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ASYMPTOTICS FOR DISCRETE WEIGHTED MINIMAL RIESZ
ENERGY PROBLEMS ON RECTIFIABLE SETS

S. V. BORODACHOV, D. P. HARDIN, AND E. B. SAFF

Abstract. Given a closed d-rectifiable set A embedded in Euclidean space,
we investigate minimal weighted Riesz energy points on A; that is, N points
constrained to A and interacting via the weighted power law potential V =
w(x, y) |x − y|−s, where s > 0 is a fixed parameter and w is an admissible
weight. (In the unweighted case (w ≡ 1) such points for N fixed tend to the
solution of the best-packing problem on A as the parameter s → ∞.) Our main
results concern the asymptotic behavior as N → ∞ of the minimal energies as
well as the corresponding equilibrium configurations. Given a distribution ρ(x)
with respect to d-dimensional Hausdorff measure on A, our results provide a
method for generating N-point configurations on A that are “well-separated”
and have asymptotic distribution ρ(x) as N → ∞.

1. Introduction

Points on a compact set A that minimize certain energy functions often have
desirable properties that reflect special features of A. For A = S2, the unit sphere
in R

3, the determination of minimal Coulomb energy points is the classic problem
of Thomson [20, 5]. Other energy functions on higher dimensional spheres give
rise to equilibrium points that are useful for a variety of applications including
coding theory [6], cubature formulas [21], and the generation of finite normalized
tight frames [3]. In this paper, we shall consider a generalized Thomson problem,
namely minimal energy points for weighted Riesz potentials on rectifiable sets. Our
focus is on the hypersingular case when short range interaction between points is
the dominant effect. Such energy functions are not treatable with classical potential
theoretic methods, and so require different techniques of analysis.

Let A be a compact set in R
d′

whose d-dimensional Hausdorff measure, Hd(A),
is finite. For a collection of N(≥ 2) distinct points ωN := {x1, . . . , xN} ⊂ A, a
non-negative weight function w on A×A (we shall specify additional conditions on
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w shortly), and s > 0, the weighted Riesz s-energy of ωN is defined by

Ew
s (ωN ) :=

∑
1≤i �=j≤N

w(xi, xj)
|xi − xj |s

=
N∑

i=1

N∑
j=1
j �=i

w(xi, xj)
|xi − xj |s

,

while the N-point weighted Riesz s-energy of A is defined by

(1) Ew
s (A, N) := inf{Ew

s (ωN ) : ωN ⊂ A, |ωN | = N},

where |X| denotes the cardinality of a set X. Since, for the weight w̃(x, y) :=
(w(x, y) + w(y, x))/2, we have

Ew
s (ωN ) = Ew̃

s (ωN ) = 2
∑

1≤i<j≤N

w̃(xi, xj)
|xi − xj |s

,

we shall assume, without loss of generality, throughout this paper that w is symmet-
ric, i.e., w(x, y) = w(y, x) for x, y ∈ A. We call w : A × A → [0,∞] a CPD-weight
function on A × A if

(a) w is continuous (as a function on A × A) at Hd-almost every point of the
diagonal D(A) := {(x, x) : x ∈ A},

(b) there is some neighborhood G of D(A) (relative to A × A) such that
infG w > 0, and

(c) w is bounded on any closed subset B ⊂ A × A such that B ∩ D(A) = ∅.
Here CPD stands for (almost) continuous and positive on the diagonal. In particu-
lar, conditions (a), (b), and (c) hold if w is bounded on A×A and continuous and
positive at every point of the diagonal D(A) (where continuity at a diagonal point
(x0, x0) is meant in the sense of limits taken on A × A).

If w ≡ 1 on A × A (which we refer to as the unweighted case), we write Es(ωN )
and Es(A, N) for Ew

s (ωN ) and Ew
s (A, N), respectively. For the trivial cases N = 0

or 1 we put Es(ωN ) = Es(A, N) = Ew
s (ωN ) = Ew

s (A, N) = 0.
We are interested in the geometrical properties of optimal s-energy N -point

configurations for a set A; that is, sets ωN for which the infimum in (1) is attained.
Indeed, these configurations are useful in statistical sampling, weighted quadrature,
and computer-aided geometric design where the selection of a “good” finite (but
possibly large) collection of points is required to represent a set or manifold A.
Since the exact determination of optimal configurations seems, except in a handful
of cases (cf. [23, 14, 1, 15, 2, 9]), beyond the realm of possibility, our focus is
on the asymptotics of such configurations. Specifically, we consider the following
questions:

(i) What is the asymptotic behavior of the quantity Ew
s (A, N) as N gets large?

(ii) How are optimal point configurations distributed as N → ∞?
(iii) What estimates can be given for the minimal pairwise distance between

points in optimal configurations for large N?
In the unweighted case, much is known regarding these questions. In particular,

when s < dim A (the Hausdorff dimension of A), the limit distribution of optimal
N -point configurations is given by the equilibrium measure λs,A that minimizes the
continuous energy integral

Is(µ) :=
∫∫

A×A

1
|x − y|s dµ(x) dµ(y)
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over the class M(A) of (Radon) probability measures µ supported on A. In ad-
dition, the asymptotic order of the Riesz s-energy is N2; more precisely we have
Es(A, N)/N2 → Is(λs,A) as N → ∞ (cf. [18, Section II.3.12]). In the case when
A = Sd, the unit sphere in R

d+1, the equilibrium measure is simply the normalized
surface area measure.

If s ≥ dim A, then Is(µ) = ∞ for every µ ∈ M(A), and potential theoretic meth-
ods cannot be used. However, by using techniques from geometric measure theory,
it was recently shown in [12] that when A is a d-rectifiable manifold of positive
d-dimensional Hausdorff measure and s ≥ d, optimal N -point configurations are
uniformly distributed (as N → ∞) on A with respect to d-dimensional Hausdorff
measure restricted to A. The assertion for the case s = d further requires that A
be a subset of a C1 manifold (see Theorem A in Section 1.1).

Our motivation for considering the weighted minimal Riesz energy problem is
for the purpose of obtaining point sets that are distributed according to a specified
non-uniform density such as might be used as nodes for weighted integration or
in computer modeling of surfaces where more points are needed in regions with
higher curvature. In this paper we shall show that for a compact d-rectifiable set
A having positive d-dimensional Hausdorff measure, N -point configurations for A
minimizing the weighted Riesz s-energy are distributed asymptotically with density
proportional to (w(x, x))−d/s provided s ≥ d. (This continues to be true even
when w has a finite number of zeros on the diagonal, provided their order is less
than s.) As a consequence (cf. Corollary 2), given an appropriate distribution ρ,
one can utilize minimal weighted energy points to generate a sequence of N -point
configurations that are “well-separated” and have asymptotic distribution ρ. Even
in the unweighted case, our results extend those of [12] obtained for the class of
d-rectifiable manifolds to the more general class of d-rectifiable sets.

For the remainder of this introduction we provide the necessary notation and
discuss known results. Section 2 is devoted to the statements of the main results
of this paper. The detailed proofs of these main results, which utilize the basic
lemmas described in Section 3, are provided in Sections 4, 5 and 6.

1.1. Notation and previous results. It is helpful to keep in mind that minimal
discrete s-energy problems can be considered as a bridge between logarithmic energy
problems and best-packing ones. Indeed, in the unweighted case (w(x, y) ≡ 1) when
s → 0 and N is fixed, the minimal energy problem turns into the problem for the
logarithmic potential energy ∑

1≤i �=j≤N

log
1

|xi − xj |
,

which is minimized over all N -point configurations {x1, . . . , xN} ⊂ A. This problem
is equivalent to the maximization of the product∏

1≤i �=j≤N

|xi − xj |.

For planar sets, such optimal points are known as Fekete points. (For the case
when A = S2, the polynomial time generation of “nearly optimal” points for the
logarithmic energy is the focus of one of S. Smale’s “problems for the next century”;
see [22].)
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On the other hand, when s → ∞, and N is fixed in the unweighted case, we
get the best-packing problem (cf. [11], [6]); i.e., the problem of finding N -point
configurations ωN ⊂ A with the largest separation radius:

(2) δ(ωN ) := min
1≤i �=j≤N

|xi − xj |.

In this paper we will consider the case s ≥ dim A. Let Ld′ be the Lebesgue
measure in R

d′
and Hd be the d-dimensional Hausdorff measure in R

d′
normalized

so that its restriction to R
d ⊂ R

d′
is Ld. Denote by Bd′(x0, r) the open ball in R

d′

centered at the point x0 with radius r > 0 and set

(3) βd := Ld(Bd(0, 1)) =
2πd/2

d Γ(d/2)
.

Given sequences {aN}∞N=1 and {bN}∞N=1 of positive numbers, we will write
aN ∼ bN , N → ∞, if limN→∞ aN/bN = 1.

Regarding questions (i) and (ii) concerning the asymptotics of minimal energy
and of optimal configurations, A.B.J. Kuijlaars and E.B. Saff [16] proved that, for
the unit sphere Sd,

Ed(Sd, N) ∼ βd

Hd(Sd)
N2 log N, N → ∞,

and it is known that the distribution of the minimal energy points is asymptotically
uniform in this case. For one-dimensional rectifiable curves in R

d′
, the paper by

A. Martinez-Finkelshtein et al. [19] provides answers in the unweighted case to
questions (i) and (ii), as well as question (iii) concerning separation of optimal
points on regular Jordan arcs or curves.

Question (iii) in the unweighted case has also been considered for several other
special cases. B.E.J. Dahlberg [7] proved that if A = Sd and s = d − 1, d ≥ 2, or
A ⊂ R

3 is a smooth surface and s = 1, d = 2, there is a constant C > 0 such that
for every s-optimal collection ω∗

N ⊂ A with N points

(4) δ(ω∗
N ) ≥ CN−1/d.

In [16] it was shown that (4) holds for A = Sd when s > d.
In [12] and [13], questions (i), (ii), and (iii) were addressed for a more general

class of sets A which we now describe. First recall that a mapping φ : T → R
d′

,
T ⊂ R

d, is said to be a Lipschitz mapping on T if there is some constant λ such
that

(5) |φ(x) − φ(y)| ≤ λ|x − y| for x, y ∈ T ,

and that φ is said to be a bi-Lipschitz mapping on T (with constant λ) if

(6) (1/λ)|x − y| ≤ |φ(x) − φ(y)| ≤ λ|x − y| for x, y ∈ T .

Following [12], we say that a set A ⊂ R
d′

is a d-rectifiable manifold if it is a compact
subset of a finite union of bi-Lipschitz images of open sets in R

d.
We further recall that if A ⊂ R

d′
is compact and ν and {νN}∞N=1 are Borel

probability measures on A, then the sequence νN converges weak-star to ν (and we
write νN

∗→ ν) if for any function f continuous on A, we have

lim
N→∞

∫
A

fdνN =
∫

A

fdν.

Denote by δx the atomic probability measure in R
d′

centered at the point x ∈ R
d′

.
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For future reference and comparison we now state some of the main results from
[12]. In the following theorems, the expression 1/0 should be understood as ∞.

Theorem A. Let A ⊂ R
d′

be a compact d-rectifiable manifold and suppose s > d.
Then

(7) lim
N→∞

Es(A, N)
N1+s/d

=
Cs,d

Hd(A)s/d
,

where Cs,d is a positive constant independent of A.
Furthermore, if Hd(A) > 0, any asymptotically s-energy minimizing sequence

of configurations ω̃N = {xN
1 , . . . , xN

N}, N = 2, 3, . . ., for A is uniformly distributed
with respect to Hd; that is,

(8)
1
N

N∑
k=1

δxN
k

∗→ Hd|A
Hd(A)

, N → ∞.

By asymptotically s-energy minimizing we mean

Es(ω̃N ) ∼ Es(A, N), N → ∞.

Remark. The constant Cs,d appearing in (7) of Theorem A can be represented using
the energy for the unit cube in R

d via formula (7):

Cs,d = lim
N→∞

Es([0, 1]d, N)
N1+s/d

, s > d.

For d = 1 and s > 1, it was shown in [19] that Cs,1 = 2ζ(s), where ζ(s) is the
classical Riemann zeta function. However, for other values of d, the constant Cs,d

is as yet unknown. For the case d = 2, it is a consequence of results in [16] that

(9) Cs,2 ≤
(√

3/2
)s/2

ζL(s),

where ζL(s) is the zeta function for the planar triangular lattice L consisting of
points of the form m(1, 0) + n(1/2,

√
3/2) for m, n ∈ Z. It is conjectured in [16]

that in fact equality holds in (9). Furthermore, it is shown in [4] that as s → ∞

(Cs,2)
2/s →

√
3/2,

which is consistent with this conjecture.

When 0 < Hd(A) < ∞ we observe that the minimum energy experiences a
transition in order of growth; namely, as s increases from values less than d to values
greater than d, the energy switches from order N2 to order N1+s/d as N → ∞. As
the following theorem from [12] describes, at the transition value s = d, the order of
growth is N2 log N . In the proof of this fact, a more delicate analysis was utilized
that required an additional regularity assumption on A.1

Theorem B. Let A be a compact subset of a d-dimensional C1-manifold in R
d′

.
Then

(10) lim
N→∞

Ed(A, N)
N2 log N

=
βd

Hd(A)
,

where βd is the volume of the d-dimensional unit ball as defined in (3).

1At this writing it is not known whether this requirement is necessary.
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Furthermore, if Hd(A) > 0, any asymptotically d-energy minimizing sequence
of configurations ω̃N = {xN

1 , . . . , xN
N}, N = 2, 3, . . ., for A is uniformly distributed

with respect to Hd; that is, (8) holds.

Regarding separation results, the following was shown in [12]. If A ⊂ R
d′

is a
bi-Lipschitz image of a compact set from R

d of positive Lebesgue measure, then for
every s ≥ d there is a constant cs > 0 such that

δ(ω∗
N ) ≥

{
csN

−1/d, s > d,

cd(N log N)−1/d, s = d,

for every s-optimal N -point configuration ω∗
N on A. This result was extended by

S. Damelin and V. Maymeskul in [8] to a finite union of bi-Lipschitz images of
compact sets from R

d.

2. Main results

In this paper we extend Theorem A to the class of d-rectifiable sets, where, by
a d-rectifiable set A ⊂ R

d′
, we mean the image of a bounded set in R

d under a
Lipschitz mapping (cf. [10]). Consequently, we relax the bi-Lipschitz condition in
Theorem A. Furthermore, both Theorems A and B are extended to the case of
weighted energy, and separation estimates for optimal configurations are obtained
even when the Hausdorff dimension of the compact set is not necessarily an integer.

Theorem 1. Suppose A ⊂ R
d′

is a closed d-rectifiable set. Then, for s > d,

(11) lim
N→∞

Es(A, N)
N1+s/d

=
Cs,d

Hd(A)s/d
,

where Cs,d is the same constant as in Theorem A.

Remark. As can be seen from the proof in Section 3, Theorem 1 is valid for a pos-
sibly more general class of sets, namely (Hd, d)-rectifiable sets whose d-dimensional
Hausdorff measure equals its d-dimensional Minkowski content (see Section 3 for
definitions).

If A is a compact set in R
d′

and w is a CPD-weight function on A×A, then for
s ≥ d we define the weighted Hausdorff measure Hs,w

d on Borel sets B ⊂ A by

(12) Hs,w
d (B) :=

∫
B

(w(x, x))−d/sdHd(x),

and its normalized form by

(13) hs,w
d (B) := Hs,w

d (B)/Hs,w
d (A).

We say that a sequence {ω̃N}∞N=1 of N -point configurations in A is asymptotically
(w, s)-energy minimizing for A if

Ew
s (ω̃N ) ∼ Ew

s (A, N), N → ∞.

The main results of this paper include the following generalizations of Theo-
rems A and B. In their proofs, Lemma 6 in Section 4 plays a crucial role.
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Theorem 2. Let A ⊂ R
d′

be a closed d-rectifiable set. Suppose s > d and that w
is a CPD-weight function on A × A. Then

(14) lim
N→∞

Ew
s (A, N)
N1+s/d

=
Cs,d

[Hs,w
d (A)]s/d

,

where Cs,d is the same constant as in Theorem A.
Furthermore, if Hd(A) > 0, any asymptotically (w, s)-energy minimizing se-

quence of configurations ω̃N = {xN
1 , . . . , xN

N}, N = 2, 3, . . ., for A is uniformly
distributed with respect to Hs,w

d ; that is,

(15)
1
N

N∑
k=1

δxN
k

∗→ hs,w
d , N → ∞.

Theorem 3. Let A be a compact subset of a d-dimensional C1-manifold in R
d′

and suppose w is a CPD-weight function on A × A. Then

(16) lim
N→∞

Ew
d (A, N)

N2 log N
=

βd

Hd,w
d (A)

.

Furthermore, if Hd(A) > 0, any asymptotically (w, d)-energy minimizing se-
quence of configurations ω̃N = {xN

1 , . . . , xN
N}, N = 2, 3, . . ., for A is uniformly

distributed with respect to Hd,w
d ; that is, (15) holds with s = d.

Remarks. In the case Hd(A) = 0, the right-hand sides of (14) and (16) are under-
stood to be infinity.

Next we obtain estimates for the separation radius of optimal configurations on
sets of arbitrary Hausdorff dimension α. We remark that the normalization for the
Hausdorff measure Hα plays no essential role here.

Theorem 4. Let 0 < α ≤ d′. Suppose A ⊂ Rd′
is a compact set with Hα(A) > 0

and let w be a CPD-weight function that is bounded and lower semi-continuous on
A × A. Then, for every s ≥ α there is a constant cs = cs(A, w, α) > 0 such that
any (w, s)-energy minimizing configuration ω∗

N := {x1,N , . . . , xN,N} on A satisfies
the inequality

δ(ω∗
N ) = min

1≤i �=j≤N
|xi,N − xj,N | ≥

{
csN

−1/α, s > α,

cα(N log N)−1/α, s = α, N ≥ 2.

As a consequence of the proof of Theorem 4 we establish the following estimates.
Let

(17) H∞
α (A) := inf{

∑
i

(diam Gi)
α : A ⊂

⋃
i

Gi}.

Corollary 1. Under the assumptions of Theorem 4, for N ≥ 2,

Ew
s (A, N) ≤

{
Ms,α‖w‖A×AH∞

α (A)−s/αN1+s/α, s > α,

MαN2 log N, s = α,

where the constant Ms,α > 0 is independent of A, w and N , and the constant Mα

is independent of N .
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In order to obtain a finite collection of points distributed with a given density
ρ(x) on a d-rectifiable set A, we can take any s > d and the weight

(18) w(x, y) := (ρ(x)ρ(y) + |x − y|)−s/2d,

where the term |x−y| is included to ensure that w is locally bounded off D(A). By
Theorems 2 and 3 any asymptotically (w, s)-energy minimizing sequence of N -point
configurations will converge to the required distribution as N → ∞. We thus obtain

Corollary 2. Let A ⊂ R
d′

be a closed d-rectifiable set with Hd(A) > 0. Suppose ρ is
a bounded probability density on A (with respect to Hd) that is continuous Hd-almost
everywhere on A. Then, for s > d and w given by (18), the normalized counting
measures for any asymptotically (w, s)-energy minimizing sequence of configurations
ωN converge weak∗ (as N → ∞) to ρ dHd.

Furthermore, if infA ρ > 0 and ρ is upper semi-continuous, then any (w, s)-
energy minimizing sequence of configurations ωN is well-separated in the sense of
Theorem 4 with α = d.

Remark. The first part of Corollary 2 holds for s = d when A is contained in a C1

d-dimensional manifold.

Finally, we consider weight functions with isolated zeros. For t > 0, we say that
a function w : A × A → R has a zero at (a, a) ∈ D(A) of order at most t if there
are positive constants C and δ such that

(19) w(x, y) ≥ C|x − a|t (x, y ∈ A ∩ Bd′(a, δ)).

If w has a zero a ∈ A whose order is too large, then a may act as an attractive
“sink” with Ew

s (A, N) = 0. For example, let A be the closed unit ball in R
d,

w(x, y) = |x|t + |y|t for x, y ∈ A with t > s > d. If ωN = {x1, . . . , xN} is a
configuration of N points in A, then Ew

s (γωN ) = γt−sEw
s (ωN ) for any 0 < γ < 1.

Taking γ → 0 shows that Ew
s (A, N) = 0.

A closed set A ⊂ R
d′

is α-regular at a ∈ A if there are positive constants C0

and δ such that

(20) (C0)−1rα ≤ Hα(A ∩ Bd′(x, r)) ≤ C0r
α

for all x ∈ A ∩ Bd′(a, δ) and 0 < r < δ.

Theorem 5. Let A ⊂ R
d′

be a closed d-rectifiable set and s > d. Suppose A is
αi-regular with αi ≤ d at ai, i = 1, . . . , n, for a finite collection of points a1, . . . , an

in A and that w : A × A → [0,∞] is a CPD-weight function on K × K for any
compact K ⊂ A\{a1, . . . , an}. If w has zeros of order at most t < s at each (ai, ai),
then the conclusions of Theorem 2 hold.

Remark. The hypotheses of Theorem 5 imply that

Hs,w
d (A) =

∫
A

(w(x, x))−d/sdHd(x)

is finite and positive (see Section 6) and, hence, the same is true of the right-hand
side of (14).

3. Lemmas

In this section we prove several lemmas which are central to the proofs of our
main theorems.
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3.1. Divide and conquer. In this subsection we provide two lemmas relating the
minimal energy problem on A = B ∪ D to the minimal energy problems on B and
D, respectively.

In order to unify our computations for the cases s > d and s = d, we define, for
integers N > 1,

τs,d(N) :=

{
N1+s/d, s > d,

N2 log N, s = d

and set τs,d(N) = 1 for N = 0 or 1. For a set A ⊂ R
d′

and s ≥ d, let

gw
s,d

(A) := lim inf
N→∞

Ew
s (A, N)
τs,d(N)

, gw
s,d(A) := lim sup

N→∞

Ew
s (A, N)
τs,d(N)

,

and

gw
s,d(A) := lim

N→∞

Ew
s (A, N)
τs,d(N)

if this limit exists (these quantities are allowed to be infinite). In the case w(x, y) ≡
1, we use the notations g

s,d
(A), gs,d(A) and gs,d(A), respectively.

Let dist(B, D) := inf {|x − y| : x ∈ B, y ∈ D} denote the distance between sets
B, D ⊂ R

d′
. The following two lemmas extend Lemmas 3.2 and 3.3 from [12] to

the weighted case. We remark that the following results hold when quantities are
0 or infinite using 0−d/s = 0−s/d = ∞ and ∞−d/s = ∞−s/d = 0.

Lemma 1. Let s ≥ d > 0 and suppose that B and D are sets in R
d′

such that
dist(B, D) > 0. Suppose w : (B ∪ D) × (B ∪ D) → [0,∞] is bounded on the subset
B × D. Then

(21) gw
s,d(B ∪ D)−d/s ≥ gw

s,d(B)−d/s + gw
s,d(D)−d/s.

Proof. Assume that 0 < gw
s,d(B), gw

s,d(D) < ∞. Define

α∗ :=
gw

s,d(D)d/s

gw
s,d(B)d/s + gw

s,d(D)d/s
.

For N ∈ N, let NB := �α∗N� (where �x� denotes the greatest integer less than or
equal to x), ND := N − NB and ωB

N ⊂ B and ωD
N ⊂ D be configurations of NB

and ND points respectively such that Ew
s (ωB

N ) < Ew
s (B, NB) + 1 and Ew

s (ωD
N ) <

Ew
s (D, ND) + 1. Let γ0 := dist(B, D) > 0. Then

Ew
s,d(B ∪ D, N) ≤ Ew

s (ωB
N ∪ ωD

N )

= Ew
s (ωB

N ) + Ew
s (ωD

N ) + 2
∑

x∈ωB
N , y∈ωD

N

w(x, y)
|x − y|s

≤ Ew
s (B, NB) + Ew

s (D, ND) + 2 + 2γ−s
0 N2‖w‖B×D,
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where ‖w‖B×D denotes the supremum of w over B × D. Dividing by τs,d(N) and
taking into account that τs,d(NB)/τs,d(N) → (α∗)1+s/d as N → ∞, we obtain

gw
s,d(B ∪ D) ≤ lim sup

N→∞

Ew
s (B, NB)
τs,d(N)

+ lim sup
N→∞

Ew
s (D, ND)
τs,d(N)

= lim sup
N→∞

Ew
s (B, NB)
τs,d(NB)

· τs,d(NB)
τs,d(N)

+ lim sup
N→∞

Ew
s (D, ND)
τs,d(ND)

· τs,d(ND)
τs,d(N)

≤ gw
s,d(B) · (α∗)1+s/d + gw

s,d(D) · (1 − α∗)1+s/d

=
(
gw

s,d(B)−d/s + gw
s,d(D)−d/s

)−s/d

.

The remaining cases when gw
s,d(B) or gw

s,d(D) are 0 or ∞ easily follow from the
monotonicity of gw

s,d. �

The following statement in particular shows sub-additivity of gw
s,d

(·)−d/s as well
as provides a result relating asymptotics of energy to the limiting distribution of
corresponding configurations.

Lemma 2. Let s ≥ d > 0 and B, D ⊂ R
d′

. Suppose w : (B∪D)×(B∪D) → [0,∞].
Then

(22) gw
s,d

(B ∪ D)−d/s ≤ gw
s,d

(B)−d/s + gw
s,d

(D)−d/s.

Furthermore, if gw
s,d

(B), gw
s,d

(D) > 0 and at least one of these quantities is finite,
then for any infinite subset N of N and sequence {ω̃N}N∈N of N-point configura-
tions in B ∪ D such that

(23) lim
N�N→∞

Ew
s (ω̃N )

τs,d(N)
=

(
gw

s,d
(B)−d/s + gw

s,d
(D)−d/s

)−s/d

holds, we have

(24) lim
N�N→∞

|ω̃N ∩ B|
N

=
gw

s,d
(D)d/s

gw
s,d

(B)d/s + gw
s,d

(D)d/s
.

In the case gw
s,d

(D) = ∞ the right-hand side of relation (24) is understood to
equal 1.

Proof. Assume that 0 < gw
s,d

(B), gw
s,d

(D) < ∞ (we leave other cases to the reader).
Let an infinite subset N1 ⊂ N and a sequence of point configurations {ωN}N∈N1 ,
ωN ⊂ B ∪ D, be such that limN1�N→∞ |ωN ∩ B|/N = α, where 0 ≤ α ≤ 1. Set
NB := |ωN ∩ B| and ND := |ωN \ B|. Then

Ew
s (ωN ) ≥ Ew

s (ωN ∩ B) + Ew
s (ωN \ B) ≥ Ew

s (B, NB) + Ew
s (D, ND),

and we have

lim inf
N1�N→∞

Ew
s (ωN )

τs,d(N)
≥ lim inf

N1�N→∞

Ew
s (B, NB)
τs,d(NB)

· τs,d(NB)
τs,d(N)

+ lim inf
N1�N→∞

Ew
s (D, ND)
τs,d(ND)

· τs,d(ND)
τs,d(N)

≥ F (α) := gw
s,d

(B)α1+s/d + gw
s,d

(D)(1 − α)1+s/d.(25)
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Let

α̃ :=
gw

s,d
(D)d/s

gw
s,d

(B)d/s + gw
s,d

(D)d/s
,

and {ω̃N}N∈N be any sequence of point sets satisfying (23). If N2 ⊂ N is any
infinite subsequence such that the quantity |ω̃N ∩ B| /N has a limit as N2 � N → ∞
(denote it by α1), then in the case gw

s,d
(B), gw

s,d
(D) < ∞ by (23) and (25) we have

F (α̃) = lim
N2�N→∞

Ew
s (ω̃N )

τs,d(N)
≥ F (α1),

where we used the fact that F (α̃) is the right-hand side of (23). It is not difficult
to see that α̃ is the only minimum point of F (t) on [0, 1]. Hence α1 = α̃, which
proves (24).

Now let {ωN}N∈N3 be a sequence of N -point configurations in B ∪D such that

gw
s,d

(B ∪ D) = lim
N3�N→∞

Ew
s (ωN )

τs,d(N)

(ωN ’s can be chosen for example so that Ew
s (ωN ) < Ew

s (B∪D, N)+1). If N4 ⊂ N3

is such an infinite set that limN4�N→∞ |ωN ∩ B| /N exists (denote it by α2), then
by (25) we obtain

gw
s,d

(B ∪ D) = lim
N4�N→∞

Ew
s (ωN )

τs,d(N)
≥ F (α2)

≥ F (α̃) =
(
gw

s,d
(B)−d/s + gw

s,d
(D)−d/s

)−s/d

,

which implies (22). �

Remark. An immediate consequence of the non-weighted versions of Lemmas 1 and
2 is Corollary 3.4 in [12]. We take this opportunity to remark that the hypotheses
of that corollary should require that B not intersect the interior of A rather than
the assumption that the two sets have disjoint interiors. However, this corollary
was only applied in the former setting in [12].

3.2. Lemmas from geometric measure theory. Recall that βd denotes the
volume of the unit ball in R

d. For convenience, we also define β0 := 1. For a set
W ⊂ R

d′
and h > 0, we let

W (h) := {x ∈ R
d′

: dist(x, W ) < h}.
The upper and the lower Minkowski contents of the set W are defined, respectively,
by

Md(W ) := lim sup
r→0+

Ld′ [W (r)]
βd′−d · rd′−d

and Md(W ) := lim inf
r→0+

Ld′ [W (r)]
βd′−d · rd′−d

.

If the upper and the lower Minkowski contents of the set W coincide, then this
common value, denoted by Md(W ), is called the Minkowski content of W . We
shall rely on the following property of closed d-rectifiable sets.

Lemma 3 (see [10, Theorem 3.2.39]). If W ⊂ R
d′

is a closed d-rectifiable set, then
Md(W ) = Hd(W ).

We shall also need the following fundamental lemma from geometric measure
theory.
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Lemma 4 (see [10, Lemma 3.2.18]). Let W ⊂ R
d′

be a d-rectifiable set. Then
for every ε > 0 there exist compact sets K1, K2, K3, . . . ⊂ R

d and bi-Lipschitz
mappings ψi : Ki → R

d′
with constant 1 + ε, i = 1, 2, 3, . . ., such that ψ1(K1),

ψ2(K2), ψ3(K3), . . . are disjoint subsets of W with

Hd

(
W \

⋃
i

ψi(Ki)

)
= 0.

In fact, the above lemma holds for any set of finite Hd-measure that, up to a set
of Hd-measure zero, is the countable union of d-rectifiable sets. Such sets are called
(Hd, d)-rectifiable (cf. [10]). However, Lemma 3 does not hold for this larger class.

3.3. Regularity Lemma. To get an estimate from below for g
s,d

(A) we will need
the following result.

Lemma 5. Let s > d and suppose A ⊂ R
d′

is a compact set such that Md(A)
exists and is finite. Then for every ε ∈ (0, 1) there is some δ > 0 such that for any
compact set K ⊂ A with Md(K) > Md(A) − δ we have

(26) g
s,d

(A) ≥ (1 − ε)g
s,d

(K).

Proof. The assertion of the lemma holds trivially if g
s,d

(A) = ∞. Hence, we assume
g

s,d
(A) < ∞. Let N ⊂ N be an infinite subset such that

lim
N�N→∞

Es(A, N)
N1+s/d

= g
s,d

(A).

Choose 0 < ρ < 1/2 and set

(27) δ := ρ4d and hN :=
1
3
ρ2N−1/d, N ∈ N .

(Later in the proof, ρ and hence δ, will be chosen sufficiently small.) Suppose K is
a compact subset of A such that Md(K) > Md(A)−δ. Then there is some Nδ ∈ N

such that for any N > Nδ, N ∈ N , we have

(28)
Ld′ [A(hN)]
βd′−dh

d′−d
N

≤ Md(A) + δ and
Ld′ [K(hN )]
βd′−dh

d′−d
N

≥ Md(A) − δ.

For N ∈ N with N > Nδ, let ω∗
N := {x1,N , . . . , xN,N} be an s-energy minimizing

N -point configuration on A. For i = 1, . . . , N , let ri,N := min
j �=i

|xj,N − xi,N | denote

the distance from xi,N to its nearest neighbor in ω∗
N . Further, we partition ω∗

N into
a “well-separated” subset

ω1
N := {xi,N ∈ ω∗

N : ri,N ≥ ρN−1/d},
and its complement ω̃1

N := ω∗
N \ ω1

N . We next show that ω1
N has sufficiently many

points. For N ∈ N , we obtain

Es(A, N) = Es(ω∗
N ) =

N∑
i=1

N∑
j=1
j �=i

1
|xi,N − xj,N |s ≥

N∑
i=1

1
(ri,N )s

≥
∑

xi,N∈ω̃1
N

1
(ri,N )s

≥
∑

xi,N∈ω̃1
N

1(
ρN−1/d

)s =
∣∣ω̃1

N

∣∣ ρ−sNs/d.
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Let k0 := g
s,d

(A) + 1. There is N1 ∈ N such that for any N > N1, N ∈ N ,

Es(A, N)
N1+s/d

< k0.

For the rest of the proof of this lemma, let N ∈ N be greater than N2 :=
max{N1, Nδ}. Then, ∣∣ω̃1

N

∣∣
ρsN

≤ Es(A, N)
N1+s/d

< k0,

and, hence, we have

(29)
∣∣ω̃1

N

∣∣ < k0ρ
sN and

∣∣ω1
N

∣∣ > (1 − k0ρ
s)N.

Recalling the definition of hN in (27), we next consider

ω2
N := ω1

N

⋂
K(3hN ), ω̃2

N := ω1
N \ K(3hN ),

and show that the cardinality of ω2
N is sufficiently large. From (28) we get

Ld′ [A(hN )\K(hN )] = Ld′ [A(hN )] − Ld′ [K(hN )](30)

≤ (Md(A) + δ)βd′−dh
d′−d
N − (Md(A) − δ)βd′−dh

d′−d
N

= 2βd′−dδh
d′−d
N .

Note that

(31) FN :=
⋃

x∈ω̃2
N

Bd′(x, hN ) ⊂ A(hN ) \ K(hN ).

For any distinct points xi,N , xj,N ∈ ω̃2
N we have

|xi,N − xj,N | ≥ ri,N ≥ ρN−1/d > ρ2N−1/d = 3hN .

Hence, Bd′(xi,N , hN )
⋂

Bd′(xj,N , hN ) = ∅. Then, using (30) and (31), we get∣∣ω̃2
N

∣∣ =
(
βd′hd′

N

)−1 ∑
x∈ω̃2

N

Ld′ [Bd′(x, hN )] =
(
βd′hd′

N

)−1

Ld′(FN )

≤
(
βd′hd′

N

)−1

Ld′ [A(hN ) \ K(hN )] ≤ 2βd′−dβ
−1
d′ δh−d

N .

Hence, recalling from (27) that hN := 1
3ρ2N−1/d, we have∣∣ω̃2

N

∣∣ ≤ 2 · 3dβd′−dβ
−1
d′ δ1/2N.(32)

Let χ0 := 2 · 3dβd′−dβ
−1
d′ . Then, using (29) and (32), we have∣∣ω2

N

∣∣ =
∣∣ω1

N

∣∣ − ∣∣ω̃2
N

∣∣ ≥ (
1 − k0ρ

s − χ0δ
1/2

)
N.

Next, we choose a configuration ωK
N of points in K which is close to ω2

N and has
the same number of points and order of the minimal s-energy as ω2

N . For every
xi,N ∈ ω2

N pick a point yi,N ∈ K such that |xi,N − yi,N | < 3hN = ρ2N−1/d and let
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ωK
N := {yi,N : xi,N ∈ ω2

N}. Since every point xi,N ∈ ω2
N lies in ω1

N , we have

|xi,N − yi,N | < ρ2N−1/d ≤ ρri,N ≤ ρ |xi,N − xj,N | , j �= i.

Then, if xi,N �= xj,N are points from ω2
N , we have

|yi,N − yj,N | = |yi,N − xi,N + xi,N − xj,N + xj,N − yj,N |
≥ |xi,N − xj,N | − |xi,N − yi,N | − |xj,N − yj,N |
≥ |xi,N − xj,N | − 2ρ |xi,N − xj,N | = (1 − 2ρ) |xi,N − xj,N | .

Since ρ ∈ (0, 1/2), it follows that
∣∣ωK

N

∣∣ =
∣∣ω2

N

∣∣ and

Es(ω∗
N ) =

∑
x�=y∈ω∗

N

1
|x − y|s ≥

∑
x�=y∈ω2

N

1
|x − y|s

≥ (1 − 2ρ)s
∑

x�=y∈ωK
N

1
|x − y|s = (1 − 2ρ)sEs(ωK

N ).

Now suppose ε ∈ (0, 1). We may choose δ > 0 sufficiently small (recall ρ =
δ1/(4d)) so that (1 − 2ρ)s(1 − k0ρ

s − χ0δ
1/2)1+s/d ≥ (1 − ε). Hence,

g
s,d

(A) = lim
N�N→∞

Es(ω∗
N )

N1+s/d
≥ (1 − 2ρ)s lim inf

N�N→∞

Es(ωK
N )

N1+s/d

≥ (1 − 2ρ)s lim inf
N�N→∞

Es(K,
∣∣ω2

N

∣∣)
|ω2

N |1+s/d
·
(∣∣ω2

N

∣∣
N

)1+s/d

≥ (1 − 2ρ)s
(
1 − k0ρ

s − χ0δ
1/2

)1+s/d

lim inf
N→∞

Es(K, N)
N1+s/d

≥ (1 − ε)g
s,d

(K)

holds for any compact subset K ⊂ A such that Md(K) > Md(A) − δ. �

4. Proofs of main theorems

Proof of Theorem 1. First we remark that if K ⊂ R
d is compact, then K is trivially

a d-rectifiable manifold (or set) and so Theorem A shows, for s > d,

(33) gs,d(K) =
Cs,d

Ld(K)s/d
.

Suppose 0 < ε < 1. Since A ⊂ R
d′

is a closed d-rectifiable set, Lemma 4 implies
the existence of compact sets K1, K2, K3, . . . ⊂ R

d and bi-Lipschitz mappings
ψi : Ki → R

d′
, i = 1, 2, 3, . . ., with constant 1 + ε such that ψ1(K1), ψ2(K2),

ψ3(K3), . . . are disjoint subsets of A whose union covers Hd-almost all of A.
Let n be large enough so that

Hd

(
n⋃

i=1

ψi(Ki)

)
=

n∑
i=1

Hd(ψi(Ki)) ≥ (1 + ε)−d Hd(A).
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Since ψi is bi-Lipschitz with constant (1 + ε) we have

gs,d(ψi(Ki)) ≤ (1 + ε)sgs,d(Ki) = Cs,d(1 + ε)sLd(Ki)−s/d(34)

≤ Cs,d(1 + ε)2sHd(ψi(Ki))−s/d.

Applying Lemma 1 we obtain

gs,d(A) ≤ gs,d

(
n⋃

i=1

ψi(Ki)

)
≤

(
n∑

i=1

gs,d(ψi(Ki))−d/s

)−s/d

(35)

≤ Cs,d(1 + ε)2s

(
n∑

i=1

Hd(ψi(Ki))

)−s/d

≤ Cs,d(1 + ε)3sHd(A)−s/d.

We next provide a lower bound for g
s,d

(A). Since A is a closed d-rectifiable set,
we have Md(A) = Hd(A) < ∞ (cf. Lemma 3). Let δ > 0 be as in Lemma 5, i.e.,
inequality (26) holds for every compact set K ⊂ A such that Md(K) > Md(A)−δ.
Now let n′ be large enough so that

Md

⎛⎝ n′⋃
i=1

ψi(Ki)

⎞⎠ =
n′∑

i=1

Hd[ψi(Ki)] > Hd(A) − δ = Md(A) − δ.

As in (34) we have

g
s,d

(ψi(Ki)) ≥ (1 + ε)−sgs,d(Ki) = Cs,d(1 + ε)−sLd(Ki)−s/d(36)

≥ Cs,d(1 + ε)−2sHd(ψi(Ki))−s/d.

Then Lemma 2 and (36) give

g
s,d

(A) ≥ (1 − ε)g
s,d

⎛⎝ n′⋃
i=1

ψi(Ki)

⎞⎠ ≥ (1 − ε)

⎛⎝ n′∑
i=1

g
s,d

[ψi(Ki)]−d/s

⎞⎠−s/d

(37)

≥ (1 − ε)Cs,d

(1 + ε)2s

⎛⎝ n′∑
i=1

Hd[ψi(Ki)]

⎞⎠−s/d

≥ (1 − ε)Cs,d

(1 + ε)2s
Hd(A)−s/d.

Letting ε go to zero in (35) and (37), we obtain (11). �

4.1. Proofs of Theorems 2 and 3. The following lemma relates the weighted
minimal energy problem (s ≥ d) on a set A ⊂ R

d′
to the unweighted minimal

energy problem on compact subsets of A. Theorems 2 and 3 then follow easily from
this lemma.

For convenience, we define

Cd,d := βd, d ∈ N,

where (cf. (3)) the constant βd is the volume of the unit ball in R
d.

Lemma 6. Suppose s ≥ d, A ⊂ R
d′

is compact with Hd(A) < ∞, and that w is a
CPD-weight function on A×A. Furthermore, suppose that for any compact subset
K ⊂ A, the limit gs,d(K) exists and is given by

(38) gs,d(K) =
Cs,d

Hd(K)s/d
.
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Then

(a) gw
s,d(A) exists and is given by

(39) gw
s,d(A) = Cs,d (Hs,w

d (A))−s/d
,

and,
(b) if a sequence {ω̃N}∞N=2, where ω̃N = {xN

1 , . . . , xN
N}, is asymptotically (w, s)-

energy minimizing on the set A and Hd(A) > 0, then

(40)
1
N

N∑
k=1

δxN
k

∗→ hs,w
d , N → ∞,

where hs,w
d is defined in (13).

Remark. If Hd(K) = 0, condition (38) is understood as gs,d(K) = ∞.

Proof. To prove the first part of the theorem, we break A into disjoint “pieces”
of small diameter and estimate the (w, s)-energy of A by replacing w with its
supremum or infimum on the resulting “pieces” and applying Lemmas 1 and 2.

For δ > 0, suppose that Pδ is a partition of A such that diamP ≤ δ and
Hd(P ) = Hd(P ) for P ∈ Pδ, where B denotes the closure of a set B. For each
P ∈ Pδ, choose a closed subset QP ⊂ P so that Qδ := {QP : P ∈ Pδ} satisfies

(41)
∑

P∈Pδ

Hd(QP ) ≥ Hd(A) − δ.

An example of such systems Pδ and Qδ can be constructed as follows. Let Gj [t]
be the hyperplane in R

d′
consisting of all points whose j-th coordinate equals t. If

(−a, a)d′
is a cube containing A, then for i = (i1, . . . , id′) ∈ {1, . . . , m}d′

, let

Ri := [t1i1−1, t
1
i1) × · · · × [td

′

id′−1, t
d′

id′ ),

where m and partitions −a = tj0 < tj1 < . . . < tjm = a, j = 1, . . . , d′, are chosen so
that the diameter of every Ri, i ∈ {1, . . . , m}d′

, is less than δ and Hd(Gj [t
j
i ]∩A) = 0

for all i and j. (Since Hd(A) < ∞, there are at most countably many values of t
such that Hd(Gj [t] ∩ A) > 0.) Then, we may choose

Pδ = {Ri ∩ A : i ∈ {1, . . . , m}d′
}

and γ ∈ (0, 1) sufficiently close to 1 such that (41) holds for Qδ = {Qi : i ∈
{1, . . . , m}d′}, where Qi =

(
γ(Ri − ci) + ci

)
∩ A and ci denotes the center of Ri.

For B ⊂ A, let

wB = sup
x,y∈B

w(x, y) and wB = inf
x,y∈B

w(x, y)

and define the simple functions

wδ(x) :=
∑

P∈Pδ

wP · χP (x) and wδ(x) :=
∑

P∈Pδ

wP · χP (x),
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where χ
K

denotes the characteristic function of a set K. Since the distance between
any two sets from Qδ is strictly positive, Lemma 1 and equation (38) imply

gw
s,d(A)−d/s ≥ gw

s,d

(⋃
Q∈Qδ

Q
)−d/s

≥
∑

Q∈Qδ
Q �=∅

(
wQ · gs,d(Q)

)−d/s(42)

= C
−d/s
s,d

∑
Q∈Qδ
Q �=∅

w
−d/s
Q · Hd(Q) ≥ C

−d/s
s,d

∫
⋃

Q
Q∈Qδ

(wδ(x))−d/sdHd(x).

Applying Lemma 2 and relation (38), we similarly have

gw
s,d

(A)−d/s ≤
∑

P∈Pδ

(
wP · g

s,d
(P )

)−d/s

=
∑

P∈Pδ

(
wP · g

s,d
(P )

)−d/s

(43)

= C
−d/s
s,d

∑
P∈Pδ

w
−d/s
P · Hd(P ) = C

−d/s
s,d

∫
A

(wδ(x))−d/sdHd(x).

Since w is a CPD-weight function on A×A, there is some neighborhood G of D(A)
such that η := infG w > 0. For δ > 0 sufficiently small, we have P × P ⊂ G for
all P ∈ Pδ, and hence wδ(x) ≥ w(x, x) ≥ wδ(x) ≥ η for x ∈ A. Furthermore, w
is continuous at (x, x) ∈ D(A) for Hd-almost all x ∈ A and thus, for any such x,
it follows that wδ(x) and wδ(x) converge to w(x, x) as δ → 0. Therefore, by the
Lebesgue Dominated Convergence Theorem, the integrals∫

⋃
Q

Q∈Qδ

(wδ(x))−d/s dHd(x) and
∫

A

(wδ(x))−d/s dHd(x)

both converge to Hs,w
d (A) as δ → 0. Hence, using (42) and (43), we obtain (39).

To establish (40), suppose Hd(A) > 0 and that ω̃N = {xN
1 , . . . , xN

N} is an asymp-
totically (w, s)-energy minimizing sequence of N -point configurations on A. It is
well-known [18, p. 9] that the weak∗ convergence result given in (40) is equivalent
to the assertion that

(44) lim
N→∞

|ω̃N

⋂
B|

N
= hs,w

d (B)

holds for any almost clopen subset B ⊂ A, where we recall that a set B ⊂ A is
called almost clopen (with respect to A and Hd), if the Hd-measure of the relative
boundary of B with respect to A equals zero. Note that since w is a CPD-weight,
the relative boundary of B also has Hs,w

d -measure zero.
Let B ⊂ A be almost clopen. Then B and A \ B satisfy the hypotheses of this

lemma and hence also satisfy relation (39). Thus, for the asymptotically minimal
sequence ω̃N , we have

lim
N→∞

Ew
s (ω̃N )

τs,d(N)
= Cs,d (Hs,w

d (A))−s/d

= Cs,d

(
Hs,w

d (B) + Hs,w
d (A \ B)

)−s/d

=
(
gw

s,d(B)−d/s + gw
s,d(A \ B)−d/s

)−s/d

.
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Using relation (24) in Lemma 2 and (39) for B and A \ B, we get

lim
N→∞

|ω̃N

⋂
B|

N
=

gw
s,d(A \ B)d/s

gw
s,d(B)d/s + gw

s,d(A \ B)d/s
= hs,w

d (B),

where we used that B is almost clopen. Thus (40) holds. �

Theorems 2 and 3 then follow from Lemma 6 and Theorems 1 and B as we
now explain. If s > d and A ⊂ R

d′
is a closed d-rectifiable set, then every compact

subset B ⊂ A is also closed and d-rectifiable, and Theorem 1 implies that B satisfies
condition (38) and so Theorem 2 then follows from Lemma 6. If s = d and A is a
compact subset of a d-dimensional C1-manifold in R

d′
, then applying Theorem B

to every compact subset of A, we get (38). Consequently Theorem 3 follows from
Lemma 6 with s = d.

5. Proofs of the separation results: Theorem 4 and Corollary 1

In this subsection we prove Theorem 4 and Corollary 1. For the proof of these
results we will need Frostman’s lemma establishing the existence of a non-trivial
measure on A satisfying a regularity assumption similar to the one in [19] for
arclength.

Lemma 7 (see e.g. [17, Theorem 8.8]). Let α > 0 and A be a Borel set in R
d′

.
Then Hα(A) > 0 if and only if there is a Radon measure µ on R

d′
with compact

support contained in A such that 0 < µ(A) < ∞ and

(45) µ [Bd′(x, r)] ≤ rα, x ∈ R
d′

, r > 0.

Moreover, one can find µ so that µ(A) ≥ cd′,αH∞
α (A), where cd′,α > 0 is indepen-

dent of A and H∞
α is given in (17).

We proceed with the proof of Theorem 4 using the technique developed in [16].
Let ω∗

N := {x1, . . . , xN}, N ∈ N, N ≥ 2, be a (w, s)-energy minimizing con-
figuration on A (for convenience, we dropped the subscript N in writing energy
minimizing points xk,N ). For i = 1, . . . , N let

Ui(x) :=
∑
j �=i

w(x, xj)
|x − xj |s

, x ∈ A.

From the minimization property we have that Ui(xi) ≤ Ui(x), x ∈ A, i = 1, . . . , N .
If µ is a measure from Lemma 7, set r0 := (µ(A)/2N)1/α and let

Di := A \
⋃
j �=i

Bd′(xj , r0), i = 1, . . . , N.

Then, by the properties of µ, we have

µ(Di) ≥ µ(A) −
∑
j �=i

µ [Bd′(xj , r0)] ≥ µ(A) − (N − 1)rα
0 >

µ(A)
2

> 0,
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i = 1, . . . , N . Consequently,

Ui(xi) ≤
1

µ(Di)

∫
Di

Ui(x)dµ(x) ≤ 2
µ(A)

∑
j �=i

∫
Di

w(x, xj)
|x − xj |s

dµ(x)

≤ 2‖w‖
µ(A)

∑
j �=i

∫
A\Bd′ (xj ,r0)

1
|x − xj |s

dµ(x), i = 1, . . . , N,

where ‖w‖ := sup{|w(x, y)| : x, y ∈ A}. Let R := diam A. Then by (45) we have
µ(A) ≤ Rα. For every y ∈ A and r ∈ (0, R], using (45) we also get

Ts(y, r) :=
∫

A\Bd′ (y,r)

1
|x − y|s dµ(x) ≤

r−s∫
0

µ{x ∈ A :
1

|x − y|s > t}dt

=
µ(A)
Rs

+

r−s∫
R−s

µ
[
Bd′

(
y, t−1/s

)]
dt ≤ Rα−s +

r−s∫
R−s

t−α/sdt

≤
{

s
(s−α)r

α−s, s > α,

1 + α ln R
r , s = α.

Then for i = 1, . . . , N and s > α we have

(46) Ui(xi) ≤
2‖w‖
µ(A)

∑
j �=i

Ts(xj , r0) ≤
2s(N − 1)‖w‖

(s − α)µ(A)rs−α
0

≤ C1‖w‖
(

N

µ(A)

)s/α

,

where C1 > 0 is a constant independent of A, w and N . Hence,

Ew
s (A, N) = Ew

s (ω∗
N ) =

N∑
i=1

Ui(xi) ≤
Ms,α‖w‖
H∞

α (A)s/α
N1+s/α,

where Ms,α is a constant independent of A, w, and N which establishes Corollary 1
in the case s > α. In particular, the above estimates show that we can take

Ms,α =
s2s/α

(s − α)(cd′,α)s/α
.

Since w is a CPD-weight function, there are constants η, ρ > 0 such that
w(x, y) > η whenever |x − y| < ρ. Assume that δ(ω∗

N ) < ρ and let is and js

be such that δ(ω∗
N ) = |xis

− xjs
|. Then with some constant C2 > 0 independent of

N and the choice of ω∗
N we obtain from (46)

C2N
s/α ≥ Uis

(xis
) ≥ w(xis

, xjs
)

|xis
− xjs

|s ≥ η

|xis
− xjs

|s =
η

δ(ω∗
N )s

.

Hence,
δ(ω∗

N ) ≥ C0N
−1/α,

where C0 = C0(A, w, α, s) > 0. Thus, in any case,

δ(ω∗
N ) ≥ min{ρ, C0N

−1/α} ≥ CsN
−1/α, N ≥ 2,

for a sufficiently small constant Cs > 0 independent of N and ω∗
N . In particular,

when w ≡ 1, we have
δ(ω∗

N ) ≥ cs,α

(H∞
α (A) · N)1/α

.
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The case s = α is handled analogously, which completes the proofs of Theorem 4
and Corollary 1.

6. Proof of Theorem 5

The essential ingredient in the proof of Theorem 5 is the following lemma which
assumes lower regularity. Consistent with the definition in (20), we say that a set
K ⊂ R

d′
is lower α-regular if there are positive constants C0 and r0 so that

(47) (C0)−1rα ≤ Hα(K ∩ Bd′(x, r))

for all x ∈ K and r < r0.

Lemma 8. Suppose K ⊂ R
d′

is compact and lower α-regular and a ∈ K. Further
suppose s > α and w : K × K → [0,∞] is a CPD-weight function on K ′ × K ′ for
any compact K ′ ⊂ K \ {a}. If w has a zero of order at most t at (a, a), where
0 < t < s, then

(48) gw
s,α

(K) ≥ C1C
−s/α
0 2−(s+t)

(∫
K

1
|x − a|(tα)/s

dHα(x)
)−s/α

.

Proof. Let ωN = {x1, . . . , xN} be a configuration of N distinct points in K. For
i = 1, . . . , N , let ρi = |xi − a|, ri = minj �=i |xi − xj |, and choose yi ∈ ωN such that
|xi − yi| = ri. Since K is bounded, there is some finite L (independent of N) such
that there are at most L − 1 of the points xi ∈ ωN with the property that ri ≥ r0.
We order the points in ωN so that ρN ≤ ρi for i = 1, . . . , N and so that ri < r0

for i = 1, . . . , N − L. It follows from Cauchy’s and Jensen’s inequality (see (29) of
[12]) that if γ1, . . . , γM are positive numbers, then

(49)
M∑
i=1

γ−s
i ≥ M1+s/α

(
M∑
i=1

γα
i

)−s/α

from which we obtain

Ew
s (ωN ) ≥

N−L∑
i=1

w(xi, yi)
rs
i

≥ C1

N−L∑
i=1

ρt
i

rs
i

(50)

≥ C1(N − L)1+s/α

(
N−L∑
i=1

rα
i

ρ
tα/s
i

)−s/α

.

For i = 1, . . . , N − 1, observe that

ri = min
j �=i

|xi − xj | ≤ |xi − a| + min
j �=i

|a − xj | ≤ ρi + ρN ≤ 2ρi

and so, for x ∈ Bd′(xi, ri/2),

(51) |x − a| ≤ |x − xi| + |xi − a| ≤ ri/2 + ρi ≤ 2ρi.

Using (47) and (51) we have

rα
i

ρ
tα/s
i

≤ C02(α/s)(s+t)

∫
K∩Bd′ (xi,ri/2)

1
|x − a|tα/s

dHα(x)
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for i = 1, . . . , N − L. Since Bd′(xi, ri/2) and Bd′(xj , rj/2) are disjoint for i �= j, it
follows that

N−L∑
i=1

rα
i

ρ
tα/s
i

≤ C02(α/s)(s+t)

∫
K

1
|x − a|tα/s

dHα(x),

which combined with (50) completes the proof. �

Remark. If K is α-regular (as opposed to only lower α-regular) at a in the above
lemma, then the integral

∫
K∩Bd′ (a,δ)

1
|x−a|(tα)/s dHα(x) appearing in (48) is finite for

δ sufficiently small (cf. [17, p. 109]) and thus the Lebesgue Dominated Convergence
Theorem gives

lim
δ→0

∫
K∩Bd′ (a,δ)

1
|x − a|(tα)/s

dHα(x) = 0

and so limδ→0 gw
s,α(K ∩ Bd′(a, δ)) = ∞.

Now we are prepared to complete the proof of Theorem 5. First note that the
hypotheses of Theorem 5 (namely that A is αi-regular at ai and w has a zero of
order of at most t < s at ai for i = 1, . . . , n) imply that

∫
A

w(x, x)−d/s dHd(x) < ∞.
Suppose ε > 0 . By Lemma 8 and Lemma 2 we can find δ > 0 such that Bε :=⋃n

i=1(A ∩ Bd′(ai, δ)) satisfies gw
s,d

(Bε) ≥ ε−1 (note that if α < d and gw
s,α

(K) > 0,

then gw
s,d

(K) = ∞) and Hs,w
d (Aε) =

∫
Aε

w(x, x)−d/s dHd(x) ≥ (1 − ε)Hs,w
d (A),

where Aε := A \ Bε.
Since w is a CPD-weight function on Aε × Aε, it follows from Theorem 2 that

gw
s,d(Aε) exists and equals Cs,dHs,w

d (Aε)−s/d. Lemma 2 then gives

gw
s,d

(A) ≥ (gw
s,d(Aε)−d/s + gw

s,d
(Bε)−d/s)−s/d(52)

≥ (C−d/s
s,d Hs,w

d (Aε) + εd/s)−s/d

≥ (C−d/s
s,d Hs,w

d (A) + εd/s)−s/d.

Also, we clearly have

(53) gw
s,d(A) ≤ gw

s,d(Aε) = Cs,dHs,w
d (Aε)−s/d ≤ Cs,d(1 − ε)−s/dHs,w

d (A)−s/d.

Taking ε → 0 in (52) and (53) shows that gw
s,d(A) exists and equals

Cs,dHs,w
d (A)−s/d. If Hs,w

d (A) > 0, then, as in the proof of Theorem 2, Lemma 2
implies that (15) holds for any asymptotically (w, s)-energy minimizing sequence of
configurations ω̃N = {xN

1 , . . . , xN
N}, N = 2, 3, . . ., for A which completes the proof

of Theorem 5.
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