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DEFORMATIONS OF SCHEMES
AND OTHER BIALGEBRAIC STRUCTURES

J. P. PRIDHAM

Abstract. There has long been a philosophy that every deformation problem
in characteristic zero should be governed by a differential graded Lie algebra
(DGLA). In this paper, we show how to construct a Simplicial Deformation
Complex (SDC) governing any bialgebraic deformation problem. Examples of
such problems are deformations of a Hopf algebra, or of an arbitrary scheme.
In characteristic zero, SDCs and DGLAs are shown to be equivalent.

Introduction

In [6], the theory of simplicial deformation complexes (SDCs), reviewed in Sec-
tion 1, was introduced as an alternative to differential graded Lie algebras (DGLAs),
and they were shown to arise naturally from several deformation problems. They
can be used to recover the deformation groupoid, are defined in all characteristics,
and determine the higher cohomology groups associated to the deformation prob-
lem. It was shown how to construct the SDC corresponding to deformations of
monadic or comonadic structures. An example of the former is a ring; examples of
the latter are co-algebras or sheaves.

The real power of this approach, as developed in Section 2, lies in the ability
to construct SDCs from a combination of monadic and comonadic adjunctions.
In particular, this gives a systematic approach to defining cohomology theories
corresponding to these problems. Examples of this type are deformations of a
Hopf algebra, or of a bialgebra. To deform an arbitrary scheme X is equivalent to
deforming its structure sheaf OX . The algebra structure of OX is monadic, while
the sheaf structure can be thought of as comonadic.

In Section 3, this idea is applied to provide an SDC for deformations of sheaves
of algebras, under more general conditions than those for which a DGLA was con-
structed by Hinich in [2], namely arbitrary algebras on any site with enough points.
By contrast, most previous examples for which DGLAs were constructed were ei-
ther purely comonadic (e.g. smooth schemes, for which the ring structure does not
deform), or purely monadic (e.g. affine schemes, for which the sheaf structure does
not deform). For this problem, cohomology of the SDC is just hypercohomology
of the dual of Illusie’s cotangent complex ([3]). Other examples considered in this
section are deformations of subschemes and of group schemes.
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In Section 4, we see that the localised categories of DGLAs and SDCs are equiva-
lent in characteristic zero. However, while the arrow DGLA � SDC is very natural,
the arrow SDC � DGLA is generally not, which helps to explain why constructing
DGLAs is relatively difficult. This does, however, mean that there exist DGLAs
governing all the problems described above in characteristic zero.

1. Review of simplicial deformation complexes

and monadic adjunctions

In this section, we summarise the definitions and results of [6, Section 1] (in
§§1.1, 1.3), and standard results on monadic adjunctions (in §1.2).

Throughout this paper, we adopt the notation and conventions of [9], so that Λ
will be a complete local Noetherian ring, with maximal ideal µ and residue field k.
CΛ will denote the category of local Artinian Λ-algebras with residue field k. We
consider only those functors on CΛ which satisfy F (k) = •, the one-point set. We
will take [5] as a convenient reference for standard results in deformation theory
and adopt its conventions. In particular, a functor F : CΛ → Set is called:

(1) homogeneous if η : F (B ×A C) → F (B)×F (A) F (C) is an isomorphism for
every B � A;

(2) a deformation functor if:
(a) η is surjective whenever B � A,
(b) η is an isomorphism whenever A = k;

(3) smooth if F (B) � F (A) whenever B � A.
Note that a homogeneous functor satisfies Schlessinger’s conditions (H1), (H2) and
(H4), and that a deformation functor satisfies conditions (H1) and (H2).

1.1. Simplicial deformation complexes.

Definition 1.1. A simplicial deformation complex E• consists of smooth homoge-
neous functors En : CΛ → Set for each n ≥ 0, together with maps

∂i : En → En+1 1 ≤ i ≤ n,
σi : En → En−1 0 ≤ i < n,

an associative product ∗ : Em × En → Em+n, with identity 1 : • → E0, where • is
the constant functor •(A) = • on CΛ, such that:

(1) ∂j∂i = ∂i∂j−1 i < j,
(2) σjσi = σiσj+1 i ≤ j,

(3) σj∂i =

⎧⎨
⎩

∂iσj−1 i < j,
id i = j, i = j + 1,

∂i−1σj i > j + 1,

(4) ∂i(e) ∗ f = ∂i(e ∗ f),
(5) e ∗ ∂i(f) = ∂i+m(e ∗ f), for e ∈ Em,
(6) σi(e) ∗ f = σi(e ∗ f),
(7) e ∗ σi(f) = σi+m(e ∗ f), for e ∈ Em.

Definition 1.2. Let C•(E) be the tangent space of E•, i.e. Cn(E) = En(k[ε]).

Definition 1.3. Define the Maurer-Cartan functor MCE by

MCE(A) = {ω ∈ E1(A) : ω ∗ ω = ∂1(ω)}.
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In fact, applying (σ0)2 to this equation, we see that any such ω automatically
satisfies σ0ω = 1.

Recall that E0 is a group under multiplication. Now, if ω ∈ MCE(A) and
g ∈ E0(A), then g ∗ ω ∗ g−1 ∈ MCE(A). We may therefore make the following
definition:

Definition 1.4.
DefE = MCE/E0,

the quotient being with respect to the adjoint action. The deformation groupoid

DefE

has objects MCE , and morphisms given by E0.

Lemma 1.5. For ω ∈ MCE(A), if we let ∂0
ω(e) = ω ∗ e, and ∂n+1

ω (e) = e ∗ ω, for
e ∈ En(A), then E•(A) becomes a cosimplicial complex.

Definition 1.6. Define the cohomology groups of E to be

Hi(E) := Hi(C•(E)),

the cohomology groups of the cosimplicial complex C•(E).

Theorem 1.7. DefE is a deformation functor, with tangent space H1(E) and com-
plete obstruction space H2(E). For ω, ω′ ∈ MCE(A), Iso(ω, ω′) is homogeneous,
with tangent space H0(E) and complete obstruction space H1(E). Moreover, if
H0(E) = 0, then DefE is homogeneous. If φ : E → F is a morphism of SDCs, and

Hi(φ) : Hi(E) → Hi(F )

are the induced maps on cohomology, then:
(1) If H1(φ) is bijective, and H2(φ) injective, then DefE → DefF is étale.
(2) If also H0(φ) is surjective, then DefE → DefF is an isomorphism.
(3) Provided condition (1) holds, DefE → DefF is an equivalence of functors

of groupoids if and only if H0(φ) is an isomorphism.

Call a morphism φ : E → F a quasi-isomorphism if the Hi(φ) : Hi(E) → Hi(F )
are all isomorphisms.

1.2. Review of monadic adjunctions. This section just recalls some standard
definitions concerning adjunctions, all of which can be found in [4], and fixes nota-
tion which will be used throughout the paper.

Definition 1.8. For categories D, E , and a pair of functors

D
G ��E
F

�� ,

recall that an adjunction F � G is a natural isomorphism

HomD(FA, B) ∼= HomE(A, GB).

We say that F is left adjoint to G, or G is right adjoint to F . Let ⊥ = FG, and
	 = GF . To give an adjunction is equivalent to giving two natural transformations,
the unit and co-unit,

η : idE → 	, ε : ⊥ → idD,

satisfying the triangle identities εF ◦ Fη = idF , Gε ◦ ηG = idG.
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If a functor has a left adjoint, then it preserves all (inverse) limits. Conversely,
provided the categories involved satisfy various additional conditions, the Special
Adjoint Functor Theorem ([4], Ch. V.8) proves that any functor which preserves
inverse limits has a left adjoint.

Given an adjunction

D
U

�
��E

F
��

with unit η : id → UF and co-unit ε : FU → id, we let 	 = UF , and define the
category of 	-algebras, E�, to have objects

	E
θ−→ E,

such that θ ◦ ηE = id and θ ◦ 	θ = θ ◦ UεFE .
A morphism

g : (	E1
θ−→ E1) → (	E2

φ−→ E2)

of 	-algebras is a morphism g : E1 → E2 in E such that φ ◦ 	g = g ◦ θ.
We define the comparison functor K : D → E� by

B �→ (UFUB
UεB−−−→ UB)

on objects, and K(g) = U(g) on morphisms.

Definition 1.9. The adjunction

D
U

�
��E

F
��

is said to be monadic (also sometimes called tripleable) if K : D → E� is an
equivalence.

Intuitively, monadic adjunctions correspond to algebraic theories, such as the
adjunction

k−Alg
U

�
��
k−Vect

Symmk

�� ,

between k-algebras and vector spaces over k, U being the forgetful functor. Other
examples are Lie algebras or non-commutative algebras, with their respective free
functors, over vector spaces, or vector spaces over sets.

Dually, if we have an adjunction

D
V ��E
G

⊥�� ,

with co-unit γ : V G → id and unit α : id → GV , we let ⊥ = V G, and we can define
a ⊥-co-algebra to be a morphism

E
θ−→ ⊥E,
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such that γE ◦ θ = id and ⊥θ ◦ θ = V αGE ◦ θ. There is then a natural functor
K : D → E⊥ to the category of ⊥-co-algebras.

Definition 1.10. The adjunction

D
V ��E
G

⊥��

is said to be comonadic (also sometimes called cotripleable) if K : D → E⊥ is an
equivalence.

Finally, the equivalence version of Beck’s monadicity theorem gives a criterion
for an adjunction to be monadic:

Definition 1.11. A split fork is a diagram

A
f ��
g

��B

t

��
e ��C,
s

��

such that ef = eg, es = 1, ft = 1, gt = se. A split coequaliser of f and g is the
arrow e of some split fork.

Definition 1.12. A functor U : D → E is said to reflect coequalisers for a pair

f, g : A → B if for every diagram A
f ��
g

��B
e ��C, with ef = eg and Ue a co-

equaliser of Uf and Ug, the morphism e is a coequaliser of f and g.
U is said to reflect isomorphisms if f is an isomorphism whenever Uf is. Observe

that if U preserves a coequaliser of f, g in D, and U reflects isomorphisms, then U
reflects all coequalisers of f, g.

Theorem 1.13. The following conditions are equivalent:

(1) The adjunction

D
U

�
��E

F
��

is monadic.
(2) If f, g : D → D′ is a parallel pair in D for which Uf, Ug has a split

coequaliser, then D has a coequaliser for f, g, and U preserves and reflects
coequalisers for these pairs.

Proof. This is [4, Ch. VI.7, Ex. 6]. �

1.3. The SDC associated to a monadic adjunction. Throughout this paper,
we will encounter functors D : CΛ → Cat. We will not require that these functors
satisfy the condition that F (k) = •.

Definition 1.14. Given a functor D : CΛ → Cat, and an object D ∈ ObD(k),
define DefD,D : CΛ → Grpd by setting DefD,D(A) to be the fibre of D(A) → D(k)
over (D, id).

All the deformation problems we encounter are of this form.
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Definition 1.15. We say a functor B : CΛ → Cat has uniformly trivial deformation
theory if

(1) for all A ∈ CΛ and all B1, B2 ∈ ObB(A), the functor Mor B(B1, B2) : CA →
Set of morphisms from B1 to B2 is smooth and homogeneous;

(2) for A′ � A in CΛ, B(A′) → B(A) is full and essentially surjective.

A typical example of such a functor is that which sends A to the category of flat
A-modules.

Observe that, if B is uniformly trivial, then given B ∈ ObB(k), we may lift it to
B̃ ∈ ObB(Λ), and we have an equivalence of functors of groupoids

(B̃, Mor B(B̃, B̃)) ∼−→ DefB,B.

In this section, we recall the approach used in [6] to construct SDCs, and give
some new examples.

Assume we have a monadic adjunction

D
U

�
��
B

F
�� ,

with unit η : id → UF = 	 and co-unit ε : FU → id, such that B has uniformly
trivial deformation theory. Then, given D ∈ D(k), let B be any lift of UD to B(Λ),
and define the SDC E• by

En = HomB(	nB, B)U(εD◦...◦ε⊥n−1D),

the fibre of

HomB(	nB, B) → HomB(k)(	nB(k), B(k))

over U(εD ◦ . . . ◦ ε⊥n−1D).
We make E• into an SDC by giving it the product g ∗ h = g ◦ 	nh for g ∈ En,

and

∂i(g) = g ◦ 	i−1UεF�n−iB,

σi(g) = g ◦ 	iη�n−i−1B .

Theorem 1.16. With the notation as above, we have an equivalence of functors of
groupoids

DefD,D
∼−→ DefE .

1.3.1. Deformations of sheaves — Godement resolution. Take a sheaf of k-vector
spaces M0 on a site X with enough points. The deformation functor will associate
to A sheaves MA of flat A-modules such that MA ⊗ k = M0, modulo infinitesimal
isomorphisms.

Let X ′ be the set of points of X. Since X has enough points, the inverse image
functor Shf(X) →

∏
x∈X′ Shf(x) reflects isomorphisms. Explicitly, this says that a

morphism θ : F → G of sheaves on X is an isomorphism whenever the morphisms
θx : Fx → Gx are for all x ∈ X ′. In the reasoning which follows, it will suffice to
replace X ′ by any subset with this property.
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If we are working on the Zariski site, we may take X ′ =
∐

x∈X x. On the étale
site, we may take

X ′ =
∐
x∈X

x̄,

where for each x ∈ X, a geometric point x̄ → X has been chosen. For Jacobson
schemes, we may consider only closed points x ∈ X. We define the category Shf(X ′)
by Shf(X ′) :=

∏
x∈X′ Shf(x).

There is an adjunction

Shf(X ′)
u∗

�
��
Shf(X)

u∗
�� ,

where the maps ux : x → X combine to form maps u∗ : Shf(X) → Shf(X ′), and
u∗ : Shf(X ′) → Shf(X) is given by u∗F =

∏
x∈X′ ux∗Fx. Let αF : F → u∗u

∗F
be the unit of the adjunction. Observe that the category of flat A-modules on X ′

has uniformly trivial deformation theory.
It follows from Theorem 1.13 that this adjunction is comonadic, and from The-

orem 2.2, the SDC governing this problem is

En = HomΛ(N , (u∗u∗)n(N ))αn ,

where N is a flat µ-adic Λ-module on X ′ with N ⊗ k = u∗M0, and αn =
u∗(α(u∗u∗)n−1M0 ◦ . . . ◦ αM0).

Defining a sheaf of SDCs on X by

E n = u∗ homΛ(N , (u∗u∗)n(N ))αn ,

we get, as in [6, §1.2.2],

Hi(E) = Hi(C•(E)) = H
i(X, C•(E )) = Exti

k(M0, M0),

as expected.

1.3.2. Deformations of co-algebras. Given a flat (co-associative) co-algebra (with
co-unit) C0/k, we wish to create an SDC describing flat deformations CA/A such
that CA ⊗A k = C0, modulo infinitesimal isomorphisms.

There is, up to isomorphism, a unique flat µ-adic Λ-module M such that M ⊗Λ k
= C0. There is an adjunction

A−FCoAlg
V ��

A−FMod
G

⊥�� ,

between the category of flat co-algebras over A, and the category of flat modules
over A, where V is the forgetful functor and the free functor G exists by the Special
Adjoint Functor Theorem (since A−FCoAlg has all colimits, and V preserves these).
Note that in this case the free functor is hard to write down explicitly, but this is
unnecessary for our purposes. See [10] for such a description.

By Theorem 1.13, this adjunction is comonadic, so that deformations of C0 are
given by the SDC

En = HomΛ(M,⊥nM)U(α�n−1C0
◦...◦αC0 ).
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2. Bialgebraic deformations

In this section we make formal the approach which has been used so far to
compute SDCs. The idea is that we throw away properties of the object which we
wish to deform, until we obtain something whose deformations are trivial.

In general, we will not be able to pass from the category D to a category B with
uniformly trivial deformation theory via a single monadic or comonadic adjunction.
However, we should be able to pass from D to some B via a chain of monadic and
comonadic adjunctions.

Not only should we have monadic and comonadic adjunctions, but, informally,
the forgetful functors should commute with one another. More precisely, assume
that we have a diagram

D
U

�
��

V

��

E
F

��

V

��
A

G�

��

U

�
�� B,

F
��

G�

��

where B has uniformly trivial deformation theory, with F � U monadic and G  V
comonadic. Let

	h = UF, ⊥h = FU,

⊥v = V G, 	v = GV,

with
η : 1 → 	h, γ : ⊥v → 1, ε : ⊥h → 1 and α : 1 → 	v.

The commutativity condition is that the following identities hold (up to canonical
isomorphism):

GU = UG or FV = V F,(1)

UV = V U,(2)

V ε = εV or Uα = αU,(3)

V η = ηV or Uγ = γU.(4)

Observe that the adjoint properties ensure that identities on the same line are
equivalent.

Lemma 2.1. For E ∈ E , A ∈ A, consider the diagram of isomorphisms given by
the adjunctions:

HomD(FE, GA)
��

���������		


�������

HomA(V FE, A) HomE(E, UGA)

HomA(FV E, A)
��

���������
HomE(E, GUA)

		


�������

HomB(V E, UA).

The identities ( 1)–( 4) ensure that all squares in this diagram commute. In partic-
ular, for any B ∈ B, the map

ηB ◦ γB : V GB → UFB
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corresponds to a map

ρB = εGFB ◦ FGηB = GFγB ◦ αFGB : FGB → GFB,

with

γ�hB ◦ UV (ρB) ◦ η⊥vB = ηB ◦ γB,

U(ρB) ◦ ηGB = G(ηB),
γFB ◦ V (ρB) = F (γB).

By the naturality of ε : ⊥h → id, we have ε ◦ (⊥hε) = ε ◦ (ε⊥h), so we obtain a
canonical map εn : ⊥n

h → id, given by any such composition of ε’s. [For instance

εn = ε ◦ (⊥hε) ◦ . . . ◦ (⊥n−1
h ε)

is one such composition.] We have similar maps for each of the units and co-units,
giving:

εn : ⊥n
h → id, ηn : id → 	n

h ,

αn : id → 	n
v , γn : ⊥n

v → id.

Let
δ = UV (ρ) : 	h⊥v → ⊥v	h.

Since δ is natural,

(δ⊥v	h) ◦ (	h⊥vδ) = (⊥v	hδ) ◦ (δ	h⊥v).

Therefore any composition of δ’s gives us the same canonical map

δm,n : 	m
h ⊥n

v → ⊥n
v	m

h .

Theorem 2.2. Suppose we have a diagram as above. Then, for D ∈ ObD(k), let
B be any lift of UV D ∈ ObB(k) to ObB(Λ) (by the hypothesis on B, such a lift
must exist and be unique up to isomorphism). Set

En = HomB(	n
hB,⊥n

vB)UV (αn
D◦εn

D).

We give E• the multiplication

g ∗ h = ⊥n
v (g) ◦ δm,n ◦ 	m

h (h),

for g ∈ Em, h ∈ En, and

∂i(g) = ⊥i−1
v V αG⊥m−i

v B ◦ g ◦ 	i−1
h UεF�m−i

h B,

σi(g) = ⊥i
vγ⊥m−i−1

v B ◦ g ◦ 	i
hη�m−i−1

h B .

Then
DefD,D � DefE .

Proof. First observe that this is, indeed, an SDC. We need to check that the product
is associative. For f ∈ Sl, g ∈ Sm, h ∈ Sn, we have

f ∗ (g ∗ h) = ⊥m+n
v f ◦ δl,m+n ◦ 	l

h(⊥n
vg ◦ δm,n ◦ 	m

h h)

= ⊥m+n
v f ◦ (⊥n

vδl,m ◦ δl,n⊥m
v ) ◦ 	l

h⊥n
vg ◦ 	l

hδm,n ◦ 	l+m
h h

= ⊥m+n
v f ◦ ⊥n

vδl,m ◦ ⊥n
v	l

hg ◦ δl,n	m
h ◦ 	l

hδm,n ◦ 	l+m
h h

= ⊥n
v (⊥m

v f ◦ δl,m ◦ 	l
hg) ◦ δl+m,n ◦ 	l+m

h h

= (f ∗ g) ∗ h.
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We now have a lemma:

Lemma 2.3. To give a map f : 	hB → ⊥vB satisfying the Maurer-Cartan equa-
tion

⊥vf ◦ δ ◦ 	hf = V αGB ◦ f ◦ UεFB

is the same as giving maps θ : 	hB → B and φ : B → ⊥vB satisfying the Maurer-
Cartan equations:

θ ◦ 	hθ = θ ◦ UεFB ,

⊥vφ ◦ φ = V αGB ◦ φ,

and the compatibility condition

⊥vθ ◦ δB ◦ 	hφ = φ ◦ θ.

Proof of lemma. Given such an f , we have

f = γ⊥vB ◦ V αGB ◦ f ◦ UεFB ◦ η�hB

= γ⊥vB ◦ ⊥vf ◦ δB ◦ 	hf ◦ η�hB

= f ◦ γ�hB ◦ δB ◦ η⊥vB ◦ f

= f ◦ ηB ◦ γB ◦ f.

Let φ = f ◦ ηB , and θ = γB ◦ f . Now,

γB ◦ γ⊥vB ◦ ⊥vf ◦ δB ◦ 	hf = γB ◦ γ⊥vB ◦ V αGB ◦ f ◦ UεFB ,

γB ◦ f ◦ γ�hB ◦ δB ◦ 	hf = γB ◦ f ◦ UεFB ,

γB ◦ f ◦ U(γFB ◦ V (ρB)) ◦ 	hf = γB ◦ f ◦ UεFB ,

γB ◦ f ◦ 	hγB ◦ 	hf = γB ◦ f ◦ UεFB ,

θ ◦ 	hθ = θ ◦ UεFB ,

using the Maurer-Cartan equations and Lemma 2.1. Similarly we obtain the
Maurer-Cartan equation for φ, and finally

⊥vθ ◦ δB ◦ 	hφ = ⊥vγB ◦ ⊥vf ◦ δB ◦ 	hf ◦ 	hηB

= ⊥vγB ◦ V αGB ◦ f ◦ UεFB ◦ 	hηB

= f

= φ ◦ θ.

Conversely, given such θ and φ, set f = φ ◦ θ. We obtain:

⊥vf ◦ δB ◦ 	hf = ⊥vφ ◦ ⊥vθ ◦ δB ◦ 	hφ ◦ 	hθ

= ⊥vφ ◦ φ ◦ θ ◦ 	hθ

= V αGB ◦ φ ◦ θ ◦ UεFB

= V αGB ◦ f ◦ UεFB .

�

Recall that every element f of MCE(A) must satisfy σ0(f) = 1, which in this
case is γB ◦ f ◦ ηB = id. This means that the pair (θ, φ) above satisfies θ ◦ ηB = id
and γB ◦ φ = id.
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With the notation of §1.2, we obtain an adjunction

E�h

V ��
B�h

G

⊥�� ,

(	hE
f−→ E) �→ (	hV E

V f−−→ V E),

(	hGB
G(g)◦U(ρB)−−−−−−−−→ GB) ←� (	hB

g−→ B),

and such a pair (θ, φ) is precisely the same as an element of (B�h)⊥v . We also have
a correspondence between the action of E0 on MCE and morphisms in (B�h)⊥v , so
that DefE corresponds to the fibre of

(B�h)⊥v → (B�h)⊥v(k)

over the image of (D, id).
Now, the equivalence

K : A → B�h

A �→ (	hUA
UεA−−−→ UA)

arising from the monadic adjunction F � U satisfies

⊥vKA = V G(	hUA
UεA−−−→ UA)

= (	h⊥vUA
⊥vUεA◦V U(ρUA)−−−−−−−−−−−→ ⊥vUA).

Moreover,

⊥vUεA ◦ V U(ρUA) = UV (GεA ◦ (εGFUA ◦ FGηUA))
= UV ((εGA ◦ FUGεA) ◦ FGηUA)
= UV (εGA ◦ FG(UεA ◦ ηUA))
= UV (εGA),

so
⊥vKA = (	h⊥vUA

UV (εGA)−−−−−−→ ⊥vUA) = K⊥vA.

Since K is an equivalence, this induces an equivalence of categories

A⊥v Kh−−→ (B�h)⊥v

(A
f−→ ⊥vA) �→ (KA

Kf−−→ ⊥vKA).

But G  V is comonadic, so
D Kv−−→ A⊥v

is an equivalence. Thus we have an equivalence of groupoids

DefD,D
∼−→ DefA⊥v ,KvD

∼−→ Def(B�h )⊥v ,KhKvD = DefE .

�
Given a category D, we now need a procedure for finding a category B with

uniformly trivial deformation theory. We do this by thinking of the functors U and
V as being forgetful functors, and looking for structures in D to discard.

Definition 2.4. Given a category B : CΛ → Cat, define a set of structures Σ over
B to consist of the following data:

(1) a finite set Σ = Σ+ � Σ−,
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(2) for each subset S ⊂ Σ, a category BS , with B∅ = B,
(3) (a) for each s ∈ Σ+ and each S ⊂ Σ not containing s, a monadic adjunc-

tion

BS∪{s}
Us

�
��
BS

Fs

�� ,

(b) for each s ∈ Σ− and each S ⊂ Σ not containing s, a comonadic
adjunction

BS∪{s}
Vs ��

BS

Gs

⊥�� ,

satisfying the commutativity conditions given below.
For s ∈ Σ+ we write

	s = UsFs and ⊥s = FsUs,

with
ηs : 1 → 	s and εs : ⊥s → 1.

For s ∈ Σ− we write
⊥s = VsGs and 	s = GsVs,

with
γs : ⊥s → 1 and αs : 1 → 	s.

The commutativity conditions are that the following should hold:
(1) For each distinct pair s1, s2 ∈ Σ+, and each S ⊂ Σ not containing s1, s2,

the morphisms in the diagram

BS∪{s1,s2}
U1

�
��

U2 �

��

BS∪{s2}
F1

��

U2 �

��
BS∪{s1}

F2

��

U1

�
��
BS

F1

��

F2

��

satisfy

F1F2 = F2F1 or U1U2 = U2U1,

U1ε2 = ε2U1, U2ε1 = ε1U2,

U1η2 = η2U1, U2η1 = η1U2.

(2) For each distinct pair s1, s2 ∈ Σ−, and each S ⊂ Σ not containing s1, s2,
the morphisms in the diagram

BS∪{s1,s2}
V1 ��

V2

��

BS∪{s2}
G1

⊥��

V2

��
BS∪{s1}

G2�

��

V1 ��
BS

G1

⊥��

G2�

��
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satisfy

G1G2 = G2G1 or V1V2 = V2V1,

V1α2 = α2V1, V2α1 = α1V2,

V1γ2 = γ2V1, V2γ1 = γ1V2.

(3) For each s1 ∈ Σ+ and s2 ∈ Σ−, and each S ⊂ Σ not containing s1, s2, the
morphisms in the diagram

BS∪{s1,s2}
U

�
��

V

��

BS∪{s2}
F

��

V

��
BS∪{s1}

G�

��

U

�
��
BS ,

F
��

G�

��

satisfy

GU = UG or FV = V F,

UV = V U,

V ε = εV or Uα = αU,

V η = ηV or Uγ = γU.

Lemma 2.5. Given a set of structures Σ over a category B, we have a diagram

BΣ
U

�
��

V

��

BΣ−

F
��

V

��
BΣ+

G�

��

U

�
�� B,

F
��

G�

��

satisfying the equations ( 1)–( 4) on p. 1608, with F � U monadic and G  V
comonadic.

Proof. We define F (resp. U) to be the composition of the Fs (resp Us) for all
s ∈ Σ+, noting that the order of composition does not matter, since these functors
commute with one another. We define G and V analogously. It is immediate that
F � U and G  V are adjoint pairs, and that the commutativity conditions (1)–(4)
are satisfied.

It thus remains only to show that F � U is monadic, and G  V comonadic. This
can be done by using a similar approach to that used in the proof of Theorem 2.2.
The statement is that BΣ+ � B�+ , where 	+ = FU , which is proved by induction
on the cardinality of Σ+. �
Remarks 2.6. (1) This lemma shows that every set of structures can be re-

placed by a set of at most two elements, so it might seem that introducing
the notion of a set of structures was not helpful. However, it is frequently
easier to find the individual adjunctions than the composites, as will be seen
in later examples (notably the deformation of a group scheme in Section
3.4).
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(2) For most of the deformation problems for which DGLAs have previously
been constructed, it seems that there is a set of structures which is either
wholly monadic or wholly comonadic.

3. Examples

3.1. Deformations of Hopf algebras. Given a flat (associative, commutative,
co-associative) Hopf algebra (with unit and co-unit) R0/k, we wish to create an
SDC describing flat deformations RA/A of R0 such that RA ⊗A k = R0, modulo
infinitesimal isomorphisms.

The structures are:

Σ+ = {Algebra}, Σ− = {Co-Algebra},
over the category of flat A-modules.

This gives the following commutative diagram of monadic and comonadic ad-
junctions:

A−FHopfAlg �
��

��

A−FCoAlg
SymmA

��

��
A−FAlg

G�

��

�
��
A−FMod,

G�

��

SymmA

��

where A−FHopfAlg is the category of flat Hopf algebras over A, A−FCoAlg is the
category of flat co-associative co-algebras with co-unit and co-inverse over A, and G
is the free co-algebra functor of Section 1.3.2. Since we cannot describe G explicitly,
we use the alternative form of the axioms involving SymmA instead, when verifying
the conditions of Theorem 2.2.

We thus obtain the SDC

En = HomΛ((SymmΛ)nM, GnM)αn◦εn ,

where M is the flat µ-adic Λ-module (unique up to isomorphism) lifting the k-vector
space R0, and αn, εn are the canonical maps

εn : (Symmk)nR0 → R0, αn : R0 → GnR0

associated to R0.

3.2. Deformations of schemes. Given a flat µ-adic system of schemes Sn/
SpecΛn, let S = lim−→Sn and SA = S ×Spf Λ SpecA. Given a scheme X0/S0, our
deformation functor consists of schemes XA/SA, with XA → SpecA flat, such that
XA ×Spec A Spec k = X0, modulo infinitesimal isomorphisms (isomorphisms which
pull back to the identity on X0):

X0

����������
f ��

�������������������� S0

�� ���������������������

Spec k

����������������� XA

flat
���

�

�����
�

�� SA

flat

��
SpecA.
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Since the topological space |X0| underlying X0 does not deform, this is just a
question of deforming the sheaf OX0 of algebras. Explicitly, it suffices to deform
OX0 as an OSA

-algebra, flat over A.
In the notation of Section 2, we have the set of structures

Σ+ = {algebra, OSA
-module}, Σ− = {X0-sheaf},

over the category of sheaves of flat A-modules on X ′
0, where X ′

0 is defined as in
Section 1.3.1. To these structures correspond the monadic and comonadic adjunc-
tions

{SymmA � U, OS ⊗Λ � U}, {u∗  u−1},
where U denotes the relevant forgetful functor.

This yields the following diagram of Cat-valued functors:

OSA
↓ (A−FAlg(X0)) �

��

u−1

��

A−FMod(X0)
OS⊗ΛSymmA

��

u−1

��
OSA

↓ (A−FAlg(X ′
0))

u∗�

��

�
��
A−FMod(X ′

0),
OS⊗ΛSymmA

��

u∗�

��

where we write OS for the sheaf f−1OS (resp. u−1f−1OS) on X0 (resp. X ′
0), and

OSA
↓ (A−FAlg) consists of those OSA

-algebras which are flat over A. The only
non-trivial commutativity condition is the observation that pull-backs commute
with tensor operations.

Hence, by Theorem 2.2, deformations are described by the SDC

En = HomΛ((OS ⊗Λ SymmΛ)nM , (u−1u∗)nM )u−1(αn◦εn),

where M is a lift of the sheaf u−1OX0 of vector spaces on X ′
0 to a sheaf of flat

µ-adic Λ-modules, and αn, εn are the canonical maps αn
OX0

, εn
OX0

in Theorem 2.2,
given by the adjunctions.

Remark 3.1. Observe that the description above allows us to construct an SDC
governing deformations of a sheaf of algebras on any site with enough points. This
is more general than the problem in [2] for which a DGLA was constructed.

Define a sheaf of SDCs on X by

E n = u∗HomΛ((OS ⊗Λ SymmΛ)nM , (u−1u∗)nM )u−1(αn◦εm).

Combining the observations in [6, §§1.2.1, 1.2.3], we see that this has tangent space

Cn(E ) = u∗DerOS0
((OS0 ⊗k Symmk)n+1u−1OX0 , (u

−1u∗)nu−1OX0)
∼= DerOS0

((OS0 ⊗k Symmk)n+1OX0 , (u∗u
−1)n+1OX0)

∼= HomOX0
(LX0/S0

n , C n(OX0)),

where LX0/S0
• is the standard form of Illusie’s cotangent complex, as described in

[3], and C n denotes the Godement resolution.
Since Cn(E ) has the structure of a diagonal complex of a bicosimplicial complex,

it follows from the Eilenberg-Zilber Theorem that it is quasi-isomorphic to the total
complex of the double complex

HomOX0
(LX0/S0

• , C •(OX0)).
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Therefore the cohomology of our SDC is

Hi(C•(E)) = Hi(Γ(X0, C•(E ))) ∼= Exti
OX0

(LX0/S0
• , OX0),

which is André-Quillen hypercohomology, the second isomorphism following be-
cause LX0/S0

• is locally projective as an OX0-module and C •(OX0) is flabby.

3.2.1. Separated Noetherian schemes. If X0 is separated and Noetherian, then we
may replace Godement resolutions by Čech resolutions. Take an open affine cover
(Xα)α∈I of X0, and set X̌ :=

∐
α∈I Xα. We then have a diagram

X̌ ′ ǔ ��

w

�
��

��
��

�

v′

��

X̌

v

��
X ′

0
u �� X0.

Since v−1OX0 = OX̌ is a quasi-coherent sheaf on X̌, Exti(OX̌ , OX̌) = 0 for all
i > 0, so deformations of the sheaf OX̌ of k-vector spaces on X̌ are unobstructed
and we may lift v−1OX0 to some sheaf N of flat µ-adic Λ-modules on X̌, unique
up to non-unique isomorphism. There must also be (non-canonical) isomorphisms
ǔ−1N ∼= v′−1M . If we define Ě• by

Ěn := HomΛ((OS ⊗Λ SymmΛ)nN , (v−1v∗)nN )v−1(αn◦εn),

and F • similarly, replacing v by w, then we have morphisms of SDCs

E• γ•
v′−−→ F • γ•

ǔ←− Ě•.

To see that these are quasi-isomorphisms, let T • := HomOX0
(LX0/S0

• , OX0), which
is a complex of quasi-coherent sheaves on X0, and observe that the induced maps
on cohomology are

H
i(X0, T

•) → H
i(X0, T

•) ← Ȟ
i(X0, T

•).

The final map is an isomorphism since X0 is separated and Noetherian, so Čech
cohomology agrees with sheaf cohomology.

3.2.2. Smooth schemes. If X0/S0 is smooth, then the cohomology groups are just
Hi(X0, TX0/S0), the cohomology of the tangent sheaf. If X0 is also separated and
Noetherian (for instance if S0 is so), then we may lift X̌ to some smooth µ-adic
formal scheme X̌ over S.

Consider the diagram

OSA
↓ (A−FAlg(X̌))

v∗

�
��
OSA

↓ (A−FAlg(X0))
v∗

�� ;

although the former category does not have uniformly trivial deformation theory,
all the morphisms in it which we encounter do, which gives us an SDC and canonical
maps

HomOS−Alg(OX̌, (v−1v∗)nOX̌)v−1(αn)
(εn)∗−−−→ Ěn,

which give a quasi-isomorphism of SDCs.
Explicitly, we may write our SDC as

En =
∏

α0,...,αn∈I

Γ(Xα0,...,αn
, HomOS−Alg(OXαn

, OXα0
)id),
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where Xα0,...,αn
=

⋂n
i=1 Xαi

, and X̌ =
∐

Xα. The product is given by

(φ ∗ ψ)α0,...,αm+n
= φα0,...,αm

◦ ψαm,...,αm+n
,

and operations are

(∂iφ)α0,...,αn+1 = φα0,...,αi−1,αi+1,...,αn+1 ,

(σiφ)α0,...,αn−1 = φα0,...,αi,αi,...,αn−1 .

3.2.3. Deformations of a subscheme. Although the standard application of the pre-
vious section would be to set Sn = Spec Λn, it applies to a far wider class of prob-
lems. In particular this applies to deformations of a subscheme X0 ↪→ S0, since a
flat deformation of a subscheme as an SA-scheme will be a subscheme. If X0 ↪→ S0

is a regular embedding (e.g., if X0 and S0 are both smooth over Spec k), then the
cohomology groups will be

Hi(C•(E)) = Hi+1(X0, NX0/S0),

where NX0/S0 is the normal sheaf.
If X0 and S0 are both smooth over Spec k, we can simplify the SDC of Section

3.2.1 still further. Consider the diagram

OSA
↓ (A−FAlg(X0)) �

��

v−1

��

A−FAlg(X0)
OS⊗Λ

��

v−1

��
OSA

↓ (A−FAlg(X̌))

v∗�

��

�
��
A−FAlg(X̌).

OS⊗Λ

��

v∗�

��

Although the last category does not have uniformly trivial deformation theory, all
the morphisms in it which we encounter do. If we let (f �)⊗n denote the canon-
ical ring homomorphism O⊗n

S
⊗ O

X̂
→ O

X̂
, then there is an SDC and a quasi-

isomorphism

HomΛ−Alg(O⊗n
S

⊗ O
X̂
, (v−1v∗)nO

X̂
)v−1αn◦(f�)⊗n → Ěn.

The map is defined by composing the maps SymmΛ(O⊗n
S

⊗ O
X̂
) → O⊗n

S
⊗ O

X̂
,

arising from the natural ring structure on the tensor product.
Explicitly, we may write our SDC as

En =
∏

α0,...,αn∈I

Γ(Xα0,...,αn
, HomΛ−Alg(O⊗n

S
⊗ OXαn

, OXα0
)(f�)⊗n).

The product is given by

(φ ∗ ψ)α0,...,αm+n
(r1 ⊗ . . . ⊗ rm+n ⊗ a)

= φα0,...,αm
(r1 ⊗ . . . ⊗ rm ⊗ ψαm,...,αm+n

(rm+1 ⊗ . . . ⊗ rm+n ⊗ a)),

and the operations are

(∂iφ)α0,...,αn+1(r1 ⊗ . . . ⊗ rn+1 ⊗ a)
= φα0,...,αi−1,αi+1,...,αn+1(r1 ⊗ . . . ⊗ ri−1 ⊗ (riri+1) ⊗ ri+2 . . . ⊗ rn+1 ⊗ a),

(σiφ)α0,...,αn−1(r1 ⊗ . . . ⊗ rn−1 ⊗ a)
= φα0,...,αi,αi,...,αn−1(r1 ⊗ . . . ⊗ ri ⊗ 1 ⊗ ri+1 . . . ⊗ rn−1 ⊗ a).

To see that the map is a quasi-isomorphism, observe that the Eilenberg-Zilber
Theorem allows us to regard the cohomology of E as the hypercohomology of the
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complex TX0/k → f∗TS0/k[−1], which is quasi-isomorphic to the tangent complex
of the morphism X0 → S0. Note that this SDC works for any morphism of smooth
schemes, not only for embeddings.

3.3. Constrained deformations of schemes. Given a morphism of flat µ-adic
schemes Z

h−→ S over Spf Λ, and a diagram

Z0
g−→ X0

f−→ S0

over k, with fg = h, our deformation functor consists of those diagrams

ZA
gA−−→ XA

fA−−→ SA,

with XA → Spec A flat and fA ◦ gA = h, which pull back along Spec k → Spec A
to our original diagram. Here, ZA is the scheme Z ×Spf Λ SpecA, and Z0 = Zk.
An example of such a deformation problem would be deformations of a subscheme,
constrained to pass through a fixed set of points.

Since the topological space |X0| underlying X0 does not deform, it suffices to
deform OX0 as an OSA

-algebra with an OZA
-augmentation, flat over A.

In the notation of Section 2, we have the set of structures

Σ+ = {algebra, OSA
-module}, Σ− = {X0-sheaf, OZA

-augmented},

over the category of sheaves of flat A-modules on X ′
0, where X ′

0 is defined as in
Section 1.3.1.

To these structures correspond the monadic and comonadic adjunctions

{SymmA � U, OS ⊗Λ � U}, {u∗  u−1, OZ ×  V },

where U, V denote the relevant forgetful functors.
This yields the following diagram of Cat-valued functors:

OSA
↓ (A−FAlg(X0)) ↓ OZA �

��

u−1

��

A−FMod(X0) ↓ OZA

OS⊗ΛSymmA

��

u−1

��
OSA

↓ (A−FAlg(X ′
0))

OZA
×u∗�

��

�
��
A−FMod(X ′

0),
OS⊗ΛSymmA

��

OZA
×u∗�

��

where we write OS for the sheaf f−1OS (resp. u−1f−1OS), and OZ for the sheaf
g∗OZ (resp. u−1g∗OZ) on X0 (resp. X ′

0). The category OSA
↓ (A−FAlg) ↓ OZA

consists of those OSA
-algebras which are flat over A and equipped with an augmen-

tation to OZA
, compatible with h�. The only non-trivial commutativity condition

is the observation that pull-backs commute with tensor operations.
By Theorem 2.2, this deformation problem is governed by the SDC

En = HomΛ((OS ⊗Λ SymmΛ)nM , (OZ × u−1u∗)nM )u−1(αn◦εn),

where M is a lift of the sheaf u−1OX0 of vector spaces on X ′
0 to a sheaf of flat

µ-adic Λ-modules, and αn, εn are the canonical maps αn
OX0

, εn
OX0

in Theorem 2.2
given by the adjunctions. The cohomology is

Exti
OX0

(LX0/S0
• , OX0

g�

−→ g∗OZ0 [−1]).
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If X0 and S0 are both smooth, we may consider the diagram

OSA
↓ (A−FAlg(X0)) ↓ OZA �

��

v−1

��

A−FAlg(X0) ↓ OZA

OS⊗Λ

��

v−1

��
OSA

↓ (A−FAlg(X̌))

OZA
×v∗�

��

�
��
A−FAlg(X̌).

OS⊗Λ

��

OZA
×v∗�

��

All the morphisms which we encounter in the last category have uniformly trivial
deformation theory, allowing us to replace this SDC by

En =
∏

α0,...,αn∈I

Γ(Xα0,...,αn
, HomΛ−Alg(O⊗n

S
⊗ OXαn

, OXα0
× On

Z )(g�)n◦(f�)⊗n),

since cohomology in this case is hypercohomology of the complex

TX0/k → (f∗TS0/k ⊕ TX0/k ⊗OX0
g∗OZ0)[−1] → f∗TS0/k ⊗OX0

g∗OZ0 [−2].

3.4. Deformations of group schemes. Given a group scheme G0/k, we consider
deformations

G0 −−−−→ GA⏐⏐

⏐⏐
flat

Spec k −−−−→ SpecA,

where GA is a group scheme over A with GA ⊗A k = G0.
Since the topological space |G0| does not deform, we need only consider defor-

mations of OG0 as a sheaf of Hopf algebras. The structures are:

Σ+ = {algebra}, Σ− = {G0-sheaf, co-algebra},

over the category of sheaves of flat A-modules on G′
0.

This gives the following commutative diagram of monadic and comonadic ad-
junctions:

A−FHopfAlg(G0) �
��

u−1

��

A−FCoAlg(G0)
SymmA

��

u−1

��
A−FAlg(G′

0)

Q◦u∗�

��

�
��
A−FMod(G′

0),

Q◦u∗�

��

SymmA

��

where A−FHopfAlg is the category of flat Hopf algebras over A, A−FCoAlg is the
category of flat co-associative co-algebras with co-unit and co-inverse over A, and
Q is the free co-algebra functor of Section 1.3.2. We thus obtain the SDC

En = HomΛ((SymmΛ)nM , (u∗ ◦ Q ◦ u−1)nM )u−1(αn◦εn),

where M is the lift (unique up to isomorphism) of the sheaf u−1OG0 of k-vector
spaces to a flat µ-adic sheaf on G′, with αn, εn the canonical maps

εn : (Symmk)nOG0 → OG0 , αn : OG0 → (u∗ ◦ Q ◦ u−1)nOG0

associated to OG0 .
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4. Equivalence between SDCs and DGLAs in characteristic zero

Throughout this section, we will assume that Λ = k, a field of characteristic zero.
We will also assume that all DGLAs are in non-negative degrees, i.e. L<0 = 0.

4.1. Review of DGLAs. The results of this section can all be found in [5].

Definition 4.1. A DGLA over a field k of characteristic 0 is a graded vector
space L =

⊕
i∈N0

Li over k, equipped with operators [, ] : L × L → L bilinear and
d : L → L linear, satisfying:

(1) [Li, Lj ] ⊂ Li+j ,

(2) [a, b] + (−1)āb̄[b, a] = 0,
(3) (−1)c̄ā[a, [b, c]] + (−1)āb̄[b, [c, a]] + (−1)b̄c̄[c, [a, b]] = 0,
(4) d(Li) ⊂ Li+1,
(5) d ◦ d = 0,
(6) d[a, b] = [da, b] + (−1)ā[a, db].

Here ā denotes the degree of a, mod 2, for a homogeneous.

Fix a DGLA L.

Definition 4.2. The Maurer-Cartan functor MCL : Ck → Set is defined by

MCL(A) = {x ∈ L1 ⊗ mA|dx +
1
2
[x, x] = 0}.

Observe that for ω ∈ L1 ⊗ mA,

dω +
1
2
[ω, ω] = 0 ⇒ (d + adω) ◦ (d + adω) = 0,

so (L ⊗ A, [, ], d + adω) is a DGLA over A.

Definition 4.3. Define the gauge functor GL : Ck → Grp by GL(A) =
exp(L0 ⊗ mA).

We may define another DGLA, Ld, by

Li
d =

{
L1 ⊕ kd i = 1

Li i �= 1,

with
dd(d) = 0, [d, d] = 0, [d, a]d = da, ∀a ∈ L.

Lemma 4.4. exp(L0 ⊗ mA) commutes with [, ] when acting on Ld ⊗ A via the
adjoint action.

Corollary 4.5. Since exp(L0 ⊗ mA) preserves L1 ⊗ mA + d ⊂ Ld ⊗ A under the
adjoint action, and

x ∈ MCL(A) ⇔ [x + d, x + d] = 0,

the adjoint action of exp(L0 ⊗ mA) on L1 ⊗ A + d induces an action of GL(A) on
MCL(A), which we will call the gauge action.

Definition 4.6. DefL = MCL/GL, the quotient being given by the gauge action
α(x) = adα(x + d) − d. Observe that GL is homogeneous. Define the deformation
groupoid DefL to have objects MCL, and morphisms given by GL.
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Theorem 4.7. DefL is a deformation functor, tDefL
∼= H1(L), and H2(L) is a

complete obstruction space for DefL. For x, y objects in DefL(A), the group-valued
functor Iso(x, y) : CA → Grp is homogeneous, with tangent space H0(L) and com-
plete obstruction space H1(L).

Theorem 4.8. If φ : L → M is a morphism of DGLAs, and

Hi(φ) : Hi(L) → Hi(M)

are the induced maps on cohomology, then:
(1) If H1(φ) is bijective, and H2(φ) injective, then DefL → DefM is étale.
(2) If also H0(φ) is surjective, then DefL → DefM is an isomorphism.
(3) Provided condition (1) holds, DefL → DefM is an equivalence of functors

of groupoids if and only if H0(φ) is an isomorphism.

Proof. See [5, Theorem 3.1]. �

Thus, in particular, a quasi-isomorphism of DGLAs gives an isomorphism of
deformation functors and deformation groupoids.

Finally, we make an observation which does not appear in [5]. Define CN0
k to be

the category of nilpotent local Noetherian graded (super-commutative) k-algebras
(in non-negative degrees) with residue field k (concentrated in degree 0).

Lemma 4.9. Given a pro-representable (in the sense of [1]) functor G : CN0
k → Grp,

with tangent space the GLA L∗, there is a canonical isomorphism

G(A∗) ∼= exp(L)(A∗) := exp(
⊕

n

Ln ⊗ (mA)n).

In particular, this implies that G must be smooth.

Proof. Let G be pro-represented by T∗, the product corresponding to a map ρ :
T∗ → T∗⊗̂T∗. Then

G(A∗) = Homk−Alg(T∗, A∗),
⊕

n

Ln ⊗ (mA)n = Derk(T∗, A∗).

We can embed both of these into Homk(T∗, A∗), on which we define the associative
product f ∗ g = (f ⊗ g) ◦ ρ. Now the maps

G(A∗) ∼=
⊕

n

Ln ⊗ (mA)n,

g �→
∑
n≥1

(−1)n−1 (g − e)∗n

n
,

∑
n≥0

l∗n

n!
←� l,

where e is the identity map T∗ → k, give us our isomorphism. �

4.2. DGLA � SDC. Given a DGLA L, first form the denormalised cosimplicial
complex

(N−1L)n :=
⊕

m+s=n
1≤j1<...<js≤n

∂js . . . ∂j1Lm,
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where we define the ∂j and σi using the simplicial identities, subject to the condi-
tions that for all v ∈ Ln, σiv = 0 and dv =

∑n+1
i=0 (−1)i∂iv.

Given v, w ∈ (N−1L)n such that σiv ⊗ σiw = 0 for all i, define

[[v, w]] :=
∑

p+q=n
(µ,ν)∈Sh(p,q)

(−1)(µ,ν)[σν1 . . . σνqv, σµ1 . . . σµpw] ∈ Ln,

with Sh(p, q) denoting the set of (p, q) shuffle permutations, i.e. permutations

(µ1, . . . , µp, ν1, . . . , νq) of {0, . . . , p + q − 1}

such that
µ1 < . . . < µp and ν1 < . . . < νq,

and (−1)(µ,ν) is the sign of the permutation (µ, ν).
We then extend this bracket to the whole of (N−1L)n by setting

[[∂Iv, ∂Iw]] := ∂I [[v, w]].

That (N−1L)n is a cosimplicial Lie algebra follows from the properties of the
Eilenberg-Mac Lane shuffle product, as explained in [11] or [8].

Now set
E(L)n(A) = exp((N−1L)n ⊗ mA),

making E(L) into a cosimplicial complex of group-valued functors. To make it
an SDC, we must define a ∗ product. We do this as the Alexander-Whitney cup
product

g ∗ h = (∂m+n . . . ∂m+2∂m+1g) · (∂0)mh,

for g ∈ E(L)m, h ∈ E(L)n.

Proposition 4.10. There are canonical isomorphisms Hi(L) → Hi(C•(E(L))),
where C•(E(L)) is the tangent space of E(L), and an equivalence DefL → DefE(L).

Proof. The tangent space C•(E(L)) is just N−1L, so L ∼= NN−1L by the standard
comparison between cosimplicial and cochain complexes. This gives the required
isomorphism on cohomology.

We define the equivalence by sending ω ∈ MCL(A) to exp(ω) ∈ E1(L). We need
to show that this satisfies the Maurer-Cartan functor. Now, the Campbell-Baker-
Hausdorff formula implies that

exp(ω) ∗ exp(ω) = exp(∂2ω) · exp(∂0ω) = exp(∂2ω + ∂0ω +
1
2
[[∂2ω, ∂0ω]] + . . .),

with all the remaining terms being higher commutators involving [[∂2ω, [[∂2ω, ∂0ω]]]]
and [[∂0ω, [[∂2ω, ∂0ω]]]]. But

[[∂2ω, [[∂2ω, ∂0ω]]]] = [[∂2ω, [ω, ω]]] = 0,

and similarly for [[∂0ω, [[∂2ω, ∂0ω]]]], ensuring that all higher terms vanish. There-
fore

exp(ω) ∗ exp(ω) = exp(∂2ω + ∂0ω +
1
2
[ω, ω]) = ∂1 exp(ω),

since dω+ 1
2 [ω, ω] = 0, so MCL → MCE(L). Finally, we have an isomorphism GL →
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E0(L), compatible with the gauge actions, giving a morphism DefL → DefE(L).
That this is an equivalence follows from comparing tangent and obstruction spaces.

�

4.3. SDCs. Fix an SDC E. Although each En will only be pro-representable in
the sense of [9] if dim C(E)n < ∞, in general we may make use of the weaker
notion of pro-Artinian pro-representability as in [1]. Throughout this section, only
the weaker notion of pro-representability will be used. We then have the following
lemma:

Lemma 4.11. Given a smooth homogeneous functor F : CΛ → Set, let {ti : i ∈ I}
be a basis for tF . Then F is isomorphic to Hompro(CΛ)(R,−), where R is the pro-
Artinian completion of Λ[Ti : i ∈ I], localised at (Ti : i ∈ I), for formal symbols Ti.
Note that, if tF is finite dimensional, this is just the expected ring Λ[[T1, . . . , Tm]].

Proof. This is very similar to the proof of [9, Theorem 2.11]. A full proof in the
analogous case of nilpotent Lie algebras (rather than Artinian rings) is given in [7,
Theorem 2.24]. �

Thus an SDC E is equivalent to a system of smooth local pro-Artinian rings Q•,
with the dual structures to those described in Section 1.1. In particular, since we
are only considering the case Λ = k, we have canonical ∂0

ω0
, ∂n+1

ω0
. Explicitly:

Lemma 4.12. Q• is a simplicial complex of smooth local pro-Artinian k-algebras
(with residue field k), together with a co-associative comultiplication

ρm,n := ∗�
m,n : Qm+n → Qm⊗̂Qn,

such that Q0 → k is the co-unit, satisfying:
(1) (∂i ⊗ id) ◦ ρm+1,n = ρm,n ◦ ∂i for i ≤ m,
(2) (id ⊗ ∂i) ◦ ρm,n+1 = ρm,n ◦ ∂m+i for i ≥ 1,
(3) (∂m+1 ⊗ id) ◦ ρm+1,n = (id ⊗ ∂0) ◦ ρm,n+1,
(4) (σi ⊗ id) ◦ ρm−1,n = ρm,n ◦ σi,
(5) (id ⊗ σi) ◦ ρm,n−1 = ρm,n ◦ σm+i.

Of course, given a system Q• satisfying these conditions, we can clearly recover
an SDC as Hom(Q•,−), so that we may regard this as an equivalent definition of
an SDC.

Remark 4.13. We say that a simplicial complex A• of local Λ-algebras is Artinian if
it satisfies DCC on simplicial ideals. This is equivalent to saying that the algebras
An are Artinian, and the normalised complex N(A•) is bounded. It is easy to see
that Q• = lim←−Q•, the limit being over quotient complexes Q• → Q•, where Q• is
Artinian. Moreover, Q• is really just a shorthand for this inverse system. Thus, for
any functor F , by F (Q•) we mean lim←−F (Q•). In particular, H∗(Q•) := lim←−H∗(Q•).
We will apply the same convention to the limits of DG complexes in the next section.

4.4. SDC � DGLA. Given Q∗ as in Section 4.3, we form a DG Hopf algebra
C(Q)•, with C(Q)n = Qn as a graded module. We let

d =
n+1∑
i=0

(−1)i∂i : C(Q)n+1 → C(Q)n,
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and give it an algebra structure via the Eilenberg-Zilber shuffle product: for x ∈
C(Q)m and y ∈ C(Q)n, let

x∇y =
∑

(µ,ν)∈Sh(m,n)

(−1)(µ,ν)(σνn
. . . σν1x) · (σµm

. . . σµ1y).

As explained in [11] or [8], the resulting product is supercommutative, i.e.

x∇y = (−1)mny∇x,

and associative, and d is a graded derivation with respect to ∇, i.e.

d(x∇y) = (dx)∇y + (−1)mx∇(dy).

Lemma 4.14. C(Q)∗ is a Hopf algebra under the map ρ.

Proof. Given x ∈ C(Q)m, y ∈ C(Q)n, and any p + q = m + n, we have:

ρp,q(x∇y) = ρp,q(
∑
(µ,ν)

(−1)(µ,ν)σνn
. . . σν1x · σµm

. . . σµ1y)

=
∑
(µ,ν)

(−1)(µ,ν)ρp,q(σνn
. . . σν1x) · ρp,q(σµm

. . . σµ1y)

=
∑

±(σν′
n′ . . . σν′

1
⊗ σν′′

n′′ . . . σν′′
1
) ◦ ρm′,m′′(x)

· (σµ′
m′ . . . σµ′

1
⊗ σµ′′

m′′ . . . σµ′′
1
) ◦ ρn′,n′′(y),

the final sum being over m′ + m′′ = m, n′ + n′′ = n, m′ + n′ = p, m′′ + n′′ = q,
(µ′, ν′) ∈ Sh(m′, n′), (µ′′, ν′′) ∈ Sh(m′′, n′′), with ± = (−1)(µ

′,µ′′+p,ν′,ν′′+p).
For this map to be a Hopf algebra map, we would need this expression to equal

∑
ρm′,m′′(x)∇ρn′,n′′(y),

the (p, q) component of ρ(x)∇ρ(y), summing over m′, m′′, n′, n′′ as above. Now,

ρm′,m′′(x)∇ρn′,n′′(y) =
∑

± (σν′
n′ . . . σν′

1
⊗ σν′′

n′′ . . . σν′′
1
) ◦ ρm′,m′′(x)

· (σµ′
m′ . . . σµ′

1
⊗ σµ′′

m′′ . . . σµ′′
1
) ◦ ρn′,n′′(y),

where the sum is over (µ′, ν′), (µ′′, ν′′), and ± = (−1)m′′n′
(−1)(µ

′,ν′)(−1)(µ
′′,ν′′),

the (−1)m′′n′
arising from the (required) supercommutativity of C(Q)∗ ⊗ C(Q)∗.

The result now follows from the observation that

(−1)(µ
′,µ′′+p,ν′,ν′′+p) = (−1)m′′n′

(−1)(µ
′,ν′)(−1)(µ

′′,ν′′).

�

Lemma 4.15. ρ is a chain map.
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Proof. For x ∈ C(Q)m+1,

ρ(dx) =
∑

p+q=m

ρp,q(
m+1∑
i=0

(−1)i∂ix)

=
∑

p+q=n

(
p∑

i=0

(−1)i(∂i ⊗ id) ◦ ρp+1,q(x)

+(−1)p

q+1∑
j=1

(−1)j(id ⊗ ∂j) ◦ ρp,q+1(x))

=
∑

p+q=m

(((d − (−1)p+1∂p+1) ⊗ id) ◦ ρp+1,q(x)

+(−1)p(id ⊗ (d − ∂0)) ◦ ρp,q+1(x))

=
∑

p+q=m

(d ⊗ id) ◦ ρp+1,q(x) − (−1)p+1(∂p+1 ⊗ id) ◦ ρp+1,q(x)

+
∑

p+q=m

(−1)p(id ⊗ d) ◦ ρp,q+1(x) − (−1)p(id ⊗ ∂0) ◦ ρp,q+1(x)

=
∑

p+q=m

(d ⊗ id) ◦ ρp+1,q(x) +
∑

p+q=m

(−1)p(id ⊗ d) ◦ ρp,q+1(x)

= dρ(x).

�

There is now a problem with C(Q∗) as a candidate to define a DGLA L — it
is not local. In [8], rather than taking the unnormalised chain complex C(Q∗),
Quillen takes the normalised chain complex N(Q∗). Recall that

C(Q)n = N(Q)n ⊕ D(Q)n, where

N(Q)n =
n⋂

i=1

ker(∂i : Qn → Qn−1), D(Q)n =
n−1∑
i=1

σi(Qn−1).

Observe that N(Q)• is local, as ker(∂1) ⊂ mQ. It is pro-Artinian following Remark
4.13, since the normalisation of an ideal is a ∇-ideal, and N(I)∇N(J) ⊂ N(IJ).
However, we cannot give N(Q) the Hopf algebra structure ρ: in general, for x ∈
N(Q)m+n, (∂m ⊗ id) ◦ ρm,n(x) �= 0. Instead, we take the complex

N̄(Q) := C(Q)/D(Q).

It follows immediately from the identities in Lemma 4.12 that

ρm,n : N̄(Q)m+n → N̄(Q)m⊗̂N̄(Q)n

is well defined. We need only check that ∇ is well defined on N̄(Q), since then we
will have N̄(Q) isomorphic to N(Q) as an algebra.

Lemma 4.16. For x ∈ D(Q)m and y ∈ C(Q)n, x∇y ∈ D(Q)m+n.

Proof. Without loss of generality, x = σru, for some 0 ≤ r < m. We will show that
each term in the sum of the shuffle product is in D(Q)m+n. Consider

σνn
. . . σν1x · σµm

. . . σµ1y,
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and let a := max{j : νj − j < r}, which makes sense since νj − j is a non-decreasing
function. With the obvious convention if this set is empty, we have 0 ≤ a ≤ n.
Now, the simplicial identities give

σνn
. . . σν1σru = σνn

. . . σνa+1σr+aσνa
. . . σν1u,

with
ν1 < . . . < νa < r + a < νa+1 < . . . < νn.

Now r + a ≤ p − 1 + q, and r + a does not equal any of the νj , so r + a = µi for
some i. This gives

(σνn
. . . σν1x) · (σµm

. . . σµ1y) = (σνn
. . . σνa+1σµi

σνa
. . . σν1u) · (σµm

. . . σµ1y)
= (σµi

σνn−1 . . . σνa+1−1σνa
. . . σν1u)

·(σµi
σµm−1 . . . σµi+1−1σµi−1 . . . σµ1y)

= σµi
((σνn−1 . . . σνa+1−1σνa

. . . σν1u)
·(σµm−1 . . . σµi+1−1σµi−1 . . . σµ1y)),

which is in D(Q)m+n, as required. �
Definition 4.17. Given an SDC E, we define the DGLA L(E) by

L(E) = Derk(N̄(Q)•, k),

where Q• pro-represents E. Note that it follows from Lemma 4.9 that on CN0
k ,

N̄(Q) pro-represents exp(L(E)), so it must be a smooth, i.e. a graded power series
ring.

Proposition 4.18. There are natural isomorphisms Hi(E) → Hi(L(E)).

Proof. We may compute Hi(E) using the normalised cocomplex

Nn(K∗) =
n−1⋂
i=0

ker(σi : Kn → Kn−1), d =
n∑

i=0

(−1)i∂i.

Thus an element α ∈ N i(C•(E)) is a derivation (with respect to the product on
Q) from N̄i(Q) to k (by the definition of N̄). A derivation to k is just a linear
map which annihilates both k and m2

Q, but mQ∇mQ ⊂ m2
Q, so α gives a derivation

(with respect to ∇) from N̄•(Q) to k, of degree i. This defines a chain map, giving
the required map on cohomology.

To see that these maps are isomorphisms, consider the morphism of filtered
complexes

(N•(Q), N•(mQ)∇n)
f−→ (Q•, m

n
Q•).

The spectral sequences associated to the filtrations are

E1
pq = (Symm−pH∗(L(E)))p+q =⇒ Hp+q(N•(Q)),

E1
pq = (Symm−pH∗(E))p+q =⇒ Hp+q(Q•),

where we write H∗(E) for the pro-Artinian dual of H∗(E), and likewise for
H∗(L(E)). The expression for the E1 term follows from the calculation of homology
of symmetric powers of chain complexes and simplicial complexes.

If i is the smallest integer for which Hi(f) : Hi(E) → Hi(L(E)) is not an isomor-
phism, then E∞

i (f) is not an isomorphism. This gives a contradiction, since the
morphism of spectral sequences is an isomorphism at the E∞ term, so the maps
Hi(f) are all isomorphisms. �
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Proposition 4.19. There is a natural map DefE → DefL(E), with the maps on
cohomology compatible with the corresponding maps on tangent and obstruction
spaces.

Proof. (1) Given ω ∈ MCE , we may regard ω as a continuous ring homomor-
phism ω : Q1 → A, satisfying ω ∗ω = ∂1(ω). We also know that σ0(ω) = e.
Set α = ω − ω0. This gives σ0(α) = 0; therefore α : N̄1(Q) → A. In fact, α
is a ∇-derivation: for x ∈ Q0, y ∈ Q1,

α(x∇y) = α(σ0(x)y)
= (ω − ω0)(σ0(x)y)

= σ0(ω)(x)ȳ − σ0(ω0)(x)ȳ + σ0(x)ω(y) − σ0(x)ω0(y)
= x̄α(y)
= x̄α(y) + α(x)ȳ.

Moreover, the Maurer-Cartan equation for ω becomes

(ω0 + α) ∗ (ω0 + α) = ∂1(ω0 + α),
ω2

0 + ∂0(α) + ∂2(α) + α ∗ α = ω2
0 + ∂1(α),

∂0(α) − ∂1(α) + ∂2(α) + α ∗ α = 0,

dα +
1
2
[α, α] = 0.

Therefore α ∈ MCL(E).
(2) Given g ∈ E0(A), g is an algebra homomorphism g : Q0 → A. Since ∇

agrees with the usual product on Q0, and N̄0(Q) = Q0, g is a ∇-algebra
homomorphism g : N̄0(Q) → A. Therefore

g ∈ exp(L0(E) ⊗ mA),

by Lemma 4.9. It is easy to see that the adjoint action on E corresponds
to the gauge action on L(E).

We therefore have the map DefE → DefL(E). The results on tangent and ob-
struction spaces follow immediately. �

4.5. The equivalence.

Theorem 4.20. There is a quasi-isomorphism E → E(L(E)) of SDCs, for any
SDC E.

Proof. By Lemma 4.9, we see that the Hopf algebra N•(Q) must be the free pro-
Artinian algebra generated by the pro-Artinian dual L(E)∨ of L(E). Letting N−1

denote the denormalisation functor from chain complexes to simplicial complexes,
we then have a canonical map N−1L(E)∨ → Q• of simplicial complexes, and
therefore a map k[[N−1L(E)∨]] → Q•. The former algebra pro-represents E(L(E)),
so we have defined a morphism E → E(L(E)), respecting the operations σi, ∂i.
It follows from Propositions 4.10 and 4.18 that this map is an isomorphism on
cohomology.
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It only remains to verify that this map respects the product ∗, which follows be-
cause the coproduct on Hopf algebras is not changed by any of these constructions,
the Alexander-Whitney and Eilenberg-Zilber maps cancelling each other.

Alternatively, we could observe that, if T• is the DG algebra pro-representing
exp(L), then E(L) is pro-represented by N∗T•, for N∗ the denormalisation func-
tor defined for algebras in [8]. The morphism required is just the co-unit of the
adjunction N∗ � N , which is natural with respect to the coproduct. �

Corollary 4.21. For any DGLA L, there is a quasi-isomorphism L → L(E(L)).

Proof. By Theorem 4.20, there is a quasi-isomorphism of SDCs

E(L) → E(L(E(L))).

Now, Theorem 4.10 gives a canonical isomorphism N(C(E(L))) ∼= L, so we may
regard N•(C(E(L))) as a DGLA, with bracket

[α, β] = (α ⊗ β) ◦ ∆ ∓ (β ⊗ α) ◦ ∆.

(Note that N(C(E)) will not be closed under this bracket for an arbitrary SDC E.)
The quasi-isomorphism of SDCs then gives us a quasi-isomorphism of DGLAs:

L ∼= N(C(E(L))) ∼−→ N(C(E(L(E(L))))) ∼= L(E(L)).

�

If we now define SDC to be the category of SDCs, localised at quasi-isomor-
phisms, DGLA to be the category of DGLAs, localised at quasi-isomorphisms, and
[CΛ, Grpd] the category of groupoid-valued functors on CΛ, localised at equivalences,
we have defined a pair of equivalences of fibred categories

SDC
L ��

Def ���
��

��
��

DGLA
E

��

Def����
��

��
��

[CΛ, Grpd].
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