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SEMICLASSICAL ASYMPTOTICS
AND GAPS IN THE SPECTRA

OF PERIODIC SCHRÖDINGER OPERATORS
WITH MAGNETIC WELLS

BERNARD HELFFER AND YURI A. KORDYUKOV

Abstract. We show that, under some very weak assumption of effective vari-

ation for the magnetic field, a periodic Schrödinger operator with magnetic
wells on a noncompact Riemannian manifold M such that H1(M, R) = 0,
equipped with a properly disconnected, cocompact action of a finitely gener-
ated, discrete group of isometries, has an arbitrarily large number of spectral
gaps in the semi-classical limit.

1. Introduction

Let M be a noncompact oriented manifold of dimension n ≥ 2 equipped with
a properly disconnected action of a finitely generated, discrete group Γ such that
M/Γ is compact. Suppose that H1(M, R) = 0, i.e. any closed 1-form on M is
exact. Let g be a Γ-invariant Riemannian metric and B a real-valued Γ-invariant
closed 2-form on M . Assume that B is exact and choose a real-valued 1-form A on
M such that dA = B.

Consider a Schrödinger operator with magnetic potential A,

Hh = (ih d + A)∗(ih d + A),

as a self-adjoint operator in the Hilbert space L2(M). Here h > 0 is a semiclassical
parameter, which is assumed to be small.

For any x ∈ M denote by B(x) the anti-symmetric linear operator on the tangent
space TxM associated with the 2-form B:

gx(B(x)u, v) = Bx(u, v), u, v ∈ TxM.

Recall that the intensity of the magnetic field is defined as

Tr+(B(x)) =
∑

λj(x)>0
iλj(x)∈σ(B(x))

λj(x) =
1
2
Tr([B∗(x) · B(x)]1/2).
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Let
b0 = min{Tr+(B(x)) : x ∈ M}.

We will always assume that there exist a (connected) fundamental domain F and
ε0 > 0 such that

(1.1) Tr+(B(x)) ≥ b0 + ε0, x ∈ ∂F .

For any ε1 ≤ ε0, let

Uε1 = {x ∈ F : Tr+(B(x)) < b0 + ε1}.
Thus Uε1 is an open subset of F such that Uε1 ∩ ∂F = ∅ and, for ε1 < ε0, Uε1 is
compact and included in the interior of F . Any connected component of Uε1 with
ε1 < ε0 can be understood as a magnetic well (attached to the effective potential
h · Tr+(B(x))).

Consider the set U+
ε0 , which consists of all x ∈ Uε0 such that the rank of B(x)

is locally constant at x, that is, constant in an open neighborhood of x. Let us
assume that

(1.2) Tr+B is not locally constant on U+
ε0 .

The assumption (1.2) holds for any B, satisfying the assumption (1.1), if the di-
mension n equals 2 or 3.

If T is a self-adjoint operator, σ(T ) denotes its spectrum. By a gap in the
spectrum of T we will mean a maximal interval (a, b) such that

(a, b) ∩ σ(T ) = ∅ .

Theorem 1.1. Under the assumptions (1.1) and (1.2), there exists, for any nat-
ural N , h0 > 0 such that, for any h ∈ (0, h0], the spectrum of Hh contained in
[0, h(b0 + ε0)] has at least N gaps.

The proof of Theorem 1.1 is based on the study of the tunneling effect for the
operator Hh. First, we prove that the spectrum of Hh is localized inside an ex-
ponentially small neighborhood of the spectrum of its Dirichlet realization Hh

D in
D = Uε1 for ε1 < ε0 (a multi-well problem). For this, we follow the approach to
the study of the tunneling effect in multi-well problems developed by Helffer and
Sjöstrand for Schrödinger operators with electric potentials (see for instance [8, 9])
and extended to magnetic Schrödinger operators in [10, 7]. Since Hh is not with
compact resolvent, we work not with individual eigenfunctions as in [8], but with
resolvents, using the strategy developed in [9, 11, 5, 3] for the case of an electric
potential and in [6] for the case of a magnetic field. The idea is to construct an ap-
proximate resolvent Rh(z) of the operator Hh for any z, which is not exponentially
close to the spectrum of Hh

D, starting from the resolvent of Hh
D and the resolvent of

the Dirichlet realization of Hh in the complement to the wells. The proof of the fact
that the error of the approximation is exponentially small is based on Agmon-type
weighted estimates (cf. [1] and their semi-classical versions in [8] for the case of
Schrödinger operators and [7] for the case of magnetic Schrödinger operators). A
very related result was proved by Nakamura in [18].

Thus the proof is reduced to the study of the discrete spectrum of the operator
Hh

D in the interval [0, h(b0 + ε0)]. Actually, it remains to show that there is, as
h → 0, an arbitrarily large number of gaps in the spectrum of Hh

D of size > hM

with some constant M > 0. For this, we use a weak polynomial upper bound on
the number of eigenvalues of Hh

D contained in [0, h(b0 + ε0)] and the construction of
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quasimodes of the operator Hh given in the proof of [7, Theorem 2.2]. We need the
fact that the number of quasimodes, which we can construct, is sufficiently large,
and that follows from a slight modification of [7, Theorem 2.2] (see Proposition 2.3
below) and makes an essential use of the assumption (1.2).

It seems that the periodicity assumption in Theorem 1.1 is not important, and
the theorem could probably be extended to the case when we only assume the
existence of an infinite number of identical magnetic wells of the form Uε0 separated
by regions where the estimate (1.1) holds. To show such a result, one should use
the strategy developed in [3] in the case of the strong electric field and in [4] for
the tight binding model, but this will not be detailed in this article.

Let us mention some previous results on gaps in the spectrum of the operator
Hh.

An asymptotic description of the spectrum of the two-dimensional magnetic
Schrödinger operator with a periodic potential in a strong magnetic field can be
given, using averaging methods or effective Hamiltonians together with semiclassical
analysis (see, for instance, [2, 11, 12] and the references therein). This allows us to
give, at least heuristically, a more precise asymptotic picture of spectral bands and
gaps for these operators. However, it should be noted that, in these papers, the
magnetic field is, usually, supposed to be uniform and spectral gaps are created by
the electric potential, whereas in our case the electric field vanishes and spectral
gaps are created by a periodic array of magnetic barriers.

In [13], Hempel and Herbst studied the strong magnetic field limit (λ → ∞) for
the periodic Schrödinger operator in Rn:

HλA,0 = (D − λA)2, Dj =
1
i

∂

∂xj
,

where B = dA is a Zn-periodic 2-form. Let S = {x ∈ Rn : B(x) = 0} and
SA = {x ∈ R

n : A(x) = 0}. Assume that the set S \ SA has measure zero, the
interior of S is non-empty and S can be represented as S =

⋃
j∈Zn Sj (up to a set of

measure zero) where the Sj are pairwise disjoint compact sets with Sj = S0+j. It is
shown that, as λ → ∞, HλA,0 converges in the norm resolvent sense to the Dirichlet
Laplacian −∆S on the closed set S. Therefore, as λ → ∞, the spectrum of HλA,0

concentrates around the eigenvalues of −∆S and gaps open up in the spectrum of
HλA,0. For the operator Hh = h2Hh−1A,0 this means that for any natural N there
exist C > 0 and h0 > 0 such that the part of the spectrum of Hh contained in
the interval [0, Ch2] has at least N spectral gaps for any h ∈ (0, h0). The rate of
approach of the resolvent (HλA,0 + 1)−1 to a limit was studied by Nakamura in
[18].

The case when the set S \ SA has nonzero measure was studied by Herbst and
Nakamura in [14]. They showed that in many situations of interest where this
condition holds the equivalence class of HλA,0 approaches a periodic or almost-
periodic orbit in the space of such classes as λ → ∞, and, therefore, the spectrum
of HλA,0 approaches a periodic or almost-periodic orbit in the space of subsets of
[0,∞).

In [16], the author investigated the case when the bottom S of magnetic wells has
measure zero and the magnetic field has regular behavior near S. More precisely,
assume that there exists at least one zero of B, and, for some integer k > 0, if
B(x0) = 0, then there exists a positive constant C such that, for all x in some
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neighborhood of x0,

(1.3) C−1|x − x0|k ≤ Tr+(B(x)) ≤ C|x − x0|k .

It is shown in [16] that, under these assumptions, there exists an increasing sequence
{λm, m ∈ N}, satisfying λm → ∞ as m → ∞, such that, for any a and b, satisfying
λm < a < b < λm+1 with some m,

[ah
2k+2
k+2 , bh

2k+2
k+2 ] ∩ σ(Hh) = ∅ ,

for any h > 0 small enough. In particular, this implies that, for any natural number
N , there exist C > 0 and h0 > 0 such that the part of the spectrum of Hh contained
in the interval [0, Ch

2k+2
k+2 ] has at least N gaps for any h ∈ (0, h0).

The results of this paper can be considered as a complement of the results of
[16] and, in some sense, correspond to the case when the condition (1.3) holds with
k = 0 (whereas the results of [13] are related with the case when the condition (1.3)
holds with arbitrarily large k). From the other side, it should be noted that here
we state only the existence of an arbitrarily large number of spectral gaps in the
semi-classical limit and don’t know of any results on the spectral concentration in
this case.

The authors are grateful to the referee for useful remarks.

2. Proof of the main theorem

For any domain W in M , denote by Hh
W the operator Hh in W with the Dirichlet

boundary conditions. The operator Hh
W is generated by the quadratic form

qh
W [u] :=

∫
W

|(ih d + A)u|2 dx

with the domain

Dom(qh
W ) = {u ∈ L2(W ) : (ih d + A)u ∈ L2Ω1(W ), u |∂W = 0},

where L2Ω1(W ) denotes the Hilbert L2-space of differential 1-forms on W , and dx
is the Riemannian volume form on M .

Let us assume that (1.1) and (1.2) are satisfied. By (1.2), there exists a connected
open set Ω ⊂ Uε0 such that the rank of B(x) is constant on Ω and Tr+B(Ω) =
[α, β], α < β. Without loss of generality, we can assume that Ω ⊂ Uε1 for some
ε1 < ε0 and, therefore, [α, β] ⊂ [0, b0 + ε1].

For a fixed ε2 such that ε1 < ε2 < ε0, consider the operator Hh
D associated with

D = Uε2 . The operator Hh
D has a discrete spectrum. Denote by λh

1 < λh
2 < . . . <

λh
N(h) the eigenvalues of Hh

D contained in the interval [hα, hβ]. It follows from
rough estimates for the eigenvalue counting function of Hh

D (cf. for instance [7,
Lemma 4.2]) that there exist C and h0 such that

(2.1) N(h) ≤ Ch−n, ∀h ∈ (0, h0] .

Theorem 2.1. Under the assumption (1.1), for any ε1 < ε2 < ε0, there exist
C, c, h0 > 0 such that for any h ∈ (0, h0],

σ(Hh) ∩ [0, h(b0 + ε1)] ⊂ {λ ∈ [0, h(b0 + ε1)] : dist(λ, σ(Hh
D)) < Ce−c/

√
h}.
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The proof of Theorem 2.1 will be given in Section 3. A slightly weaker version of
this theorem (which involves the largest absolute value of the eigenvalues of B(x)
instead of Tr+(B(x))) was proved in [18].

By Theorem 2.1, σ(Hh)∩ [hα, hβ] is contained in exponentially small neighbor-
hoods of λh

j , j = 1, 2, · · · , N(h): there exist C, c, h0 > 0 such that for any h ∈ (0, h0],

(2.2) σ(Hh) ∩ [hα, hβ] ⊂
N(h)⋃
j=1

[λh
j − Ce−c/

√
h, λh

j + Ce−c/
√

h].

It follows from (2.2) that for any j such that λh
j+1 − λh

j ≥ hM with some M > 0
the interval (λh

j + Ce−c/
√

h, λh
j+1 −Ce−c/

√
h) is a gap in the spectrum of Hh if h is

small enough. Therefore, the proof of Theorem 1.1 is completed by the following
fact.

Proposition 2.2. There exists a constant M > 0 such that the number of j ∈
{1, 2, · · · , N(h) − 1} with λh

j+1 − λh
j ≥ hM tends to infinity as h → 0.

Proof. First, observe that there exists a constant C1 > 0 such that, for any j =
1, 2, · · · , N(h) − 1, we have

(2.3) λh
j+1 − λh

j ≤ C1h
4/3,

and also

(2.4) λh
1 − hα ≤ C1h

4/3, hβ − λh
N(h) ≤ C1h

4/3.

To see this, we will use the following proposition, which is a slight modification of
[7, Theorem 2.2].

Proposition 2.3. Assume that the rank of B is constant in a connected open
subset Ω. For any compact subset K of Ω, there exists C > 0 such that, for any µ
in Tr+B(K) and for any h ∈ (0, 1],

(−h4/3C + hµ, hµ + h4/3C) ∩ σ(Hh
D) 
= ∅.

Proof. We will follow the proof of [7, Theorem 2.2]. Denote by 2d the rank of B(y),
y ∈ Ω. By assumption, d is independent of y. For any y ∈ Ω, there exists an
orthonormal base e1(y), e2(y), · · · , en(y) in TyM such that

B(y)e2j−1(y) = µj(y)e2j(y), j = 1, 2, · · · , d ,

B(y)e2j(y) = −µj(y)e2j−1(y), j = 1, 2, · · · , d ,

B(y)e2d+k(y) = 0, k = 1, 2, · · · , n − 2d .

Moreover, for any j, µj(y) depends continuously on y ∈ Ω, and one can choose
the orthonormal base e1(y), e2(y), · · · , en(y), depending continuously on y. Let
φy : Vy → Rn be a local coordinate chart given by the normal coordinates of the
metric g associated with the orthonormal base e1(y), e2(y), · · · , en(y). Without
loss of generality, we can assume that φy is defined in a neighborhood Vy ⊂ Ω of
y and φy(Vy) is a fixed ball B in Rn centered at the origin. Moreover, the family
{φ−1

y : y ∈ Ω} yields a continuous family of smooth maps from B to M . In the
coordinates φy, gy becomes the standard Euclidean metric on R

n and

B(y) =
d∑

j=1

µj(y) dx2j−1 ∧ dx2j .
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Now one can proceed as in the proof of [7, Theorem 2.2] and construct a contin-
uous family uh

y ∈ C∞
c (Vy) ⊂ L2(D), y ∈ Ω, such that

‖(Hh − hTr+(B(y)))uh
y‖L2(D) ≤ Ch4/3‖uh

y‖L2(D), y ∈ K,

where C is independent of y ∈ K by continuity in y, that immediately concludes
the proof. �

By Proposition 2.3, the operator Hh
D cannot have spectral gaps of size greater

than C1h
4/3 with some C1 > 0, in the interval [hα, hβ], that immediately implies

the estimates (2.3) and (2.4).
Now assume from the contrary that for any real M the cardinality of the set

J h
M = {j ∈ {1, 2, · · · , N(h) − 1} : λh

j+1 − λh
j ≥ hM}

is bounded as h → 0:

(2.5) 	J h
M ≤ K, h ∈ (0, 1],

where K is independent of h. Then, using (2.1), (2.3), (2.4) and (2.5), we get, for
all sufficiently small h > 0,

h(β − α) = (hβ − λh
N ) +

N−1∑
j=1

(λh
j+1 − λh

j ) + (λh
1 − hα)

= (hβ − λh
N ) +

∑
j∈J h

M

(λh
j+1 − λh

j ) +
∑

j �∈J h
M

(λh
j+1 − λh

j ) + (λh
1 − hα)

≤ C1h
4/3 + KC1h

4/3 + Ch−nhM + C1h
4/3 .

Taking M > n + 1, we come to a contradiction. �

3. Exponential localization of the spectrum

This section is devoted to the proof of Theorem 2.1. Throughout this section,
we will assume that (1.1) is satisfied.

3.1. Weighted L2-spaces. Let W be an open domain (with regular boundary) in
M . Let

b0(W ) = min{Tr+(B(x)) : x ∈ W}.
Denote by C0,1(W, R) the class of uniformly Lipschitz continuous, real-valued func-
tions on W . Introduce the following class of weights:

W(W ) = {Φ ∈ C0,1(W, R) : ess-inf
x∈W

(Tr+B(x) − b0(W ) − |∇Φ(x)|2) > 0}.

Examples of functions in the class W(W ) are given by the functions f(x) =
(1 − ε)dW (x, X), with an arbitrary 0 < ε ≤ 1 and X ⊂ W , where dW (x, y) is
the distance associated with the (degenerate) Agmon metric

[Tr+(B(x)) − b0(W )]+ · g,

and, for any x ∈ R, x+ = max(x, 0).
For any Φ ∈ W(W ) and h > 0 define the Hilbert space

L2
Φ/

√
h
(W ) = {u ∈ L2

loc(W ) : eΦ/
√

hu ∈ L2(W )}

with the norm
‖u‖Φ/

√
h = ‖eΦ/

√
hu‖, u ∈ L2

Φ/
√

h
(W ),
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where ‖ · ‖ denotes the norm in L2(W ):

‖u‖ =
(∫

W

|u(x)|2 dx

)1/2

, u ∈ L2(W ).

By ‖ · ‖Φ/
√

h we will also denote the norm of a bounded operator in L2
Φ/

√
h
(W ).

Recall the following important identity (cf. for instance [7]).

Lemma 3.1. Let W ⊂ M be an open domain (with C2 boundary) and Φ ∈
C0,1(W, R). For any h > 0, z ∈ C and u ∈ Dom(Hh

W ) one has

(3.1) Re
∫

W

e2Φ/
√

h(Hh
W − z)uū dx = qh

W (eΦ/
√

hu)

− h

∫
W

e2Φ/
√

h|∇Φ|2|u|2 dx − Re z

∫
W

e2Φ/
√

h|u|2 dx.

3.2. Estimates away from the wells. Let W ⊂ M be a Γ-invariant open domain
(with a regular boundary). We will start with a slight extension of [7, Theorem
3.1].

Theorem 3.2. There exist constants C0 > 0 and h0 > 0 such that for any h ∈
(0, h0] and for any u ∈ Dom(qh

W ),

h

∫
W

[Tr+B(x) − h1/4C0] |u(x)|2 dx ≤ (1 + h1/4C0) qh
W (u).

As a consequence of this theorem, we get

σ(Hh
W ) ⊂ [hb0(W ) − Ch5/4, +∞), h ∈ (0, h0],

with some C > 0 and h0 > 0.

Proposition 3.3. Let Φ ∈ W(W ). Assume that K(h) is a bounded subset in C

such that K(h) ⊂ {z ∈ C : Re z < h(b0(W )−α)} for some α > 0. If h > 0 is small
enough, then K(h) ∩ σ(Hh

W ) = ∅ , and for any z ∈ K(h) the operator (Hh
W − z)−1

defines a bounded operator in L2
Φ/

√
h
(W ) with

‖(Hh
W − z)−1‖Φ/

√
h ≤ C

h

uniformly on z ∈ K(h).

Proof. By Theorem 3.2 and Lemma 3.1, for any z ∈ C, we have

Re
∫

W

e2Φ/
√

h(Hh
W − z)uū dx

≥ h

∫
W

(1 + h1/4C0)−1[Tr+B(x) − h1/4C0] e2Φ/
√

h |u(x)|2 dx

− h

∫
W

e2Φ/
√

h|∇Φ(x)|2|u(x)|2 dx − Re z

∫
W

e2Φ/
√

h|u(x)|2 dx,
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that implies

Re
∫

W

e2Φ/
√

h(Hh
W − z)uū dx

≥ h

∫
W

e2Φ/
√

h [Tr+B(x) − |∇Φ(x)|2 − Re z

h
] |u(x)|2 dx + ch5/4‖u‖2

Φ/
√

h

≥ (α + ch1/4)h‖u‖2
Φ/

√
h
,

and immediately completes the proof. �

Corollary 3.4. Under the assumptions of Proposition 3.3, we have

qW [eΦ/
√

h(Hh
W − z)−1v] + h‖(Hh

W − z)−1v‖2
Φ/

√
h

≤ C

h
‖v‖2

Φ/
√

h
, v ∈ L2

Φ/
√

h
(W ).

Proof. By (3.1), for any h small enough one has

qh[eΦ/
√

h(Hh
W − z)−1v] = Re (e2Φ/

√
hv, (Hh

W − z)−1v)

+ h‖|∇Φ|(Hh
W − z)−1v‖2

Φ/
√

h

+ Re z‖(Hh
W − z)−1v‖2

Φ/
√

h
.

Now we know that Re z < h(b0(W ) − α), |∇Φ| is uniformly bounded and

Re (e2Φ/
√

hv, (Hh
W − z)−1v) ≤ 1

2

(
1
h
‖v‖2

Φ/
√

h
+ h‖(Hh

W − z)−1v‖2
Φ/

√
h

)

≤ C

h
‖v‖2

Φ/
√

h
,

that completes the proof. �

3.3. Estimates near the wells. In this section, we will assume that W is a
relatively compact domain (with smooth boundary) in F such that

Uε1 = {x ∈ F : Tr+(B(x)) < b0 + ε1}
is contained in W for some ε1 < ε0.

Proposition 3.5. Assume that K(h) is a bounded subset in C such that K(h) ⊂
{z ∈ C : Re z < h(b0 + ε1)} and, if h > 0 is small enough, then, for any ε > 0,

dist (K(h), σ(Hh
W )) ≥ 1

Cε
e−ε/

√
h.

Let Φ ∈ W(W ) such that Φ ≡ 0 on Uε1 . Then for any z ∈ K(h) the operator
(Hh

W − z)−1 defines a bounded operator in L2
Φ/

√
h
(W ) and for any ε > 0,

‖(Hh
W − z)−1‖Φ/

√
h ≤ C1,εe

ε/
√

h .

Proof. For every sufficiently small η > 0, take any χ1,η ∈ C∞
c (W ) such that χ1,η ≡ 1

in a neighborhood of {x ∈ W : Φ(x) ≤ 2η}, Φ ≤ 3η on supp χ1,η. Let χ′
1,η ∈

C∞(W ), χ′
1,η ≥ 0 satisfy (χ1,η)2 + (χ′

1,η)2 = 1. We can assume that there exists a
constant C such that, for all sufficiently small η > 0,

η(|∇χ1,η| + |∇χ′
1,η|) ≤ C .
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Then we have

qW (eΦ/
√

hu) = q(χ1,ηeΦ/
√

hu) + q(χ′
1,ηeΦ/

√
hu)

− h2‖|∇χ1,η|eΦ/
√

hu‖2 − h2‖|∇χ′
1,η|eΦ/

√
hu‖2 .

By (3.1), it follows that

(3.2)

qW (χ′
1,ηeΦ/

√
hu) − h

∫
W

e2Φ/
√

h|∇Φ|2|χ′
1,ηu|2 dx − Re z

∫
W

e2Φ/
√

h|χ′
1,ηu|2 dx

− h2‖|∇χ1,η|eΦ/
√

hχ′
1,ηu‖2 − h2‖|∇χ′

1,η|eΦ/
√

hχ′
1,ηu‖2

= Re
∫

W

e2Φ/
√

h(Hh
W − z)uū dx − qW (χ1,ηeΦ/

√
hu)

+ h

∫
W

e2Φ/
√

h|∇Φ|2|χ1,ηu|2 dx + Re z

∫
W

e2Φ/
√

h|χ1,ηu|2 dx

+ h2‖|∇χ1,η|eΦ/
√

hχ1,ηu‖2 + h2‖|∇χ′
1,η|eΦ/

√
hχ1,ηu‖2 .

Put η = α
√

h with sufficiently large α > 0. Taking into account the fact that

|∇χ1,η| + |∇χ′
1,η| ≤ C/η = C/α

√
h,

we get the following estimate for the right-hand side of (3.2):

h

∫
W

e2Φ/
√

h|∇Φ|2|χ1,ηu|2 dx + Re z

∫
W

e2Φ/
√

h|χ1,ηu|2 dx

+ h2‖|∇χ1,η|eΦ/
√

hχ1,ηu‖2 + h2‖|∇χ′
1,η|eΦ/

√
hχ1,ηu‖2

≤ Ch‖eΦ/
√

hχ1,ηu‖2 .

From the other side, proceeding as in the proof of Proposition 3.3 and using Theo-
rem 3.2, we get the estimate for the left-hand side of (3.2):

qW (χ′
1,ηeΦ/

√
hu) − h

∫
W

e2Φ/
√

h|∇Φ|2|χ′
1,ηu|2 dx − Re z

∫
W

e2Φ/
√

h|χ′
1,ηu|2 dx

− h2‖|∇χ1,η|eΦ/
√

hχ′
1,ηu‖2 − h2‖|∇χ′

1,η|eΦ/
√

hχ′
1,ηu‖2

≥ h

∫
W

e2Φ/
√

h

[
Tr+B(x) − |∇Φ(x)|2 − Re z

h
− 1

α2

]
|χ′

1,ηu(x)|2 dx

+ ch5/4‖eΦ/
√

hχ′
1,ηu‖2 ≥ Ch‖eΦ/

√
hχ′

1,ηu‖2 .

Thus we get the estimate

ch‖eΦ/
√

hu‖2 ≤ Re
∫

W

e2Φ/
√

h(Hh
W − z)uū dx + Ch‖eΦ/

√
hχ1,ηu‖2 .

It remains to show that, for any ε > 0,

‖eΦ/
√

hχ1,ηu‖ ≤ Cεe
ε/

√
h‖eΦ/

√
h(Hh

W − z)u‖ ,

or equivalently,

(3.3) ‖χ1,η(Hh
W − z)−1u‖Φ/

√
h ≤ Cεe

ε/
√

h‖u‖Φ/
√

h, u ∈ L2
Φ/

√
h
(W ) .
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For this, we choose a function χ2,η ∈ C∞
c (W ) such that χ2,η ≡ 1 in a neighborhood

of {x ∈ W : Φ(x) ≤ η}, Φ ≤ 2η on supp χ2,η. In particular, χ1,η ≡ 1 on supp χ2,η.
We can assume that there exists a constant C such that for all sufficiently small
η > 0,

(3.4) η|∇χ2,η| + η2|∆χ2,η| ≤ C.

Let M0 = {x ∈ W : Φ(x) ≥ 2η}. Then we have

(Hh
W − z)−1u = (1 − χ2,η)(Hh

M0
− z)−1(1 − χ1,η)u + (Hh

W − z)−1χ1,ηu

+ (Hh
W − z)−1χ1,η[Hh

W , χ2,η](Hh
M0

− z)−1(1 − χ1,η)u .

We consider three terms in the right hand side of the last identity separately. For
the first one we use Proposition 3.3 and obtain

(3.5) ‖χ1,η(1 − χ2,η)(Hh
M0

− z)−1(1 − χ1,η)u‖Φ/
√

h ≤ C

h
‖u‖Φ/

√
h .

For the second term, since Φ ≤ 3η on supp χ1,η, we have

‖χ1,η(Hh
W − z)−1χ1,ηu‖Φ/

√
h ≤ e3α‖(Hh

W − z)−1χ1,ηu‖ .

By the assumptions and the fact that Φ ≥ 0, it follows that

‖(Hh
W − z)−1χ1,ηu‖ ≤ eε/

√
h‖χ1,ηu‖ ≤ C1e

ε/
√

h‖u‖Φ/
√

h .

So we get for the second term

(3.6) ‖χ1,η(Hh
W − z)−1χ1,ηu‖Φ/

√
h ≤ C2e

ε/
√

h‖u‖Φ/
√

h .

For the third term we put w = (Hh
M0

− z)−1(1−χ1,η)u. By (3.6), it follows that

‖χ1,η(Hh
W − z)−1χ1,η[Hh

W , χ2,η]w‖Φ/
√

h ≤ C1e
ε/

√
h‖[Hh

W , χ2,η]w‖Φ/
√

h .

Now we have

[Hh
W , χ2,η]w = 2ih dχ2,η · (ih d + A)w + h2∆χ2,ηw .

Therefore, taking into account (3.4), we get

‖[Hh
W , χ2,η]w‖2

Φ/
√

h
≤ C(h‖(ih d + A)w‖2

Φ/
√

h
+ h2‖w‖2

Φ/
√

h
)

≤ C(hqW [eΦ/
√

hw] + h2‖w‖2
Φ/

√
h
) .

By Corollary 3.4, we have

‖[Hh
W , χ2,η]w‖2

Φ/
√

h
≤C(hqW [eΦ/

√
h(Hh

M0
− z)−1(1 − χ1,η)u]

+ h2‖(Hh
M0

− z)−1(1 − χ1,η)u‖2
Φ/

√
h
)

≤C‖(1 − χ1,η)u‖2
Φ/

√
h
≤ C‖u‖2

Φ/
√

h
.
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So we get for the third term

(3.7) ‖χ1,η(Hh
W − z)−1χ1,η[Hh

W , χ2,η](Hh
M0

− z)−1(1 − χ1,η)u‖Φ/
√

h

≤ C3,εe
ε/

√
h‖u‖Φ/

√
h .

Now (3.3) follows by adding the estimates (3.5), (3.6) and (3.7). �

Corollary 3.6. Under the assumptions of Proposition 3.5, we have, for any ε > 0 ,

qW [eΦ/
√

h(Hh
W − z)−1v] + h‖(Hh

W − z)−1v‖2
Φ/

√
h

≤ C2,εe
ε/

√
h‖v‖2

Φ/
√

h
, v ∈ L2

Φ/
√

h
(W ) .

3.4. Proof of Theorem 2.1. Let us assume that (1.1) and (1.2) are satisfied. We
have

{x ∈ F : Tr+(B(x)) < b0 + ε2} = Uε1 =
N⋃

j=1

Uj,ε2 ,

where Uj,ε2 ⊂ F , j = 1, 2, · · · , N, are relatively compact, connected and pairwise
disjoint domains such that Uj,ε2 ∩ ∂F = ∅ . Let Mj = Uj,ε2 , j = 1, 2, · · · , N .
Theorem 2.1 follows immediately from the following.

Proposition 3.7. Assume that K(h) is a bounded subset in C such that K(h) ⊂
{z ∈ C : Re z < h(b0 + ε1)} and, if h > 0 is small enough, then, for any ε > 0 ,

dist (K(h), σ(Hh
Mj

)) ≥ 1
Cε

e−ε/
√

h, j = 1, 2, · · · , N .

Then, for any h > 0 small enough, K(h) ∩ σ(Hh) = ∅ .

Proof. Take any η > 0 such that ε1 + 3η < ε2. Let

M0 = M \
⋃
γ∈Γ

N⋃
j=1

γ(Uj,ε1+η) = {x ∈ M : Tr+(B(x)) ≥ b0 + ε1 + η} .

Take any function φj ∈ C∞
c (M) such that supp φj ⊂ Uj,ε1+2η, φj ≡ 1 on Uj,ε1+η.

Let

φ0 = 1 −
∑
γ∈Γ

N∑
j=1

γ∗φj .

Then supp φ0 ⊂ M0. Let ψj ∈ C∞
c (M), j = 1, 2, · · · , N , such that supp ψj ⊂

Uj,ε1+3η, and ψj ≡ 1 in a neighborhood of Uj,ε1+2η. Take any Γ-periodic func-
tion ψ0 ∈ C∞(M) such that supp ψ0 ⊂ M0, and ψ0 ≡ 1 in a neighborhood of
M \

⋃
γ∈Γ

⋃N
j=1 γ(Uj,ε1+2η). In particular, we have φjψj = φj , for j = 0, 1, 2, · · · , N .

Recall that the magnetic translations Tγ , γ ∈ Γ, are unitary operators in L2(M),
which commute with the periodic magnetic Schrödinger operator Hh:

TγHh = HhTγ , γ ∈ Γ,

and each Tγ takes L2(F) to L2(γF) (see for instance [17, 15] and the references
therein for more details). They satisfy

Te = id, Tγ1Tγ2 = σ(γ1, γ2)Tγ1γ2 , γ1, γ2 ∈ Γ .
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Here σ is a 2-cocycle on Γ, i.e. σ : Γ × Γ → U(1) such that

σ(γ, e) = σ(e, γ) = 1, γ ∈ Γ;

σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3), γ1, γ2, γ3 ∈ Γ .

For any h > 0 small enough and any z ∈ K(h), define a bounded operator Rh(z)
in L2(M) as

Rh(z) =
N∑

j=1

∑
γ∈Γ

Tγψj(Hh
Mj

− z)−1φjT
∗
γ + ψ0(Hh

M0
− z)−1φ0 .

Then
(Hh − z)Rh(z) = I − Kh(z) ,

where

Kh(z) =
N∑

j=1

∑
γ∈Γ

Tγ [Hh, ψj ](Hh
Mj

− z)−1φjT
∗
γ + [Hh, ψ0](Hh

M0
− z)−1φ0 .

Lemma 3.8. There exist C, c > 0 such that, for any h > 0 small enough and
z ∈ K(h), the operator Kh(z) defines a bounded operator in L2(M) with the norm
estimate

‖Kh(z)‖ ≤ Ce−c/
√

h .

Proof. For any j = 1, 2, · · · , N , consider a weight function Φj ∈ W(Mj) given
by Φj(x) = dUj,ε1+2η

(x, Uj,ε1+2η). By construction, Φj(x) ≥ cj > 0 on supp dψj ,
Φj(x) ≡ 0 on supp φj . For any w ∈ Dom Hh, we have

[Hh, ψj ]w = 2ih dψj · (ih d + A)w + h2∆ψj w .

This implies the estimate

‖[Hh, ψj ]w‖2
Φj/

√
h
≤ C(h‖(ih d + A)w‖2

Φj/
√

h
+ h2‖w‖2

Φj/
√

h
)

≤ C(hqMj
[eΦj/

√
hw] + h2‖w‖2

Φj/
√

h
) .

Therefore, for any u ∈ L2(M), we obtain

‖[Hh, ψj ](Hh
Mj

− z)−1φju‖2
L2(M) = ‖[Hh, ψj ](Hh

Mj
− z)−1φju‖2

L2(Mj)

≤ e−cj/
√

h‖[Hh, ψj ](Hh
Mj

− z)−1φju‖2
Φj/

√
h

≤ Ce−cj/
√

h(hqMj
[eΦj/

√
h(Hh

Mj
− z)−1φju]

+ h2‖(Hh
Mj

− z)−1φju‖2
Φj/

√
h
) .

It follows from Corollary 3.6 that, for any ε > 0,

‖[Hh, ψj ](Hh
Mj

− z)−1φju‖L2(M) ≤ Cεe
−(cj−ε)/

√
h‖φju‖Φj/

√
h

= Cεe
−(cj−ε)/

√
h‖φju‖L2(Mj)

= Cεe
−(cj−ε)/

√
h‖u‖L2(M) .

Similarly, using Corollary 3.4, one can get

‖[Hh, ψ0](Hh
M0

− z)−1φ0u‖L2(M) ≤ C0e
−c0/

√
h‖u‖L2(M) .
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Taking into account that the sets γ(supp φj) with j = 1, 2, · · · , N and γ ∈ Γ are
disjoint, we get

‖Kh(z)u‖ ≤ Ce−c/
√

h(
N∑

j=1

∑
γ∈Γ

‖φjT
∗
γ u‖ + ‖φ0u‖)

≤ C1e
−c/

√
h‖u‖ .

This completes the proof. �

It follows from Lemma 3.8 that, for all sufficiently small h > 0 and z ∈ K(h), the
operator I + Kh(z) is invertible in L2(M). Then the operator Hh − z is invertible
in L2(M) with

(Hh − z)−1 = Rh(z)(I − Kh(z))−1 ,

and K(h) ∩ σ(Hh) = ∅ as desired. �
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MR1770797 (2001g:81059)
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