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THE CANONICAL RAMSEY THEOREM
AND COMPUTABILITY THEORY

JOSEPH R. MILETI

Abstract. Using the tools of computability theory and reverse mathematics,
we study the complexity of two partition theorems, the Canonical Ramsey The-
orem of Erdös and Rado, and the Regressive Function Theorem of Kanamori
and McAloon. Our main aim is to analyze the complexity of the solutions to
computable instances of these problems in terms of the Turing degrees and
the arithmetical hierarchy. We succeed in giving a sharp characterization for
the Canonical Ramsey Theorem for exponent 2 and for the Regressive Func-
tion Theorem for all exponents. These results rely heavily on a new, purely
inductive, proof of the Canonical Ramsey Theorem. This study also unearths
some interesting relationships between these two partition theorems, Ramsey’s
Theorem, and König’s Lemma.

1. Introduction

König’s Lemma and Ramsey’s Theorem stand out as two of the most important
and far-reaching results in countable combinatorics. There has been an extensive
study of the strength of these combinatorial principles using the tools of computabil-
ity theory and reverse mathematics. From the viewpoint of computability theory
(see [21] for the necessary background information about computability theory),
one may ask where solutions to computable instances of these problems lie either
in the Turing degrees or the arithmetical hierarchy. Also, one may seek to classify
the strength of these statements with respect to the reverse mathematics hierarchy
(see [20] for the necessary background information about reverse mathematics). In
this paper, we analyze the effective content of the Canonical Ramsey Theorem and
the Regressive Function Theorem, and relate it to the effective content of König’s
Lemma and Ramsey’s Theorem.

We list here some notational conventions. We denote the set of natural num-
bers by ω. We identify each n ∈ ω with the set of elements less than it, so
n = {0, 1, 2, . . . , n − 1}. Lowercase roman letters near the beginning or middle
of the alphabet (a,b,c,i,j,k,. . . ) will denote elements of ω (and sometimes −1), and
lowercase roman letters near the end of the alphabet (x,y,z,u,. . . ) will denote fi-
nite subsets of ω. We identify a finite subset x of ω of size n with the n-tuple
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listing x in increasing order and with the corresponding function g : n → ω. Up-
percase roman letters near the end of the alphabet (X,Y ,Z,. . . ) will denote subsets
of ω, and uppercase roman letters near the beginning or middle of the alphabet
(A,B,C,H,I,J ,. . . ) will denote infinite subsets of ω. Given X ⊆ ω, we denote the
set of finite sequences of elements of X by X<ω. We use σ, τ, . . . to denote elements
of ω<ω. For a set X ⊆ ω, we let deg(X) denote the Turing degree of X.

Definition 1.1.
(1) A tree is a subset T of ω<ω such that for all σ ∈ T , if τ ∈ ω<ω and τ ⊆ σ,

then τ ∈ T .
(2) If T is a tree and S ⊆ T is also a tree, we say that S is a subtree of T .
(3) A tree T is bounded if there exists h : ω → ω such that for all σ ∈ T and

k ∈ ω with |σ| > k, we have σ(k) ≤ h(k).
(4) A branch of a tree T is a function f : ω → ω such that f � n ∈ T for all

n ∈ ω.

Theorem 1.2 (König’s Lemma). Every infinite bounded tree has a branch.

Definition 1.3.
(1) Given a set Z ⊆ ω and n ∈ ω, we let [Z]n = {x ⊆ Z : |x| = n}.
(2) Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. Such an f

is called a p-coloring of [B]n and n is called the exponent. We say that a
set H ⊆ B is homogeneous for f if H is infinite and f(x) = f(y) for all
x, y ∈ [H]n.

Theorem 1.4 (Ramsey’s Theorem [16]). Suppose that n, p ≥ 1, B ⊆ ω is infinite,
and f : [B]n → p. There exists a set H homogeneous for f .

König’s Lemma and Ramsey’s Theorem are intimately related, as several proofs
of partition theorems in set theory (such as Ramsey’s Theorem) utilize paths
through trees, and vice-versa. In the realm of large cardinals, those cardinals on
which the appropriate analogue of Ramsey’s Theorem holds are exactly those on
which the appropriate analogue of König’s Lemma holds (see [11, Theorem 7.8]).

Our interest is in the effective content of mathematical theorems. For exam-
ple, we may ask whether every computable f : [ω]2 → 2 must have a computable
homogeneous set. If the answer is negative, we may wonder about the complexity
of homogeneous sets for computable f : [ω]2 → 2 as measured using the tools of
computability theory. We might expect that the above mentioned relationship be-
tween partition theorems and König’s Lemma manifests itself in their corresponding
computability-theoretic or reverse mathematical strengths.

Aside from Ramsey’s Theorem, our focus in this discussion is on two partition
theorems which allow infinitely many colors: the Canonical Ramsey Theorem of
Erdös and Rado and the Regressive Function Theorem of Kanamori and McAloon.
We first set up some notation that will be useful when discussing partition theorems.

Definition 1.5.
(1) If x ⊆ ω is finite and a ∈ ω, we write x < a if a is greater than every

element of x.
(2) Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → ω, x ∈ [B]n, and

a ∈ B. When we write f(x, a), we implicitly assume that x < a, and we let
f(x, a) = f(x∪{a}). Also, if n = 1 and a, b ∈ B, when we write f(a, b), we
implicitly assume that a < b, and we let f(a, b) = f({a, b}).
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The first partition theorem is the Canonical Ramsey Theorem due to Erdös and
Rado which considers arbitrary functions f : [ω]n → ω. Of course, we cannot expect
to always have homogeneous sets, as witnessed by the following simple functions
f : [ω]2 → ω (where 〈·〉 is a fixed effective bijection from ω2 to ω):

(1) f(a, b) = a,
(2) f(a, b) = b,
(3) f(a, b) = 〈a, b〉.

However, the Canonical Ramsey Theorem for exponent 2 says that given any
f : [ω]2 → ω, there exists an infinite set C ⊆ ω which either is homogeneous, or on
which f behaves like one of the above functions. Precisely, given any f : [ω]2 → ω,
there exists an infinite C such that either:

(1) For all a1, b1, a2, b2 ∈ C, we have f(a1, b1) = f(a2, b2).
(2) For all a1, b1, a2, b2 ∈ C, we have f(a1, b1) = f(a2, b2) ↔ a1 = a2.
(3) For all a1, b1, a2, b2 ∈ C, we have f(a1, b1) = f(a2, b2) ↔ b1 = b2.
(4) For all a1, b1, a2, b2 ∈ C, we have f(a1, b1) = f(a2, b2) ↔ (a1 = a2 and

b1 = b2).
In the general case of an f : [B]n → ω, we get 2n different possibilities.

Definition 1.6. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n → ω, and u ⊆ n.
We say that a set C ⊆ B is u-canonical for f if C is infinite and for all x1, x2 ∈ [C]n,
we have f(x1) = f(x2) ↔ x1 � u = x2 � u. We say that a set C is canonical for f if
there exists u ⊆ n such that C is u-canonical for f .

Theorem 1.7 (Canonical Ramsey Theorem [3]). Suppose that n ≥ 1, B ⊆ ω is
infinite, and f : [B]n → ω. There exists a set C canonical for f .

Ramsey’s Theorem is an immediate consequence of the Canonical Ramsey The-
orem.

Claim 1.8. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. If C ⊆ B is
canonical for f , then C is homogeneous for f .

Proof. Suppose that C ⊆ B is u-canonical for f , where u ⊆ n. Suppose that there
exists i < n such that i ∈ u. Fix xk ∈ [C]n for all k ∈ ω such that x0 < x1 < x2 <
. . . . For any j, k ∈ ω with j 
= k, we have xj � u 
= xk � u; hence f(xj) 
= f(xk).
This contradicts the fact that f(xk) < p for each k ∈ ω. It follows that there is no
i < n such that i ∈ u, so u = ∅. Therefore, C is homogeneous for f . �

Our other main interest is the Regressive Function Theorem. The primary in-
terest in this partition theorem is that Kanamori and McAloon showed that its
finitary version is true but not provable in Peano Arithmetic (see [12]). Paris and
Harrington [14] provided the first such natural finitary combinatorial statement, but
Kanamori and McAloon’s is arguably more natural. Like the Canonical Ramsey
Theorem, it deals with colorings which allow infinitely many colors, but it places a
restriction on which such colorings it considers.

Definition 1.9. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω.
(1) We say that f is regressive if for all x ∈ [B]n, we have f(x) < min(x)

whenever min(x) > 0, and f(x) = 0 whenever min(x) = 0.
(2) We say that a set M ⊆ B is minhomogeneous for f if M is infinite and for

all x, y ∈ [M ]n with min(x) = min(y) we have f(x) = f(y).
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Theorem 1.10 (Regressive Function Theorem [12]). Suppose that n ≥ 1, B ⊆ ω
is infinite, and f : [B]n → ω is regressive. There exists a set M minhomogeneous
for f .

The Regressive Function Theorem (for exponent n) is a straightforward conse-
quence of the Canonical Ramsey Theorem (for exponent n).

Claim 1.11 (Kanamori and McAloon [12]). Suppose that n ≥ 1, B ⊆ ω is infinite,
and f : [B]n → ω is regressive. If C ⊆ B is canonical for f , then C is minhomoge-
neous for f .

Proof. If n = 1, then every infinite subset of B is minhomogeneous for f , so we
may assume that n ≥ 2. Suppose that C ⊆ B is u-canonical for f , where u ⊆ n.
Suppose that there exists i with 0 < i < n such that i ∈ u. Let c0 = min(C). Fix
xk ∈ [C]n−1 for all k ∈ ω such that c0 < x0 < x1 < x2 < . . . . For any j, k ∈ ω
with j 
= k, we have (c0, xj) � u 
= (c0, xk) � u; hence f(c0, xj) 
= f(c0, xk). This
contradicts the fact that f(c0, xk) ≤ c0 for each k ∈ ω. It follows that there is no
i with 0 < i < n such that i ∈ u, so either u = ∅ or u = {0}. If u = ∅, then C
is homogeneous for f , and hence minhomogeneous for f . If u = {0}, then for all
x, y ∈ [C]n, we have f(x) = f(y) ↔ x � {0} = y � {0} ↔ min(x) = min(y), so C is
minhomogeneous for f . �

Before embarking on a study of the Canonical Ramsey Theorem and the Re-
gressive Function Theorem, we will discuss some of the known results for König’s
Lemma and Ramsey’s Theorem.

2. Effective analysis of König’s Lemma and Ramsey’s Theorem

An effective analysis of König’s Lemma depends on both the complexity of f
and the complexity of the bound. We will mostly be concerned with subtrees of
2<ω (that is, trees which are bounded by h(k) = 1). It is straightforward to effec-
tively code computable trees bounded by a computable function using computable
subtrees of 2<ω, so for our purposes there is no loss in restricting attention to the
following case.

Corollary 2.1 (Weak König’s Lemma). Every infinite subtree of 2<ω has a branch.

Definition 2.2. Let a and b be Turing degrees. We write a � b to mean that
every infinite b-computable subtree of 2<ω has an a-computable branch.

The notation a � b was introduced in Simpson [19], and many of the basic
properties of this ordering can be found there. It is well known that a ≥ b′ → a �
b → a > b. The following proposition gives some equivalent characterizations of
this ordering.

Proposition 2.3 (Scott [17], Solovay). Let a and b be Turing degrees. The fol-
lowing are equivalent:

(1) a � b.
(2) Every partial {0, 1}-valued b-computable function has a total a-computable

extension.
(3) a is the degree of a complete extension of the theory of Peano Arithmetic

with an additional unary predicate symbol P , axioms P (n) for all n ∈ B
and ¬P (n) for all n /∈ B (where B is a fixed set in b), and induction axioms
for formulas involving P .
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Using the existence of a computable tree in which the branches code complete
extensions of Peano Arithmetic, it follows that there is a “universal” computable
subtree of 2<ω.

Corollary 2.4 (Scott [17]). There exists an infinite computable subtree T of 2<ω

such that given any branch BT of T , and any infinite computable subtree S of 2<ω,
there exists a branch BS of S such that BS ≤T BT .

In [10], Jockusch and Soare established the following fundamental result.

Theorem 2.5 (Low Basis Theorem [10, Theorem 2.1]). There exists a � 0 with
a′ = 0′.

We now turn to Ramsey’s Theorem. Specker [22] was the first to analyze the ef-
fective content of Ramsey’s Theorem, and he showed that there exists a computable
f : [ω]2 → 2 with no computable homogeneous set. Before discussing further bounds
on the complexity of homogeneous sets, we first examine a few proofs of Ramsey’s
Theorem.

Definition 2.6. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → p. We
say that a pair (A, g), where A ⊆ B is infinite and g : [A]n → p, is a prehomogeneous
pair for f if f(x, a) = g(x) for all x ∈ [A]n and all a ∈ A.

Most proofs of Ramsey’s Theorem break down into the following three steps and
differ only in their proofs of (1):

(1) Given f : [B]n+1 → p, construct a prehomogeneous pair (A, g) for f .
(2) Apply induction to g : [A]n → p.
(3) Show that any set homogeneous for g is homogeneous for f .

We first establish (3).

Claim 2.7. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → p, and (A, g) is a
prehomogeneous pair for f . If H is homogeneous for g, then H is homogeneous for
f .

Proof. Let x1, x2 ∈ [H]n, let a1, a2 ∈ H, and suppose that x1 < a1 and x2 < a2.
We then have

f(x1, a1) = g(x1) (since (A, g) is a prehomogeneous pair for f)

= g(x2) (since H is homogeneous for g)

= f(x2, a2) (since (A, g) is a prehomogeneous pair for f).

Therefore, H is homogeneous for f . �
The standard way to construct a prehomogeneous pair proceeds by repeatedly

thinning down a set of candidates to add to the prehomogeneous pair, while ensuring
that this set of candidates remains infinite. For simplicity, consider a function
f : [ω]2 → 2. We will enumerate A in increasing order as a0, a1, . . . . We begin
by letting a0 = 0. If there are infinitely many b ∈ ω with f(a0, b) = 0, then we
can define g(a0) = 0 and restrict attention to the set I0 = {b ∈ ω : f(a0, b) =
0}. Otherwise, there are infinitely many b ∈ ω with f(a0, b) = 1, so we can
define g(a0) = 1 and restrict attention to the set I0 = {b ∈ ω : f(a0, b) = 1}.
We then let a1 = min I0 and continue in this fashion. If we succeed infinitely
many times in this manner with color 0, then the corresponding elements form a
homogeneous set colored 0, while if we succeed infinitely many times with color 1,
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then the corresponding elements form a homogeneous set colored 1. Notice that
this decision (infinitely many colored 0 or infinitely many colored 1) amounts to
finding a homogeneous set for g : [A]1 → 2.

This general idea can be extended to higher exponents n and to all p ≥ 1.
Suppose that B is computable and that f : [B]n → p is computable. A simple
analysis of this proof shows that there exists a prehomogeneous pair (A, g) for f
with deg(A⊕ g) ≤ 0′′ because the questions that need to be answered are whether
or not certain effectively given sets are infinite. Following this outline, one arrives
at the following result.

Theorem 2.8. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. Suppose
also that B and f are computable. There exists a set H homogeneous for f such
that deg(H) ≤ 0(2n−2).

Another approach is to build a prehomogeneous pair by coding such pairs into
the branches of a 0′-computable subtree of 2<ω. Using an argument along these
lines gives the following result.

Proposition 2.9 (essentially Jockusch [9, Lemma 5.4]). Suppose that n, p ≥ 1,
B ⊆ ω is infinite, and f : [B]n+1 → p. Suppose also that B and f are computable
and a � 0′. There exists a prehomogeneous pair (A, g) for f with deg(A⊕ g) ≤ a.
In particular (by the Low Basis Theorem), there exists a prehomogeneous pair (A, g)
for f with deg(A ⊕ g)′ ≤ 0′′.

Iterating this result, we conclude the following.

Theorem 2.10 (essentially Jockusch [9, Theorem 5.6]). Suppose that n, p ≥ 1,
B ⊆ ω is infinite, and f : [B]n → p. Suppose also that B and f are computable and
a � 0(n−1). There exists a set H homogeneous for f such that deg(H) ≤ a.

Jockusch also characterized the location of homogeneous sets for computable
colorings in the arithmetical hierarchy for all exponents.

Theorem 2.11 (Jockusch [9, Theorem 5.1, Theorem 5.5]).
(1) Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. Suppose also

that B and f are computable. There exists a Π0
n set homogeneous for f .

(2) For each n ≥ 2, there exists a computable f : [ω]n → 2 such that no Σ0
n set

is homogeneous for f .

Furthermore, Jockusch and Hummel showed that the halting problem can be
coded into the homogeneous sets of a computable f : [ω]3 → 2 and a c.e. f : [ω]2 → 2.
These results will play important roles in the coding techniques used below.

Proposition 2.12 (Jockusch [9, Lemma 5.9]). For every n ≥ 3, there exists a
computable h : [ω]n → 2 such that for all sets H homogeneous for h, we have
h([H]n) = {0} and H ≥T 0(n−2).

Proposition 2.13 (Jockusch and Hummel [6, Lemma 3.7]). There exists a com-
putably enumerable h : [ω]2 → 2 (that is, {x ∈ [ω]2 : h(x) = 1} is c.e.) such that
for all sets H homogeneous for h, we have h([H]2) = {0} and H ≥T 0′.

The above arguments can also be used to give results in reverse mathematics.

Definition 2.14. We let RTn
p denote the statement, in second-order arithmetic,

that every f : [N]n → p has a homogeneous set.
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Formalizing the proofs of Ramsey’s Theorem and of Proposition 2.12 in second-
order arithmetic, we arrive at the following.

Corollary 2.15 (Simpson). Let n ≥ 3 and p ≥ 2. Over RCA0, RTn
p is equivalent

to ACA0.

At this point, we are still left with many questions about the degrees of homoge-
neous sets for computable colorings for exponent 2. For a computable f : [ω]2 → 2,
we know that we can find homogeneous sets below any a � 0′, but we don’t know if
we can code anything nontrivial. Furthermore, this gap for exponent 2 propagates
up to higher exponents. A major step toward resolving this question was taken by
Seetapun, who showed that it was not possible to code nontrivial information into
the homogeneous sets of a computable coloring of exponent 2.

Theorem 2.16 (Seetapun [18]). Suppose that p ≥ 2, B ⊆ ω is infinite, and
f : [B]2 → p. Suppose also that B and f are computable and that {dk}k∈ω is
a family of nonzero degrees. There exists a set H homogeneous for f such that
dk � deg(H) for all k ∈ ω.

Seetapun iterated his result to arrive at the following important reverse mathe-
matical fact.

Corollary 2.17. For each p ≥ 2, RCA0 + RT2
p does not imply ACA0.

Adding the formal statements of Weak König’s Lemma in second-order arith-
metic to the base axiom system RCA0 of reverse mathematics gives the important
system WKL0. Using the Low Basis Theorem and Theorem 2.11, one can show
that for each p ≥ 2, RT2

p is not provable from WKL0 (a result first proved by Hirst
[5, Corollary 6.9]); hence RT2

p is not equivalent to any of the standard systems of
reverse mathematics.

To get more information about the complexity of Ramsey’s Theorem for expo-
nent 2, we look for guidance from yet another proof of Ramsey’s Theorem. An-
other proof of Ramsey’s Theorem which is quite similar to the outline above uses
a nonprincipal ultrafilter on ω (containing B as an element) to guide the inductive
construction. This changes the argument in the following fundamental manner. In
the above outline, the key question is how to define g(an) so that the correspond-
ing thinned out set remains infinite. We know that some choice will succeed, but
there may be many possible choices which work. In contrast, the ultrafilter guides
us because exactly one of the corresponding sets will remain in the ultrafilter. In
our context of effectively analyzing these proofs, the nonprincipal ultrafilter can be
replaced by a more basic object.

Definition 2.18. A set V ⊆ ω is r-cohesive if V is infinite and for every computable
set Z, either V ∩ Z is finite or V ∩ Z is finite.

Notice that if V is an r-cohesive set, then {Z ⊆ ω : Z is computable and V ⊆∗ Z}
is a nonprincipal ultrafilter in the Boolean algebra of computable sets. Hence, if
B is computable and f : [B]n → p is computable, we can use an r-cohesive set in
place of a nonprincipal ultrafilter on ω in the above construction. Jockusch and
Stephan [7] (see also [8] for a correction) characterized the Turing degrees of jumps
of r-cohesive sets.
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Theorem 2.19 (Jockusch and Stephan [7, Theorem 2.2(ii)]). Suppose that a � 0′.
There exists an r-cohesive set V such that deg(V )′ ≤ a. Furthermore, every r-
cohesive set V satisfies deg(V )′ � 0′.

Using this result and a suitable r-cohesive set in place of the ultrafilter allows
us to replace the 2-quantifier question of whether certain effectively given sets are
infinite by a 1-quantifier question, and thus gives another proof that for every
computable B and computable f : [B]n → p, and any a � 0′, there exists a pre-
homogeneous pair (A, g) for f with deg(A ⊕ g) ≤ a. Hence, we get another proof
of Theorem 2.10. However, by a much more detailed analysis of this approach for
exponent 2, Cholak, Jockusch, and Slaman showed that it is also possible to force
the jump of a homogeneous set in the construction.

Theorem 2.20 (Cholak, Jockusch, Slaman [2, essentially Lemma 4.6]). Suppose
p ≥ 2, B ⊆ ω is infinite, and f : [B]2 → p. Suppose also that B and f are
computable and that a � 0′. There exists a set H homogeneous for f such that
deg(H)′ ≤ a.

(Notice that in [2], Cholak, Jockusch, and Slaman essentially claim this theorem,
but only prove the above result for stable f . However, one can make use of the fact
that if a � 0′, then there exists a degree b such that a � b and b � 0′ to get
the desired conclusion from their arguments.) Furthermore, they showed that this
characterization is sharp in the following sense.

Theorem 2.21 (Cholak, Jockusch, Slaman [2, Theorem 12.5]). There exists a
computable f : [ω]2 → 2 such that deg(H)′ � 0′ for all sets H homogeneous for f .

Therefore, as remarked on pp. 50-51 of [2], we obtain a corollary about Ramsey’s
Theorem for exponent 2 similar to Corollary 2.4 about König’s Lemma with “jump
universal” in place of “universal”.

Corollary 2.22. There exists a computable f : [ω]2 → 2 such that that given any
set Hf homogeneous for f , and any computable g : [ω]2 → 2, there exists a set Hg

homogeneous for g with H ′
g ≤T H ′

f .

With the base case of exponent 2 settled, we can handle higher exponents. As
the exponent increases, the bounds that we obtain in the Turing degrees increase
by one jump each time.

We first show how we can use a relativization of Proposition 2.12 together with
the Limit Lemma to lift results for exponent 2 to higher exponents. We state the
theorem in relativized form to facilitate the inductive proof.

Proposition 2.23.
(1) Suppose that n, p ≥ 1, X ⊆ ω, B ⊆ ω is infinite, and f : [B]n → p. Suppose

also that B and f are X-computable and that a � deg(X)(n−1). There
exists a set H homogeneous for f such that deg(H)′ ≤ a.

(2) For every X ⊆ ω and every n ≥ 2, there exists an X-computable f : [ω]n →
3 such that for all sets H homogeneous for f , we have deg(H ⊕ X) ≥
deg(X)(n−2) and deg(H ⊕ X)′ � deg(X)(n−1).

Proof. We prove the first statement by induction on n. The case n = 2 follows
by relativizing Theorem 2.20. Suppose that n ≥ 2 and the result holds for n.
Suppose that B and f : [B]n+1 → p are X-computable, and a � deg(X)(n). Rela-
tivizing Proposition 2.9 to X, there exists a prehomogeneous pair (A, g) for f with
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deg(A⊕ g)′ ≤ deg(X)′′. By the inductive hypothesis, there exists a set H homoge-
neous for g : [A]n → p with deg(H)′ ≤ a since a � deg(X)(n) = deg(X ′′)(n−2) ≥
(deg(A ⊕ g)′)(n−2) = deg(A ⊕ g)(n−1). By Claim 2.7, H is homogeneous for f .

We prove the second part of the proposition in the following strong form. For ev-
ery X ⊆ ω and every n ≥ 2, there exists an X-computable f : [ω]n → 3 such that for
all sets H homogeneous for f , we have f([H]n) 
= {2}, deg(H ⊕ X) ≥ deg(X)(n−2)

and deg(H ⊕ X)′ � deg(X)(n−1). The case n = 2 follows by relativizing Corol-
lary 2.21. Suppose that n ≥ 2 and the result holds for n. Fix an X ′-computable
g : [ω]n → 3 such that for all sets H homogeneous for g, we have g([H]n) 
= {2},
deg(H ⊕ X ′) ≥ deg(X ′)(n−2) = deg(X)(n−1) and deg(H ⊕ X ′)′ � deg(X ′)(n−1) =
deg(X)(n). By the Limit Lemma, there is an X-computable g1 : [ω]n+1 → 3 such
that g(x) = lims g1(x, s) for all x ∈ [ω]n. Notice that if H is homogeneous for g1,
then H is homogeneous for g, and g([H]n) = g1([H]n+1). By Proposition 2.12 rela-
tivized to X and the fact that n+1 ≥ 3, there exists an X-computable h : [ω]n+1 → 2
such that for all infinite sets H homogeneous for h, we have h([H]n+1) = {0} and
H ⊕ X ≥T X ′. Define an X-computable f : [ω]n+1 → 3 by

f(y) =

{
g1(y) if h(y) = 0,

2 if h(y) = 1.

Suppose that H is homogeneous for f . If f([H]n+1) = {2}, then for all y ∈ [H]n+1,
either h(y) = 1 or g1(y) = 2. By Ramsey’s Theorem applied to the function
h � [H]n+1 : [H]n+1 → 2, there exists an infinite set I ⊆ H such that either
h([I]n+1) = {1} or h([I]n+1) = {0}, and hence g([I]n) = g1([I]n+1) = {2}, both
of which are impossible. Therefore, f([H]n+1) 
= {2}, and hence H is homoge-
neous for both h and g1. Since H is homogeneous for h, we have H ⊕ X ≥T

X ′. Since every set homogeneous for g1 is also homogeneous for g, we have
deg(H ⊕ X ′) ≥ deg(X)(n−1) and deg(H ⊕ X ′)′ � deg(X)(n). Hence, f([H]n+1) 
=
{2}, deg(H⊕X) ≥ deg(H⊕X ′) ≥ deg(X)(n−1) and deg(H⊕X)′ ≥ deg(H⊕X ′)′ �
deg(X)(n). �

The following (unrelativized) question of whether we can replace the 3-coloring
from the previous proposition by a 2-coloring is open.

Question 2.24. For each n ≥ 3, does there exist a computable f : [ω]n → 2 such
that for all sets H homogeneous for f , we have deg(H) ≥ 0(n−2) and deg(H)′ �
0(n−1)?

3. A new proof of the Canonical Ramsey theorem

One important lesson to glean from Section 2 is that we can often improve an
effective analysis of a theorem by examining a genuinely different proof of the result.
In the original inductive proof of the Canonical Ramsey Theorem (see [3]), in order
to prove the result for exponent n ≥ 2, Erdös and Rado used Ramsey’s Theorem
for exponent 2n together with the Canonical Ramsey Theorem for exponent n− 1.
Using Theorem 2.11, an effective analysis of their proof gives the result that if B is
computable and f : [B]2 → ω is computable, then there exists a Π0

4 set canonical for
f . However, as n increases, the use of induction causes the arithmetical bounds to
grow on the order of n2. Rado [15] discovered a noninductive proof of the Canonical
Ramsey Theorem which still used Ramsey’s Theorem for exponent 2n to prove the
result for exponent n. An effective analysis of his proof shows that given n ≥ 2, a
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computable B, and a computable f : [B]n → ω, there exists a ∆0
2n+1 set canonical

for f .
We give a new proof of the Canonical Ramsey Theorem which is inductive and

similar in broad outline to the proofs of Ramsey’s Theorem sketched above. The
basic question is how to define a “precanonical pair” (A, g) so that we can carry out
the same outline to prove the Canonical Ramsey Theorem. For simplicity, consider
a function f : [ω]2 → ω. We will enumerate A in increasing order as a0, a1, . . . .
We begin by letting a0 = 0. If there exists c ∈ ω such that there are infinitely
many b ∈ ω with f(a0, b) = c, then we can define g(a0) = c, restrict attention to
the set I0 = {b ∈ ω : f(a0, b) = c}, and after letting a1 = min I0, continue in this
fashion. In this case, we’ve made progress toward achieving a u-canonical set with
1 /∈ u, because if we fix a0 and vary b ∈ I0, we do not change the value of f . If we
succeed infinitely many times in this manner with a fixed c, then the corresponding
elements form a ∅-canonical set, while if we succeed with infinitely many different c
in this manner, then the corresponding elements form a {0}-canonical set. Notice
that this decision (one fixed c versus infinitely many distinct c) amounts to finding
a canonical set for exponent 1 for g restricted to the set of successes.

The problem arises when for each c ∈ ω, there are only finitely many b ∈ ω with
f(a0, b) = c. Now we must seek to make progress toward achieving a u-canonical
set with 1 ∈ u. We therefore let I0 = {b ∈ ω : f(a0, b) 
= f(a0, b

′) for all b′ < b},
so that if we fix a0 and vary b ∈ I0, we always change the value of f . We now
want to let g(a0) be some new, infinitary color d distinct from each c ∈ ω. Suppose
that we then set a1 = min I0, and again are faced with the situation that for each
c ∈ ω, there are only finitely many b ∈ I0 with f(a1, b) = c. We first want to
thin out I0 to an infinite set I ′0 so that f(ai, b0) = f(aj , b1) → b0 = b1 whenever
0 ≤ i, j ≤ 1 and b0, b1 ∈ I ′0 (which is possible by the assumption on a0, a1). This
allows both a0 and a1 to be in the same u-canonical set with 1 ∈ u. Next, we
need to assign an appropriate infinitary color to g(a1) so that a canonical set for
g will be a u-canonical set for f . Thus, if the set {b ∈ I ′0 : f(a0, b) = f(a1, b)}
is infinite, we let g(a1) = g(a0) and we let I1 be this set. Otherwise we will set
g(a1) to a new infinitary color and let I1 = {b ∈ I ′0 : f(a0, b) 
= f(a1, b)}. If
we succeed infinitely many times in this manner with a fixed infinitary color d,
then the corresponding elements form a {1}-canonical set, while if we succeed with
infinitely many different d in this manner, then the corresponding elements form a
{0, 1}-canonical set. Notice again that this decision (one fixed d versus infinitely
many distinct d) amounts to finding a canonical set for exponent 1 for g restricted
to those elements assigned infinitary colors.

In general, given f : [B]n+1 → ω, we can pursue the above strategy to get an
infinite set A ⊆ B and a function g : [A]n → ω × 2, where we interpret each
(c, 0) ∈ ω× 2 as a finitary color and each (d, 1) ∈ ω× 2 as an infinitary color. Now,
before we can apply induction, it is important to thin out our set A to a set D so
that either g maps all elements of [D]n to finitary colors, or g maps all elements
of [D]n to infinitary colors. Of course, we can do this with a simple application of
Ramsey’s Theorem for exponent n. Although this strategy will succeed in proving
the Canonical Ramsey Theorem, the use of Ramsey’s Theorem is costly to an
effective analysis. We therefore pursue a slightly different approach which will roll
this use of Ramsey’s Theorem into the induction. Hence, we extend the notion of
canonical sets to functions f : [B]n → ω × p for p ∈ ω by also stipulating that a
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canonical C set must have the property that f maps all elements of [C]n into the
same column of ω × p. With this modification in place, the above strategy will
give us an infinite set A and a function g : [A]n → ω × 2p, where we interpret each
(c, q) ∈ ω × 2p with 0 ≤ q < p as a finitary color corresponding to column q and
each (d, q) ∈ ω× 2p with p ≤ q < 2p as an infinitary color corresponding to column
q − p of ω × p. Applying induction to this g will give us the result because the
resulting canonical set will be mapped by g entirely into one column of ω × 2p.

Definition 3.1. Let π1 : ω ×ω → ω be projection onto the first coordinate and let
π2 : ω × ω → ω be projection onto the second coordinate.

Definition 3.2. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n → ω × p, and
u ⊆ n. We say that a set C is u-canonical for f if:

(1) C ⊆ B.
(2) C is infinite.
(3) C is homogeneous for π2 ◦ f : [B]n → p.
(4) If x1, x2 ∈ [C]n, then f(x1) = f(x2) ↔ x1 � u = x2 � u.

We say that a set C is canonical for f if there exists u ⊆ n such that C is u-canonical
for f .

Remark 3.3. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n → ω, and u ⊆ n.
Define f∗ : [B]n → ω × 1 by letting f∗(x) = (f(x), 0). Notice that for any infinite
set C ⊆ ω, C is u-canonical for f (as in Definition 1.6) if and only if C is u-
canonical for f∗ (as in Definition 3.2). Therefore, in the following, we identify a
function f : [B]n → ω with the corresponding function f∗ : [B]n → ω × 1.

For the reasons mentioned above, we prove the Canonical Ramsey Theorem by
induction on n in the following strong form.

Theorem 3.4. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω × p.
There exists a set C ⊆ B such that C is canonical for f .

Definition 3.5. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω × p.
We call a pair (A, g), where A ⊆ B is infinite and g : [A]n → ω × 2p, a precanonical
pair for f if:

(1) For all x ∈ [A]n with g(x) = (c, q) where 0 ≤ q < p, we have f(x, a) = (c, q)
for all a ∈ A with a > x.

(2) For all x ∈ [A]n with g(x) = (d, q) where p ≤ q < 2p, we have π2(f(x, a)) =
q − p for all a ∈ A with a > x.

(3) For all x1, x2 ∈ [A]n with g(x1) = (d1, q) and g(x2) = (d2, q) where p ≤ q <
2p, and all a1, a2 ∈ A with a1 > x1 and a2 > x2,
(a) If a1 
= a2, then f(x1, a1) 
= f(x2, a2).
(b) If a1 = a2, then f(x1, a1) = f(x2, a2) ↔ d1 = d2.

We first show that the above definition of “precanonical pair” allows our outline
to succeed.

Claim 3.6. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → ω × p, and (A, g)
is a precanonical pair for f . Suppose that C ⊆ A is u-canonical for g, where u ⊆ n.

(1) If (π2 ◦ g)([C]n)) = {q} where 0 ≤ q < p, then C is u-canonical for f (now
viewing u as a subset of n + 1).
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(2) If (π2 ◦ g)([C]n)) = {q} where p ≤ q < 2p, then C is (u∪{n})-canonical for
f .

Proof. (1) For any x ∈ [C]n and a ∈ C with x < a, we have π2(f(x, a)) =
π2(g(x)) = q by condition (1) of Definition 3.5; hence C is homogeneous for π2 ◦ f .
Let x1, x2 ∈ [C]n, a1, a2 ∈ C with x1 < a1 and x2 < a2. By condition (1)
of Definition 3.5, we have f(x1, a1) = g(x1) and f(x2, a2) = g(x2). Therefore,
f(x1, a1) = f(x2, a2) ↔ g(x1) = g(x2) ↔ x1 � u = x2 � u. Hence, C is u-canonical
for f .

(2) For any x ∈ [C]n and a ∈ C with x < a, we have π2(f(x, a)) = q − p by
condition (2) of Definition 3.5; hence C is homogeneous for π2◦f . Let x1, x2 ∈ [C]n,
a1, a2 ∈ C with x1 < a1 and x2 < a2. Suppose first that x1 � u = x2 � u and
a1 = a2. Then g(x1) = g(x2) (since C is u-canonical for g) and a1 = a2. Therefore,
by condition (3b) of Definition 3.5, we have f(x1, a1) = f(x2, a2). Suppose now
that either x1 � u 
= x2 � u or a1 
= a2. If a1 
= a2, then f(x1, a1) 
= f(x2, a2) by
condition (3a) of Definition 3.5. If x1 � u 
= x2 � u and a1 = a2, then g(x1) 
= g(x2)
(since C is u-canonical for g) and a1 = a2, so f(x1, a1) 
= f(x2, a2) by condition
(3b) of Definition 3.5. Therefore, f(x1, a1) = f(x2, a2) if and only if x1 � u = x2 � u
and a1 = a2, so C is (u ∪ {n})-canonical for f . �

Next, we show that precanonical pairs exist by a method along the lines of the
standard proof of Ramsey’s Theorem. We build a precanonical pair (A, g) in stages
which consist of selecting a new element for A and thinning out the set of potential
later elements to make them acceptable to the new element and its chosen color.
To facilitate this construction, we first define a notion of precanonical triple which
will provide an approximation to a desired precanonical pair.

Definition 3.7. If a ∈ ω and Z ⊆ ω with Z 
= ∅, we write a < Z to mean that
a < b for every b ∈ Z.

Definition 3.8. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω × p.
We call a triple (z, I, g) where z ⊆ B is finite, I ⊆ B is infinite, z < I, and
g : [z]n → ω × 2p, a precanonical triple for f if:

(1) For all x ∈ [z]n with g(x) = (c, q) where 0 ≤ q < p, we have f(x, a) = (c, q)
for all a ∈ z ∪ I with a > x.

(2) For all x ∈ [z]n with g(x) = (d, q) where p ≤ q < 2p, we have π2(f(x, a)) =
q − p for all a ∈ z ∪ I with a > x.

(3) For all x1, x2 ∈ [z]n with g(x1) = (d1, q) and g(x2) = (d2, q) where p ≤ q <
2p, and all a1, a2 ∈ z ∪ I with a1 > x1 and a2 > x2,
(a) If a1 
= a2, then f(x1, a1) 
= f(x2, a2).
(b) If a1 = a2, then f(x1, a1) = f(x2, a2) ↔ d1 = d2.

We will make use of the following ordering in the construction to allow us to
easily refer to work carried out in previous (sub)stages.

Definition 3.9. For each n ∈ ω, we define a total ordering <n of [ω]n as follows.
For x, y ∈ [ω]n, we let x <n y if and only if x 
= y and x(i) < y(i), where i is the
greatest integer less than n with x(i) 
= y(i).

Proposition 3.10. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 →
ω × p. There exists a precanonical pair (A, g) for f .
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Proof. We inductively define a sequence (am, Im, gm)m∈ω such that:

• am ∈ B.
• Im ⊆ B is infinite.
• gm : [{ai : i ≤ m}]n → ω × 2p.
• a0 < a1 < · · · < am−1 < am < Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ I0.
• g0 ⊆ g1 ⊆ · · · ⊆ gm.
• ({ai : i ≤ m}, Im, gm) is a precanonical triple for f .

We begin by letting a−1 = −1, I−1 = B, and g−1 = ∅. Suppose that we have
defined our sequence through stage m ≥ −1. We first let am+1 = min(Im),
I ′m = Im − {am+1}, and gm+1(x) = gm(x) for all x ∈ [{ai : i ≤ m}]n. Let F =
[{ai : i ≤ m + 1}]n, and list the elements of F whose greatest element is am+1

as x0 <n x1 <n · · · <n x�−1, where � =
(
m+1
n−1

)
. If � = 0, let Im+1 = I ′m and

gm+1 = gm. Otherwise, we proceed inductively through the xk, defining gm+1(xk)
and infinite sets J0, J1, . . . , J� such that I ′m = J0 ⊇ J1 ⊇ · · · ⊇ J� along the way.
Let J0 = I ′m. Suppose that k < � and we have defined Jk. First, since Jk is infinite,
there exists q < p such that there are infinitely many b ∈ Jk with π2(f(xk, b)) = q.
Fix the least such q, and let Hk = {b ∈ Jk : π2(f(xk, b)) = q}.

Case 1: There exists c ∈ ω such that there are infinitely many b ∈ Hk with
f(xk, b) = (c, q). In this case, let gm+1(xk) = (c, q) and let Jk+1 = {b ∈ Hk :
f(xk, b) = (c, q)}. Proceed to the next value of k < �, if it exists.

Case 2: Otherwise, for every c ∈ ω, there are only finitely many b ∈ Hk with
f(xk, b) = (c, q). Let D = {y ∈ F : y <n xk and π2(gm+1(y)) = q + p}, and notice
that for each y ∈ D and each c ∈ ω, there is at most one b ∈ Hk with f(y, b) = (c, q)
(if max(y) < am+1, this follows from the fact that ({ai : i ≤ m}, Im, gm) is a
precanonical triple for f and Hk ⊆ Im, while if max(y) = am+1, say y = xi with
1 ≤ i < k, this follows from the fact that Hk ⊆ Ji+1, so f(y, b1) 
= f(y, b2) for all
b1, b2 ∈ Hk with b1 
= b2 by construction). We now inductively define an increasing
h : ω → Hk such that f(xk, h(i)) 
= f(y, h(j)) whenever i 
= j ∈ ω and y ∈ D∪{xk}.
Let h(0) = min(Hk). Suppose that we have defined h(t). By the assumption of
Case 2 and the above comments, there exists b ∈ Hk with b > h(t) such that
f(xk, b) /∈ {f(y, h(i)) : y ∈ D ∪ {xk}, 0 ≤ i ≤ t} and f(y, b) /∈ {f(xk, h(i)) : 0 ≤ i ≤
t} for all y ∈ D (since each of these sets is finite), and we let h(t + 1) be the least
such b. Let H ′

k = {h(t) : t ∈ ω}.
Subcase 1: There exists y ∈ D such that {b ∈ H ′

k : f(xk, b) = f(y, b)} is infinite.
In this case, choose the least such y (under the ordering <n), let gm+1(xk) =
gm+1(y), and let Jk+1 = {b ∈ H ′

k : f(xk, b) = f(y, b)}. Proceed to the next value
of k < �, if it exists.

Subcase 2: Otherwise, for every y ∈ D, there are only finitely many b ∈ H ′
k

with f(xk, b) = f(y, b). Thus, there are only finitely many b ∈ H ′
k such that there

exists y ∈ D with f(xk, b) = f(y, b). Let gm+1(xk) = (d, q+p), where d is least such
that gm+1(y) 
= (d, q + p) for all y ∈ D and let Jk+1 = {b ∈ H ′

k : f(xk, b) 
= f(y, b)
for all y ∈ D}. Proceed to the next value of k < �, if it exists.

Once we’ve run through all k < � and defined J�, set Im+1 = J�. One easily
checks that the invariants are maintained (i.e. that am < am+1 < Im+1 ⊆ Im,
gm ⊆ gm+1, and ({ai : i ≤ m + 1}, Im+1, gm+1) is a precanonical triple for f). This
completes stage m + 1.

Finally, let A = {am : m ∈ ω} and g =
⋃

m∈ω gm. Then (A, g) is a precanonical
pair for f . �
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Proof of Theorem 3.4. The proof is by induction on n. Suppose that n = 1 so
that we have f : [B]1 → ω × p. Fix an infinite A ⊆ B and q < p such that
π2(f([A]1)) = {q}. If there exists a c ∈ ω such that there are infinitely many a ∈ A
with f(a) = (c, q), let C = {a ∈ A : f(a) = (c, q)}, and notice that f(a1) = f(a2) for
all a1, a2 ∈ C, so C is ∅-canonical for f . Otherwise, there are infinitely many c ∈ ω
such that there is an a ∈ A with f(a) = (c, q). Letting C = {a ∈ A : f(a) 
= f(b)
for all b < a with b ∈ A}, we see that f(a1) 
= f(a2) for all a1, a2 ∈ C, so C is
{0}-canonical for f .

Suppose that the theorem holds for n, and we’re given f : [B]n+1 → ω × p.
By Proposition 3.10, there exists a precanonical pair (A, g) for f . Applying the
inductive hypothesis to g : [A]n → ω × 2p, there exists C ⊆ A which is canonical
for g. By Claim 3.6, C is canonical for f . �

4. Computability-theoretic analysis

If we analyze the proof of Proposition 3.10 for a given computable B and com-
putable f : [B]n+1 → ω × p, we can easily see that there exists a precanonical pair
(A, g) for f with A ⊕ g ≤T 0′′′. It seems that we need a 0′′′-oracle to decide the 3-
quantifier (∃∀∃) question of whether to enter Case 1 or Case 2. However, by making
use of an r-cohesive set, we can lower the complexity to a 2-quantifier question.

Recall the characterization of the Turing degrees of jumps of r-cohesive sets from
Theorem 2.19. The Low Basis Theorem relative to 0′ yields an a � 0′ such that
a′ = 0′′. Using this a in Theorem 2.19 gives the following corollary.

Corollary 4.1 (Jockusch and Stephan [7]). There exists an r-cohesive set V such
that V ′′ ≤T 0′′.

Below, we will need r-cohesive sets of low complexity inside a given infinite
computable set. The following easy lemma provides these.

Definition 4.2. Given an infinite set B, we let pB : ω → ω be the function enu-
merating B in increasing order (so pB(n) is the (n + 1)st element of B).

Lemma 4.3. Suppose that B is an infinite computable set. If V is r-cohesive, then
pB(V ) ⊆ B is r-cohesive and pB(V ) ≡T V .

Proof. Notice that pB(V ) ⊆ B is infinite and pB(V ) ≡T V because pB is com-
putable and strictly increasing. Let Z be a computable set. Since V is r-cohesive
and p−1

B (Z) is computable, either V ∩ p−1
B (Z) is finite or V ∩ p−1

B (Z) is finite. If
V ∩ p−1

B (Z) is finite, then V ⊆∗ p−1
B (Z), so pB(V ) ⊆∗ pB(p−1

B (Z)) ⊆ Z, and hence
pB(V ) ∩ Z is finite. If V ∩ p−1

B (Z) is finite, then V ⊆∗ p−1
B (Z), so pB(V ) ⊆∗

pB(p−1
B (Z)) ⊆ Z, and hence pB(V ) ∩ Z is finite. It follows that pB(V ) is r-

cohesive. �
Proposition 4.4. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω×p.
Suppose also that B and f are computable. There exists a precanonical pair (A, g)
for f such that A ⊕ g ≤T 0′′. Furthermore, if n = 1 and a � 0′, there exists a
precanonical pair (A, g) for f with deg(A ⊕ g) ≤ a.

Proof. By Corollary 4.1 and Lemma 4.3, there exists an r-cohesive set V ⊆ B such
that V ′′ ≤T 0′′. For each x ∈ [V ]n and each (c, q) ∈ ω × p, the set Zx,(c,q) = {b ∈
B : f(x, b) = (c, q)} is computable, so either V ∩ Zx,(c,q) is finite or V ∩ Zx,(c,q) is
finite.
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We now carry out the above existence proof of a precanonical pair for f �
[V ]n+1 : [V ]n+1 → ω × p using a V ′′-oracle and characteristic indices (relative to
V ) for all infinite sets. As we proceed through the proof, the first noncomputable
(relative to V ) step is the construction of Hk, where we need to find the least
q < p such that Hk = {b ∈ Jk : π2(f(xk, b)) = q} is infinite, which we can
do using a V ′′-oracle. Next, we need to decide whether to enter Case 1 or Case
2. By the last sentence of the above paragraph, we enter Case 1 if and only if
(∃c)(∃m)(∀b)[(b ∈ Hk ∧ b ≥ m) → f(xk, b) = (c, q)]. Again, we can decide this
question using a V ′′-oracle. If we enter Case 2, the next noncomputable (relative
to V ) step is the decision whether to enter Subcase 1 or Subcase 2. Since D is
finite, and for each y ∈ D we need to determine whether a given V -computable
set is infinite, we can again decide this question using a V ′′-oracle. The rest of the
steps of the proof are V -computable, so we end up with a precanonical pair (A, g)
for f � [V ]n+1 (hence for f) such that A ⊕ g ≤T V ′′ ≤T 0′′.

Suppose now that n = 1 and a � 0′. By Theorem 2.19 and Lemma 4.3, there
exists an r-cohesive set V ⊆ B such that deg(V )′ ≤ a. For each a ∈ V and q < p,
the set Za,q = {b ∈ B : π2(f(a, b)) = q} is computable, so either V ∩ Za,q is finite
or V ∩ Za,q is finite. Therefore, for each a ∈ V , limb∈V π2(f(a, b)) exists, and we
denote its value by qa. Notice that we can use a V ′-oracle to compute qa given
a ∈ V . Similarly, for each a ∈ V and c ∈ ω, the set Za,c = {b ∈ B : π1(f(a, b)) = c}
is computable, so either V ∩ Za,c is finite or V ∩ Za,c is finite. Therefore, for each
a ∈ V , either limb∈V π1(f(a, b)) exists (and is finite) or limb∈V π1(f(a, b)) = ∞.

Let Y = {a ∈ V : limb∈V π1(f(a, b)) < ∞}. Notice that a ∈ Y if and only if
(∃c)(∃m)(∀b)[(b ≥ m ∧ b ∈ V ) → π1(f(a, b)) = c]; hence Y ∈ Σ0,V

2 .
Case 1: Y is infinite: Fix an infinite I ⊆ Y such that I ≤T V ′. For each

a ∈ V , we can use a V ′-oracle to determine whether a ∈ I, and if so to compute
ca = limb∈V π1(f(a, b)). We now construct a precanonical pair (A, g) for f using a
V ′-oracle. First, let a0 be the least element of I and let g(a0) = (ca0 , qa0). If we
have already defined a0, a1, . . . , am, let am+1 be the least b ∈ I such that b > am

and f(ai, b) = g(ai) = (cai
, qai

) for all i with 0 ≤ i ≤ m, and let g(am+1) =
(cam+1 , qam+1). Letting A = {am : m ∈ ω}, we see that (A, g) is a precanonical pair
for f � [V ]2 (hence for f) such that deg(A ⊕ g) ≤ deg(V )′ ≤ a.

Case 2: Y is finite: Fix α such that limb∈V π1(f(a, b)) = ∞ for all a ∈ V with
a > α. We now construct a precanonical pair (A, g) for f using a V ′-oracle. First,
let a0 be the least element of V greater than α, and let g(a0) = (0, p+qa0). Suppose
that we have already defined a0, a1, . . . , am and g(a0), g(a1), . . . , g(am), and assume
inductively that for all sufficiently large b ∈ V , we have:

(1) For all i ≤ m, π2(f(ai, b)) = qai
.

(2) For all i, j, k ≤ m with i < k and qai
= qaj

, f(ai, ak) 
= f(aj , b).
(3) For all i, j ≤ m with qai

= qaj
, f(ai, b) = f(aj , b) ↔ g(ai) = g(aj).

Using a V ′-oracle, let am+1 be the least b ∈ V such that b > am and (1), (2),
and (3) hold for b. Let D = {i ∈ ω : 0 ≤ i ≤ m and qai

= qam+1}. Notice
that we can find (a canonical index for) D using a V ′-oracle. For each i ∈ D, the
set Zi = {b ∈ B : b > am+1 and f(ai, b) = f(am+1, b)} is computable, so either
V ∩ Zi is finite or V ∩ Zi is finite. Also, the set Z∞ = {b ∈ B : b > am+1 and
f(am+1, b) /∈ {f(ai, b) : i ∈ D}} is computable, so either V ∩Z∞ is finite or V ∩Z∞
is finite. Putting this together with the fact that the sets in the list (V ∩Zi)i∈D∪{∞}
are pairwise disjoint and have union equal to {b ∈ V : b > am+1}, it follows that
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there exists exactly one j ∈ D ∪ {∞} with V ∩ Zj finite. Moreover, we can find
this j using a V ′-oracle (by running through β ∈ B in increasing order and asking
a V ′-oracle if all elements of V greater than β lie in one fixed Zi). If j ∈ D, let
g(am+1) = g(aj), and if j = ∞, let g(am+1) = (d, p + qam+1), where d is the least
element of ω − {π1(g(ai)) : i ∈ D}. Then for all sufficiently large b ∈ V , we have:

(1) For all i ≤ m + 1, π2(f(ai, b)) = qai
.

(2) For all i, j, k ≤ m + 1 with i < k and qai
= qaj

, f(ai, ak) 
= f(aj , b).
(3) For all i, j ≤ m + 1 with qai

= qaj
, f(ai, b) = f(aj , b) ↔ g(ai) = g(aj).

Hence, the induction hypothesis holds, and we may continue. Letting A = {am :
m ∈ ω}, we see that (A, g) is a precanonical pair for f � [V ]2 (hence for f) such
that deg(A ⊕ g) ≤ deg(V )′ ≤ a. �

We are now in a position to give upper bounds on the Turing degrees of canonical
sets for computable f . We prove the result in relativized form to facilitate the
induction.

Theorem 4.5. Suppose that n, p ≥ 1, X ⊆ ω, B ⊆ ω is infinite, and f : [B]n →
ω × p. Suppose also that B and f are X-computable. If n = 1, then there exists an
X-computable set C ⊆ B canonical for f . If n ≥ 2 and a � deg(X)(2n−3), there
exists a set C ⊆ B canonical for f such that deg(C) ≤ a.

Proof. We prove the theorem by induction on n. First, if n = 1, notice that the set
C produced in the base case of the proof of Theorem 3.4 is X-computable if both
B and f are. Suppose now that n = 2, B and f : [B]2 → ω × p are X-computable,
and a � deg(X)′. By Proposition 4.4 relativized to X, there exists a precanonical
pair (A, g) for f with deg(A ⊕ g) ≤ a. By the inductive hypothesis, there exists a
set C canonical for g : [A]1 → ω× 2p with deg(C) ≤ deg(A⊕ g) ≤ a. By Claim 3.6,
C is canonical for f .

Suppose that n ≥ 2 and the theorem holds for n. Suppose that both B and
f : [B]n+1 → ω × p are X-computable, and a � deg(X)(2n−1). By Proposition 4.4
relativized to X, there exists a precanonical pair (A, g) for f with A ⊕ g ≤ X ′′.
Applying the inductive hypothesis to g : [A]n → ω×2p, there exists C ⊆ A canonical
for g : [A]n → ω×2p with deg(C) ≤ a since a � deg(X)(2n−1) = (deg(X)′′)(2n−3) ≥
deg(A ⊕ g)(2n−3). By Claim 3.6, C is canonical for f . �

We immediately obtain bounds for the location of canonical sets in the arith-
metical hierarchy. These bounds will be improved in the next section.

Corollary 4.6. Suppose that n ≥ 2, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω×p.
Suppose also that B and f are computable. There exists a ∆0

2n−1 set C ⊆ B
canonical for f .

Proof. We know that 0(2n−2) � 0(2n−3). Therefore, by Theorem 4.5, there exists
a set C ⊆ B canonical for f such that deg(C) ≤ 0(2n−2). Using Post’s Theorem,
we conclude that C is ∆0

2n−1. �

The proof of Proposition 4.4 for the case n = 1 relied on the ability to form a set
of reasonably low complexity which either consists entirely of elements needing to
be assigned finitary colors, or entirely of elements needing to be assigned infinitary
colors. We next show that this special feature of n = 1 is essential to finding
precanonical pairs below any a � 0′.
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Theorem 4.7. There exists a computable f : [ω]3 → ω such that deg(A) ≥ 0′′

whenever (A, g) is a precanonical pair for f .

Proof. By Proposition 2.13, there exists a c.e. h0 : [ω]2 → 2 (that is, {x ∈ [ω]2 :
h0(x) = 1} is c.e.) such that for all sets H homogeneous for h0, we have h0([H]2) =
{0} and H ≥T 0′. By the same result relative to 0′, there exists a 0′-c.e. h1 : [ω]2 → 2
(that is, {x ∈ [ω]2 : h1(x) = 1} is 0′-c.e.) such that for all sets H homogeneous for
h1, we have h1([H]2) = {0} and H ⊕ 0′ ≥T 0′′.

Define h : [ω]2 → 2 by

h(x) =

{
1 if either h0(x) = 1 or h1(x) = 1,

0 otherwise.

Notice that {x ∈ [ω]2 : h(x) = 1} is 0′-c.e. Suppose that H is homogeneous for h.
We then have h([H]2) = {0} because if h([H]2) = {1}, an application of Ramsey’s
Theorem to the function h2 : [H]2 → 2 given by

h2(x) =

{
0 if h0(x) = 1,

1 if h0(x) = 0 and h1(x) = 1

would give an infinite set I such that either h0([I]2) = {1} or h1([I]2) = {1},
a contradiction. Thus, H is homogeneous for both h0 and h1. It follows that
H ≥T 0′ and hence H ≥T H ⊕ 0′ ≥T 0′′.

Since {x ∈ [ω]2 : h(x) = 1} is 0′-c.e., it is Σ0
2, so there exists a computable

R(x, a, b) such that h(x) = 1 ↔ (∃a)(∀b)R(x, a, b) for all x ∈ [ω]2. Define f : [ω]3 →
ω as follows. Given x ∈ [ω]2 and s ∈ ω with x < s, let

f(x, s) =

{
(µa < s)(∀b < s)R(x, a, b) if (∃a < s)(∀b < s)R(x, a, b),
s otherwise

(where (µa)(. . . ) is the least a such that (. . . )). Notice that f is computable.
Furthermore, for all x ∈ [ω]2, we have h(x) = 1 ↔ lims f(x, s) exists and is finite,
and h(x) = 0 ↔ lims f(x, s) = ∞. Suppose that (A, g) is a precanonical pair
for f . For any y ∈ [A]2, we either have f(y, a1) = f(y, a2) for all a1, a2 ∈ A
with y < a1 < a2 (if π2(g(y)) = 0), or f(y, a1) 
= f(y, a2) for all a1, a2 ∈ A with
y < a1 < a2 (if π2(g(y)) = 1). Therefore, given y ∈ [A]2, if we let a1, a2 ∈ A
be least such that y < a1 < a2, we have h(y) = 1 ↔ f(y, a1) = f(y, a2) and
h(y) = 0 ↔ f(y, a1) 
= f(y, a2). Hence, h � [A]2 : [A]2 → 2 is A-computable.
Since every set H homogeneous for h � [A]2 satisfies h([H]2) = {0}, it follows from
[9, Theorem 5.11] (relativized to A) that h � [A]2, and hence h itself, has an A-
computable homogeneous set. Since every set homogeneous for h has degree above
0′′, we have deg(A) ≥ 0′′. �

Therefore, the bounds for canonical sets given by Theorem 4.5 are the best
possible from an effective analysis of the above proof of the Canonical Ramsey
Theorem. We show later that the bound given by Theorem 4.5 for exponent 2 is
sharp.

5. Arithmetical bounds

Corollary 4.6 provided bounds in the arithmetical hierarchy for canonical sets
when B and f : [B]n → ω × p were computable. In particular, we established that
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if B is computable and f : [B]2 → ω × p is computable, then there exists a ∆0
3 set

canonical for f . We first improve this result by showing that if B is computable
and f : [B]2 → ω × p is computable, then there exists a Π0

2 set canonical for f .
Our proof of this result resembles in broad outline Jockusch’s proof of Theorem

2.11, but requires significant care. We first outline the idea of the proof. For sim-
plicity, assume that f : [ω]2 → ω. Using a 0′-oracle, we enumerate the complement
of a set A, which will be part of a precanonical pair for f . Instead of using an oracle
to decide which color to assign to a new element, we blindly assign a color to a new
element, hoping that the corresponding thinned set will be infinite, and continue.
If we ever discover that the corresponding set is finite using a 0′-oracle, we change
the color and discard all of the work performed after assigning the bad color.

As long as we proceed through the possible colors intelligently, this outline will
work and will produce an infinite Π0

2 set A which is part of a precanonical pair.
However, if we proceed through the colors naively, we may not be able to extract
a Π0

2 canonical set from A. For example, suppose that we first proceed through
the finitely many possible infinitary colors (there are only finitely many because all
infinitary colors distinct from the ones assigned to previous elements are equivalent),
and then proceed through the finitary colors in increasing order. If at the end of this
construction every color is assigned to only finitely many elements of A, it seems
impossible to drop elements in the construction to thin out A to a Π0

2 canonical
set. We want to drop elements that repeat earlier colors, but there does not seem
to be a way to safely do this since the color at any given stage may change.

We thus carry out the construction in a slightly less intuitively natural manner
which will allow us to extract a Π0

2 canonical set. The idea is to first assign a
new element a new infinitary color, then assign it infinitary colors already in use by
previous elements in increasing order, then assign it new finitary colors in increasing
order, and finally assign it finitary colors already in use by previous elements in
increasing order. Of course, there are infinitely many new finitary colors at any
stage, so we need a way to determine when to stop and move into used finitary
colors. This can be done because the only reason why we reject all of the infinitary
colors for a number a is because the set {f(a, b) : b ∈ Z} (where Z is the currently
thinned out set we are working inside) is bounded (see Lemma 5.3 below), and
we can find a bound using a 0′-oracle. Following this strategy, we will be able to
extract a Π0

2 canonical set from A. For example, if there are infinitely many distinct
infinitary colors, we can perform the construction with the additional action of
dropping any element from our final set if it ever needs to change color. This will
result in a Π0

2 {0, 1}-canonical set. On the other hand, if there are finitely many
distinct infinitary colors, and an infinitary color d which occurs infinitely often, then
for the least such d we can perform the construction, dropping any element from our
final set if it ever needs to take on a finitary color or a used infinitary color greater
than d. Modulo finitely many mistakes, this will result in a Π0

2 {1}-canonical set.
The remaining cases are handled in a similar manner.

We now carry out the above sketch in the more general setting of a computable
f : [B]2 → ω × p so that we can lift the result to higher exponents.

Theorem 5.1. Suppose that p ≥ 1, B ⊆ ω is infinite, and f : [B]2 → ω × p.
Suppose also that B and f are computable. There exists a Π0

2 set C ⊆ B canonical
for f .
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Proof. We first use a movable marker construction using a 0′-oracle to enumerate
the complement of an infinite set A = {a0 < a1 < a2 < . . . } ⊆ B. We denote by as

i

the position of the (i+1)st marker Λi at the beginning of stage s. At the beginning
of each stage s, we will have a number ns such that the markers currently having
a position are exactly the Λi for i < ns, and for each i < ns, we will have numbers
es
i (representing the current color for as

i ) and qs
i (representing the current column

of ω × p for as
i ) with qs

i < 2p. Let βs be the greatest position of any marker up to
stage s (βs = 0 if s = 0), and let ms = max({0} ∪ {π1(f(b1, b2)) : b1 < b2 ≤ βs}).
Given these and k ≤ ns, we say that a number b is k-acceptable at s if:

• b ∈ B.
• b > βs.
• For all i < k with qs

i < p, f(as
i , b) = (es

i , q
s
i ).

• For all i < k with qs
i ≥ p, π2(f(as

i , b)) = qs
i − p.

• For all i < k with qs
i ≥ p, π1(f(as

i , b)) > ms.
• For all i, j < k with qs

i = qs
j ≥ p, f(as

i , b) = f(as
j , b) ↔ es

i = es
j .

Construction: First set n0 = 0. Stage s ≥ 0: Assume inductively that we
have ns such that the markers currently having a position are exactly the Λi for
i < ns, along with es

i and qs
i for all i < ns. Enumerate into A all numbers b ≤ βs

such that b 
= as
i for all i < ns. Using a 0′-oracle, let ks be the largest k ≤ ns

such that there exists a number which is k-acceptable at s. Note that ks exists
because every sufficiently large element of B is 0-acceptable at s. For each q < 2p,
let Es

q = {es
i : i < ks and qs

i = q}.
Case 1: ks = ns: Set ns+1 = ns + 1 and place marker Λns on the least ks-

acceptable number. Leave all markers Λi with i < ns in place, and let es+1
i = es

i

and qs+1
i = qs

i for all i < ns. Also, let qs+1
ns = 2p−1 and let es+1

ns = min(ω−Es
2p−1).

(Place a new marker, and give it the first new infinitary color in the last column.)
Case 2: ks < ns: Set ns+1 = ks+1 and remove all markers Λi with ks < i < ns.

Leave all markers Λi with i ≤ ks in place and let es+1
i = es

i and qs+1
i = qs

i for all
i < ks. Let a∗ = as

ks , e∗ = es
ks and q∗ = qs

ks . We now have nine subcases to decide
the values es+1

ks and qs+1
ks : (Change a color, column, or both.)

Subcase 2.1: q∗ ≥ p, Es
q∗ 
= ∅ and e∗ /∈ Es

q∗ : Let qs+1
ks = q∗ and es+1

ks = min Es
q∗ .

(Take the first used infinitary color for this column.)
Subcase 2.2: q∗ ≥ p, e∗ ∈ Es

q∗ , and e∗ 
= max Es
q∗ : Let qs+1

ks = q∗ and
es+1
ks = min{d ∈ Es

q∗ : d > e∗}. (Take the next used infinitary color for this
column.)

Subcase 2.3: q∗ ≥ p and either Es
q∗ = ∅ or e∗ = max Es

q∗ : Let qs+1
ks = q∗ − 1

and es+1
ks = min(ω − Es

q∗−1). (Move either to the next infinitary column, or move
to the last finitary column, and assign the first unused color.)

Subcase 2.4: q∗ < p, e∗ /∈ Es
q∗ , and there exists b which is ks-acceptable at s

with f(a∗, b) > e∗: Let qs+1
ks = q∗ and es+1

ks = min{c ∈ ω : c /∈ Es
q∗ and c > e∗}.

(Take the next unused finitary color for this column.)
Subcase 2.5: q∗ < p, e∗ /∈ Es

q∗ , Es
q∗ 
= ∅, and every b which is ks-acceptable at

s satisfies f(a∗, b) ≤ e∗: Let qs+1
ks = q∗ and es+1

ks = min Es
q∗ . (Take the first used

finitary color for this column.)
Subcase 2.6: q∗ < p, e∗ ∈ Es

q∗ , and e∗ 
= max Es
q∗ : Let qs+1

ks = q∗ and
es+1
ks = min{c ∈ Es

q∗ : c > e∗}. (Move to the next used finitary color for this
column.)
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Subcase 2.7: 0 < q∗ < p, Es
q∗ = ∅, and every b which is ks-acceptable at s

satisfies f(a∗, b) ≤ e∗: Let qs+1
ks = q∗ − 1 and es+1

ks = min(ω − Es
q∗−1). (Move to

the next finitary column, and assign the first unused color.)
Subcase 2.8: 0 < q∗ < p and e∗ = maxEs

q∗ : Let qs+1
ks = q∗ − 1 and es+1

ks =
min(ω − Es

q∗−1). (Move to the next finitary column, and assign the first unused
color.)

Subcase 2.9: Otherwise: Let qs+1
ks = 0 and es+1

ks = e∗ + 1. (This case won’t
occur for any true element of A.)

End Construction.

Claim 5.2. For all k ∈ ω, each limit lims as
k, lims qs

k, and lims es
k exists, so we may

define ak = lims as
k, qk = lims qs

k, and ek = lims es
k.

Proof. We proceed by induction. We assume that the claim is true for all i < k
and prove it for k. Let t be the least stage such that for all i < k and all s ≥ t, we
have as

i = ai, qs
i = qi, and es

i = ei. At stage t, marker Λk is placed on a number b
via Case 1 of the construction (since otherwise there exists i < k such that either
qt+1
i 
= qt

i or et+1
i 
= et

i), so nt+1 = k + 1. Since each of as
i , qs

i , and es
i for i < k have

come to their limits, we must have ks ≥ k and hence ns ≥ k + 1 for all s > t by
construction (because if s > t is least such that ks < k, then we enter Case 2, so
one of qs

ks or es
ks changes). Therefore, by construction, we never again move marker

Λk, so as
k = at+1

k for all s ≥ t + 1 and we may let ak = lims as
k.

We now show that lims qs
k and lims es

k both exist by showing that ks = k for
only finitely many s > t. This suffices, because qs

k and es
k change only at such s.

Suppose then that ks = k for infinitely many s > t. Let Z = {(d, q) : p ≤ q < 2p
and d ∈ Et

q ∪ {min(ω − Et
q)}. Following the construction through the first |Z|

many stages s > t with ks = k, we see that for all (d, q) ∈ Z, there is a unique
s(d,q) > t such that e

s(d,q)

k = d, q
s(d,q)

k = q, and ks(d,q) = k. For each (d, q) ∈ Z,
since ks(d,q) = k, there are no numbers which are (k + 1)-acceptable at s(d,q). Let
r1 = max{s(d,q) : (d, q) ∈ Z}. We need the following lemma.

Lemma 5.3. For all s ≥ r1, if b is k-acceptable at s, then π1(f(ak, b)) ≤ mr1 .

Proof. Suppose that the lemma is false. Then there exists s ≥ r1 and a b which is
k-acceptable at s such that π1(f(ak, b)) > mr1 . Let q = p + π2(f(ak, b)). For each
d with (d, q) ∈ Z, notice that b is k-acceptable at s(d,q) (since t ≤ s(d,q) ≤ r1 ≤ s),
but not (k + 1)-acceptable at s(d,q). Therefore, for each d with (d, q) ∈ Z, either
π1(f(ak, b)) ≤ ms(d,q) ≤ mr1 , or there exists i < k with qi = q such that f(ai, b) =
f(ak, b) ↔ ei 
= d. Since π1(f(ak, b)) > mr1 , it follows that for all d with (d, q) ∈ Z,
there exists i < k with qi = q such that f(ai, b) = f(ak, b) ↔ ei 
= d. Letting
d = min(ω − Et

q), we have ei 
= d for all i < k with qi = q, so we may choose j < k
with qj = q and f(aj , b) = f(ak, b). Letting d = ej , there exists i < k with qi = q
such that f(ai, b) = f(ak, b) ↔ ei 
= ej . Since f(aj , b) = f(ak, b), this implies that
f(ai, b) = f(aj , b) ↔ ei 
= ej , contrary to the fact that b is k-acceptable at s. This
is a contradiction, so the proof of the lemma is complete. �

We now return to the proof of Claim 5.2. Notice that at stage r1, we set qr1+1
k =

q = p − 1, so qs+1
k ≤ qs

k < p for all s > r1 by construction. Now, as we continue
to follow the construction through stages s with ks = k, we must eventually reach
a stage s > r1 with ks = k such that we do not enter Subcase 2.4 (otherwise,
we enter Subcase 2.4 infinitely often, so after mr1 such iterations, we reach an
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s ≥ r1 with ks = k and es
k ≥ mr1 where every b which is k-acceptable at s satisfies

π1(f(ak, b)) ≤ mr1 ≤ es
k by Lemma 5.3). Let r2 be the least such stage. If Et

q = ∅,
then we either enter Subcase 2.7 and set qr2+1

k = q − 1 (if q > 0), or we enter
Subcase 2.9 (if q = 0). If Et

q 
= ∅, then at stage r2 we enter Subcase 2.5 and then
repeatedly enter Subcase 2.6 whenever ks = k until we run through all elements of
Et

q, at which point we either enter Subcase 2.8 or Subcase 2.9. Therefore, in either
case, we reach a stage r3 ≥ r2 where we either set qr3+1

k = q−1 or we enter Subcase
2.9. Now, the above argument works for the new value of q, so running through
each q with q < p in reverse order, we see that we eventually reach a stage r4 where
we enter Subcase 2.9.

Let b be the least number which is k-acceptable at r4 (such a number exists
because otherwise we have kr4 < k, which we know is not true). By construction,
there exists a stage s0 ≤ r4 such that es0

k = π1(f(ak, b)), qs0
k = π2(f(ak, b)), and

ks0 = k. We then have that b is (k + 1)-acceptable at s0, so ks0 ≥ k + 1, a
contradiction. It follows that there could not have been infinitely many s > t with
ks = k, so the proof of the claim is complete. �

Claim 5.4. Let q < 2p be greatest such that {k : qk = q} is infinite.
(1) Suppose that q ≥ p and {ek : qk = q} is infinite. Then {ak : qk = q and

ek 
= ei for all i < k with qi = q} is a Π0
2 {0, 1}-canonical set for f .

(2) Suppose that (1) does not hold and q ≥ p. Then there exists d such that
{k : qk = q and ek = d} is infinite, and for the least such d, the set
{ak : qk = q and ek = d} is a Π0

2 {1}-canonical set for f .
(3) Suppose that q < p and {ek : qk = q} is infinite. Then {ak : qk = q and

ek 
= ei for all i < k with qi = q} is a Π0
2 {0}-canonical set for f .

(4) Suppose that (3) does not hold, but q < p. Then there exists c such
that {k : qk = q and ek = c} is infinite, and for the least such c, the set
{ak : qk = q and ek = c} is a Π0

2 ∅-canonical set for f .

Proof. (1). Suppose that q ≥ p and {ek : qk = q} is infinite. Let C = {ak : qk = q
and ek 
= ei for all i < k with qi = q}. Notice that C is infinite because {ek : qk = q}
is infinite. To see that C is Π0

2, perform the above construction, with the additional
action of enumerating the number as

ks at stage s if either
• qs

ks < q.
• qs

ks = q and we enter Case 2.
Then ak is not enumerated if and only if either

• qk > q.
• qk = q and ek 
= ei for all i < k with qi = q,

because at the first s (if any) with as
k = ak and qs

k = q, we set es
k to a number

different from ei for all i < k with qi = q, and entrance into Case 2 at any point
will result either in qk < q or ek = ei for some i < k with qi = q. Since {ak : qk > q}
is finite, C is Π0

2 (because removing finitely many elements from a Π0
2 set leaves a

Π0
2 set). Suppose that i < k, j < �, k ≤ �, and ai, aj , ak, a� ∈ C. Let s be least such

that as
� = a�. If k < �, then a� is (max{j, k} + 1)-acceptable at s by construction;

hence f(aj , a�) > ms ≥ f(ai, ak). If k = � and i 
= j, then ak is (max{i, j} + 1)-
acceptable at s; hence f(ai, ak) = f(aj , ak) ↔ ei = ej , so f(ai, ak) 
= f(aj , ak)
because ei 
= ej . Therefore, f(ai, ak) = f(aj , a�) ↔ i = j and k = � ↔ ai = aj and
ak = a�. It follows that C is a Π0

2 {0, 1}-canonical set for f .
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(2). Suppose that (1) does not hold, i.e. {ek : qk = q} is finite, and q ≥ p. Let d
be least such that {k : qk = q and ek = d} is infinite, and let C = {ak : qk = q and
ek = d}. To see that C is Π0

2, perform the above construction, with the additional
action of enumerating the number as

ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Subcase 2.2 and set es+1

ks to a number greater than d.

Then ak is not enumerated if and only if either

• qk > q.
• qk = q and ek 
= ei for all i < k with qi = q.
• qk = q and ek ≤ d,

because at the first s (if any) with as
k = ak and qs

k = q, we set es
k to a number

in ω\{ei : i < k and qi = q}, after which the value of es
k runs through the set

{ei : i < k and qi = q} in increasing order until, if ever, we set qs
k < q. Since

{ak : qk > q} ∪ {ak : qk = q, ek 
= d, and ek 
= ei for all i < k with qi = q} ∪ {ak :
qk = q and ek < d} is finite, it follows (by removing this finite set) that C is Π0

2.
Suppose that i < k, j < �, k ≤ �, and ai, aj , ak, a� ∈ C. Let s be least such that
as

� = a�. If k < �, then a� is (max{j, k}+ 1)-acceptable at s by construction; hence
f(aj , a�) > ms ≥ f(ai, ak). If k = �, then ak is (max{i, j} + 1)-acceptable at s;
hence f(ai, ak) = f(aj , ak) ↔ ei = ej , so f(ai, ak) = f(aj , ak) because ei = d = ej .
Therefore, f(ai, ak) = f(aj , a�) ↔ k = � ↔ ak = a�. It follows that C is a Π0

2

{1}-canonical set for f .
(3). Suppose that q < p and {ek : qk = q} is infinite. Let C = {ak : qk = q and

ek 
= ei for all i < k with qi = q}. Notice that C is infinite because {ek : qk = q} is
infinite. To see that C is Π0

2, perform the above construction, with the additional
action of enumerating the number as

ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Subcase 2.5.

Then ak is not enumerated if and only if either

• qk > q.
• qk = q and ek 
= ei for all i < k with qi = q,

because at the first s (if any) with as
k = ak and qs

k = q, we set es
k to a number

in ω\{ei : i < k and qi = q}, and es
k will continue to be an element of this set

until we either enter into Subcase 2.5, at which point es
k will never again be in

this set, or we set qs
k < q. Since {ak : qk > q} is finite, it follows (by removing

this finite set) that C is Π0
2. Suppose that i < j and ai, aj ∈ C. Let s be least

such that as
j = aj . By construction, aj is (i + 1)-acceptable at s; hence f(ai, aj) =

(ei, qi) = (ei, q). Therefore, whenever i < k, j < �, and ai, aj , ak, a� ∈ C, we have
f(ai, ak) = f(aj , a�) ↔ (ei, q) = (ej , q) ↔ ei = ej ↔ i = j ↔ ai = aj . It follows
that C is a Π0

2 {0}-canonical set for f .
(4). Suppose that (3) does not hold, i.e. {ek : qk = q} is finite and q < p. Let c

be least such that {k : qk = q and ek = c} is infinite, and let C = {ak : qk = q and
ek = c}. To see that C is Π0

2, perform the above construction, with the additional
action of enumerating the number as

ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Subcase 2.6 and set es+1

ks to a number greater than c.
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Then ak is not enumerated if and only if either

• qk > q.
• qk = q and ek 
= ei for all i < k with qi = q.
• qk = q and ek ≤ c,

because at the first s (if any) with as
k = ak and qs

k = q, we set es
k to a number in

ω\{ei : i < k and qi = q} and es
k will continue to be an element of this set until,

if ever, es
k runs through the set {ei : i < k and qi = q} in increasing order until, if

ever, we either set es
k > c or we set qs

k < q. Since {ak : qk > q}∪{ak : qk = q, ek 
= c,
and ek 
= ei for all i < k with qi = q} ∪ {ak : qk = q and ek < c} is finite, it follows
(by removing this finite set) that C is Π0

2. Suppose that i < j and ai, aj ∈ C. Let
s be least such that as

j = aj . By construction, aj is (i + 1)-acceptable at s; hence
f(ai, aj) = (ei, qi) = (c, q). Therefore, whenever i < k, j < �, and ai, aj , ak, a� ∈ C,
we have f(ai, ak) = (c, q) = f(aj , a�). It follows that C is a Π0

2 ∅-canonical set for
f . �

Again, using a relativized version of the result for exponent 2 and induction, we
can get bounds for higher exponents.

Theorem 5.5. Suppose that n ≥ 2, p ≥ 1, X ⊆ ω, B ⊆ ω is infinite, and
f : [B]n → ω × p. Suppose also that B and f are X-computable. There exists a
Π0,X

2n−2 set C canonical for f .

Proof. We prove the theorem by induction on n. Theorem 5.1 relativized to X
gives the result for n = 2. Suppose that the theorem holds for n ≥ 2, and that
B and f : [B]n+1 → ω × p are X-computable. By Proposition 4.4 relativized to
X, there exists a precanonical pair (A, g) for f with A ⊕ g ≤T X ′′. Applying the
inductive hypothesis to g : [A]n → ω × 2p, there exists C ⊆ A canonical for g such
that C is Π0,X′′

2n−2. Notice that C is Π0,X
2n . By Claim 3.6, C is canonical for f . �

Remark 5.6. By Claim 1.8, if n ≥ 1 and f : [ω]n → 2, then any set C canonical
for f is homogeneous for f . Therefore, for each n ≥ 2, there exists a computable
f : [ω]n → 2 with no Σ0

n set canonical for f by Theorem 2.11. It follows that
Theorem 5.5 gives a sharp bound in the arithmetical hierarchy for n = 2.

6. Upper bounds for minhomogeneous sets

Although the Regressive Function Theorem follows immediately from the Canon-
ical Ramsey Theorem, we can obtain better bounds on the Turing degrees and po-
sition in the arithmetical hierarchy of minhomogeneous sets for computable f via
a direct proof using r-cohesive sets. We follow the outline by defining preminho-
mogeneous pairs, proving their utility and existence, and then applying induction.

Definition 6.1. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω is
regressive. We call a pair (A, g) where A ⊆ B is infinite and g : [A]n → ω, a
preminhomogeneous pair for f if for all x ∈ [A]n and all a ∈ A with x < a, we have
f(x, a) = g(x).

Claim 6.2. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → ω is regressive, and
(A, g) is a preminhomogeneous pair for f . We then have that g is regressive, and
any M ⊆ A minhomogeneous for g is minhomogeneous for f .
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Proof. Given any x ∈ [A]n, fix a ∈ A with x < a and notice that g(x) = f(x, a) <
min(x) if min(x) > 0, and g(x) = f(x, a) = 0 if min(x) = 0, so g is regressive.
Suppose that M ⊆ A is minhomogeneous for g. Fix x1, x2 ∈ [M ]n and a1, a2 ∈ M
with x1 < a1, x2 < a2, and min(x1, a1) = min(x2, a2). We then have min(x1) =
min(x2); hence

f(x1, a1) = g(x1) (since (A, g) is a preminhomogeneous pair for f)

= g(x2) (since M is homogeneous for g and min(x1) = min(x2))

= f(x2, a2) (since (A, g) is a prehomogeneous pair for f).

Therefore, M is minhomogeneous for f . �
Proposition 6.3. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω is
regressive. Suppose also that B and f are computable and a � 0′. There exists a
preminhomogeneous pair (A, g) for f such that deg(A⊕g) ≤ a. In particular, there
exists a preminhomogeneous pair (A, g) for f such that (A ⊕ g)′ ≤T 0′′.

Proof. By Theorem 2.19 and Lemma 4.3, we may fix an r-cohesive set V ⊆ B
such that deg(V )′ ≤ a. Suppose that x ∈ [B]n. We have f(x, a) ≤ min(x) for all
a ∈ B with x < a, so the sets Zc = {a ∈ B : x < a and f(x, a) = c} for c with
0 ≤ c ≤ min(x) are computable, pairwise disjoint, and have union {a ∈ B : x < a}.
Since V is r-cohesive, for each c with 0 ≤ c ≤ min(x), either V ∩ Zc is finite or
V ∩ Zc is finite. Therefore, there exists a unique cx with 0 ≤ cx ≤ min(x) such
that V ∩ Zcx

is finite. Moreover, notice that the function from [B]n to ω given
by x �→ cx is V ′-computable (since given x ∈ [B]n, we can run through b ∈ B in
increasing order asking a V ′-oracle if all elements of V greater than b lie in a fixed
Zc for some c with 0 ≤ c ≤ min(x)).

We use a V ′-oracle to inductively construct a preminhomogeneous pair (A, g)
for f . Let a0, a1, . . . , an−1 be the first n elements of V . Suppose that m ≥ n − 1
and we have defined a0, a1, . . . , am. Using a V ′-oracle, let am+1 be the least b ∈ V
such that b > am and f(x, b) = cx for all x ∈ [{ai : i ≤ m}]n (notice that
am+1 exists because V ⊆ B is infinite and f(x, b) = cx for all sufficiently large
b ∈ V ). Let A = {am : m ∈ ω} and define g : [A]n → ω by g(x) = cx. Then
deg(A ⊕ g) ≤ deg(V )′ ≤ a and (A, g) is a preminhomogeneous pair for f .

The last statement follows from the fact that there exists a � 0′ with a′ ≤ 0′′

by relativizing the Low Basis Theorem to 0′. �
Remark 6.4. Proposition 6.3 can also be proved using an effective analysis of a
proof using trees similar to the proof of Ramsey’s Theorem using trees.

Theorem 6.5. Suppose that n ≥ 2, X ⊆ ω, B ⊆ ω is infinite, and f : [B]n → ω is
regressive. Suppose also that B and f are X-computable and that a � deg(X)(n−1).
There exists a set M ⊆ B minhomogeneous for f such that deg(M) ≤ a.

Proof. We prove the theorem by induction on n. First, suppose that n = 2, B and
f : [B]2 → ω are X-computable, and a � deg(X)′. By Proposition 6.3 relativized
to X, there exists a preminhomogeneous pair (A, g) for f with deg(A ⊕ g) ≤ a.
Since A is trivially minhomogeneous for g, it follows from Claim 6.2 that A is
minhomogeneous for f .

Suppose that n ≥ 2 and the theorem holds for n. Suppose that both B and
f : [B]n+1 → ω are X-computable, and a � deg(X)(n). By Proposition 6.3 rela-
tivized to X, there exists a preminhomogeneous pair (A, g) for f with (A⊕ g)′ ≤T
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X ′′. Applying the inductive hypothesis to g : [A]n → ω, there exists M ⊆ A min-
homogeneous for g with deg(M) ≤ a since a � deg(X)(n) = (deg(X)′′)(n−2) ≥
(deg(A ⊕ g)′)(n−2) = deg(A ⊕ g)(n−1). By Claim 6.2, M is minhomogeneous for
f . �

We can also use the above results to give bounds on the location of minhomoge-
neous sets in the arithmetical hierarchy.

Theorem 6.6. Suppose that n ≥ 2, X ⊆ ω, B ⊆ ω is infinite, and f : [B]n → ω is
regressive. Suppose also that B and f are X-computable. There exists a Π0,X

n set
minhomogeneous for f .

Proof. We prove the theorem by induction on n. Theorem 5.1 relativized to X ⊆ ω
together with Claim 1.11 gives the result for n = 2. Suppose that we know the
theorem for n ≥ 2, and that B ⊆ ω is infinite and X-computable, and f : [B]n+1 →
ω is regressive and X-computable. By Proposition 6.3 relativized to X, there
exists a precanonical pair (A, g) for f with (A⊕g)′ ≤T X ′′. Applying the inductive
hypothesis to g : [A]n → ω, there exists M ⊆ A minhomogeneous for g such that
M is Π0,A⊕g

n . Then M is Π0,(A⊕g)′

n−1 , so it follows that M is Π0,X′′

n−1 , and hence Π0,X
n+1.

By Claim 6.2, M is minhomogeneous for f . �
Remark 6.7. Theorem 6.6 in the case n = 2 can also be proved without appealing
to Theorem 5.1 by using a more natural generalization of the proof of Theorem
2.11 in the case n = 2.

7. Lower bounds for minhomogeneous and canonical sets

We next turn our attention to lower bounds, aiming to show that the bounds
given by Theorem 6.5 and Theorem 6.6 are sharp. For these purposes, it will be
convenient to relax the definition of a regressive function.

Definition 7.1. Suppose that n ≥ 1, h : ω → ω, B ⊆ ω is infinite, and f : [B]n → ω.
(1) We say that f is h-regressive if for all x ∈ [B]n, we have f(x) < h(min(x))

whenever h(min(x)) > 0, and f(x) = 0 whenever h(min(x)) = 0.
(2) A set M is minhomogeneous for f if M ⊆ B, M is infinite, and for all

x, y ∈ [M ]n with min(x) = min(y) we have f(x) = f(y).

Remark 7.2. Notice that a function f : [B]n → ω is regressive if and only if it is
ι-regressive, where ι : ω → ω is the identity function.

By making very minor changes to the proof of Claim 1.11, we obtain the follow-
ing.

Claim 7.3. Suppose that n ≥ 1, h : ω → ω, B ⊆ ω is infinite, and f : [B]n → ω is
h-regressive. If C ⊆ B is canonical for f , then C is minhomogeneous for f .

Therefore, by the Canonical Ramsey Theorem, every h-regressive function has a
minhomogeneous set. Although h-regressive functions will be a convenient tool for
us, their minhomogeneous sets provide no more complexity than those for regressive
functions.

Proposition 7.4. Suppose that n ≥ 1, h : ω → ω, B ⊆ ω is infinite, and f : [B]n →
ω is h-regressive. Suppose also that h, B, and f are computable. There exists a
computable regressive g : [B]n → ω such that any set M ⊆ B minhomogeneous for
g computes a minhomogeneous set for f .
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Proof. We may assume that h is strictly increasing and never 0 (otherwise, replace
h by the function h∗ : ω → ω defined by h∗(0) = max{h(0), 1} and h∗(k + 1) =
max({h∗(k) + 1, h(k + 1)}), and notice that h∗ is computable and that f is h∗-
regressive). Define p : ω → ω by letting p(a) be the largest b < a such that h(b) < a
if there exists a b with h(b) < a, and letting p(a) = 0 otherwise. Notice that p is
computable, increasing, and satisfies lima p(a) = ∞.

Define g : [B]n → ω by setting

g(a1, . . . , an) =

{
f(p(a1), . . . , p(an)) + 1 if 0 < p(a1) < · · · < p(an),
0 otherwise.

If g(a1, . . . , an) 
= 0, then 0 < p(a1) < · · · < p(an); hence

g(a1, . . . , an) = f(p(a1), . . . , p(an)) + 1

< h(p(a1)) + 1 (since f is h-regressive)
≤ a1,

so g is regressive.
Suppose that M ⊆ B is minhomogeneous for g. Suppose that a1, a

′
1 ∈ M satisfy

a1 < a′
1 and p(a1) = p(a′

1) > 0. Since lima p(a) = ∞, there exist a2 < a3 < · · · <
an ∈ M such that a′

1 < a2 and 0 < p(a1) = p(a′
1) < p(a2) < p(a3) < · · · < p(an).

Since M is minhomogeneous for g, we have

0 = g(a1, a
′
1, a3, . . . , an)

= g(a1, a2, a3, . . . , an)

= f(p(a1), p(a2), p(a3), . . . , p(an)) + 1

= 0,

a contradiction. Hence, if a, b ∈ M satisfy p(a) = p(b) > 0, then a = b.
Since M is infinite, p is increasing and computable, and lima p(a) = ∞, it follows

that the set p(M) is infinite and p(M) ≤T M . Suppose that a1 < · · · < an, b1 <
· · · < bn ∈ M with 0 < p(a1) < · · · < p(an), 0 < p(b1) < · · · < p(bn) and
p(a1) = p(b1). Since p(a1) = p(b1) > 0, we know from the above that a1 = b1.
Therefore, since M is minhomogeneous for g, we have

f(p(a1), . . . , p(an)) + 1 = g(a1, . . . , an)

= g(b1, . . . , bn)

= f(p(b1), . . . , p(bn)) + 1,

so f(p(a1), . . . , p(an)) = f(p(b1), . . . , p(bn)). It follows that p(M)\{0} is a minho-
mogeneous set for f which is M -computable. �

Theorem 7.5. There is a computable regressive f : [ω]2 → ω such that deg(M) �
0′ for every set M which is minhomogeneous for f .

Proof. By Proposition 7.4, it suffices to find a computable f : [ω]2 → ω and a
computable h : ω → ω such that f is h-regressive and deg(M) � 0′ for every set
M which is minhomogeneous for f .

Let K = {e : ϕe(e) ↓} be the usual computably enumerable halting set, and
let {Ks}s∈ω be a fixed computable enumeration of K. Let 〈·〉 be a fixed effective
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bijection from ω<ω to ω. Define f1 : ω2 → 2 by

f1(m, t) =

{
ϕKt

e,t (n) if m = 〈e, n〉 and ϕKt
e,t (n) ↓∈ {0, 1},

0 otherwise.

Notice that f1 is computable. Define a computable f : [ω]2 → ω as follows. Given
a, b ∈ ω with a < b, let f(a, b) = 〈f1(0, b), f1(1, b), . . . , f1(a, b)〉. Notice that f is h-
regressive, where h : ω → ω is the computable function given by h(k) = max({0} ∪
{〈a0, a1, . . . , ak〉 + 1 : 0 ≤ ai ≤ 1 for i ≤ k}).

Suppose that M is a minhomogeneous set for f . For each e ∈ ω, define ge : ω → 2
as follows. Given n ∈ ω, find the least ae,n, be,n ∈ M with 〈e, n〉 ≤ ae,n < be,n, and
let ge(n) = f1(〈e, n〉, be,n). Notice that ge is M -computable for each e ∈ ω.

Let e, n ∈ ω. Since M is minhomogeneous for f , we know that f(ae,n, b) =
f(ae,n, b′) for all b, b′ ∈ M with b, b′ > ae,n, so f1(〈e, n〉, b) = f1(〈e, n〉, b′) for all
b, b′ ∈ M with b, b′ > ae,n. Thus, if ϕK

e (n) ↓ ∈ {0, 1}, then ge(n) = f1(〈e, n〉, be,n) =
ϕK

e (n) because f1(〈e, n〉, t) = ϕK
e (n) for all sufficiently large t ∈ ω.

Therefore, for all e ∈ ω, if ϕK
e is {0, 1}-valued, then ge is a total M -computable

extension. It follows that M computes a total extension of every partial {0, 1}-
valued 0′-computable function; hence deg(M) � 0′ by Proposition 2.3. �

We can use the previous theorem to obtain lower bounds for exponents n ≥ 2.

Theorem 7.6. For every n ≥ 2 and X ⊆ ω, there exists an X-computable regres-
sive f : [ω]n → ω such that deg(M ⊕X) � deg(X)(n−1) for every set M minhomo-
geneous for f .

Proof. We prove the result by induction on n. The case n = 2 follows by relativizing
Theorem 7.5. Suppose that n ≥ 2 and the result holds for n. Fix an X ′-computable
regressive g : [ω]n → ω such that deg(M ⊕ X ′) � (deg(X)′)(n−1) = deg(X)(n) for
every set M which is minhomogeneous for g. By the Limit Lemma, there exists an
X-computable g1 : [ω]n+1 → ω such that lima g1(x, a) = g(x) for all x ∈ [ω]n and
g1(y) ≤ min(y) for all y ∈ [ω]n+1. By Proposition 2.12 relativized to X and the
fact that n + 1 ≥ 3, there exists an X-computable f1 : [ω]n+1 → 2 such that for all
infinite sets H homogeneous for f1, we have f1([H]n+1) = {0} and H ⊕ X ≥T X ′.
Define an X-computable f : [ω]n+1 → ω by

f(y) =

{
0 if f1(y) = 1,

g1(y) + 1 if f1(y) = 0.

Notice that f(y) ≤ g1(y)+1 ≤ min(y)+1 < min(y)+2 for all y ∈ [ω]n+1; hence f is
h-regressive, where h : ω → ω is the computable function given by h(k) = k+2. By
Proposition 7.4 relativized to X, it suffices to show that deg(M ⊕X) � deg(X)(n)

for all sets M minhomogeneous for f .
Suppose that M is minhomogeneous for f . For each a ∈ M , let ca = f(a, x)

for some (any) x ∈ [M ]n with a < x. Let Z = {a ∈ M : ca = 0}. Since
f1([Z]n+1) = 1, it follows that Z is finite. For any a ∈ M\Z, we have ca 
= 0;
hence f1([M\Z]n+1) = 0 and M ⊕X ≡T (M\Z)⊕X ≥T X ′. Furthermore, for any
x ∈ [M\Z]n and any b ∈ M\Z with x < b, we have g1(x, b) + 1 = f(x, b) = cmin(x);
hence g(x)+1 = cmin(x) for all x ∈ [M\Z]n. It follows that M\Z is minhomogeneous
for g; hence deg(M ⊕ X) ≥ deg(M ⊕ X ′) � deg(X)(n). �
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As an immediate corollary of Theorem 7.6, we get the following corollary giving a
lower bound for the position of minhomogeneous sets in the arithmetical hierarchy.

Corollary 7.7. For every n ≥ 2, there exists a computable regressive f : [ω]n → ω
with no Σ0

n minhomogeneous set.

Proof. By Theorem 7.6 with X = ∅, there exists a computable regressive f : [ω]n →
ω such that deg(M) � 0(n−1) for every set M minhomogeneous for f . Suppose
that M is a Σ0

n set minhomogeneous for f . Let M1 ⊆ M be an infinite ∆0
n subset

of M , and notice that M1 is minhomogeneous for f . Since M1 is ∆0
n, it follows that

deg(M1) ≤ 0(n−1). Thus, it is not the case that deg(M1) � 0(n−1), a contradiction.
Therefore, there is no Σ0

n set minhomogeneous for f . �
Remark 7.8. Corollary 7.7 also follows from the corresponding result for Ramsey’s
Theorem (Theorem 2.11). Fix a computable f : [ω]n → 2 such that no Σ0

n set is
homogeneous for f . Define f∗ : [ω]n → ω by letting f∗(x) = f(x) if min(x) ≥ 2 and
f∗(x) = 0 if min(x) < 2, and notice that f∗ is regressive. Suppose that M∗ is Σ0

n

and minhomogeneous for f∗. Let M be an infinite ∆0
n subset of M∗ with 0, 1 /∈ M ,

and notice that M is also minhomogeneous for f∗. Define g : M → ω by letting
g(a) = f∗(x) for some (any) x ∈ [M ]n with a = min(x), and notice that g ≤T M .
If M0 = {a ∈ M : g(a) = 0} is infinite, then M0 is homogeneous for f and M0 is ∆0

n

(since M0 ≤T M), a contradiction. Otherwise, M1 = {a ∈ M : g(a) = 1} is infinite,
so M1 is homogeneous for f and M1 is ∆0

n (since M1 ≤T M), a contradiction.
Therefore, there is no Σ0

n set minhomogeneous for f∗.

Corollary 7.9. For every n ≥ 2, there exists a computable regressive f : [ω]n → ω
such that every Π0

n set M minhomogeneous for f satisfies deg(M) ≥ 0(n).

Proof. By Theorem 7.6 with X = ∅, there exists a computable regressive f : [ω]n →
ω such that deg(M) � 0(n−1) for every set M minhomogeneous for f . If M is a
Π0

n set minhomogeneous for f , then deg(M) � 0(n−1) and deg(M) is c.e. relative
to 0(n−1); hence deg(M) ≥ 0(n) by the Arslanov Completeness Criterion. �

Combining Theorem 6.5 and Theorem 7.6, we obtain the following corollary,
analogous to Corollary 2.4.

Corollary 7.10. For every n ≥ 2, there is a “universal” computable regressive
f : [ω]n → ω, i.e. an f such that given any set Mf minhomogeneous for f and any
computable regressive g : [ω]n → ω, there exists a set Mg minhomogeneous for g
such that Mg ≤T Mf .

Using Claim 1.11, we can infer similar results for canonical sets for computable
f : [ω]n → ω.

Corollary 7.11. For every n ≥ 2, there exists a computable f : [ω]n → ω such that
deg(C) � 0(n−1) for every set C canonical for f .

The next corollary was discussed in Remark 5.6, but we also obtain it immedi-
ately from Corollary 7.7.

Corollary 7.12. For every n ≥ 2, there exists a computable f : [ω]n → ω such that
no Σ0

n set is canonical for f .

Corollary 7.13. For every n ≥ 2, there exists a computable f : [ω]n → ω such that
every Π0

n set C canonical for f satisfies deg(C) ≥ 0(n).
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Also, combining Theorem 4.5 and Corollary 7.11 for n = 2, we get the following.

Corollary 7.14. There is a “universal” computable f : [ω]2 → ω, i.e. an f such
that given any set Cf canonical for f and any computable g : [ω]2 → ω, there exists
a set Cg canonical for g such that Cg ≤T Cf .

In contrast, it is shown in [13] that there does not exist a “universal” computable
f : [ω]2 → 2 for Ramsey’s Theorem.

In the previous chapter, we gave upper bounds for canonical sets for computable
f : [ω]n → ω, in terms of both the Turing degrees and the arithmetical hierarchy. In
this chapter, we provided lower bounds. These bounds give sharp characterizations
when n = 2, but the above upper bounds increase by two jumps for each successive
value of n while the lower bounds increase by only one for each successive value of
n. In light of Theorem 4.7, I conjecture that the upper bounds provided in Theorem
4.5 and Theorem 5.5 are sharp.

Conjecture 7.15. For every n ≥ 3, there exists a computable f : [ω]n → ω such
that deg(C) � 0(2n−3) for every set C canonical for f .

Conjecture 7.16. For every n ≥ 3, there exists a computable f : [ω]n → ω such
that no Σ0

2n−2 set is canonical for f .

8. Reverse mathematical corollaries

In this section, we discuss some straightforward reverse mathematical corollaries
of the computability-theoretic analysis we’ve carried out thus far. We omit most of
the details because some of the results appear in detail elsewhere, and the proofs
given above translate in a straightforward manner to proofs from RCA0.

Definition 8.1. The following definitions are made in second-order arithmetic.
(1) RTn

p is the statement that every f : [N]n → p has a homogeneous set.
(2) RTn is the statement that for all p ≥ 1, every f : [N]n → p has a homoge-

neous set.
(3) RT is the statement that for all n, p ≥ 1, every f : [N]n → p has a homoge-

neous set.
(4) CRTn is the statement that every f : [N]n → N has a canonical set.
(5) CRT is the statement that for all n ≥ 1, every f : [N]n → N has a canonical

set.
(6) REGn is the statement that every regressive f : [N]n → N has a minhomo-

geneous set.
(7) REG is the statement that for all n ≥ 1, every regressive f : [N]n → N has

a minhomogeneous set.
(8) ACA′

0 is the statement that for all sets Z and all n, the nth jump of Z exists.
(9) BΓ(where Γ is a set of formulas) is the statement of Γ-bounding; i.e. for

any formula θ(a, b) ∈ Γ we have

(∀c)[(∀a < c)(∃b)θ(a, b) → (∃m)(∀a < c)(∃b < m)θ(a, b)].

Proposition 8.2. The following are equivalent over RCA0:
(1) ACA0.
(2) CRTn for any fixed n ≥ 2.
(3) REGn for any fixed n ≥ 2.
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(4) RTn for any fixed n ≥ 3.
(5) RTn

p for any fixed n ≥ 3 and p ≥ 2.

Proof. To see that (1) implies (2), examine the proof of Theorem 3.4 and notice
that it can be formalized (in a completely straightforward manner) in ACA0. Since
the proofs of Claim 1.11 and Claim 1.8 can be carried out in RCA0, it follows that
(2) implies (3) and (4). Formalizing the proof of Theorem 7.5 in RCA0 gives (3)
implies (1). Clearly, (4) implies (5), and formalizing the proof of Proposition 2.12
in RCA0 gives (5) implies (1). �

Remark 8.3. At the end of [12], Kanamori and McAloon state that the implication
REG2 → ACA0 over RCA0 is due to Clote. Hirst (see [5, Theorem 6.14]), in his
thesis, proved that the stronger statement “Every h-regressive f : [N]2 → N has a
minhomogeneous set” implies ACA0 over RCA0.

Proposition 8.4. The following are equivalent over RCA0:

(1) ACA′
0,

(2) CRT,
(3) REG,
(4) RT.

Proof. To see that (1) implies (2), examine the proof of Theorem 3.4 and notice that
it can be formalized for all exponents n (in a completely straightforward manner)
in ACA′

0. Since the proofs of Claim 1.11 and Claim 1.8 can be carried out in RCA0,
it follows that (2) implies (3) and (4). Formalizing the proof of Theorem 7.6 in
RCA0 gives (3) implies (1), and formalizing the proof of Proposition 2.12 in RCA0

gives (4) implies (1). �

Proposition 8.5. The following are equivalent over RCA0:

(1) BΠ0
1,

(2) BΣ0
2,

(3) RT1,
(4) CRT1.

Proof. The equivalence of (1) and (2) is standard and can be found in [4, Lemma
2.10]. The equivalence of (1) and (3) is due to Hirst [5, Theorem 6.4], and can also
be found in [2, Theorem 2.10]. Since the proof of Claim 1.8 can be carried out in
RCA0, it follows that (4) implies (3).

We now show that (3) implies (4). Let M be a model of RCA0 + RT1 and let N
be the set of natural numbers in M. Suppose that f : N → N and f ∈ M. If there
exists p ∈ N such that f(n) ≤ p for all n ∈ N, then there exists a set H ∈ M which
is homogeneous for f since RT1

p+1 holds in M, and such an H is canonical for f .
Suppose then that the range of f is unbounded; i.e. for every p ∈ N, there exists
an n ∈ N with f(n) > p. Since M satisfies ∆0

1 comprehension, we may recursively
define a function g ∈ M as follows. Let g(0) = 0, and given g(n), let g(n+1) be the
least k ∈ N such that k > g(n) and f(k) > f(g(n)). Since g is strictly increasing,
and g ∈ M, it follows that range(g) is infinite and range(g) ∈ M. Notice that
range(g) is canonical for f . �
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9. Conclusion

Putting together the characterizations of Turing degrees of solutions for com-
putable instances of König’s Lemma and the above partition theorems for exponent
2, we see a close connection.

Summary 9.1. Let a be a Turing degree. The following are equivalent:
(1) a � 0′.
(2) For every computable f : [ω]2 → 2, there is a set H homogeneous for f such

that deg(H)′ ≤ a.
(3) For every computable regressive f : [ω]2 → ω, there is a set M minhomo-

geneous for f such that deg(M) ≤ a.
(4) For every computable f : [ω]2 → ω, there is a set C canonical for f such

that deg(C) ≤ a.

For exponents n ≥ 3, the Turing degrees characterizing the location of solutions
for Ramsey’s Theorem and the Regressive Function Theorem increase by one jump
for each successive value of n, while our upper bounds for solutions for the Canonical
Ramsey Theorem increase by two jumps for each successive value of n.

In terms of the arithmetical hierarchy, each of the above partition theorems
for exponent 2 has Π0

2 solutions for computable instances, but not necessarily Σ0
2

solutions. For exponents n ≥ 3 the location of solutions for Ramsey’s Theorem and
the Regressive Function Theorem increase by one jump for each successive value of
n, while our upper bounds for solutions for the Canonical Ramsey Theorem increase
by two jumps for each successive value of n.

Many open questions remain. A resolution of Conjecture 7.15 and Conjecture
7.16 is perhaps the most relevant to fill out the above web of connections between
König’s Lemma, Ramsey’s Theorem, the Regressive Function Theorem, and the
Canonical Ramsey Theorem. Furthermore, the following fundamental questions
about the relationship between Ramsey’s Theorem and König’s Lemma remain
open.

Question 9.2 (Seetapun). Does RT2
2 imply WKL0 over RCA0?

Other interesting open questions arise when we examine other partition the-
orems. One such theorem which seems closely related to the ones we’ve been
discussing is the Thin Set Theorem.

Definition 9.3 (Friedman). Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n →
ω. We say that a set T ⊆ B is thin for f if T is infinite and there exists c ∈ ω such
that f(x) 
= c for all x ∈ [T ]n.

Theorem 9.4 (Thin Set Theorem, Friedman). Suppose that n ≥ 1, B ⊆ ω is
infinite, and f : [B]n → ω. There exists a set T thin for f .

The Thin Set Theorem (for exponent n) is a simple consequence of Ramsey’s
Theorem (for exponent n). After Friedman’s initial work, Cholak, Guisto, Hirst,
and Jockusch [1] furthered the effective analysis of the Thin Set Theorem, and gave
a tight characterization of the location of thin sets for computable f : [ω]n → ω in
the arithmetical hierarchy. However, little is known about the Turing degrees of
such solutions or the reverse mathematical strengths of the principles themselves.
For example, it is not known if it is possible to code any nontrivial information into
the thin sets of a computable f : [ω]n → ω for any n.
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