic}

〉
⊆

〈
{NM/F (M∗) : M ∈ F2(F ) and index(AM ) ≤ 2}

〉
.
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This completes the case m = 1. Now let m ≥ 2. Then exp(A ⊗F A) = 2m−1 and
by induction

F ∗ =
〈
{NL/F (L∗) : L ∈ F2(F ) and index((A ⊗F A)L) ≤ 2}

〉
.(2)

Let L ∈ F2(F ) be such that index((A ⊗F A)L) ≤ 2. Since the Brauer group of a
real-closed field is isomorphic to Z/2Z, it follows that (A ⊗F A)L is locally split.
Thus by 1.8, Nrd((A ⊗F A)L) = L∗. Since index((A ⊗F A)L) ≤ 2, we have

Nrd((A ⊗F A)L)(3)

⊆
〈
{NN/L(N∗) : N is a quadratic extension of L and (A ⊗F A)N is split}

〉
.

Let N be a quadratic extension of L such that (A⊗F A)N is split. Then exp(AN ) = 2
and by the case m = 1

N∗ =
〈
{NM/N (M∗) : M ∈ F2(N) and index((AM ) ≤ 2}

〉
.(4)

Now it is clear from (2), (3) and (4) that

F ∗ =
〈
{NM/F (M∗) : M ∈ F2(F ) and index(AM ) ≤ 2}

〉
. �

We refine 2.3 to the following:

Proposition 2.4. Let F be a field with vcd(F ) ≤ 2. Let A be a central simple
algebra over F with exp(A) = 2m for some m ≥ 1. Then,

F ∗ =
〈
{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}

〉
.

Proof. Let L be a quadratic tower over F such that index(AL) ≤ 2. Then AL ∼
(a, b), a, b ∈ L∗. Let ΩL denote the set of orderings on L. For each w ∈ ΩL, the
quadratic form q′ =

〈
− 1,−a,−b, ab

〉
is isotropic over Lw, where Lw denotes the

real closure of L at w. Therefore by [BP2, Prop. 7.7] we have sn(q′) = L∗. Thus,
in view of 1.5 we have:

L∗ =
〈
{NM/L(M∗) : M is a quadratic extension of L and q′M is isotropic }

〉
.

Let M be a quadratic extension of L such that q′M is isotropic. Then the form〈
− a,−b, ab

〉
M

represents 1, and we can write:
〈
− a,−b, ab

〉
M

�
〈
1, x, y

〉
M

; with
x, y ∈ M∗. Comparing the discriminants, we have

〈
− a,−b, ab

〉
M

�
〈
1, x, x

〉
M

.
Thus

〈
1,−a,−b, ab

〉
M

�
〈
1, 1, x, x

〉
M

and (a, b)M � (−1,−x). Thus,

L∗ =
〈
{NM/L(M∗) : M is a quadratic extension of F and q′M is isotropic }

〉
⊆

〈
{NM/L(M∗) : M ∈ F2(L) and AM ∼ (−1,−x) for some x ∈ M∗}

〉
and

NL/F (L∗) ⊆
〈
{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}

〉
.

This together with 2.3 gives

F ∗ ⊆
〈
{NM/F (M∗) : M ∈ F2(F ) and AM ∼ (−1,−x) for some x ∈ M∗}

〉
.

This completes the proof. �
Corollary 2.5. Let vcd(F ) ≤ 2. Let A1 and A2 be central simple algebras over F
with exp(Ai) a power of 2 for i = 1, 2. Then we have:

F ∗ =
〈
{NM/F (M∗) : M ∈ F2(F ) and A1M ∼ (−1,−x),

A2M ∼ (−1,−y) for some x, y ∈ M∗}
〉
.

�
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The following is a refinement of the surjectivity of the reduced norm (Theorem
1.8) for locally split algebras with centre a quadratic extension of F .

Proposition 2.6. Let vcd(F ) ≤ 2 and let F have orderings. Let Ω denote the
set of orderings on F . Let Z = F (

√
δ) be a quadratic extension of fields. Let A

be a central simple Z-algebra which is split at each v ∈ Ω. Further assume that
exp(A) = 2m for some integer m and coresZ/F (A) = 0. Then for each λ ∈ F ∗,
there exist extensions Ei over F and λi ∈ E∗

i such that each A ⊗F Ei is split and
λ =

∏
i NEi/F (λi).

Proof. We proceed by induction on m. Let m = 1. Since coresZ/F (A) = 0, by 1.12
there is a central simple algebra A0 over F with exp(A0) = 2 and A ∼ A0 ⊗F Z.
By [Me1], there are quaternion algebras Hi; 1 ≤ i ≤ r = r(A0) over F such that
A0 ∼ H1 ⊗ H2 ⊗ · · · ⊗ Hr. Suppose r = 1. Then A0 ∼ H1 = (a, b) for some
a, b ∈ F ∗. Let q denote the quadratic form 〈1,−a,−b, abδ〉 over F . Then by [CTSk,
Prop. 2.3] we have sn(q) = Nrd((H1 ⊗F F (

√
δ))∗) ∩ F ∗. Since A is locally split,

by 1.8 Nrd((H1 ⊗F F (
√

δ))∗) = Nrd(A∗) = Z∗. Therefore sn(q) = F ∗. Thus by
1.5, for each λ ∈ F ∗, there exist quadratic extensions Ei/F and λi ∈ E∗

i such that
each qEi

is isotropic and λ =
∏

i NEi/F (λi). Further A ⊗F Ei ∼ (a, b) ⊗Ei
Ei(

√
δ)

and the norm form of (a, b) ⊗Ei
Ei(

√
δ) is isometric to qEi(

√
δ), which is isotropic.

It follows therefore that each A ⊗F Ei is split. Thus F ∗ is generated by the norms
from those extensions of F where the algebra A is split.

Now suppose r ≥ 2. Then by 2.3 we have

F ∗ =
〈
{NL/F (L∗) : index((A0)L) ≤ 2}

〉
.

The proposition follows immediately from the case r = 1.
Let m ≥ 2. Then exp(A ⊗Z A) = 2m−1 and at each v ∈ Ω the algebra

(A ⊗Z A) ⊗F Fv

is split since Br(Fv) = Z/2Z. Thus by induction, F ∗ is generated by norms from
extensions Mi over F such that the algebra (A ⊗Z A) ⊗F Mi splits. It is clear
that exp(A ⊗F Mi) = 2. Thus by the exponent 2 case, it follows that each M∗

i

is generated by norms from extensions Ei of Mi such that A ⊗F Ei is split. We
conclude therefore, that F ∗ is generated by norms from those extensions of F where
A splits. �

3. Fields with cd(F ) ≤ 2

In this section, we prove that if cd(F ) ≤ 2, then for adjoint classical groups G
of type 2An, Cn and Dn, G(F )/R = 0. We begin with the result leading to the
triviality of G(F )/R in the Cn case.

Theorem 3.1. Let F be a field with char(F ) �= 2 and I3(F ) = 0. Let A be a
central simple algebra of degree 2n over F and let σ be a symplectic involution on
A. Then Hyp(A, σ) = F ∗.

Proof. Let λ ∈ F ∗. Since exponent of A is 2 and I3(F ) = 0, by 2.1, there exists
a quadratic tower L/F such that L splits A and λ ∈ NL/F (L∗). The involution
σL is adjoint to a skew-symmetric form hL over L which is hyperbolic. Therefore
λ ∈ Hyp(A, σ). �
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Let q be a quadratic form over F of rank 2n. Let σ be the involution on M2n(F )
which is adjoint to q. We denote by C(q) the Clifford invariant of q.

Proposition 3.2. If I3(F ) = 0, then G(q) ⊆ Hyp(q).

Proof. We first assume that the discriminant of q is trivial. Let λ ∈ F ∗. The
algebra C(q) has exponent 2 and by 2.1, there exists a quadratic tower M of F
such that C(q) ⊗F M is split and λ ∈ NM/F (M∗). By 1.13, I3(M) = 0. Since qM

is an even dimensional quadratic form with trivial discriminant and trivial Clifford
invariant, in view of [EL, Th. 3] qM is hyperbolic and hence λ ∈ Hyp(q). Thus
Hyp(q) = F ∗.

Now suppose that disc(q) is non-trivial, d ∈ F ∗ is a representative of the square
class of disc(q) in F ∗/F ∗2 and L = F (

√
d). Let λ ∈ G(q). By 1.2, λ ∈ NL/F (L∗).

Since disc(qL) = 1, by the previous case L∗ = Hyp(qL). Taking norms we get
NL/F (L∗) ⊆ Hyp(q). Thus G(q) ⊆ Hyp(q). �

We prove a similar result when A is not split.

Theorem 3.3. Let I3(F ) = 0. Let A be a central simple algebra with an involution
σ of orthogonal type. Let d be the discriminant of σ and let L = F [X]/(X2 − d).
Then G+(A, σ) = Hyp(A, σ) = NL/F (L∗).

Proof. Since A supports an involution of first kind, exp(A) ≤ 2. Suppose first
that disc(σ) is trivial. Let M be a quadratic tower of F which splits A. By
the proof of 3.2 we have M∗ = Hyp(AM , σM ). Thus NM/F (M∗) ⊆ Hyp(A, σ).
This, together with 2.1 implies that F ∗ = Nrd(A∗) ⊆ Hyp(A, σ). Hence F ∗ =
Hyp(A, σ) = G+(A, σ). Since L = F × F , we have NL/F (L∗) = F ∗. Thus
G+(A, σ) = Hyp(A, σ) = NL/F (L∗).

Suppose that disc(σ) is not trivial. Let d ∈ F ∗ represent the class of disc(σ)
in F ∗/F ∗2. Let λ ∈ G+(A, σ). Then by 1.3, we have λ ∈ NL/F (L∗) where L =
F (

√
d). Clearly disc(σL) = 1 and by the previous case L∗ = Hyp(AL, σL). Thus

λ ∈ NL/F (L∗) ⊆ Hyp(A, σ). Thus G+(A, σ) ⊆ NL/F (L∗) ⊆ Hyp(A, σ). By 1.1,
Hyp(A, σ).F ∗2 ⊆ G+(A, σ). Hence G+(A, σ) = Hyp(A, σ) = NL/F (L∗). �

Let Z be a quadratic extension of F and let A be a central simple algebra over Z
with an involution σ of the second kind such that Zσ = F . In the next lemma, we
consider the case where A splits and the involution σ is adjoint to a Z/F -hermitian
form h. In view of 1.6, we further assume that h has even rank; i.e. deg(A) is even.

Lemma 3.4. Let I3(F ) = 0, let A be split and let σ be an involution of the second
kind on A such that Zσ = F . Then Hyp(A, σ) = F ∗.

Proof. Let Z = F (
√

δ). Let qh be the quadratic form over F defined by qh(x) =
h(x, x). Then qh � 〈1,−δ〉 ⊗ q [Sc, pp. 349, Remark 1.3] for some quadratic form
q over F having the same rank as h, which is even. Therefore qh ∈ I2(F ) and by
a theorem of Jacobson [MH, pp. 114], the form h is hyperbolic over an extension
M of F if and only if the quadratic form qh is hyperbolic over M . Let C denote
the Clifford algebra of qh. Let λ ∈ F ∗. By 2.1, there exists a quadratic tower M
over F such that CM is split and λ ∈ NM/L(M∗). Since I3(M) = 0, by [EL, Th.
3], (qh)M is hyperbolic and hence the hermitian form hM is hyperbolic. Therefore
NM/F (M∗) ⊆ Hyp(A, σ). Thus Hyp(A, σ) = F ∗. �

Theorem 3.5. If I3(F ) = 0 and exp(A) = 2m, then Hyp(A, σ) = F ∗.
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Proof. Since A supports an involution σ of the second kind, by [Sc, Th. 9.5] we
have coresZ/F (A) = 0. Therefore by 2.2, given λ ∈ F ∗ there exists a quadratic
tower L/F such that AL splits and λ ∈ NL/F (L∗). Since AL is split, by 3.4,
L∗ = Hyp(AL, σL). Taking norms we conclude that λ ∈ Hyp(A, σ). Therefore
Hyp(A, σ) = F ∗. �

Theorem 3.6. Let cd(F ) ≤ 2 and let Z be a quadratic extension of F . Let A be
a central simple algebra of even degree over Z with an involution σ of the second
kind such that Zσ = F . Then Hyp(A, σ).F ∗2 = F ∗.

Proof. By [BP1, Lemma 3.3.1], there exists an odd degree extension L over F such
that exp(A⊗F L) is a power of 2. Since the condition cd(F ) ≤ 2 is preserved under
finite extensions of fields [Ar, Th 2.1], we have cd(L) ≤ 2. By 1.14 I3(L) = 0, and
by 3.5 Hyp(AL, σL) = L∗. Hence NL/F (L∗) ⊆ Hyp(A, σ). Let λ ∈ F ∗ and let [L :
F ] = 2s + 1. Then λ2s+1 = NL/F (λ) ∈ Hyp(A, σ) and we have λ ∈ Hyp(A, σ).F ∗2.
This implies that Hyp(A, σ).F ∗2 = F ∗. �

Theorem 3.7. If cd(F ) ≤ 2 and G an adjoint group of classical type defined over
F , then G(F )/R = 0.

Proof. A classical adjoint group G is a direct product of groups RLi/F (Gi), where
Li/F are finite extensions and Gi are absolutely simple adjoint groups of classical
type defined over Li [T, 3.1.2]. Moreover, Gi(Li)/R = RLi/F (Gi)(F )/R and R-
equivalence commutes with direct products [CTS, pp. 195]. In view of this, it
suffices to prove the theorem for an absolutely simple classical adjoint group G
defined over F . By [We] such an algebraic group is isomorphic to PSim+(A, σ) for
a central simple algebra A over a field Z, [Z : F ] ≤ 2, with an involution σ. In view
of 1.1 and 1.14, the result follows in the 2An case from 3.6 and 1.6, in the Bn case
from 1.4, in the Cn case from 3.1 and 1.7, and in the Dn case from 3.3. �

Remark. Theorem 3.7 for groups of types An and Cn also follows from [CTGP,
Cor. 4.11], using the fact that G(F )/R = 0 if G is simply connected of type An or
Cn, and [G, pp. 222].

4. Fields with vcd(F ) ≤ 2 : Symplectic groups

In this section F denotes a formally real field with vcd(F ) ≤ 2, and Ω the set
of orderings on F . Let A be a central simple algebra over F of degree 2n and let
σ be an involution of symplectic type on A. In view of 1.7, we assume that n is
even. We say that σ is locally hyperbolic if for each v ∈ Ω, the involution σv on
Av = A ⊗F Fv is hyperbolic, Fv denoting the real closure of F at v.

Proposition 4.1. Let A be a central simple algebra over F of degree 2n, where n
is an even integer. Let σ be a symplectic involution on A. If σ is locally hyperbolic,
then Hyp(A, σ) = F ∗.

Proof. First assume that A = Mn(H), where H is a quaternion algebra over F .
Let bar denote the canonical involution on H and h a hermitian form of rank n
over (H,−) such that σ is adjoint to h. Since σ is locally hyperbolic, so is h and
hence sgn(h) = 0. Thus h has even rank and trivial signature, and by [BP2, Th.
6.2], the form h itself is hyperbolic. Thus Hyp(A, σ) = F ∗.
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Suppose A is arbitrary. Since A supports an involution, exp(A) = 2 [Sc, Th.
8.4] and by 2.3, we have

(∗) F ∗ =
〈
{NM/F (M∗) : index(AM ) ≤ 2}

〉
.

Let M be a finite extension of F such that index(AM ) ≤ 2. Then AM � Mn(H)
where H is a quaternion algebra over M . Since σ is locally hyperbolic, so is σM ,
and by the previous case, M∗ = Hyp(AM , σM ). Therefore NM/F (M∗) ⊆ Hyp(A, σ)
and in view of (∗) we get Hyp(A, σ) = F ∗. �

Theorem 4.2. Let F be a formally real field with vcd(F ) ≤ 2. Let A be a central
simple algebra over F of degree 2n and let σ be a symplectic involution on A. Then
G(A, σ) ⊆ Hyp(A, σ).

Proof. In view of 1.7, we assume that n is even. Let λ ∈ G(A, σ) and K = F (
√
−λ).

Let ΩK denote the set of orderings on K. For each w ∈ ΩK , λ ≡ −1 modulo K∗2
w

is a similarity factor for σK , and hence sgn(σK) = 0. Further deg(A) is divisible
by 4 and hence the involution σK is locally hyperbolic. Thus by 4.1, we have
Hyp(AK , σK) = K∗. Therefore

λ = NK/F (
√
−λ) ∈ NK/F (K∗) = NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ). �

5. Fields with vcd(F ) ≤ 2 : Unitary groups

Let F be an arbitrary field with char(F ) �= 2. Let Z = F (
√

δ) be a quadratic
extension of F . Let A be a central simple algebra over Z and let σ be an involution
on A such that Zσ = F . In view of 1.6, we assume throughout this section that A
has even degree.

Let deg(A) = 2m and D = D(A, σ) denote the discriminant algebra of (A, σ)
(cf. [KMRT, §10.E]). The algebra D is a central simple algebra over F and carries
an involution σ of the first kind, which is of symplectic type if m is odd and of
orthogonal type if m is even [KMRT, Prop. 10.30]. For 1 ≤ i ≤ 2m, let

∧i A be
the ith exterior power of A (cf. [KMRT, §10 (10.4)]). By [KMRT, Prop. 14.3],
there is a homogeneous polynomial map

∧i : A →
∧i A of degree i, 1 ≤ i ≤ 2m. If

A = EndF (V ), then
∧i

A = EndF (ΛiV ) and
∧i(f) = Λi(f), the ith exterior power

of the linear map f ∈ EndF (V ).

Theorem 5.1. Let F be a field with char(F ) �= 2. Let A be a central simple algebra
of degree 2m over a field Z with m odd. Let σ be an involution of the second kind
on A such that Zσ = F . Let D = D(A, σ) be the discriminant algebra of (A, σ).
Then G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗).

Proof. Let x ∈ G(A, σ) and g ∈ Sim(A, σ) be such that µ(g) = σ(g)g = x. Then
NZ/F (Nrd(g)) = µ(g)2m and by Hilbert Theorem-90, there exists α ∈ Z∗ such that
µ(g)−m Nrd(g) = α−1α, where bar denotes the non-trivial automorphism of Z over
F . By [KMRT, Lemma 14.6], we have

σ(α−1 ∧m g)α−1 ∧m g = NZ/F (α)−1µ(g)m.

Since m is odd, x = µ(g) ∈ G(D, σ).NZ/F (Z∗). Thus

(∗) G(A, σ) ⊆ G(D, σ).NZ/F (Z∗).
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Let y ∈ G(D, σ) be arbitrary and let h ∈ Sim(D, σ) be such that µ(h) = σ(h)h =
y. Since m is odd, the involution σ is of symplectic type and by [KMRT, Prop.
12.23] we have µ(h)m = Nrd(h). Again, since m is odd, we have y = µ(h) ∈
Nrd(D∗).F ∗2. Thus

(∗∗) G(D, σ) ⊆ Nrd(D∗).F ∗2

and combining the inclusions (∗) and (∗∗) above, we get

G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗).

This completes the proof. �
In this section, from now onwards we assume that vcd(F ) ≤ 2, F has orderings

and denote by Ω the set of orderings on F . A quadratic form q over F is called
locally hyperbolic if q is hyperbolic at every real closure Fv, v ∈ Ω.

Lemma 5.2. If q is a locally hyperbolic quadratic form of even rank and trivial
discriminant over F , Hyp(q) = F ∗.

Proof. Since q is locally hyperbolic the Clifford algebra C(q) of q is locally split.
Thus by 1.8 we have Nrd(C(q)∗) = F ∗. Let λ ∈ F ∗ and let L/F be a finite
extension such that λ ∈ NL/F (L∗) and C(q)L is split. Then qL has even dimension,
trivial discriminant, trivial Clifford invariant and sgn(qL) = 0. Therefore by [EL,
Th. 3], the form qL is hyperbolic and λ ∈ NL/F (L∗) ∈ Hyp(q). �

Proposition 5.3. Let Z = F (
√

δ) be a quadratic extension. Let A = Mr(Z),
where r is an even positive integer, support a locally hyperbolic Z/F -involution σ.
Then Hyp(A, σ) = F ∗.

Proof. Let the involution σ be adjoint to a Z/F -hermitian form h. Then the rank
of h is r. Let qh be the quadratic form over F given by qh(x) = h(x, x). Then
qh � 〈1,−δ〉 ⊗ q [Sc, pp. 349, Remark 1.3], where q is a quadratic form over F of
the same rank as that of h, which is even. Therefore qh ∈ I2(F ). By Jacobson’s
theorem [MH, p. 114], the form hM is hyperbolic if and only if the quadratic
form (qh)M is hyperbolic. It follows that Hyp(A, σ) = Hyp(qh). Since h is locally
hyperbolic, the form qh is locally hyperbolic as well. By 5.2, we have Hyp(qh) = F ∗.
Thus Hyp(A, σ) = Hyp(qh) = F ∗. �

The following is a consequence of 5.3 and 2.6.

Proposition 5.4. Let A be a locally split central simple Z-algebra and let σ be a
locally hyperbolic Z/F -involution on A. Let exp(A) = 2m. Then Hyp(A, σ) = F ∗.

Proof. Since A supports an involution σ of the second kind with Zσ = F , by [Sc,
Th. 9.5], coresZ/F (A) = 0. Thus by 2.6 we have

F ∗ =
〈
{NL/F (L∗) : AL is split }

〉
.

Let L/F be an extension which splits A. By 5.3, Hyp(AL, σL) = L∗, and taking
norm from L/F , we conclude that Hyp(A, σ) = F ∗. �
Proposition 5.5. Let A be a central simple algebra over Z of degree 2m, where m
is odd. Let σ be a Z/F -involution on A with sgn(σ) = 0. Let D = D(A, σ) be the
discriminant algebra of (A, σ). Then Nrd(D∗) ⊆ Hyp(A, σ).F ∗2. Further

G(A, σ) = Nrd(D∗).NZ/F (Z∗) = Hyp(A, σ).NZ/F (Z∗).
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Proof. We first show that Nrd(D∗) ⊆ Hyp(A, σ).F ∗2. Assume first that exp(A)
is a power of 2. Since deg(A) = 2m with m odd, index(A) = exp(A) = 2 and
A = Mm(H) for some quaternion algebra H over Z. By [KMRT, §10.4], [KMRT,
Prop. 10.30] and the hypothesis that m is odd, it follows that

D ⊗F Z �
m∧

(Mm(H)) ∼ H⊗m ∼ H.

Thus if M is a finite extension of F such that DM is split, then HM is split and
sgn(σM ) = 0. Thus by 5.3, Hyp(AM , σM ) = M∗ and taking norms, NM/F (M∗) ⊆
Hyp(A, σ). In view of the classical norm principle for reduced norms, Nrd(D∗) ⊆
Hyp(A, σ).

Now suppose that exp(A) is arbitrary. By [BP1, Lemma 3.3.1], there exists an
odd degree extension L/F such that exp(AL) is a power of 2. Let λ ∈ Nrd(D∗).
Then λ ∈ Nrd(D∗

L). By the previous case, λ ∈ Hyp(AL, σL). Taking norm from
L/F and using the hypothesis that m is odd, we conclude that λ ∈ Hyp(A, σ).F ∗2.
This proves the first assertion of 5.5. It follows immediately that

(∗) Nrd(D∗).NZ/F (Z∗) ⊆ Hyp(A, σ).NZ/F (Z∗).

From 5.1, it is clear that

(∗∗) G(A, σ) ⊆ Nrd(D∗).NZ/F (Z∗)

and further by 1.1, Hyp(A, σ).NZ/F (Z∗) ⊆ G(A, σ). In view of this and the inclu-
sions (∗) and (∗∗) we conclude that

G(A, σ) = Nrd(D∗).NZ/F (Z∗) = Hyp(A, σ).NZ/F (Z∗). �

Theorem 5.6. Let F be a field with vcd(F ) ≤ 2 and let Z be a quadratic extension
of F . Let A be a central simple algebra over Z of degree 2m, where m is odd. Let
σ be a Z/F -involution on A. Then G(A, σ) = Hyp(A, σ).NZ/F (Z∗).

Proof. Let λ ∈ G(A, σ). Let D = D(A, σ) be the discriminant algebra of (A, σ). By
5.1, λ ∈ Nrd(D∗).NZ/F (Z∗). Let λ1 ∈ Nrd(D∗) and α ∈ NZ/F (Z∗) be such that
λ = λ1α. Since NZ/F (Z∗) ⊆ Hyp(A, σ) ⊆ G(A, σ), it follows that α ∈ G(A, σ).
Let K = F (

√
−λ1). Then sgn(σK) = 0 and by 5.5, Nrd(D∗

K) ⊆ Hyp(AK , σK).K∗2.
Further, since λ1 ∈ Nrd(D∗

K) and λ1 ≡ −1 mod K∗2, DK is locally split, and by
1.8, Nrd(D∗

K) = K∗. Thus Hyp(AK , σK).K∗2 = K∗. Taking norms, we get

λ1 ∈ NK/F (K∗) = NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ).

Thus λ = λ1α ∈ Hyp(A, σ).NZ/F (Z∗). This completes the proof. �

Let Σ(F ) denote the set of elements of F which are positive at all orderings of
F .

Lemma 5.7. Let α, δ ∈ F ∗. Then we have:

F ∗ =
〈
{NL/F (L∗) :L/F is a quadratic extension such that there exists

uL ∈ L(
√

δ) with NL(
√

δ)/L(uL) = 1 and αuL ∈ Σ(L(
√

δ))}
〉
.

Proof. Since the quadratic form φ = 〈1, δ,−α, δα〉 is locally isotropic, by 1.5 and
1.10,
(∗)
F ∗ = sn(φ) =

〈
{NL/F (L∗) : L/F is a quadratic extension and φL is isotropic}

〉
.
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At an extension L/F where φ is isotropic, we choose a, b, c, d ∈ L∗ such that
a2 + δb2 − αc2 + δαd2 = 0. If c2 + δd2 = 0 or a2 + δb2 = 0, clearly L(

√
δ)

has no ordering and thus Σ(L(
√

δ)) = L(
√

δ)∗. In this case, we may take uL =
1. Otherwise, we let θ = c + d

√
δ and uL = θ−1θ, where θ = c − d

√
δ. It is

immediate that TrL(
√

δ)/L(uL) = 2(c2 + δd2)(c2 − δd2)−1 and NL(
√

δ)/L(uL) = 1.
Since a2 + δb2 −αc2 + δαd2 = 0 and both c2 + δd2 and c2 − δd2 are units, it follows
that

α =
(
(a2 + δb2)(c2 + δd2)−1

) (
(c2 + δd2)(c2 − δd2)−1

)
.

Thus

2αTrL(
√

δ)/L(uL) = (a2+δb2)(c2+δd2)−1
(
TrL(

√
δ)/L(uL)

)2

∈ NL(
√
−δ)/L(L(

√
−δ))

and hence the quaternion algebra
(
2αTrL(

√
δ)/L(uL),−δ

)
over L is split.

Let v be an ordering on L which extends to an ordering w on L(
√

δ). Then δ >v 0
and hence 2αTrL(

√
δ)/L(uL) >v 0. Let bar denote the non-trivial automorphism of

L(
√

δ) over L. Since αuLαuL = α2 >v 0, both αuL and αuL have the same sign at
w. But αTrL(

√
δ)/L(uL) = α(uL +uL) >v 0. Thus αuL >w 0. This is true for every

ordering of L(
√

δ). Thus αuL ∈ Σ(L(
√

δ)) and NL(
√

δ)/L(uL) = 1. This completes
the proof of the lemma. �

Let D be a division algebra with centre Z and let τ be an involution on D of
the second kind. Let Zτ = F . Let (V, h) be a non-degenerate hermitian space
over (D, τ ). Then the integer dimD(V ) is said to be the rank of h and is denoted
by rank(h). Let rank(h) = n. For a choice {e1, e2, · · · , en} of a D-basis of V ,
the form h determines a matrix Mh = (h(ei, ej)) ∈ Mn(D). The matrix Mh is
τ -hermitian symmetric. Let r = n deg(D). We define the discriminant of h to be
(−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/NZ/F (F ∗) and denote it by disc(h).

We refine the notion of discriminant to the notion of Discriminant as follows:
Let Mh ∈ Mn(D) be a matrix as above, representing the hermitian form h. Let

M ′
h ∈ Mn(D) also represent h. Then there exists an invertible matrix T ∈ Mn(D)

such that
Nrd(M ′

h) = Nrd(Mh) Nrd(T )τ (Nrd(T )).

Thus we have the following well defined notion of Discriminant:

Disc(h) = (−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/NZ/F (Nrd(D∗))

where r = n deg(D).
We now quote a classification result for hermitian forms over division algebras

with an involution of the second kind over fields with vcd(F ) ≤ 2.

Theorem 5.8 ([BP2, Theorem 4.8]). Let F be a field with vcd(F ) ≤ 2 and let D be
a division algebra with an involution τ of the second kind such that (centre(D))τ =
F . Let h be a hermitian form over (D, τ), Then h is hyperbolic if and only if
rank(h) is even, Disc(h) is trivial and h has trivial signature.

Lemma 5.9. Let D be a central division algebra over Z, τ be a Z/F -involution
over D and h be a hermitian of rank 2s over (D, τ). Let disc(h) = 1. Then

F ∗ =
〈
{NM/F (M∗) : Disc(hM ) = 1}

〉
.
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Proof. Let Mh ∈ M2s(D) be a matrix representing h. Since disc(h) = 1 ∈
F ∗/NZ/F (Z∗), we have Nrd(Mh) = d ∈ NZ/F (Z∗). Let z ∈ Z be such that
d = NZ/F (z). Let β = TrZ/F (z) and γ = zβ−1. Let w be an ordering on Z
which extends an ordering v of F such that Dw is not split. Then Nrd(Mh) =
d = NZ/F (z) >w 0. Thus TrZ/F (z) = β >w 0 if and only if z >w 0. This implies
that γ = zβ−1 >w 0 and thus by 1.8, γ ∈ Nrd(D∗). Let x ∈ D∗ be such that
Nrd(x) = γ. Let

M ′
h =

⎛
⎜⎜⎝

1
1

.
x

⎞
⎟⎟⎠ Mh

⎛
⎜⎜⎝

1
1

.
τ (x)

⎞
⎟⎟⎠

t

.

Then Nrd(M ′
h) = (dβ−1)2 and we conclude that for a suitable choice of a matrix

Mh representing the hermitian form h, Nrd(Mh) = α2, α ∈ F ∗. Let λ ∈ F ∗. By
5.7, there exist quadratic extensions Li/F , λi ∈ L∗

i and ui ∈ Li(
√

δ), 1 ≤ i ≤ r,
such that λ =

∏
i NLi/F (λi), αui ∈ Σ(L(

√
δ)) and NLi(

√
δ)/L(ui) = 1. Then

α2 = NLi(
√

δ)/Li
(αui) ∈ NLi(

√
δ)/Li

(Nrd(DLi(
√

δ)))

and hence Disc(hLi
) = 1 for 1 ≤ i ≤ r. Thus λ ∈

〈
{NM/F (M∗) : Disc(hM ) = 1}

〉
and we conclude that F ∗ =

〈
{NM/F (M∗) : Disc(hM ) = 1}

〉
. �

The following propositions are used in the proof of 5.13, which is the main result
of this section.

Proposition 5.10. Let A � Mr(D) where D is a division algebra over Z and r is
even. Let σ be a locally hyperbolic Z/F -involution on A. Then Hyp(A, σ) = F ∗.

Proof. Let σ be adjoint to a hermitian form h of rank r. Let d ∈ F ∗/NZ/F (Z∗)
denote the discriminant of h. Since σ is locally hyperbolic, for each v ∈ Ω, the
quaternion algebra (δ, d) splits at Fv. Thus by 1.8, Nrd((δ, d)) = F ∗. Let λ ∈ F ∗.
There exists a finite extension E/F such that λ ∈ NE/F (E∗) and (δ, d) splits over
E. Then disc(hE) is trivial. By 5.9 we have

(∗) E∗ =
〈
{NM/E(M∗) : Disc(hM ) = 1}.

Let M/E be an extension such that Disc(hM ) = 1. Since σ is locally hyperbolic,
sgn(hM ) = 0. Thus by 5.8, the form hM is hyperbolic and Hyp(hM ) = M∗. Hence
by (∗), Hyp(hE) = E∗ and

λ ∈ NE/F (E∗) = NE/F (Hyp(hE)) ⊆ Hyp(h) = Hyp(A, σ)

which implies that Hyp(A, σ) = F ∗. This completes the proof. �

Proposition 5.11. Let A be a central simple algebra over Z with deg(A) ≡ 0(4).
Let exp(A) = 2m for some positive integer m. Let σ be a locally hyperbolic Z/F -
involution on A. Then Hyp(A, σ) = F ∗.

Proof. Suppose m = 1. Since coresZ/F (A) = 0, by 1.12 A ∼ A0 ⊗F Z for some
central simple F -algebra A0 with exp(A0) = 2. Let M be a finite extension of F such
that A0M ∼ H for some quaternion algebra H over M . Then AM = Mr(H ⊗F Z).
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Since deg(A) ≡ 0(4), the integer r is even. Thus by 5.10, Hyp(AM , σM ) = M∗. In
view of 2.4 we have

F ∗ =
〈
{NM/F (M∗) : A0M ∼ H for some quaternion algebra H over M}

〉
.

It follows that Hyp(A, σ) = F ∗.
Suppose m ≥ 2. Since Br(Zw) = Z/2Z for each ordering w ∈ ΩZ , the algebra

A ⊗Z A splits locally. Clearly exp(A ⊗Z A) = 2m−1 and coresZ/F (A ⊗Z A) = 0.
Let λ ∈ F ∗. By 2.6, there exist extensions Li/F , 1 ≤ i ≤ s, and λi ∈ L∗

i such that
each (A ⊗Z A) ⊗F Li is split and λ =

∏
i NLi/F (λi). Then exp(A ⊗F Li) = 2 for

each i and by the case m = 1, λi ∈ Hyp(ALi
, σLi

). Hence

λ =
∏

i

NLi/F (λi) ∈
∏

i

NLi/F (Hyp(ALi
, σLi

)) ⊆ Hyp(A, σ),

and it follows that Hyp(A, σ) = F ∗. �

Proposition 5.12. Let A be a central simple algebra over Z with deg(A) ≡ 0(4).
Let σ be a locally hyperbolic Z/F -involution on A. Then we have Hyp(A, σ).F ∗2 =
F ∗.

Proof. By [BP1, Lemma 3.3.1], there exists an odd degree extension M of F such
that exp(AM ) is a power of 2 and by 5.11, Hyp(AM , σM ) = M∗. Taking norm from
M/F and using that [M : F ] is odd, we conclude that Hyp(A, σ).F ∗2 = F ∗. �

Theorem 5.13. Let F be a field with vcd(F ) ≤ 2 and let Z be a quadratic extension
over F . Let A be a central simple algebra over Z and let σ be a Z/F -involution on
A. Then G(A, σ) ⊆ Hyp(A, σ).NZ/F (Z∗).

Proof. The cases where deg(A) is odd or deg(A) ≡ 2(4) are covered by 1.6 and 5.6
respectively. We assume that deg(A) ≡ 0(4). Let λ ∈ G(A, σ). At each v ∈ Ω, the
involution σv is adjoint to an even rank hermitian form which is hyperbolic if and
only if sgn(σv) = 0. Therefore λ >v 0 at those v ∈ Ω, where σv is not hyperbolic.
Let K = F (

√
−λ). Then deg(AK) ≡ 0(4) and σK is locally hyperbolic. Thus by

5.12, we have Hyp(AK , σK).K∗2 = K∗. Let
√
−λ = αβ2, where α ∈ Hyp(AK , σK)

and β ∈ K∗. Then λ = NK/F (
√
−λ) = NK/F (α)(NK/F (β))2. But NK/F (α) ∈

NK/F (Hyp(AK , σK)) ⊆ Hyp(A, σ). Thus λ ∈ Hyp(A, σ).F ∗2. This completes the
proof. �

6. Fields with vcd(F ) ≤ 2 : Orthogonal groups

Let F be an arbitrary field with char(F ) �= 2. Let D be a central division
algebra over F with an orthogonal involution τ . We first recall from [BP2], certain
invariants associated to hermitian forms over (D, τ).

Discriminant: Let D and τ be as above and let h be a hermitian form of even
rank over (D, τ). Let rank(h) = 2m and let Mh ∈ M2m(D) represent the hermitian
form h. Let

Disc(h) = (−1)r(r−1)/2 Nrd(Mh) ∈ F ∗/(Nrd(D∗))2,

where r = 2m deg(D). If M ′
h ∈ M2m(D) is another matrix representing h, then

there exists an invertible matrix T ∈ M2m(D) such that Mh = TMh(τ (T )t). Thus
Nrd(M ′

h) = Nrd(Mh) Nrd(T )2 and Disc(h) is well defined. We call Disc(h) the
Discriminant of h.
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Clifford invariant: We recall from [KMRT, §8.B], the notion of the Clifford
algebra C(A, σ) associated to a central simple algebra A over a field F with an
involution σ of orthogonal type. If A is split and σ is adjoint to a quadratic form q,
then C(A, σ) is the even Clifford algebra C0(q) of the quadratic form q. If disc(σ) is
trivial, C(A, σ) decomposes into a product C+(A, σ)×C−(A, σ), each of the factors
being a central simple algebra over F such that

[C+(A, σ)] + [C−(A, σ)] = [A] ∈ Br(F ).

Let D, τ and h be as above. Let disc(h) be trivial and A = M2m(D). Let τh

be the orthogonal involution on A which is adjoint to h. We define the Clifford
invariant of h as follows:

C�(h) = [C+(M2m(D), τh)] ∈ Br(F )/[D].

Let H2m denote the matrix
(

0 Im

Im 0

)
∈ M2m(D) where Im is the identity

matrix of size m. The matrix H2m represents the hyperbolic form of rank 2m
over (D, τ ). Let U2m(D, τ ), SU2m(D, τ) and Spin2m(D, τ) denote respectively, the
unitary, special unitary group and spin group with respect to the hyperbolic form
H2m over (D, τ). We have an exact sequence

1 → µ2 → Spin2m(D, τ) → SU2m(D, τ ) → 1

from which one gets the exact sequence of pointed sets

→ H1(F, Spin2m(D, τ)) → H1(F, SU2m(D, τ)) δ→ H2(F, µ2).

Let S denote the set of ordered pairs (X, a), where X ∈ GL2m(D) and a ∈ F ∗

satisfy τ (X) = Xt and Nrd(X) = Nrd(H2m)a2. The elements of H1(F, SU2m(D, τ))
are equivalence classes of S under the following equivalence relation: (X, a) ∼
(X ′, a′) if and only if there exists Y ∈ GL2m(D) with X ′ = Y XY

t
and a′ =

Nrd(Y )a.
Let h be a hermitian form over (D, τ ) with rank(h) = 2m and disc(h) = 1.

Let Mh be a matrix which represents h and Nrd(Mh) = a2, a ∈ F ∗. The two
elements ξa = (Mh, a) and ξ−a = (Mh,−a) in H1(F, SU2m(D, τ)) map to [h] under
H1(F, SU2m(D, τ )) → H1(F, U2m(D, τ)). Let C+(h) = δ(ξa) and C−(h) = δ(ξ−a).
We recall the following lemma from [BMPS, Lemma 3.1].

Lemma 6.1. If F is a formally real field and v is an ordering on F such that Dv

is not split, then the algebra C+(h) is split at v if and only if a >v 0.

Rost invariant: Let h be a hermitian form over (D, τ ) with rank(h) = 2m, trivial
discriminant and trivial Clifford invariant. Consider the exact sequence

1 → SU2m(D, τ) → U2m(D, τ) → µ2 → 1.

This gives rise to the following exact sequence of pointed sets:

→ U2m(D, τ)(F ) → {±1} → H1(F, SU2m(D, τ)) → H1(F, U2m(D, τ)) → .

Since C�(h) = 0, there exists ξ ∈ H1(F, SU2m(D, τ )) which maps to the class
of h in H1(F, U2m(D, τ )) such that δ(ξ) = 0. Let ξ̃ ∈ H1(F, Spin2m(D, τ)) be a
preimage of ξ ∈ H1(F, SU2m(D, τ )). Let G = Spin2m(D, τ) and RG : H1(F, G) →
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H3(F, Q/Z(2)) denote the Rost invariant of G [Me3]. The Rost invariant of h is
defined as follows ([BP2, pp. 664]):

R(h) = RG(ξ̃) ∈ H3(F, Q/Z(2))
F ∗ ∪ [D]

.

The element RG(ξ̃) takes values in H3(F, Z/4) [BP2, Remark 1], where Z/4 has
the trivial Galois module structure. We now recall a proposition which we shall use
often.

Proposition 6.2 ([BP2, Cor. 2.6]). Let F be a formally real field and let I3(F ) be
torsion-free. Let Ω be the set of orderings on F . Then the natural map

H3(F, Z/4) →
∏
v∈Ω

H3(Fv, Z/4)

is injective.

We now record a classification result for hermitian forms over central division
algebras with orthogonal involutions over fields with vcd(F ) ≤ 2.

Theorem 6.3 ([BP2, Th. 7.3]). Let F be a field with vcd(F ) ≤ 2 and let D
be a central division algebra over D with an orthogonal involution τ . Let h be a
hermitian form over (D, τ). Then h is hyperbolic if and only if h has even rank,
trivial Discriminant, trivial Clifford and Rost invariant and trivial signature.

Let F be a field with vcd(F ) ≤ 2 and let (A, σ) be a central simple algebra over
F with orthogonal involution. If A is split, deg(A) is even, σ is locally hyperbolic
and disc(σ) = 1, so that by 5.2 we have Hyp(A, σ) = F ∗. We now consider the case
where A is locally split.

Lemma 6.4. Let vcd(F ) ≤ 2 and let A be a central simple algebra of even degree
over F . Let σ be an orthogonal involution on A. If A is locally split, then

G+(A, σ) = Hyp(A, σ).F ∗2.

Proof. Let λ ∈ G+(A, σ) and K = F (
√
−λ). Clearly λ ∈ NK/F (K∗). Let disc(σ) =

d and L = F (
√

d). By 1.3, λ ∈ NL/F (L∗). Let M = F (
√
−λ,

√
d). Using [W,

Lemma 2.14] for the biquadratic extension M/F , there exist x ∈ M∗ and y ∈ F ∗

such that λ = NM/F (x)y2. Further AM is locally split and by 1.8, Nrd(AM ) = M∗.
Let E/M be an extension such that x = NE/M (α) for some α ∈ E∗, and let AE

be split. Clearly disc(σE) = 1, σE is locally hyperbolic and AE is split. Thus
by 5.2, Hyp(AE, σE) = E∗ and hence x = NE/M (α) ∈ Hyp(AM , σM ). Thus
λ = NM/F (x)y2 ⊆ Hyp(A, σ).F ∗2. We conclude that G+(A, σ) ⊆ Hyp(A, σ).F ∗2.
In view of 1.1 we have G+(A, σ) = Hyp(A, σ).F ∗2. �

We continue with some lemmas which will be used in the proofs of the main
results of this section.

Lemma 6.5. Let vcd(F ) ≤ 2 and χ ∈ H3(F, µ2). Then

F ∗ =
〈
{NL/F (L∗) : L ∈ F2(F ) and χL = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗}

〉
.

Proof. Since vcd(F ) ≤ 2, H3(F (
√
−1), µ2) = 0 and in view of the Arason exact

sequence 1.11, the map H2(F, µ2)
∪(−1)−→ H3(F, µ2) is surjective. Let ξ ∈ H2(F, µ2)

be such that (−1) ∪ ξ = χ. Let Dξ be a central division algebra over F , whose
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Brauer class is represented by ξ. Then exp(Dξ) = 2. Let L ∈ F2(F ) be such that
(Dξ)L ∼ (−1) ∪ (−x) for some x ∈ L. Then

χL = (−1) ∪ ξL = (−1) ∪ (Dξ)L = (−1) ∪ (−1) ∪ (−x).

In view of this and 2.4, we have

F ∗ =
〈
{NL/F (L∗) : L ∈ F2(F ) and (Dξ)L = (−1) ∪ (−x) for some x ∈ L∗}

〉
⊆

〈
{NL/F (L∗) : L ∈ F2(F ) and χL = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗}

〉
.

�

For χ ∈ Hr(F, µ2), we set N(χ) = 〈{NL/F (L∗) : χL = 0}〉.

Lemma 6.6. Let vcd(F ) ≤ 2 and χ ∈ Hr(F, µ2), r ≥ 2. Then the following three
groups coincide:

(i) N(χ).
(ii) {λ ∈ F ∗ : λ >v 0 at those v ∈ Ω where χv �= 0}.
(iii) {λ ∈ F ∗ : (λ) ∪ χ = 0}.

Proof. Since vcd(F ) ≤ 2, in view of 1.15 the cohomology groups Hr+1(F, µ2) are
(−1)-torsion-free for r ≥ 2 and thus the groups (ii) and (iii) coincide. We show
that N(χ) ⊆ {λ ∈ F ∗ : (λ) ∪ χ = 0}. Let λ ∈ N(χ) be such that λ = NL/F (µ) for
an extension L/F with χL = 0. Then ((µ) ∪ χ)L = 0 and thus we have

coresL/F ((µ) ∪ χ)L = (λ) ∪ χ = 0.

Hence N(χ) ⊆ {λ ∈ F ∗ : (λ) ∪ χ = 0}. To complete the proof, we show that
{λ ∈ F ∗ : λ >v 0 at those v ∈ Ω where χv �= 0} ⊆ N(χ). Let λ ∈ F ∗ be such
that λ >v 0 at those v ∈ Ω where χv �= 0. Let L = F (

√
−λ). Then it follows that

χw = 0 for each ordering w of L. It follows from [Ar, Th. 2.1] that vcd(L) ≤ 2
and thus by 1.15, H3(L, µ2) is (−1)-torsion-free. Therefore χL = 0. Thus λ =
NL/F (

√
−λ) ∈ N(χ). This completes the proof. �

In 6.7, 6.8 and 6.9 below, the only restriction on F is that char(F ) �= 2. Let
D be a central division algebra over F and let τ be an orthogonal involution on
D. Let h be a hermitian form of rank 2m and trivial discriminant over (D, τ). Let
a ∈ F ∗ be such that Nrd(Mh) = a2, where Mh is a matrix representing the form h.
Since disc(h) = 1, we recall from [MT, Prop. 1.12] that G+(h) = G(h).

Lemma 6.7. Let D be a central division algebra over a field F of characteristic
different from 2 with an orthogonal involution τ . Let h and h′ be two even rank
hermitian forms of trivial discriminant over (D, τ). Then we have the following
additive property for Clifford invariants:

C�(h ⊥ h′) = C�(h) + C�(h′) ∈ H2(F, µ2)/[D].

Proof. We extend the scalars to the function field of the Brauer-Severi variety of
D. Using the fact that the invariant e2 of quadratic forms is additive on forms of
trivial discriminant and that the kernel of the scalar extension map H2(F, µ2) →
H2(F (XD), µ2) is generated by the class of D in H2(F, µ2) [MT, Cor. 2.7], the
lemma follows. �
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From this lemma and the fact that two similar hermitian forms with even rank
and trivial discriminant have the same Clifford invariants [BP1, pp. 204], we im-
mediately have

Corollary 6.8. Let D, τ and h be as in 6.7. Then for each λ ∈ F ∗, the Clifford
invariant C�(h ⊥ −λh) is trivial.

In the following lemma, we compute the Rost invariant of the hermitian form
h ⊥ −λh, where h is as in 6.7 and λ ∈ F ∗ is an arbitrary scalar.

Lemma 6.9. Let D be a central division algebra of even degree over a field F of
characteristic different from 2. Let τ be an orthogonal involution on D and let h
be a hermitian form over (D, τ) of even rank and trivial discriminant. Let λ ∈ F ∗.
Then,

R(h ⊥ −λh) = (λ) ∪ [C+(h)] ∈ H3(F, Q/Z(2))/F ∗ ∪ [D].

Proof. Let rank(h) = 2m and A = M2m(D). Let τh be the involution on A which
is adjoint to h. We denote by PGO+(h) the group PSim+(A, τh) of similitudes.
We have an exact sequence

1 → µ2 → SU(h) → PGO+(h) → 1

which induces a map on the cohomology sets H1(F, µ2) → H1(F, SU(h)). We claim
that under this map (λ) ∈ H1(F, µ2) is mapped to an element ξλ ∈ H1(F, SU(h))
which corresponds to the class of the hermitian form λh in H1(F, U(h)). In fact,
the cocycle (λ) ∈ Z1(F, µ2) given by s �→ s(

√
λ)(

√
λ)−1 for s ∈ Gal(Fs/F ), when

treated as a cocycle with values in U(h), represents [λh] in H1(F, U(h)).
Since deg(A) ≡ 0(4), the centre of Spin(h) is µ2 × µ2 and the kernel of the map

Spin(h) → SU(h) is (ε, ε), where ε = ±1. The quotient of µ2 × µ2 by µ2 under the
diagonal embedding maps isomorphically onto the centre of SU(h). By [MPT, Th.
1.14], the Rost invariant of the image ξ̃λ of (1, λ) ∈ H1(F, µ2×µ2) in H1(F, Spin(h))
is (λ) ∪ [C+(h)]. Thus ξ̃λ ∈ H1(F, Spin(h)) maps to ξλ ∈ H1(F, SU(h)), which in
turn maps to the class of λh in H1(F, U(h)) as is seen above. Thus we conclude
that the hermitian form λh admits a lift ξ̃λ such that R(ξ̃λ) = (λ) ∪ [C+(h)].

We now compute R(h ⊥ −λh). Let i : Spin(−h) → Spin(−h ⊥ h) be the
natural map and ĩ : H1(F, Spin(−h)) → H1(F, Spin(−h ⊥ h)) the induced map on
the cohomology sets. In view of [BP2, Lemma 3.6], R(̃i(ξ)) = R(ξ) for every ξ ∈
H1(F, Spin(−h)). The group Spin(−h ⊥ h) maps isomorphically onto Spin4m(D, τ)
preserving the Rost invariant. Further, the image of (1, λ) in the cohomology set
H1(F, Spin(−h)) maps to the isometry class of −λh in H1(F, U(h)) and to the
isometry class of −λh ⊥ h in H1(F, U4n(D, τ)). This implies that the Rost invariant
R(h ⊥ −λh) is equal to (λ) ∪ [C+(h)] ∈ H3(F, Q/Z(2))/F ∗ ∪ [D]. This completes
the proof. �

From now on, we assume that vcd(F ) ≤ 2. Let L/F be a formally real extension
and let ΩL be the set of orderings on L. Let h be a hermitian form over (D, τ )
- a central division algebra D over F with an orthogonal involution τ . We define
S�,L(h) as follows:

S�,L(h) = {λ ∈ L∗ : hLw
� λhLw

for all w ∈ ΩL}.
If L = F , then we simply write S�(h) to denote S�,F (h). In 6.10 - 6.14 be-
low, h denotes an even rank hermitian form over (D, τ) with trivial discriminant
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and rank(h).degreeD ≡ 0(4). Further, a ∈ F ∗ denotes a scalar which satisfies
Nrd(Mh) = a2 for a choice Mh of a matrix representing h. Further, for z ∈ F ∗ and
a central simple algebra B over F with exp(B) = 2, we denote by z∪B the element
(z) ∪ [B] ∈ H3(F, µ2).

Proposition 6.10. We have G(h) = (N(a ∪ D)N(−a ∪ D)) ∩ S�(h).

Proof. We first prove that

(N(a ∪ D)N(−a ∪ D)) ∩ S�(h) ⊆ G(h).

Let λ ∈ (N(a ∪ D)N(−a ∪ D)) ∩ S�(h). We show that h ⊥ −λh is hyperbolic.
It is clear that h ⊥ −λh has even rank. Further Nrd(M(h ⊥ −λh)) ≡ (aλm)4,
and since (aλm)2 is totally positive, by 1.8 it belongs to Nrd(D∗). Thus it follows
that h ⊥ −λh has trivial Discriminant. Moreover since disc(h) is trivial, by 6.8, it
follows that the Clifford invariant of h ⊥ −λh is trivial. Since λ ∈ S�(h), the form
h ⊥ −λh has trivial signature as well.

By 6.9 we see that the Rost invariant R(h ⊥ −λh) = [(λ) ∪ C+(h)]. We show
that [(λ) ∪ C+(h)] is trivial in H3(F, Z/4)/F ∗ ∪ [D]. Let x ∈ F ∗ be such that x ∈
N(−a∪D) and λx−1 ∈ N(a∪D). We claim that (λ)∪ [C+(h)] = (x)∪ [D]. In view
of 6.2, it suffices to check that at each v ∈ Ω, we have (λ) ∪ [C+(h)v] = (x) ∪ [Dv].

Suppose v ∈ Ω is such that λ >v 0 and x >v 0. In this case (λ) ∪ [C+(h)v] and
(x) ∪ [Dv] are both trivial.

Suppose λ >v 0 and x <v 0. Then λx−1 <v 0. Since λx−1 ∈ N(a ∪ D) and
x ∈ N(−a ∪ D), in view of 6.6 both (a) ∪ [D] and (−a) ∪ [D] are split at v. Thus
−1 ∈ Nrd(Dv) and hence D is split at v. Thus both (λ) ∪ [C+(h)v] and (x) ∪ [Dv]
are trivial in this case as well.

Now suppose that λ <v 0 and Dv is split. Since λ ∈ Sl(h), we conclude that hv

is hyperbolic. Thus the Clifford invariant C�(h)v = 0. Further, since Dv is split and
hv is hyperbolic, we have C+(h)v = C−(h)v = 0. Thus we conclude that C+(h)v is
split and thus (λ) ∪ [C+(h)v] and (x) ∪ [Dv] are both zero.

Next, suppose that λ <v 0, Dv is not split and x <v 0. Since x ∈ N(−a ∪ D),
by 6.6 (−a) ∪ [Dv] = 0; i.e. −a ∈ Nrd(Dv). Hence a <v 0. Since Dv is not split
and a <v 0, by 6.1 C+(h)v is not split. Thus we conclude in this case that both
(λ) ∪ [C+(h)v] and (x) ∪ [Dv] are non-zero and hence equal.

Now the only remaining case is when λ <v 0, Dv is not split and x >v 0. In that
case, λx−1 <v 0 and since λx−1 ∈ N(a ∪ D), by 6.6 we have that (a) ∪ [Dv] = 0.
Thus a ∈ Nrd(Dv) and hence a >v 0. Since Dv is non-split, by 6.1 C+(h)v is split.
Thus both (λ) ∪ [C+(h)v] and (x) ∪ [Dv] are zero in this case.

We conclude therefore that (λ) ∪ [C+(h)v] = (x) ∪ [Dv] for all v ∈ Ω. Thus by
6.2, we have (λ) ∪ [C+(h)] = (x) ∪ [D] and

R(h ⊥ −λh) = (λ) ∪ [C+(h)] = 0 ∈ H3(F, Z/4)/F ∗ ∪ [D].

Since vcd(F ) ≤ 2, by 6.3 we have that h ⊥ −λh is hyperbolic. Thus λ ∈ G(h).
We now show the inclusion G(h) ⊆ (N(a ∪ D)N(−a ∪ D)) ∩ S�(h). It is clear

that G(h) ⊆ S�(h). We thus show that G(h) ⊆ N(a∪D)N(−a∪D). Let λ ∈ G(h).
Then the the form h ⊥ −λh is hyperbolic and hence its Rost invariant (λ)∪ [C+(h)]
is trivial. Thus there exists x ∈ F ∗ such that (λ)∪ [C+(h)] = (x)∪ [D]. By reading
this equality locally at each v ∈ Ω and observing the sign pattern, we conclude that
x ∈ N(−a ∪ D) and λx ∈ N(a ∪ D). Therefore, λ ∈ N(a ∪ D)N(−a ∪ D). This
completes the proof. �
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The following lemma will be used in the proof of 6.12.

Lemma 6.11. Let D be a central division algebra over F and let τ be an orthogonal
involution on D. Let h be an even rank locally hyperbolic hermitian form over (D, τ)
with Disc(h) = 1 and C�(h) = 0. Then Hyp(h) = F ∗.

Proof. Since the hermitian form h has even rank, trivial discriminant and triv-
ial Clifford invariant, there exists ξ̃ ∈ H1(F, Spin2m(D, τ )) which maps to [h] ∈
H1(F, U2m(D, τ )). Let R(ξ̃) ∈ H3(F, µ2) be the Rost invariant of ξ̃. Let L ∈ F2(F )
be such that R(ξ̃L) = (−1) ∪ (−1) ∪ (−x) for some x ∈ L∗. We claim that
R(ξ̃L) = (−x) ∪ DL.

Let ΩL be the set of orderings on L and let w ∈ ΩL be such that DLw is split.
Then R(ξ̃Lw) = e3(hLw), where e3 is the Arason invariant of quadratic forms. Since
hLw is hyperbolic by hypothesis, we have e3(hLw) = 0. Thus R(ξ̃L) and (−x)∪DL

are both zero at w.
Now suppose DLw is not split. Then DLw = (−1) ∪ (−1) and thus R(ξ̃Lw) =

(−1) ∪ (−1) ∪ (−x) = (−x) ∪ DLw. Thus R(ξ̃L) = (−x) ∪ DL at each w ∈ ΩL and
by 6.2, R(hL) = 0. Therefore hL is a locally hyperbolic form with even rank, trivial
Discriminant, trivial Clifford invariant and trivial Rost invariant. By 6.3 the form
hL is hyperbolic. In view of this and 6.5 we conclude that Hyp(h) = F ∗. �

The following proposition gives an explicit description of the group Hyp(h).

Proposition 6.12. We have Hyp(h) = (N(a ∪ D) ∩ S�(h)).(N(−a ∪ D) ∩ S�(h)).

Proof. We first prove that Hyp(h) ⊆ (N(a ∪ D) ∩ S�(h)).(N(−a ∪ D) ∩ S�(h)).
Let L/F be a finite extension such that hL is hyperbolic. Then Disc(hL) is trivial
in L∗/ Nrd(D∗

L)2 and hence either a ∈ Nrd(D∗
L) or −a ∈ Nrd(D∗

L); i.e. either
N(a ∪ DL) = L∗ or N(−a ∪ DL) = L∗. We clearly have S�,L(h) = L∗. Thus

(N(a ∪ DL) ∩ S�,L(h)).(N(−a ∪ DL) ∩ S�,L(h)) = L∗.

Clearly NL/F (N(a ∪ DL)) ⊆ N(a ∪ D) and NL/F (N(−a ∪ DL)) ⊆ N(−a ∪ D).
Further as in [KMRT, Prop. 12.21], NL/F (S�,L(h)) ⊆ S�(h). Thus

NL/F (L∗) ⊆ NL/F ((N(a ∪ DL) ∩ S�,L(h)).(N(−a ∪ DL) ∩ S�,L(h)))

⊆ (N(a ∪ D) ∩ S�(h)).(N(−a ∪ D) ∩ S�(h)).

Since NL/F (L∗) generate Hyp(h) as L runs over extensions where h is hyperbolic,
it follows that Hyp(h) ⊆ (N(a ∪ D) ∩ S�(h)).(N(−a ∪ D) ∩ S�(h)).

To complete the proof, we show that N(a∪D)∩S�(h) ⊆ Hyp(h). The inclusion
N(−a ∪ D) ∩ S�(h) ⊆ Hyp(h) follows in a similar manner. Let λ ∈ N(a ∪ D) ∩
S�(h). By 6.10, λ ∈ G(h). Let K = F (

√
−λ). Since λ ∈ N(a ∪ D), by 6.6

(λ)∪ (a)∪ [D] = 0 ∈ H4(F, µ2). Thus (−1)∪ (a)∪ [DK] = 0 ∈ H4(K, µ2). By 1.15,
(a) ∪ [DK ] = 0 ∈ H3(K, µ2). Hence a ∈ Nrd(DK) and Disc(h)K = 1.

Let w be an ordering on K. Since λ <w 0 and λ ∈ G(hK), the form hK is
locally hyperbolic. Thus the Clifford invariant C�(h)K is trivial at w. Therefore,
if DKw is split, then C+(h)Kw = C−(h)Kw = 0. If DKw is not split, then in
view of 1.8, a >w 0 as a ∈ Nrd(DK). By 6.1, C+(h)Kw is split. We have thus
shown that C+(hK) is locally split. By 1.8, it follows that Nrd(C+(hK)) = K∗.
Let L/K be a finite extension and let α ∈ L∗ be such that

√
−λ = NL/K(α) and
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C+(hL) = 0. Then hL is an even rank locally hyperbolic form with Disc(hL) = 1
and C+(hL) = 0. By 6.11, Hyp(hL) = L∗. Thus

√
−λ = NL/K(α) ∈ NL/K(Hyp(hL)) ⊆ Hyp(hK).

Taking norm from K/F we have λ ∈ Hyp(h). Thus N(a∪D)∩S�(h) ⊆ Hyp(h). �

With the notation as above, we have following corollaries.

Corollary 6.13. If h is locally hyperbolic, then

Hyp(h) = N(a ∪ D).N(−a ∪ D) = G(h).

Proof. Since h is locally hyperbolic, S�(h) = F ∗. From 6.10 and 6.12, it is clear
that Hyp(h) = N(a ∪ D).N(−a ∪ D) = G(h). �

Corollary 6.14. If h has trivial Discriminant, then Hyp(h) = S�(h) = G(h).

Proof. Since Disc(h) = 1, it follows that either N(a∪D) = F ∗ or N(−a∪D) = F ∗.
In either case, it is immediate from 6.10 and 6.12, that Hyp(h) = S�(h) = G(h). �

Let A be a central simple algebra over F with an orthogonal involution σ. Sup-
pose disc(σ) = 1 and C(A, σ) = C+(A, σ) × C−(A, σ). We have the following
extension of 6.13

Proposition 6.15. Let F be a field with char(F ) �= 2. Let (A, σ) be a central simple
algebra of even degree over F with an orthogonal involution. Let deg(A) ≡ 0(4)
and disc(σ) = 1. Then Hyp(A, σ) ⊆ Nrd(C+(A, σ)) Nrd(C−(A, σ)). Further if
vcd(F ) ≤ 2 and σ is locally hyperbolic, then

Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ)) = G(A, σ).

Proof. The first assertion follows from the fact that over any extension L/F where
σ is hyperbolic, either C+(AL, σL) or C−(AL, σL) is split [KMRT, Prop. 12.21].

Suppose vcd(F ) ≤ 2 and σ is locally hyperbolic. Let λ ∈ Nrd(C+(A, σ)). Let
L/F be a finite extension such that λ ∈ NL/F (L∗) and C+(AL, σL) is split. We
show that Hyp(AL, σL) = L∗. In view of 2.3, replacing L by a quadratic tower, we
may assume that AL � M2r(H) for some quaternion algebra H over L. Let τ be an
orthogonal involution on H and let h be a hermitian form over (H, τ ) such that σL

is adjoint to h. Let Mh ∈ M2r(H) represent h and Nrd(Mh) = a2 for some a ∈ L∗.
Let w be an ordering on L such that Hw is not split. Since C+(h) = C+(AL, σL) is
split, by 6.1 a >w 0. Thus (a)∪ [H] = 0 ∈ H3(L, µ2) and N(a∪H) = L∗. In view of
6.13, Hyp(AL, σL) = Hyp(h) = N(a ∪ H).N(−a ∪ H) = L∗. Thus Hyp(AL, σL) =
L∗. Taking norms from L/F we have λ ∈ NL/F (L∗) = NL/F (Hyp(AL, σL)) ⊆
Hyp(A, σ). Thus Nrd(C+(A, σ)) ⊆ Hyp(A, σ).

The inclusion Nrd(C−(A, σ)) ⊆ Hyp(A, σ) follows from a similar argument. We
therefore conclude that Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ)).

To complete the proof we show that G(A, σ) ⊆ Nrd(C+(A, σ)) Nrd(C−(A, σ)).
Let λ ∈ G(A, σ). Then the hermitian form

〈
1,−λ

〉
is hyperbolic. Hence the

Rost invariant R(
〈
1,−λ

〉
) is trivial. As in the proof of 6.9, R(

〈
1,−λ

〉
) = (λ) ∪

[C+(A, σ)]. Since the Rost invariant is trivial, there exists x ∈ F ∗ such that (λ) ∪
[C+(A, σ)] = (x) ∪ [A]. If for an ordering v on F , the algebra Av is split, then
hv being hyperbolic, C+(A, σ)v and C+(A, σ)v are both split. If Av is not split
and x <v 0, then C+(A, σ)v is not split. Hence C−(A, σ)v is split. Thus x ∈
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Nrd(C−(A, σ)) and a similar argument gives λx ∈ Nrd(C+(A, σ)). Hence λ =
λx.x−1 ∈ Nrd(C+(A, σ)) Nrd(C+(A, σ)). We have thus shown that

G(A, σ) ⊆ Hyp(A, σ) = Nrd(C+(A, σ)) Nrd(C−(A, σ)).

The inclusion Hyp(A, σ) ⊆ G(A, σ) follows from 1.1 and this completes the
proof. �

Theorem 6.16. Let vcd(F ) ≤ 2 and let A be a central simple algebra over F with
deg(A) even and an involution σ of orthogonal type. If disc(σ) = 1 and σ is locally
hyperbolic, then G(A, σ) = Hyp(A, σ).F ∗2.

Proof. Let deg(A) = 2n. Suppose n is odd. Since σ is locally hyperbolic, the
algebra A is locally split and by 6.4 the results holds. We can thus assume that n
is even. In this case we are through by 6.15. �

7. Fields with vcd(F ) ≤ 2 satisfying SAP

Let F be a field with orderings and let Ω denote the set of orderings on F . Given
a ∈ F ∗, we define the corresponding Harrison set Ωa as follows:

Ωa := {v ∈ Ω : a >v 0}.
The set Ω has Harrison topology for which {Ωa : a ∈ F ∗} is a sub-basis. With this
topology, Ω is a Hausdorff, compact and totally disconnected space. We say that
F has strong approximation property (SAP), if every closed and open set of Ω is of
the form Ωa for some a ∈ F ∗. A quadratic form q is said to be weakly isotropic,
if for some positive integer s, the s-fold orthogonal sum s.q =⊥s q is isotropic.
Combining [ELP, Th. C] and [P, Satz. 3.1] we have the following

Theorem 7.1. A field F with orderings has SAP if and only if for every a, b ∈ F ∗,
the quadratic form

〈
1, a, b,−ab

〉
is weakly isotropic.

In what follows, for a1, a2, · · · , ar ∈ F ∗ the notation
〈〈

a1, a2, · · · , ar

〉〉
will de-

note the r-fold Pfister form
〈
1,−a1

〉
⊗

〈
1,−a2

〉
⊗ · · · ⊗

〈
1,−ar

〉
. For a quadratic

form q, we denote by D(q) the set of elements of F ∗ represented by q. We remark
that if q =

〈
1,−a,−b, ab

〉
, then D(q) = Nrd(H∗), where H is the quaternion alge-

bra (a, b) over F . Set Ω(H) = {v ∈ Ω : H ⊗F Fv is split }. The following lemma is
recorded in [Ga].

Lemma 7.2. Let F be a field with orderings. Let a, b ∈ F ∗. Let q1 =
〈〈

− 1,−a
〉〉

,
q2 =

〈〈
− 1, a

〉〉
and H = (a, b). Suppose there does not exist c ∈ F ∗ such that

Ωc = Ω(H). Then −b /∈ D(q1)D(q2).

Proof. Suppose −b ∈ D(q1)D(q2) and let x1 ∈ D(q1) and x2 ∈ D(q2) be such that
−b = x1x2. Then q1 ⊥ bq2 is isotropic and hence 2

〈
1, a, b,−ab

〉
� q0 ⊥ H for some

Albert form q0 and H �
〈
1,−1

〉
. We have

C(q0) = C(q1 ⊥ bq2) = (−1,−1) = C(4
〈
1
〉
⊥ H) ∈ Br(F ).

Therefore by [KMRT, Prop. 16.3], q0 � 4
〈
c
〉
⊥ H for some c ∈ F ∗. It is easy to see

that Ωc = Ω(H), which contradicts the hypothesis. Thus −b /∈ D(q1)D(q2). �

Lemma 7.3. Let F be a field for which I3(F ) is torsion-free. Let a, b ∈ F ∗. Let
q1 =

〈〈
− 1,−a

〉〉
, q2 =

〈〈
− 1, a

〉〉
and H = (a, b). If −b /∈ D(q1)D(q2), then there

is no element c ∈ F ∗ with Ωc = Ω(H).
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Proof. Suppose there is an element c ∈ F ∗ such that Ωc = Ω(H). Let q′ =〈
1, a, b,−ab,−c,−c

〉
. For v ∈ Ω if c <v 0, then by the choice of c we have a <v 0

and b <v 0. This implies that the form q′ is hyperbolic at v. If c >v 0, then again
by the choice of c, either a >v 0 or b >v 0 and in either case q′ is hyperbolic at
v. We thus conclude that q′ is locally hyperbolic. Clearly q′ ∈ I2(F ), therefore
2q′ ∈ I3(F ). Since 2q′ is an even rank quadratic form with trivial signature, it
is hyperbolic at each Fv, v ∈ Ω. Thus by Pfister’s local-global principle [L, Th.
VIII.4.1], 2q′ is a torsion element in the Witt group W (F ). By the hypothesis,
I3(F ) is torsion-free. Thus 2q′ = 2

〈
1, a, b,−ab,−c,−c

〉
is hyperbolic. Therefore

the form q1 ⊥ bq2 is isotropic, which implies that −b ∈ D(q1)D(q2). This is a
contradiction to the hypothesis. �

Combining 7.2 and 7.3 above, we get the following

Corollary 7.4. Let I3(F ) be torsion-free. Let a, b ∈ F ∗ and q1 =
〈〈

− 1,−a
〉〉

,
q2 =

〈〈
− 1, a

〉〉
and H = (a, b). Then −b ∈ D(q1)D(q2) if and only if there exists

c ∈ F ∗ such that Ωc = Ω(H).

Using the results above, we have thus derived

Corollary 7.5. Let F be a field with I3(F ) torsion-free. Then the following state-
ments are equivalent:

(i) For all a ∈ F ∗ we have D
(〈〈

− 1,−a
〉〉)

D
(〈〈

− 1, a
〉〉)

= F ∗.
(ii) The field F has SAP.
(iii) Given a quaternion algebra H = (a, b) over F , there exists an element

c ∈ F ∗ such that Ωc = Ω(H).

Lemma 7.6. Let I3(F ) be torsion-free, and H be a quaternion algebra over F .
Then Nrd(H∗) = {λ ∈ F ∗ : λ >v 0 at each v ∈ Ω\Ω(H)}.

Proof. Let nH denote the norm form of the quaternion algebra H. Since I3(F )
is torsion-free, for λ ∈ F ∗,

〈
1,−λ

〉
⊗ nH = 0 ∈ I3(F ) if and only if for all v ∈

Ω,
〈
1,−λ

〉
⊗ nH = 0 ∈ I3(Fv). In other words, λ ∈ Nrd(H∗) if and only if

λ ∈ Nrd(H ⊗ Fv)∗ at each v ∈ Ω. This is equivalent to saying that λ >v 0 if
v ∈ Ω\Ω(H), and the lemma follows. �

Lemma 7.7. Suppose I3(F ) is torsion-free, F has orderings and satisfies SAP.
Then for every a, b ∈ F ∗ we have Nrd(a, b)∗. Nrd(−a, b)∗ = F ∗.

Proof. Let H1 = (a, b) and H2 = (−a, b). Since F has SAP, the closed and open
set Ω\Ω(H1) = Ωx for some x ∈ F ∗. Similarly Ω\Ω(H1) = Ωy for some y ∈ F ∗.
By 7.6, Nrd(H∗

1 ) = Nrd(−1,−x) and Nrd(H∗
2 ) = Nrd(−1,−y)∗. Since at a given

ordering v ∈ Ω, at least one of H1 and H2 is split, Ωx ∩ Ωy = φ. Thus Ωx ⊆ Ω−y.
Now using 7.6, we conclude that Nrd(−1, y)∗ ⊆ Nrd(−1,−x)∗. Thus in view of
7.5, F ∗ = Nrd(−1, y)∗ Nrd(−1,−y)∗ ⊆ Nrd(−1,−x)∗ Nrd(−1,−y)∗. This proves
Nrd(H1)∗. Nrd(H2)∗ = F ∗. �

Detlev Hoffmann has suggested the following more direct proof of 7.7.

Lemma 7.8. Let I3(F ) be torsion-free, where F has orderings and satisfies SAP.
Then for every a, b ∈ F ∗ we have Nrd(a, b)∗. Nrd(−a, b)∗ = F ∗.
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Proof. Let H1 = (a, b) and H2 = (−a, b). Let Xi = Ω\Ω(Hi), i = 1, 2, and let
λ ∈ F ∗ be arbitrary. Since F has SAP, there exists x ∈ F ∗ such that X1 ∪ (X2 ∩
Ωλ) = Ωx. Using the hypothesis that I3(F ) is torsion-free and the observation that
X1 ∩ X2 = φ, one can conclude that x ∈ Nrd(H1)∗ and λx−1 ∈ Nrd(H2)∗. Thus
λ = xλx−1 ∈ Nrd(H1)∗. Nrd(H2)∗. �

From now on, in this section the field F satisfies vcd(F ) ≤ 2. We say that a field
F satisfies SAP for quadratic towers if each quadratic tower L ∈ F2(F ) has SAP.

Proposition 7.9. Let vcd(F ) ≤ 2 and F has SAP for quadratic towers. Let h be
a locally hyperbolic hermitian form of even rank over a central-division algebra D
with an orthogonal involution τ . Let disc(h) = 1. Then we have Hyp(h) = F ∗.

Proof. Let L ∈ F2(F ) be such that DL ∼ (−1,−x) for some x ∈ L∗. Since hL is
locally hyperbolic, by 6.13 we have Hyp(hL) = N(a ∪ DL).N(−a ∪ DL). Clearly
N(a∪DL) = Nrd(a,−x)∗ and N(−a∪DL) = Nrd(−a,−x)∗. Since F has SAP for
quadratic towers, so does L. Thus by 7.7, we have

Nrd(a,−x)∗. Nrd(−a,−x)∗ = L∗

and we conclude that Hyp(hL) = L∗. In view of this and 2.4 we have Hyp(h) =
F ∗. �

Proposition 7.10. Let vcd(F ) ≤ 2 and F has SAP with respect to quadratic
towers. Let A be a central simple algebra of even degree over F and let σ be a
locally hyperbolic involution on A with disc(σ) = 1. Then Hyp(A, σ) = F ∗.

Proof. Let L ∈ F2(F ) be such that AL ∼ (−1,−x) for some x ∈ L∗. Let H =
(−1,−x). Then AL = Mr(H) for some positive integer r. Let τ be an orthogonal
involution on H and let h be a hermitian form over (H, τ ) such that σL is adjoint
to h. Then Hyp(AL, σL) = Hyp(h).

First assume that r is even. Then it follows from [KMRT, Prop. 7.3(1)] that
disc(σL) = disc(h) = 1. Since σL is locally hyperbolic, the hermitian form h
is locally hyperbolic. Thus h is a locally hyperbolic form of even rank and trivial
discriminant over (H, τ ). Therefore in view of 7.9 we have Hyp(AL, σL) = Hyp(h) =
L∗.

Now suppose r is odd. Since σL is locally hyperbolic, the hermitian form h
is locally hyperbolic. Thus the quaternion algebra H is locally split and by 1.8
we have Nrd(H)∗ = L∗. Let λ ∈ L∗. Let Li ∈ F2(L) be such that each HLi

is split and λ =
∏

i NLi/L(λi), where λi ∈ L∗
i . Then hLi

is a locally hyperbolic
quadratic form over Li with even rank and trivial discriminant. Thus by 5.2, we
have Hyp(hLi

) = L∗
i . Therefore

λ ∈
∏

i

NLi/L(Hyp(HLi
)) ⊆ Hyp(h)

and hence Hyp(h) = L∗.
Thus it follows that if L ∈ F2(F ) is such that AL ∼ (−1,−x) for some x ∈ L∗,

then Hyp(AL, σL) = Hyp(h) = L∗. Therefore in view of 2.4, we have Hyp(A, σ) =
F ∗. This completes the proof. �

Theorem 7.11. Let vcd(F ) ≤ 2 and F has SAP for quadratic towers. Let A be a
central simple algebra of degree 2n over F and let σ be an orthogonal involution on
A with disc(σ) = 1. Then Hyp(A, σ).F ∗2 = G+(A, σ).
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Proof. Let λ ∈ G+(A, σ). Then λ = σ(a)a for some a ∈ A∗ with Nrd(a) = λn. Let
K = F (

√
−λ). First suppose that n is odd. Then λ ∈ Nrd(A∗) and thus λ >v 0 at

those v ∈ Ω where Av is not split. If Av is split, then λ >v 0 at those v ∈ Ω where
sgn(σv) �= 0. Then AK is locally split and σK is locally hyperbolic.

Now suppose that n is even and let v ∈ Ω be such that σv is not hyperbolic. Then
by (Theorem 3.7, Chapter 10, [Sc]), Av is split and σv is adjoint to a non-hyperbolic
quadratic form q over Fv such that q � λq. Thus we conclude that λ >v 0 at those
orderings v ∈ Ω where σv is not hyperbolic. Then σK is locally hyperbolic.

Thus in either case, by 7.10 we have that Hyp(AK , σK) = K∗. Taking norm
of

√
−λ from K/F , we conclude that λ ∈ Hyp(A, σ) and therefore G+(A, σ) ⊆

Hyp(A, σ). By 1.1 we have Hyp(A, σ).F ∗2 ⊆ G+(A, σ), and hence we conclude
that G+(A, σ) = Hyp(A, σ).F ∗2. �
Theorem 7.12. Let vcd(F ) ≤ 2 and (A, σ) be an algebra of type 2Dn over F . Let
F have SAP for quadratic towers. Then we have G+(A, σ) = Hyp(A, σ).F ∗2.

Proof. Let disc(σ) = d and let λ ∈ G+(A, σ). By 1.3, we have G+(A, σ) ⊆
NL/K(L∗), where L = F (

√
d). As in the proof of 7.11, σF (

√
−λ) is locally hyper-

bolic. Let M = L(
√
−λ). By the biquadratic lemma [W, Lemma 2.14], it follows

that there exist x ∈ M∗ and y ∈ F ∗ such that λ = NM/F (x)y2. It is clear that
disc(σM ) = 1 and σM is locally hyperbolic. Thus by 7.10 we have Hyp(AM , σM ) =
M∗ and we easily see that λy−2 ∈ Hyp(A, σ). Thus G+(A, σ) ⊆ Hyp(A, σ).F ∗2.
Since by 1.1 Hyp(A, σ).F ∗2⊆G+(A, σ), we conclude that G+(A, σ)=Hyp(A, σ).F ∗2.

�
Corollary 7.13. Suppose vcd(F ) ≤ 2, and F has SAP for quadratic towers. Let
the group PSim+(A, σ) be of type 1Dn or 2Dn. Then PSim+(A, σ)(F )/R = 0.

Since number fields satisfy the conditions of 7.13, we have

Corollary 7.14. Let F be a number field and let PSim+(A, σ) be of type 1Dn or
2Dn. Then PSim+(A, σ)(F )/R = 0.

Remark. It is a well known fact that SAP is not preserved under field extensions.
As Detlev Hoffmann has pointed out to us, there are examples of fields F with
vcd(F ) = 2 and quadratic extensions E/F such that F satisfies SAP but not E.
Thus the condition ‘SAP with respect to quadratic towers’ is not redundant in 7.12.

Hoffmann’s example is the following: One can construct a formally real field k
with the following properties: (i) k has no extension of odd degree. (ii) There is
only one ordering on k. (iii) The u-invariant of k is 2. Let α ∈ k∗\k∗2 be a sum of
two squares. Let F = k((X)) and E = F (

√
α). Then vcd(F ) = 2 and F has SAP

but not E.

Combining together the results of §4, §5 and §7, we have

Theorem 7.15. Let F be a field with vcd(F ) ≤ 2. Let G be a classical group of
adjoint type defined over F . Then,

(i) If G does not contain a factor of type Dn, then G(F )/R = 0.
(ii) If F satisfies SAP for quadratic towers, then G(F )/R = 0.

Proof. If F does not have orderings, by 1.17 we have cd(F ) ≤ 2 and we are through
by 3.7. Thus we assume that F has orderings. As in the proof of 3.7, it suffices
to prove the theorem for absolutely simple adjoint groups defined over F . In view
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of 1.1, assertion (i) follows from 1.4, 4.2 and 5.13. Assertion (ii) of the theorem
follows immediately from assertion (i) and 7.13. �
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