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SUPPORT VARIETIES
FOR MODULES OVER CHEVALLEY GROUPS

AND CLASSICAL LIE ALGEBRAS

JON F. CARLSON, ZONGZHU LIN, AND DANIEL K. NAKANO

Abstract. Let G be a connected reductive algebraic group over an alge-
braically closed field of characteristic p > 0, G1 be the first Frobenius kernel,
and G(Fp) be the corresponding finite Chevalley group. Let M be a ratio-
nal G-module. In this paper we relate the support variety of M over the first
Frobenius kernel with the support variety of M over the group algebra kG(Fp).
This provides an answer to a question of Parshall. Applications of our new
techniques are presented, which allow us to extend results of Alperin-Mason
and Janiszczak-Jantzen, and to calculate the dimensions of support varieties
for finite Chevalley groups.

1. Introduction

1.1. Let G be a connected reductive k-algebraic group defined and split over the
finite field Fp of p elements where k = Fp. Let G1 be the scheme theoretic kernel
of the Frobenius map. The category of G1-modules is equivalent to the category of
restricted modules for the restricted Lie algebra g = Lie G. On the other hand, let
G(Fp) be the finite (untwisted) Chevalley group obtained by taking the Fp-rational
points of G. Given a rational G-module over k we can restrict the action to either
G1 or to G(Fp) (see Figure 1). Much effort has been made in trying to link the
representation and cohomology theory for the finite group G(Fp) and the Frobenius
kernel by using the ambient algebraic group. Even though the category of modules
for the finite group and the Frobenius kernel share many intrinsic features, difficul-
ties in making comparisons arise because there is no direct functorial relationship
between these two categories.

In 1987, B. Parshall in an article in the Arcata Conference Proceedings enti-
tled Cohomology of Algebraic Groups [P] stated two open problems where the first
problem is a precursor to the second.

(1.1.1) If M ∈ mod(G) such that M is projective as a G1-module, is M projective
over G(Fp)?

(1.1.2) Let M ∈ mod(G). Can we relate the support variety of M for G1, |G1|M ,
with the support variety of M for the finite group |G(Fp)|M?
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Figure 1

In [LN], the second and third authors showed that for M ∈ mod(G),

dim |G(Fp)|M ≤ 1
2

dim |G1|M .

This inequality was proved by developing a new approach to relate the cohomology
theories of G(Fp) and G1. Thus, Statement (1.1.1) (known as the “Parshall con-
jecture”) is an immediate corollary of this result. Furthermore, in that paper it is
shown that if M ∈ mod(G) and the G-composition factors are p-bounded, then the
converse to (1.1.1) also holds.

This paper is devoted to providing an affirmative answer to (1.1.2). The pro-
cedure for relating those varieties involves several new results and ideas. More
precisely, through a series of works ([SFB], [FP2]) it is known that there is a G-
equivariant isomorphism between |G1|k and N1, where N1 is the restricted null-
cone. In [NPV], the Jantzen conjecture on support varieties was verified. As a
consequence, it follows that N1 = G · nJ where nJ is the nil-radical of a parabolic
Lie subalgebra pJ for some subset J of simple roots when the prime is good. This
answers an old question of Friedlander and Parshall on the irreducibility of N1.
Recently, the authors and Parshall [CLNP] have determined representatives for the
sets J and have computed the dimensions of N1 (for p good).

The aforementioned results are used in the following way. Let U1 be the closed
subvariety of the unipotent variety U consisting of elements of order 1 or p. Note
that for p ≥ h, U1 = U and N1 = N where N is the ordinary nullcone. For
p being good for G, by using our explicit description of N1 = G · nJ , we verify
conditions given by Seitz for the existence of an exponential map, exp : nJ → UJ

(UJ = Ru(PJ)) (Theorem 2). By using Springer isomorphisms between N and U
and the classifications, we show that U1 is the closure of a Richardson class in U
whose description can be immediately read off from the results in [CLNP]. We
then prove that there is an extension of this map to a G-equivariant isomorphism,
exp : N1 → U1. However, we require that N1 be a normal variety. This condition
is automatically satisfied when p ≥ h. We should remark that our results also
show that for p ≥ h, the map exp can be defined on the ordinary nullcone N . For
p good, Springer [Sp1] constructed a G-equivariant isomorphism between N and
U . For the purposes of this paper (i.e., for obtaining an affirmative solution to
(1.1.2)) this isomorphism does not have the required properties because this map
is, in general, not compatible with the restriction maps given in Figure 1. The
exponential map that we construct has the important properties that it respects
the group operations and it preserves the centralizers in G and in g (Theorem 3).
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We expect that exp is the restriction of a Springer isomorphism. This is true when
p ≥ h. If this is the case, the normality condition on N1 can be dropped.

Furthermore, our construction is compatible with Seitz’s construction of the good
A1 subgroups corresponding to each unipotent element of order p and provides an
effective way to utilize the centralizers both in G and in g.

The exponential isomorphism mentioned above enables us to construct maps (up
to an isogeny) φ and ψ between the cohomological varieties of g and G(Fp) which
are finite onto their images, making the diagram in Figure 2 commute (Theorem 5).
This allows us to identify the support variety |G(Fp)|M as a subvariety of U1 inside
the group G factored out by the action of G(Fp) (Corollary 1). Furthermore,
we can also identify |G(Fp)|M as a subvariety of |G1|M/G(Fp) for G-modules M
whose weights are not too large. In general the algebraic group G does not act
on |G(Fp)|M . Nevertheless, the existence of these maps enables us to use the
rich geometric theory of nilpotent orbits in g to obtain results for finite groups.
Applications will be presented in the last section of the paper.

U1/G(Fp)

|G(Fp)|k |G1|k/G(Fp)

�
�

��� �
�

���
�

ψ

φ ¯log

Figure 2

1.2. The paper is organized as follows. In Section 2, we apply the results of [CLNP]
and [NPV] to extend the exponential isomorphism exp : nJ → UJ to a G-equivariant
isomorphism exp : N1 → U1. In Section 3, using the exponential map exp, we
define the notion of Fp-expressible nilpotent elements and Fp-expressible unipotent
elements via elementary abelian p-subgroups. These varieties behave well under the
exponential map between the unipotent and nilpotent varieties. In Section 4, we
show how to map an elementary abelian p-subgroup in G(Fp) into the unipotent
variety using the exponential map constructed in Section 2. This will allow us
to define a map, which is finite onto its image, from the cohomological variety
G(Fp) into U1 factored out by the conjugation action of the finite group G(Fp).
The quotient space U1/G(Fp) can thus be viewed as a “model” for the theory of
supports for G(Fp). The logarithm map can also be used to construct a finite map
from the support variety of a module for G(Fp) into N1/G(Fp). The images of
these maps are identified at the end of the section by using our definition of Fp-
expressibility. Recently Friedlander and Pevtsova, [FPe, Prop. 5.8], demonstrated
that the maps given above are compatible with their “support space” point of view.

In the final section, applications are provided which are both conceptual as
well as computational. We indicate how earlier results of Alperin and Mason,
and Janiszczak and Jantzen for finite groups G(Fq) can be further extended by
using the theory of nilpotent orbits in g for the groups G(Fp). Furthermore, we
demonstrate how the dimensions of the support varieties of G-modules over finite
Chevalley groups can be computed once their support varieties over G1 are known.
In particular, we compute the complexity of the simple modules for G(Fp) for all
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rank two simple groups. Also, we determine the complexity for induced modules
H0(λ) over GLn(Fp) for n ≤ 7 when the highest weights are not large.

A Chevalley group in this paper means an untwisted group. The twisted case is
not treated in this paper. It seems as though a different approach will be necessary
to prove similar results for modules over higher Frobenius kernels and G(Fpr ) for
r > 1.

1.3. Notation and conventions. Throughout this paper let k be an algebraically
closed field of characteristic p > 0 which contains the finite field Fp of p elements.
Let G be a simple algebraic k-group defined and split over the prime field Fp having
root system Φ with respect to a maximal split torus T . Let Π be the set of simple
roots and Φ+ (resp. Φ−) be the positive (resp. negative) roots. The Coxeter
number of Φ is denoted by h. Let B be the Borel subgroup containing T defined
by Φ−. Furthermore, let X(T ) be the integral weight lattice obtained from T . If
α∨ = 2α/〈α, α〉 is the coroot corresponding to α ∈ Φ, then the set of dominant
integral weights is defined by

X(T )+ = {λ ∈ X(T ) : 0 ≤ 〈λ, α∨〉 for all α ∈ Π}.

The Weyl group W is the group generated by reflections associated to the root
system Φ, and Wp = W � pZΦ is the affine Weyl group associated to the prime p.
Furthermore, the set of p-restricted weights is

X1(T ) = {λ ∈ X(T ) : 0 ≤ 〈λ, α∨〉 < p for all α ∈ Π}.

The Weyl group W (affine Weyl group Wp) acts on X(T ) naturally with the “dot
action” defined by w · λ = w(λ + ρ) − ρ where w ∈ W (w ∈ Wp), λ ∈ X(T ), and ρ
is the half sum of positive roots. The simple modules will be denoted by L(λ) and
the induced modules by H0(λ) = indG

Bλ for λ ∈ X(T )+.
Let g = Lie(G) be the Lie algebra of G. Then g is a restricted Lie algebra with

pth power map [p]. The variety of nilpotent elements of g is called the nullcone and
is denoted by N . The restricted nullcone is defined as N1 = {x ∈ g : x[p] = 0}.
Let U be the set of unipotent elements in G and let the p-unipotent variety U1 be
defined as U1 = {x ∈ G : xp = 1}.

Let H be an affine algebraic group scheme over k and let H1 = ker(Fr). Here
Fr : H → H(1) is the Frobenius map. There is a categorical equivalence between
restricted Lie(H)-modules and H1-modules (see [Jan1, I. Ch.9]).

For a finite k-group scheme K, the cohomology ring R = H2•(K, k) is a com-
mutative, finitely generated k-algebra [FS]. If M ∈ mod(K), the support variety of
M , |K|M , is the maximal ideal spectrum of R/JM where JM is the annihilator of
Ext•K(M, M) in R. The dimension of |K|M can be interpreted as the complexity of
the module M [Ben1, §5.7]. In this paper we will be interested in the cases when
K = G(Fp) and K = G1.

2. An exponential map defined on the restricted nullcone

2.1. Let R be a commutative ring and let X be an R-scheme. For any homomor-
phism R → A of commutative rings, let XA = X⊗R A denote the A-scheme defined
via base change. If S → R is a homomorphism of commutative rings, then we say
that X has an S-structure if there is an S-scheme XS such that X = XS ⊗S R. If
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φ : X → Y is a morphism of R-schemes, then we denote by φA = φ⊗RA : XA → YA

the A-morphism of A-schemes. If both X and Y are R-schemes with S-structures
XS and YS respectively, we say the morphism φ is defined over S if there is an
S-morphism φS : XS → YS of S-schemes such that φ = φS ⊗S R. For an R-scheme
X and any R-algebra A, we set X(A) = MorR−sch(Spec(A), X) to be the set of all
A-rational points. In particular, when X has an S-structure for a subring S of R,
we write X(S) as the set of S-rational points of XS instead of XS(S). When R = k
is an algebraically closed field and X is an algebraic k-variety, we identify X with
the set of all closed k-rational points instead of writing X(k). The terminology and
conventions are provided for the reader in [Jan1] and [Sp3].

Lemma 1. Let F be a perfect field. Suppose that φ : X → Y is an F -morphism
of algebraic F -varieties and that k is an algebraically closed field containing F as
a subfield. Then

(a) for any closed subvariety V ⊆ Yk defined over F , φ−1
k (V ) ⊆ Xk is a closed

subvariety of Xk defined over F , and
(b) if φ is a constant morphism of F -varieties, then so is φk.

Proof. Let Γφ = {(x, φ(x)) ∈ Xk × Yk | x ∈ Xk} be the graph of φ. Then Γφ is a
closed F -subvariety of X×Y . The projections p1 : X×Y → X and p2 : X×Y → Y
are defined over F and p1 : Γφ → X is an isomorphism (defined over F ). Under
this isomorphism p1, we have φ−1(V ) isomorphic to Γφ∩ (X×V ), which is a closed
F -subvariety of Γφ by [Sp2, 11.2.13]. This proves (a).

To see (b), we recall that φk is a constant if and only if φ∗
k : k[Y ] → k[X] factors

through the embedding k ⊆ k[X] (we can assume that X and Y are affine). It
follows that φk is constant because φ∗

F : F [Y ] → F [X] factors through F ⊆ F [X]
and φ∗

k = φ∗
F ⊗F 1. �

2.2. Let gC be a complex semisimple Lie algebra. Fix a Chevalley basis and let g(Z)
be the Z-span of the Chevalley basis. Set g := k ⊗Z g(Z) and g(Fp) := Fp ⊗Z g(Z).
When gC is regarded as an affine C-variety, the Chevalley basis defines a Z-structure
gZ on g. Thus g(Z) is the set of Z-rational points of the Z-scheme gZ. Similarly, we
use gFp

to denote the Fp-scheme which gives an Fp-structure on the k-variety g and
use g(Fp) to denote the set of Fp-rational points of gFp

. We now fix an algebraically
closed field k of characteristic p > 0. Let G be a semisimple algebraic group over
k with a split Fp-form GFp

such that g(Fp) is the Lie algebra Lie(GFp
) over Fp in

g = Lie(G). The reader is referred to [Jan1], [Bo, 18.6], and [Sp2] for further details
on algebraic groups and group schemes.

2.3. Let G be a semisimple algebraic group such that Gsc → G is separable (i.e.,
Lie(Gsc) → Lie(G) is surjective). Springer ([Sp1, Thm. 3.1], [SS, III, 3.12]) con-
structed a logarithmic map logs : U → N which is G-equivariant. Fix a regular
unipotent element u and regular nilpotent element x such that CG(x) = CG(u), and
let logs be such that logs(u) = x. This defines an isomorphism between the open
sets of regular unipotent and nilpotent elements. The map logs is defined over the
ring Z(p) (p is good), and logs can be extended to a homeomorphism U → N . It is
now known that logs is an isomorphism of G-varieties for good characteristics since
N is normal [Hum4, p. 118]. However, the map logs is not uniquely defined and
depends on the choice of a regular unipotent element u in U and a regular nilpo-
tent element x ∈ n such that CG(u) = CG(x). For J ⊂ Π, let PJ be the standard
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parabolic subgroup of G containing the Borel subgroup B, and let PJ = LJUJ with
LJ being a Levi subgroup and UJ the unipotent radical of PJ . Note that under the
adjoint action of G, we have StabG(UJ ) = PJ and StabG(nJ ) = PJ . Also, we have
logs(U) = n. Let Ou

J (resp. On
J ) be the unipotent (resp. nilpotent) Richardson

orbit corresponding to PJ . We recall that Ou
J (resp. On

J ) is the unique G-orbit such
that UJ ∩ Ou

J (resp. nJ ∩ On
J ) is a single open dense PJ -orbit in UJ (resp. nJ ).

Proposition 1. logs(UJ ) = nJ and logs(Ou
J ) = On

J .

Proof. Let UL = U ∩ LJ be the unipotent radical of a Borel subgroup of LJ and
nL = Lie(UL). Let φ : PJ → LJ be the quotient morphism, and let dφ : Lie(PJ) →
Lie(LJ ) be the differential of φ. Under the adjoint action, both φ and dφ are
PJ -equivariant with PJ acting on LJ and Lie(LJ ) by way of the quotient map
PJ/UJ = LJ . From the definition, we have that φ(U) = UL and dφ(n) = nJ .
Let Y = logs(UJ ). Then Y ⊆ n is a closed PJ -stable irreducible subvariety. Let
X = dφ(Y ). Then X is an irreducible PJ -stable subvariety and thus is the closure of
a nilpotent LJ -orbit in Lie(LJ). Since LJ is reductive, then dim X = 2 dim(X∩nL).
However, X ⊆ dφ(n) = nL, and we have X = X ∩ nL and dimX = dim(X ∩ nL).
This forces that dimX = 0 and X = {0}, (i.e., the only zero-dimensional nilpotent
orbit). Hence, Y ⊂ ker(dφ) = nJ . The map logs : UJ → nJ is a PJ -equivariant
isomorphism and thus sends the unique open PJ -orbit to the unique open PJ -orbit.
In particular logs(Ou

J ) = On
J . �

One of the referees pointed out a different way, using [McN2, Rem. 10], to
prove Proposition 1. In fact this argument will prove that for any G-equivariant
isomorphism φ : U → N , for any parabolic (in particular Borel) subgroup P ,
Proposition 1 holds with logs replaced by φ by using the description of parabolic
subgroups given in [Sp2, 8.4.5, 8.4.6(5)]. The Springer isomorphism assumes that
φ(U) = n.

The unipotent classes in G and the nilpotent orbits in g in characteristic zero
are labeled in terms of weighted Dynkin diagrams (cf. [C, Ch. 5, Ch. 13]). This
classification still works in good characteristics. For classical groups, the weighted
Dynkin diagrams are determined by Jordan types of the unipotent (nilpotent) ele-
ments. For exceptional groups, they are listed in the tables in [C, Ch. 13].

Theorem 1. Let G be a connected simple group and p be good for G. If φ : U → N
is a G-equivariant isomorphism, then

(a) φ is a Springer isomorphism.
(b) The one-to-one correspondence defined by φ between the set of all unipotent

conjugacy classes and the set of all nilpotent G-orbits preserves the label-
ing of unipotent classes and nilpotent orbits in terms of weighted-Dynkin
diagrams as in [C] and, in particular, is independent of φ.

(c) For any r ≥ 1 and u ∈ U , upr

= 1 if and only if (φ(u))[p]r = 0.
(d) For each r ≥ 1, the closed subvarieties Ur = {u ∈ U | upr

= 1} and
Nr = {x ∈ N | x[p]r = 0} are isomorphic under φ and are irreducible.

Proof. (a) By Proposition 1 or [McN2, Rem. 10], φ in particular sends a regular
unipotent element to a regular nilpotent element such that φ(U) = n for any Borel
subgroup B. Thus φ is a Springer isomorphism.
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(b) The independence of φ follows from (a) and a result of Serre (Appendix to
[McN2]). The correspondence is independent of the choice of Springer isomorphism.

First, by the proposition above, any isomorphism φ sends a Richardson unipotent
class to a Richardson nilpotent orbit of the same type. Since the correspondence of
orbits preserves the closure relation, the dimension of the orbit, and the stabilizer
subgroup of G, it also preserves the component group and the Cartan type of each
orbit. In particular, any isomorphism φ has to send regular unipotent elements to
regular nilpotent elements (also note that regular orbits are Richardson orbits).

For classical groups, Springer has constructed explicit isomorphisms. In cases
of type Al, the map u �→ u − 1 is a G-equivariant isomorphism. Note that the
unipotent matrix u and the nilpotent matrix u − 1 give rise to the same partition
and the same corresponding weighted Dynkin diagram. This also follows from the
fact that all nilpotent orbits (unipotent classes) are Richardson. For symplectic
and orthogonal groups, an isomorphism is given by the Cayley transformation u �→
(1 − u)(1 + u)−1 (p �= 2). By expressing the matrix u in its Jordan form, we can
easily see that the nilpotent element (1 − u)(1 + u)−1 is associated to the same
partition. The weighted Dynkin diagrams are uniquely determined by the partition
corresponding to the nilpotent (unipotent) element unless the group is G = SO2l

and the partition consists of all even parts. In this exceptional case, each very
even partition corresponds to two different orbits. Both orbits are even and are
Richardson orbits. Now Proposition 1 implies that the isomorphism will preserve
the weighted Dynkin diagrams in the list of unipotent classes and nilpotent orbits.

For exceptional groups, we can check the list of the properties: dimension, the
Levi type of the centralizer, the dimension of unipotent radical of the centralizer
and the component group of the centralizer. By inspecting all unipotent classes
listed in [C] with the above listed properties, we find that there are only a few
cases when two orbits have the identical properties listed above. But in each case,
we can find (by inspecting the Hasse diagrams in [C]) a Richardson class which
contains only one such orbit in its closure. This also shows that the correspondence
is independent of the isomorphism without using Serre’s result. Therefore, the
correspondence preserves the weighted Dynkin diagrams for exceptional groups.

(c) For classical groups, the conclusion follows from (b) and the fact that u and
logs(u) determine the same partition. For exceptional groups we use the labeling of
the unipotent classes and nilpotent orbits. Using the Bala-Carter classification, the
label gives the Levi factor and the distinguished parabolic subgroup of the derived
group of the Levi factor. The order formula for distinguished unipotent elements
was proved by Testerman [T2] and the nilpotency class of a distinguished nilpotent
element was provided by McNinch [McN1]. Using these results, a direct comparison
for each weighted Dynkin diagram will yield the conclusion.

(d) The isomorphism is a direct result of part (c). The irreducibility follows from
[CLNP, Thm. 3.10] and [UGA, Thm. 3.2, §4.1]. �

We remark that there is a more conceptual proof to the theorem without using
Serre’s result. In fact, one can use the Bala-Carter classification of unipotent and
nilpotent orbits in terms of conjugacy classes of the pairs (L, P ) where L is a Levi
subgroup and P is a distinguished parabolic subgroup of the semisimple subgroup
L′ = [L, L]. For each nilpotent (or unipotent) element x, L = CG(S) with S being a
maximal torus of StabG(x) and x being a nilpotent (unipotent) Richardson element
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of P . Thus any G-equivariant isomorphism φ : U → N would give the same G-
conjugacy class of the distinguished pair (L, P ). Therefore, any isomorphism φ (not
necessarily a Springer isomorphism) will induce the same correspondence between
unipotent classes and nilpotent orbits. We also note that part (c) is proved in
[McN1].

2.4. It is shown in [NPV] that N1 = G · nJ for a subset J ⊆ Π of simple roots
corresponding to a parabolic subalgebra pJ where nJ is the nil-radical of pJ . Let
PJ and UJ be the corresponding parabolic and unipotent subgroups of G such that
UJ = Ru(PJ). In [CLNP] representatives for the sets J have been determined.
Following Testerman [T1], we define, for each subset J of Π, the function htJ :
ZΦ → Z by htJ (

∑
α∈Π aαα) =

∑
α�∈J aα. In particular, the unipotent group UJ

has nilpotency class at most htJ (α0), where α0 is the highest positive root. Let
U1 = {u ∈ G | up = 1}. Then U1 is a closed subvariety of U .

Theorem 2. Let G be a simple algebraic group and let p be a good prime. There
exists J ⊆ Π such that N1 = G · nJ and the following hold.

(a) For any α ∈ Φ+, htJ(α) < p,
(b) the Lie algebra nJ has nilpotency less than p, and
(c) logs : U1 → N1 is a G-equivariant isomorphism. In particular U1 = G ·UJ .

Proof. Note that [gα, gβ] ⊆ gα+β for all α, β ∈ Φ+, so (b) follows from (a). To
prove (a) we use the description of J given in [CLNP]. If p ≥ h, then (a) is true
because all roots α have height at most h− 1. Assume that p < h. For type Al, all
roots in Φ+ have coefficients at most 1 and |Π \ J | = p − 1 [CLNP, Thm 3.3]. For
type Bl, Cl, we use [CLNP, Thm. 3.8] to see that |Π \ J | ≤ p−1

2 and the fact that
all roots in Φ+ have coefficients at most 2. For type Dl, we have |Π \ J | ≤ p+1

2 if J

contains both αl−1 and αl and |Π \ J | ≤ p−1
2 otherwise. Now (a) follows from the

fact that the coefficients of αl−1 and αl are at most 1 in the case of type Dl.
For the exceptional groups, the sets J are determined in [CLNP, 4.4]. For the

reader’s convenience, we list them here together with α0. We can read off htJ(α0)
from the tables as the sum of the coefficients in α0 of simple roots not in J . In each
case, we have htJ(α0) < p.

Type E6: α0 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6.

p J htJ (α0)
5 {1, 2, 4, 6} 4
7 {2, 3, 5} 5
11 {4} 8

Type E7: α0 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.

p J htJ (α0)
5 {1, 2, 3, 5, 6, 7} 4
7 {1, 2, 3, 5, 7} 6
11 {2, 3, 5} 9
13 {4, 6} 11
17 {4} 13
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Type E8: α0 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

p J htJ (α0)
7 {1, 2, 3, 5, 6, 7, 8} 6
11 {1, 2, 3, 5, 6, 8} 7
13 {2, 3, 5, 6, 8} 9
17 {2, 3, 5, 7} 14
19 {2, 3, 5} 17
23 {4, 6} 19
29 {4} 23

Type F4: α0 = 2af1 + 3α2 + 4α3 + 2α4.

p J htJ(α0)
5 {1, 3, 4} 3
7 {1, 3} 5
11 {3} 8

Type G2: α0 = 3α1 + 2α2.

p J htJ(α0)
5 {2} 3

For part (c), the fact that logs restricts to a G-equivariant isomorphism fol-
lows from Theorem 1, and the statement that U1 = G · UJ is a consequence of
Proposition 1. �

We remark that although logs is a G-equivariant isomorphism between U1 and
N1, in general, logs does not preserve the group structure when restricted to unipo-
tent abelian subgroups. For example, the Springer map used in the proof of Theo-
rem 1 is not a group homomorphism in general. For the remainder of this section
we investigate the exponential maps, exp, which are only defined over nilpotent Lie
subalgebras of nilpotency less than p [Sei]. The advantage of the exponential map
is that it is a group homomorphism when restricted to certain unipotent subgroups.

2.5. The subgroup UJ of G has a Z-structure with the Z-form (UJ )Z. The Lie
algebra nJ also has a Z-structure (nJ )Z as a scheme. Because the nilpotency class
of nJ is less than p, by Seitz [Sei, Prop. 5.1-5.3] (with UJ = UΓ and Γ = Φ+ \ Φ+

J ,
in the notation of [Sei, Prop. 5.1]) there is an isomorphism of algebraic k-varieties
exp : nJ → UJ , which is defined over the localization Z(p). For J satisfying the
conditions of Theorem 2, we can check case by case that, for all x ∈ nJ (Z(p)), the
conditions of [T2, Lem. 1.4] are satisfied, except in a few cases for which we cannot
find J1 and J2. But in those cases, one of the e1 and e2 can be chosen as a root
vector, and the proof of [T2, Lem. 1.4] still works. When G is of adjoint type,
the map exp was established in [T2, Lem. 1.1] for all x ∈ nJ (Z(p)). The condition
required for [T2, Lem. 1.1] is guaranteed in [T2, Lem. 1.4]. For simply connected
groups, the map exp is first defined over the field of complex numbers via the usual
exponential map. Seitz [Sei, Prop 5.1] proved that the exponential map is actually
defined over Z(p). In particular, given any x ∈ nJ (Z(p)) and any rational GZ(p) -
module M(Z(p)), the action of exp(x) on M(Z(p)) is given by exp(x) =

∑∞
n=0 xn/n!

with xn/n! being elements of the distribution algebra of (UJ )Z(p) (see [Jan1, I, Ch.
7]). For any x ∈ nJ (Fp), we still use x(n) to denote the image of zn/n! in the
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distribution algebra of (UJ )Fp
for some z ∈ nJ (Z(p)) which has image x by reduction

modulo p. The following proposition indicates how these structures behave under
base change.

Proposition 2. Let x1, x2 ∈ nJ (Fp) such that [x1, x2] = 0. Suppose that M is a
rational G-module with a GFp

-structure, MFp
. Then for t1 and t2 in k, the action

of exp(t1x1 + t2x2) on M = M(Fp) ⊗Fp
k is given by the exponential map

exp(t1x1 + t2x2) =
∞∑

n,m=0

(x(n)
1 x

(m)
2 ) ⊗ tn1 tm2 .

Proof. Note that nJ is an algebraic group with multiplication given by the Hausdorff
formula [Ser, IV. 8] and exp is an isomorphism of algebraic groups nJ → UJ by [Sei,
Prop. 5.2]. Since [x1, x2] = 0, the Hausdorff formula implies exp(t1x1 + t2x2) =
exp(t1x1) exp(t2x2) in UJ . Now we see from the definition of the exponential map,
exp, that the formula holds in Endk(M) (see [Jan1, I. 7.4(1)]). �
2.6. It is well known that NG(nJ) = NG(UJ ) = PJ and that NG(nJ ) is a connected
closed subgroup of G and defined over Z(p) (see [Jan1, 2.6], for example). The
following proposition lists some properties of the exponential map. A subgroup A of
G of type A1 is called a good A1-subgroup if all weights of Lie(G) are at most 2(p−1)
as an A-module. The 1-dimensional unipotent algebraic group Ga has Lie algebra
kγ(1) and its distribution algebra Dist(Ga) has a k-basis {γ(i) | i = 0, 1, 2, . . . }
which satisfies γ(i)γ(j) =

(
i+j

i

)
γ(i+j).

Lemma 2. [Sei] Let p be a good prime for the group G. For any 1 �= u ∈ U1,
there exists a unique homomorphism fu : Ga → G such that fu(Ga) = UA is the
unipotent subgroup of a Borel subgroup BA of a good A1-subgroup A of G with the
following properties:

(i) fu(1) = u;
(ii) dfu(γ(1)) = e is a basis for Lie(UA) and, identifying Lie(UA) with Ga under

the map e �→ 1, the homomorphism fu : Lie(Ua) → U has differential
dfu = 1 on Lie(UA);

(iii) CG(u) = CG(UA) = CG(Lie(UA)).

Proposition 3. Let p be good and N1 = G · nJ .
(a) [Sei, 5.3] The isomorphism exp : nJ → UJ is invariant under the adjoint

action of PJ and the differential d exp : nJ → nJ is the identity map.
(b) [Sei, Lem. 6.3] CPJ

(x) = CPJ
(exp(x)) for all x ∈ nJ .

2.7. One of the consequences of Theorem 2(c) is that for each unipotent element
u ∈ G with up = 1, we can assume u ∈ UA ⊆ UJ with Lie(UA) = ke ⊆ nJ , where
UA is the unipotent subgroup of a Borel subgroup of a good A1-subgroup of G. By
Lemma 2(iii), we have CG(u) = CG(ke).

Let x ∈ nJ (Fp) be an Fp-rational point in nJ . The centralizer CG(x) is a closed
subgroup of G defined over Fp [Sp2, 11.2.1]. Thus the map G → G · x of algebraic
varieties is defined over Fp. We want to extend the map exp : nJ → UJ to a map
exp : N1 → U1. The first step is to compare CG(x) with CG(exp(x)) for x ∈ nJ .

Proposition 4. Let u ∈ UA ⊆ UJ be an element where UA is the unipotent radical
of a Borel subgroup BA of a good A1-subgroup of G.

(a) If BA ⊆ PJ , then CG(x) = CG(exp(x)) for each x ∈ Lie(UA).
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(b) For good primes p, if x ∈ nJ is a Richardson element for PJ , then CG(x) =
CG(exp(x)).

(c) If either N1 or U1 is a normal variety, then for all x ∈ N1, we have CG(x) =
CG(exp(x)).

Proof. (a) Let f : Ga → UA be an isomorphism of algebraic groups. Since UA ⊆ UJ ,
Proposition 5.4 of [Sei] implies that there are ei ∈ nJ (i = 0, 1, 2, ..,) such that
[ei, ej ] = 0 and f(t) = exp(te0) exp(tpe1) · · · . Let BA = UATA be a Borel subgroup
of A where TA ⊆ PJ is a maximal torus of A. Note each factor of f(t) is invariant
under the TA-action. Using the ideas in the proof of [Sei, Prop. 5.5], we show that
ei has TA-weight 2pi. Since A is a good A1, ei = 0 for all i ≥ 1 and f(t) = exp(te0)
for some e0 ∈ nJ . Moreover, d exp is the identity on nJ by [Sei, Prop. 5.3].
Thus, e0 ∈ Lie(UA) and exp(e0) = u. Now (a) follows from [Sei, Prop. 6.1] (cf.
Lemma 2(iii)).

(b) Let x ∈ nJ be a Richardson element of PJ . Because expx : Ga → UJ

defined by expx(t) = exp(tx) is a homomorphism of algebraic groups whose im-
age expx(k) ⊆ UJ is a closed subgroup and because Lie(expx(k)) = kx, we have
CG(x) ⊇ CG(exp(x)). Let x1 = logs(exp(x)), where logs is a Springer isomor-
phism. By Proposition 1, we have x1 ∈ nJ is a Richardson element. Thus there
exists g0 ∈ PJ such that x = g0 · x1. Since logs is a G-equivariant morphism, we
have that

CG(exp(x)) = CG(logs(exp(x))) = CG(x1) = g−1
0 CG(x)g0.

Using the inclusion CG(exp(x)) ⊆ CG(x), we see that g0 ∈ NG(CG(x)) and CG(x) =
CG(exp(x)).

(c) From part (b), exp : G ·x → G · exp(x) is a G-equivariant isomorphism (since
its differential is not zero). Under the Springer isomorphism, both G ·nJ and G ·UJ

are normal algebraic varieties. Since the complement of the dense G-orbit in G · nJ

has codimension at least 2 [Jan4, 8.4], by (b) the isomorphism on the Richardson
orbit induced by exp extends uniquely to an isomorphism exp : N1 → U1. The
map exp : N1 → U1 is G-equivariant since its restriction to the open orbit is G-
equivariant. �

We expect that condition (a) holds for every UA ⊆ UJ . This condition is equiv-
alent to the fact that x has an associated character (see [Jan4, 5.3]) with image in
PJ . In many cases we know that N1 is normal. For groups of type A, Donkin [D]
showed that all orbit closures are normal. Furthermore, the closures of the regular
and subregular orbits [KLT] are normal. Thomsen [Th] has also provided a method
to show that N1 is normal for several cases for exceptional groups. It is also an
interesting question to know whether exp : nJ → UJ is the restriction of a Springer
isomorphism. If this is the case, the assumption of the normality of N1 can be
dropped.

2.8. For any x ∈ nJ (Fp), we define ψx : G → N1 by ψx(g) = g · x. The morphism
ψx is defined over Fp. We define Vx = {g ∈ G | g · x ∈ nJ}. Then Vx = ψ−1

x (nJ )
is a closed subvariety defined over Fp by Lemma 1. For any g ∈ Vx set φx(g) =
exp(g ·x)g exp(x)−1g−1. The map φx : Vx → G is a morphism of algebraic varieties
over k.

Lemma 3. For x ∈ nJ (Fp), the map φx is defined over Fp. That is, there exists
an Fp-morphism (φx)Fp

: (Vx)Fp
→ GFp

such that φx = (φx)Fp
⊗Fp

k.
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Proof. We first recall that N has an Fp-structure and the adjoint action G×N → N
is defined over Fp. The restricted nullcone N1 is a subvariety of N with Fp-structure
since the p-map [p] is a morphism of algebraic varieties and defined over Fp. Let fFp

be the composition of (Vx)Fp

ψx→ (nJ)Fp

exp→ (UJ )Fp
such that g �→ g · x �→ exp(g · x).

Let ιFp
, hFp

: GFp
→ GFp

be the morphisms of varieties defined by ιFp
(g) = g−1

and hFp
(g) = g exp(x)−1 for all g ∈ G. Let mFp

: GFp
× GFp

× GFp
→ GFp

and
∆Fp

: GFp
→ GFp

×GFp
×GFp

be the product and diagonal morphisms respectively.
Then the composition

φx,Fp
= mFp

◦ (fFp
× hFp

× ιFp
) ◦ ∆Fp

defines an Fp-morphism (Vx)Fp
→ GFp

such that (φx)Fp
⊗Fp

k = φx. �

Proposition 5. Let G be a simple algebraic group and suppose that p is good for
G. Assume that N1 is normal.

(a) For any x ∈ nJ (Fp), φx : Vx → G is a constant morphism of algebraic
varieties.

(b) For any x ∈ nJ (Fp), the map exp : G ·x → G defined by g ·x �→ g exp(x)g−1

is a G-equivariant morphism extending the morphism exp : (G·x)∩nJ → G.
(c) The map exp : G · x → G · exp(x) is an isomorphism of G-orbits for every

x ∈ nJ .

Proof. (a) The morphism (φx)Fp
is actually defined over the local ring Z(p) from

the construction of exp in Section 2. It is known that over Z(p), the corresponding
morphism is constant. Thus φx is also a constant morphism (see Lemma 1).

(b) First consider the map fx : G → G by fx(g) = g exp(x)g−1. By Proposi-
tion 4(c), we have StabG(x) = CG(exp(x)) and fx factors through G → G · x ∼=
G/ StabG(x) to get a morphism f̄x : G · x → G by the universal property of the
quotient varieties by a group action. We still need to show that f̄x : (G·x)∩nJ → G
is the same as exp when restricted to G ·x∩ nJ . If x′ ∈ nJ ∩G ·x, then there exists
g ∈ Vx such that g · x = x′ ∈ nJ . By (a), we have φx(g) = 1 in G, i.e.,

f̄x(x′) = g exp(x)g−1 = exp(g · x) = exp(x′).

Part (c) follows from Proposition 4(c). �

2.9. We can now prove the main result of this section concerning the exponential
map over the restricted nullcone.

Theorem 3. Let G be a simple algebraic group such that Gsc → G is separable
and let p be a good prime for G. Assume that N1 is normal. With J defined in
Theorem 2 such that N1 = G · nJ , then the isomorphism exp : nJ → UJ extends
uniquely to a G-equivariant isomorphism exp : N1 → U1 of algebraic varieties and
has the following properties:

(a) For any 0 �= x ∈ N1, the map exp restricted to kx is a homomorphism of
algebraic groups exp : kx → U that can be extended to a good A1.

(b) For any x, y ∈ N1, [x, y] = 0 if and only if [exp(x), exp(y)] = 1.
(c) The isomorphism is defined over Fp.

For the rest of the paper, we call exp the exponential map. The inverse map
log : U1 → N1 is the logarithmic map.
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Proof. First the isomorphism exp : nJ → UJ extending uniquely to exp : N1 → U1

was proved in Proposition 4.
To prove (a), we can assume that 0 �= x ∈ nJ . The map expx : Ga → UJ

(t �→ exp(tx)) defines a homomorphism of algebraic groups which can be extended
to a good A1 using the argument of [Sei, Prop. 5.5]. We now use the argument
of [Sei, Lem. 6.3] to see that y ∈ Cg(x) if and only if y ∈ Cg(exp(x)). For the
same reason, we can assume that y ∈ nJ and then, by [Sei, Prop. 6.1], we have
exp(x) ∈ CG(y) = CG(exp(y)). Thus (b) follows.

For (c), the map exp : nJ → UJ is defined over Fp. Thus its extension is also
defined over Fp since both N1 and U1 are defined over Fp. �

3. Fp-expressibility

3.1. In this section we assume that the prime p is good for the simple algebraic
group G and that N1 is normal. Let exp : N1 → U1 be the exponential map and
let log : U1 → N1 be the logarithmic map.

Definition 1. An element x ∈ g is Fp-expressible if x =
∑n

i=1 cixi where ci ∈ k,
xi ∈ g(Fp), x

[p]
i = 0, and [xi, xj ] = 0 for 1 ≤ i, j ≤ n.

Let N Fp be the set of Fp-expressible elements of g. From the definition given
above we have N Fp ⊆ N1. The adjoint action of the algebraic group G on the
variety N1 induces an action of G(Fp) on the variety N Fp .

We can also formulate an analogous notion of Fp-expressibility for elements in
G.

Definition 2. An element g ∈ G is Fp-expressible if

g = exp(t1x1) exp(t2x2) . . . exp(tnxn)

where ti ∈ k, xi ∈ g(Fp), x
[p]
i = 0, and [xi, xj ] = 0 for 1 ≤ i, j ≤ n.

Let UFp be the variety of Fp-expressible elements of G. If g ∈ UFp , then gp = 1,
and so UFp ⊆ U . Similarly, G(Fp) acts on UFp .

3.2. Let N[2] = {(x, y) ∈ N1 × N1 : [x, y] = 0}. This is the restricted variety of
commuting nilpotent elements in g. G acts on N[2] via diagonal adjoint action and
N[2] is defined over Fp. Let us formulate the following assumption on g.

Assumption 1. Let J ⊂ ∆ be given as in Theorem 2 with N1 = G · nJ . Assume
that N[2] = G · ((nJ × nJ ) ∩N[2]).

For p ≥ h, we have n = nJ and the assumption is true, because x, y generates a
nilpotent Lie subalgebra, which is conjugated under G to an abelian subalgebra of
n. It is interesting to note that in order to verify the assumption for smaller primes
we may need new information about the computation for support varieties for the
second Frobenius kernel of G. The support variety of the trivial module for G2 in
that case is N[2].

We also note that G · ((nJ × nJ ) ∩N[2]) is always a closed subvariety of N[2]. In
fact,

Z = {(gPJ , z) ∈ G/PJ ×N[2] | g · z ∈ nJ × nJ}
is a closed subvariety of G/PJ ×N[2] and G ·(nJ ×nJ )∩N[2] is the image of Z under
the projection to the second component. Because G/PJ is a complete algebraic
variety, it follows that G · (nJ × nJ ) ∩ N[2] is closed in N[2].
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3.3. The two notions of Fp-expressibility are related using the exponential map.
This is shown in the following result.

Proposition 6. Suppose that Assumption 1 is satisfied. Let x1, x2, . . . , xn ∈ N1

such that [xi, xj ] = 0 for all i, j = 1, 2, . . . , n.
(a) For any t1, t2, . . . , tn ∈ k,

(3.3.1) exp(
n∑

i=1

tixi) =
n∏

i=1

exp(tixi).

(b) An element g of G is Fp-expressible if and only if g = exp(x) for some
x ∈ N Fp . Moreover, the map exp maps N Fp onto UFp . In particular, for
any element 1 �= g ∈ G(Fp) such that gp = 1, then g ∈ UFp

1 .

Proof. (a) Since N1 is conical, we can use induction on n to reduce to proving
exp(x + y) = exp(x) exp(y) for all x, y ∈ N1 such that [x, y] = 0. If there is g ∈ G
such that g · x and g · y are both in nJ , then we are done.

Define a map f : N[2] → G by

f(x, y) = exp(x + y) exp(−x) exp(−y), for all (x, y) ∈ N[2].

Clearly f is a morphism of algebraic varieties and G-equivariant. By Proposition 2,
f(N[2] ∩ (nJ × nJ )) = 1, where 1 is the identity element of the group G. Thus
f(G · (N[2] ∩ (nJ × nJ ))) = {1}. By the assumption, we have f(N[2]) = {1} and
exp(x + y) = exp(x) exp(y) for all x, y ∈ N1 with [x, y] = 0. Part (b) is a direct
consequence of part (a) since exp is defined over Fp. �
3.4. We can now show that the exponential map sends Fp-expressible elements in
g to Fp-expressible elements in G.

Theorem 4. The G-equivariant isomorphism exp : N1 → U1 induces a G(Fp)-
equivariant isomorphism exp : N Fp → UFp of varieties.

Proof. Let x =
∑n

i=1 cixi ∈ N Fp . By Proposition 6, we then have exp(x) =∏n
i=1 exp(cixi). Thus exp(N Fp) ⊆ UFp . Conversely, any

g = exp(t1x1) exp(t2x2) · · · exp(tnxn) = exp(
n∑

i=1

tixi) ∈ exp(N Fp).

�

4. Finite morphisms of support varieties

Unless otherwise stated, we will assume throughout this section that p is good,
N1 is normal, and Assumption 1 is satisfied. In particular when p ≥ h, these
conditions are automatically satisfied.

4.1. For each x ∈ N1, we denote by x̂ : Ga → G the homomorphism of algebraic
groups defined by x̂(t) = exp(tx) (see Theorem 3).

Let E be an elementary abelian p-subgroup of G(Fp) of rank n. We may write
E = 〈y1〉 × 〈y2〉 × · · · × 〈yn〉 with independent generators y1, y2, . . . , yn. From
Proposition 6(b), there exist nilpotent elements of N Fp , namely x1, x2, . . . , xn such
that x̂i(1) = yi for i = 1, 2, . . . , n. We can now define a map σ : An → G of
algebraic varieties by σ(t1, . . . , tn) = x̂1(t1)x̂2(t2) · · · x̂n(tn). Since yi ∈ G(Fp), we
have xi ∈ g(Fp). Set Ê = σ(An).
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Proposition 7. The map σ is a homomorphism of algebraic groups with the fol-
lowing properties:

(a) σ(An) is an abelian algebraic subgroup of G;
(b) Im(σ) ⊆ UFp and Im(dσ) ⊆ N Fp ;
(c) σ : An → Ê is an isomorphism of algebraic varieties.

Proof. (a) It follows from Theorem 3(b) that [xi, xj ] = 0. So Proposition 6 shows
that σ is a homomorphism of algebraic groups and σ(An) is abelian.

(b) Since Im(σ) is an abelian subgroup of G and x1, x2, . . . , xn ∈ g(Fp), it follows
that Im(σ) ⊆ UFp . Now consider the differential dσ : Lie(An) → Lie(G) whose im-
age is an abelian Lie subalgebra which is the k-linear span of the set x1, x2, . . . , xn.
Therefore, Im(dσ) ⊆ N Fp .

(c) Suppose that ker(σ) has positive dimension. Then x1, . . . , xn would be lin-
early dependent over k. Since xi ∈ g(Fp) for 1 ≤ i ≤ n, the elements x1, . . . , xn

would have to be linearly dependent over Fp. Without loss of generality we may
assume that x1 is an Fp-linear combination of x2, . . . , xn. This shows that y1 =
ya2
2 · · · yan

n for some integers a2, . . . , an. This contradicts the fact that y1, . . . , yn

are independent generators of E. Hence, An →
∑n

i=1 kxi is an isomorphism.
Now the fact that σ is an isomorphism of varieties follows from the isomorphism
exp :

∑n
i=1 kxi → Ê. �

4.2. For a given elementary abelian p-group E, we set J = Rad(kE), which is the
ideal generated by y − 1 for all y ∈ E. Note that kE is the restricted enveloping
algebra of the trivial restricted (abelian) Lie algebra (J/J2). The cohomological
variety of kE can be identified with |E|k = J/J2 [FP2], which is a k-vector space.

Let E = 〈y1〉 × 〈y2〉 × · · · × 〈yn〉 for an independent generating set {y1, . . . , yn}.
Then |E|k can be identified with kn by (t1, t2, . . . , tn) �→

∑n
i=1 ti(yi − 1) + J2.

Under the above identification, for M ∈ mod(E), the support variety of M can be
identified with [Ben1, 5.8.2, 5.8.3]

(4.2.1) |E|M = {(t1, t2, . . . , tn) : M is not free over 〈1 +
n∑

i=1

ti(yi − 1)〉} ∪ {0}.

We say that M is projective over 〈x〉 or M |〈x〉 is projective if M is projective
over the group algebra k〈x〉 when x is an invertible element of order p in a group
ring or over the restricted enveloping algebra of the 1-dimensional Lie algebra kx
when x is an element of the restricted Lie algebra with x[p] = 0.

For each g ∈ G(Fp), gEg−1 = 〈gy1g
−1〉×〈gy2g

−1〉×· · ·×〈gyng−1〉 is an elemen-
tary abelian p-subgroup of rank n. Let E′ = 〈u1〉 × 〈u2〉 × · · · × 〈um〉 be another
elementary abelian p-subgroup of G(Fp) such that gE′g−1 ⊆ E for some g ∈ G(Fp).
We write guig

−1 =
∏n

j=1 y
rij

j . Then the matrix (rij) has full rank over the field Fp.
For each (t1, . . . , tn) ∈ |E|k and u = 1 +

∑m
i=1 ti(ui − 1) ∈ kE′ we have that

(4.2.2) gug−1 = 1 +
m∑

i=1

ti(guig
−1 − 1) = 1 +

n∑
j=1

(
m∑

i=1

tirij)(yj − 1) + r2

where r2 is an element in J2. To prove the relation above we use the identity
(yz−1) = (y−1)+(z−1)+(y−1)(z−1). The conjugation map by g : E′ → E induces
a map S(g) : |E′|k → |E|k. Under the given basis and the above identifications,
the map S(g) is given by the matrix (rij). Although the matrix description of the
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map depends on the choice of bases for E′ and E, the map S(g) is independent of
the bases.

Let E be the category whose objects are elementary abelian p-subgroups E of the
finite group G(Fp) and the morphism sets are (E, E′) = {g ∈ G(Fp) : gEg−1 ⊆
E′}. Let S : E → V be the functor that assigns to each E the cohomological variety
of E where V is the category of all algebraic k-varieties. The morphism g : E → E′

induces a map S(g) : |E|k → |E′|k. Since the category E has only finitely many
objects, the direct limit of the functor S exists in V .

Let ̂|G(Fp)|k = lim
−→E

|E|k be the direct limit with the maps ρE : |E|k → lim
−→E

|E|k.

This direct limit has the following universal property: if we are given an algebraic
variety V and any collection of morphisms φE : |E|k → V of algebraic varieties
such that for every morphism g : E → E′ in E we have the following commutative
diagram,

|E|k
S(g)−−−−→ |E′|k

φE

⏐⏐	 φE′

⏐⏐	
V

Id−−−−→ V,

then there is a unique morphism of algebraic varieties ψ : lim
−→E

|E|k → V that makes

the following diagram commute:

|E|k
ρE−−−−→ lim

−→E
|E|k

φE

⏐⏐	 ψ

⏐⏐	
V

Id−−−−→ V.

Given E = 〈y1〉×〈y2〉×· · ·×〈yn〉 and x1, x2, . . . , xn ∈ N Fp such that exp(xi) = yi

for i = 1, 2, . . . , n, define ζ̂E : |E|k → G by

(4.2.3) ζ̂E(t1, t2, . . . , tn) =
n∏

i=1

exp(tixi).

Now let ζE : |E|k → G/G(Fp) be the map defined as ζ̂E composed with the quotient
map π : G → G/G(Fp). The above discussion together with Theorem 3 shows that
the map ζE is independent of the choice of basis for E. It follows from Proposition
7 that ζE is a finite map onto its image.

Let log : U1 → N1 be the inverse morphism of exp and log : U1/G(Fp) →
N1/G(Fp) be the induced morphism (see Theorem 3).

Theorem 5. Let G be a simple algebraic group and assume that p is good, N1

is normal, and the Assumption 1 is satisfied. There are finite surjective maps of
varieties φ : ̂|G(Fp)|k → UFp/G(Fp) and ψ : ̂|G(Fp)|k → N Fp/G(Fp) such that
ψ = log ◦ φ and φ ◦ ρE = ζE for each elementary abelian subgroup E of G(Fp).

Proof. The finite group G(Fp) acts on the algebraic group G by conjugation. Let
E = 〈y1〉×〈y2〉× · · ·× 〈yn〉 and E′ = 〈y′

1〉×〈y′
2〉× · · ·× 〈y′

m〉 be elementary abelian
p-subgroups of G(Fp) with gE′g−1 ⊆ E for some g ∈ G(Fp). Let yi = exp(xi)
for i = 1, 2, . . . , n and y′

j = exp(x′
j) for j = 1, 2, . . . , m where xi, x

′
j ∈ gFp

for all
i, j. Under the adjoint action of G on g, Ad(g)(x′

i) =
∑n

j=1 rijxj . Then for each
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(t1, t2, . . . , tm) ∈ |E′|k,

π(ζ̂E′(t1, . . . , tm)) = π(g · ζ̂E′(t1, . . . , tm)) = π(g(
m∏

i=1

exp(tix′
i))g

−1)

= π(
n∏

i=1

exp(
n∑

i=1

tirijxj)) = ζE(S(g)(t1, t2, . . . , tm)).

(4.2.4)

The above identity proves that the diagram

|E′|k
S(g)−−−−→ |E|k

ζE′

⏐⏐	 ζE

⏐⏐	
G/G(Fp)

id−−−−→ G/G(Fp)

commutes for all g ∈ G(Fp). The horizontal map on the bottom of the diagram is
induced by the conjugation of g and thus is the identity map on G/G(Fp).

Hence, by the universal property of the direct limit, there exists a map φ :
lim
−→E

|E|k → G/G(Fp). The image of each ζE is in UFp ; thus φ : lim
−→E

|E|k →
UFp/G(Fp) is defined. The map φ is onto since, for each u ∈ UFp , there exists an
elementary abelian p-subgroup E such that ζ̂E(|E|k) contains u. The map φ is finite
because there are only finitely many elementary abelian p-subgroups and each ζE

is finite. Since log is a G(Fp)-isomorphism of UFp with N Fp , the map log induces
the isomorphism log between the quotient spaces UFp/G(Fp) and N Fp/G(Fp). We
define ψ = log ◦ φ with ψ : ̂|G(Fp)|k → N Fp/G(Fp). The finiteness of ψ follows
from the finiteness of φ. �

We remark that, by Quillen’s Stratification Theorem [Ben1, Cor 5.6.4], |G(Fp)|k
is homeomorphic to ̂|G(Fp)|k = lim

−→E
|E|k. For the sake of convenience, we define

our maps φ and ψ explicitly on ̂|G(Fp)|k rather than on |G(Fp)|k.

4.3. For M ∈ mod(G(Fp)), let ̂|G(Fp)|M = lim
−→E

|E|M . Observe that ̂|G(Fp)|M is a

closed subvariety of ̂|G(Fp)|k. By a well-known result of Avrunin and Scott [AS],

the restriction maps induce an inseparable isogeny δ : ̂|G(Fp)|M → |G(Fp)|M . A

fundamental question is to describe the image of ̂|G(Fp)|M under the maps φ and
ψ. We begin this investigation by proving a result which compares restrictions of
nilpotent (and unipotent) elements on a rational G-module M .

Proposition 8. Let M be a finite dimensional k-vector space and x, y ∈ Endk(M)
be two commuting elements such that x �= 0 and xp = yp−1 = 0. Then

(a) 1 + x and 1 + x + y are invertible, and
(b) if M is a free module over the group algebra k〈1 + x〉, then M is free over

the group algebra k〈1 + x + y〉.

Proof. Since xp = 0 and x �= 0, the element 1 + x is invertible of order p in
Endk(M). It is clear that 1 + x + y is invertible. There exists an isomorphism of
algebras k〈1 + x〉 ∼= k[T ]/〈T p〉 where 1 + x �→ 1 + T . Since M is free as a module
over k〈1 + x〉, M is free over k[T ]/〈T p〉. Let {v1, . . . , vr} be a free basis . Then
{vi, T vi, . . . , T

p−1vi | i = 1, . . . , r} is a k-basis of M . In particular xp−1 �= 0.
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Let l be a two dimensional trivial restricted Lie algebra with basis {z1, z2}.
Define a restricted l-module structure on M by z1 �→ x and z2 �→ y. Note that the
support variety of M as an l-module [FP2] is

|M |l = {z ∈ l | M |〈z〉 is not projective} ∪ {0}.
Let M = M1 ⊕ M2 ⊕ · · · ⊕ Ms be a decomposition of M into indecomposable u(l)-
modules. Note that M is free over 〈z〉 if and only if Mj is free over 〈z〉 for all j. So
without a loss of generality we may assume that M is indecomposable over u(l).

By our assumption yp−1 = 0, so the above characterization of the support variety
of M shows that z2 ∈ |M |l while z1 �∈ |M |l. Consequently, |M |l is a proper closed
subvariety of l. The projective variety Proj(|M |l) is a proper closed connected
subvariety of P1 [FP2] and is either empty or a single point. Hence, |M |l is at
most a 1-dimensional vector subspace of l spanned by the line kz1. It follows that
z1 + z2 �∈ |M |l since z2 ∈ |M |l and z1 �∈ |M |l. Therefore, M is a projective module
for the algebra u(〈z1 + z2〉) and the proposition follows.1 �
4.4. Let σ : SL2 → G be a homomorphism of algebraic groups defined over the
localization Z(p) of Z at p. The differential dσ : Dist(SL2) → Dist(G) is a homomor-
phism of associative algebras. Note that the distribution algebra of the unipotent
subgroup 1 + kE21 of SL2 has a basis E

(n)
21 satisfying E

(n)
21 E

(m)
21 =

(
n+m

n

)
E

(n+m)
21 .

Let x ∈ g such that x = dσ(E12). We set x(n) = dσ(E(n)
12 ) ∈ Dist(G).

For any rational G-module M , the action of exp(tx) is the same as
∑

n≥0 tnx(n)

by Proposition 2. Note that x(n)x(m) =
(
n+m

n

)
x(n+m) (see [St]). For n =

∑
i rip

i

with 0 ≤ ri < p, we have that x(n) =
∏

i(x
(pi))ri/ri!. Let bs =

∑s
i=0 rip

i. By
considering the images in Endk(M), we have

(4.4.1) exp(tx) =
∑
s≥0

∑
0≤r0,...,rs<p

xr0(x(p))r1 · · · (x(ps))rs

r0!r1! · · · rs!
tbs .

4.5. Let x ∈ N1. There is a homomorphism of σ : SL2 → G such that x = dσ(E21).
As in Section 4.4, x(n) ∈ Dist(G) is defined with fixed σ. The following proposition
will provide some motivation for the results in the following two subsections.

Proposition 9. Let M ∈ mod(G). Suppose x satisfies (x(pi))p−1 = 0 in Endk(M)
for all i ≥ 1. Then for each t ∈ k∗, M |〈exp(tx)〉 is free if and only if M |〈x〉 is free.

Proof. Note that in Endk(M) we can write exp(tx) = 1 + tx + y such that tx and
y satisfy the condition of Proposition 8. Since t ∈ k∗, M |〈x〉 is free implies that
M |〈1+tx〉 is free. Therefore, by Proposition 8, M |〈exp(tx)〉 is free. Conversely, we
can substitute tx+y for x and −y for y in Proposition 8. Then the same argument
shows that if M |〈exp(tx)〉 is free, then M |〈x〉 is free. �

When G = SL2 and x is a positive root vector, the condition of the above
proposition is satisfied for any G-module M all of whose weights are strictly less
than p(p − 1). Therefore, under these conditions, M is projective over the Sylow
p-subgroup of SL2(Fp) if and only if it is projective over the nilpotent radical of the
Borel subalgebra. Consequently, M is projective as an SL2(Fp)-module if and only if

1We thank Julia Pevtsova for pointing out a gap in the earlier proof of (b). The earlier version
relied on the proof of [Ben2, p. 129, Lemma 2.25.5], which is not correct because the subgroup
of upper triangular matrices in the centralizer contains a Sylow p-subgroup if and only if there is
only one p × p Jordan block.
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M is projective for the Lie algebra sl2. This result was proved in [LN, Thm. 4.3] for
SL2 by classifying all indecomposable SL2-modules with weights less than p(p− 1)
and computing their dimensions. It turns out that the indecomposable SL2-modules
with weights less than p(p− 1) and dimension divisible by p are projective over sl2.
The aforementioned proposition provides a much more natural (and enlightening)
proof of this result.

4.6. The category Cp. Let G be a simple algebraic group of Lie rank l, and let Cp

be the full subcategory of G-modules for which all dominant weights λ satisfy the
condition

(4.6.1)
l∑

i=1

l∑
j=1

〈λ, α∨
i 〉bij < p(p − 1)/2.

Here the matrix (bij) is the inverse matrix of the Cartan matrix (〈αi, α
∨
j 〉). Let

ω1, ω2, . . . , ωl be the fundamental weights. Note that ωi =
∑l

j=1 bijαj , and

ω∨
i = 2ωi/〈αi, αi〉 =

l∑
j=1

bjiα
∨
j

satisfies the condition that λ =
∑l

i=1〈λ, ω∨
i 〉αi for any λ ∈ X(T ). Hence the left

hand side of (4.6.1) equals
∑l

j=1〈λ, ω∨
j 〉. For a simple algebraic group G let c be

the value given in the table below.
type Al Bl Cl Dl E6 E7 E8 F4 G2

c ((l + 1)/2)2 l(l + 1)/2 l2/2 l(l − 1)/2 16 27 46 11 4
The condition 〈λ, α∨

0 〉 < p(p − 1)/c, where α0 is the highest short root of the
indecomposable root system, will insure that λ satisfies the condition (4.6.1). The
computation of c is provided in the Appendix in §6.

Let x ∈ N Fp . We have x = t1x1+t2x2+· · ·+tnxn where xi ∈ g(Fp), and [xi, xj ] =
0. Let 1 ≤ i ≤ n be fixed. According to [Sei], there exists a homomorphism
σ : SL2 → G of algebraic groups such that dσ(E12) = xi (cf. §2.6). Let T ′ be the
maximal torus of SL2 and T be the maximal torus in G. Since M is a G-module,
we can conjugate xi and assume that xi ∈ nJ and the image of T ′ is contained
in T . Since hom(T ′, T ) = hom(Gm, T ) = homZ(X(T ), Z), the homomorphism
σ : T ′ → T determines an element t∨ ∈ homZ(X(T ), Z). On any G-module, T ′

acts on the weight space that has T -weight λ by the T ′-weight 〈λ, t∨〉 = t∨(λ). By
[C, Lemma 5.6.5], we can choose a Weyl group element conjugation to assume that
t∨(α) ≥ 0 for all α ∈ Φ+.

By Dynkin’s theorem [C, Prop 5.6.6], the possible values for aj = t∨(αj) are
0, 1, 2. For any weight λ ∈ X(T ), write λ =

∑l
j=1〈λ, ω∨

j 〉αj . Consequently, for any
dominant weight λ of the G-module M in Cp, we have that

(4.6.2) t∨(λ) =
l∑

j=1

〈λ, ω∨
j 〉t∨(αj) ≤

l∑
j=1

2〈λ, ω∨
j 〉 < p(p − 1).

Note that the above condition is equivalent to the statement that t∨(w0(λ)) >
−p(p−1) where w0 is the longest element of the Weyl group. Thus for any M ∈ Cp

and any weight µ of M , there is a dominant weight λ of M in Wµ such that
w0(λ) ≤ µ ≤ λ in the usual partial order. Since t∨(ν) ≥ 0 for all ν ∈ NΦ+, we have
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p(p−1) > t∨(µ) > −p(p−1). Note that each x(ps) has T ′-weight 2ps. If v ∈ M has
T -weight µ, then (x(ps))p−1v �= 0 would have T ′-weight 2(p−1)ps+t∨(µ) ≥ p(p−1),
assuming that s > 0. Thus, (x(ps))p−1v = 0, and (x(ps))p−1M = 0.

4.7. Let us fix some notation for the rest of this section. Let x = t1x1 + t2x2 + · · ·+
tnxn ∈ N Fp where x1, . . . , xn ∈ g(Fp) and t1, . . . , tn ∈ k. Assume that [xi, xj ] = 0
and x

[p]
i = 0. Set u =

∏n
i=1 exp(tixi) ∈ UFp and y = 1 +

∑n
i=1 ti(yi − 1) ∈

kG(Fp) where yi = exp(xi) for i = 1, 2, . . . , n. Recall that under these conditions:
φ(t1, t2, . . . , tn) = u and ψ(t1, t2, . . . , tn) = x.

Theorem 6. Assume that G satisfies the conditions at the beginning of Section 4.
Let M ∈ mod(G) such that (x(ps)

i )p−1 = 0 in Endk M for all s ≥ 1 (i.e. if M is in
Cp). Then the following three conditions are equivalent.

(a) M |〈x〉 is not free.
(b) M |〈u〉 is not free.
(c) M |〈y〉 is not free.

Proof. (a) ⇔ (c). First observe that as operators in Endk(M),

(4.7.1) y − 1 =
n∑

i=1

tixi +
n∑

i=1

∑
j≥2

tix
(j)
i = x +

n∑
i=1

∑
j≥2

tix
(j)
i .

Since x
(j)
i are all commuting elements in Endk(M), the assumption shows that

(x(j)
i )p−1 = 0 for all j ≥ 2. Applying Proposition 8 repeatedly by adding the terms

tix
(j)
i , we see that M |〈y〉 is free whenever M |〈x〉 is free. Conversely, assume that

M |〈y〉 is free. Note that (y − 1)p = 0 in Endk(M). By adding −tix
(j)
i for j ≥ 2 we

obtain that M |〈x〉 is free, from Proposition 8.
(a) ⇔ (b). An expansion of u as an operator in Endk(M) has the form

(4.7.2) u = 1 + x +
∑

j1,j2,...,jn

n∏
i=1

tji

i x
(ji)
i .

The summation is over all (j1, j2, . . . , jn) ∈ Nn such that
∑n

i=1 ji ≥ 2. Since all
factors in (4.6.2) commute in Endk(M), we have

(4.7.3)

(
n∏

i=1

tji

i x
(ji)
i

)p−1

= 0

by the assumption. Then the same argument as above shows that M |〈x〉 is free if
and only if M |〈u〉 is free. �

4.8. We now apply Proposition 8 to describe the image of ̂|G(Fp)|M in UFp/G(Fp)
(resp. N Fp/G(Fp)) under φ (resp. ψ).

Corollary 1. Let G be a simple algebraic group such that p is good, N1 is normal,
and Assumption 1 holds and let M ∈ Cp. Then

(a) {u ∈ UFp : M |〈u〉 is not free} = exp({x ∈ N Fp : M |〈x〉 is not free}).
(b) φ( ̂|G(Fp)|M ) = {u ∈ UFp : M |〈u〉 is not free}/G(Fp) ∪ {0}.
(c) ψ( ̂|G(Fp)|M ) = {x ∈ N Fp : x[p] = 0, M |〈x〉 is not free}/G(Fp) ∪ {0}.
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Proof. Part (a) follows directly from the equivalence of (a) and (b) in Theorem 6.
Part (b) can be seen by using the equivalence of (b) and (c) of Theorem 6. Finally,
part (c) holds because of (a) and (c) of Theorem 6. �

4.9. A precise relationship between |G(Fp)|M and |G1|M can now be provided when
M is a module in Cp.

Corollary 2. Let G be a simple algebraic group and assume that p satisfies the
assumptions at the beginning of Section 4. If M is in Cp, then ψ( ̂|G(Fp)|M ) =
(N Fp

1 ∩ |g|M )/G(Fp). Furthermore,

dim |G(Fp)|M = dim(N Fp ∩ |g|M ).

Proof. The first statement follows from Corollary 1(c), and the equality of dimen-
sions holds because ψ is a finite map. �

For M in Cp, the preceding result provides a complete answer to the question
(1.1.2) raised by Parshall. This relationship will be used in Section 5 to compute
the complexity of modules for the finite group G(Fp). We should also add that for
M ∈ mod(G), |g|M is a closed G-invariant subvariety of N1 and thus the union
of (finitely many) nilpotent orbits. An interesting and useful problem would be to
determine the dimension of the intersection of a nilpotent orbit with N Fp .

5. Applications

5.1. Alperin and Mason [AM2] proved that for a finite group G(Fq) with underlying
root system of type A, D or E, a simple module S is isomorphic to the Steinberg
module if and only if S is projective upon restriction to a root subgroup Xα(t).
Our first application extends this result to all root systems in the case when q = p
and p ≥ h.

Theorem 7. Let G be a simple algebraic group with p ≥ h. Then a simple module
S for G(Fp) is the Steinberg module if and only if S|Xα(t) is projective for some
long root α.

Proof. If S is the Steinberg module, then it is projective over G(Fp) and thus
projective over all root subgroups.

On the other hand, suppose that S|Xα(t) is projective for some long root α.
Since all long roots are conjugate via the Weyl group action, we may assume that
α = −α̃, where α̃ is the highest root. Let S = L(λ) where λ ∈ X1(T ). Since p ≥ h,
for all weights µ of L(λ) we have

〈µ, α̃∨〉 ≤ 〈λ, α∨
0 〉 ≤ 〈(p − 1)ρ, α∨

0 〉 < p(p − 1),

where α0 is the highest short root. Now one can use a weight argument to show
that (x(ps)

α )p−1 acts as zero on S for s ≥ 1 (since µ = w0(λ + (p − 1)psα) is not
a weight of L(λ)). It follows by Proposition 4.5 that S must be projective over
〈xα〉, and projective over G1 by [FP2, (2.4)(b) Prop.]. This proves the conclusion
because the only simple projective module over G1 is the Steinberg module. �
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5.2. Janiszczak and Jantzen [JJ] proved that there are no periodic nonprojective
simple modules for a group G(Fq) when rank(G) ≥ 2. The following results demon-
strate how the map ψ and the geometry of nilpotent orbits can be used to extend
this result in several different directions because all simple G(Fp)-modules are in
Cp.

Proposition 10. Let G = GLn+1(k) (Φ of type An). Then dim(O ∩N Fp) ≥ n for
any nonzero nilpotent orbit O. Furthermore, if G is simple of rank at least two and
if O is the minimal nilpotent orbit, then dim(O ∩N Fp) ≥ 2.

Proof. We first assume that G is of type An. Then every nilpotent orbit is a
Richardson orbit [Hum4, 5.5]. The minimal orbit corresponds to a maximal par-
abolic subalgebra which has a nilpotent radical, that is, an n-dimensional abelian
subalgebra with a basis consisting of root vectors in g(Fp). This shows that
dim(Ō ∩ N Fp) ≥ n.

Note that for another simple algebraic group G of any type other than Cn (n ≥
2), G contains a rank 2 subgroup K defined over Fp with root system A2 consisting
of some long roots of G. The minimal orbit of G is the orbit of a long root vector.
Thus O∩K contains the minimal nilpotent orbit of K. Note that Lie(KFp

) ⊆ gFp
.

Thus the lemma follows from the result for type A2. For type Cn, it suffices to
consider the case when n = 2 and then apply the same reasoning as above. In
this case C2 = B2. Let α, β be the simple roots with β a long root. A quick
computation shows that exp(xα)(xβ) = xβ + xβ+α + xβ+2α ∈ O. Now the actions
of the maximal tori of the two type A1 subgroups corresponding to the long roots
β and β + 2α yield that t2xβ + tsxβ+α + s2xβ+2α ∈ O for all t, s ∈ k∗. Note that
the set of all these elements is in N Fp and is a two dimensional closed subvariety
in kxβ + kxβ+α + kxβ+2α ⊆ N Fp . This proves the result for groups of type Cn. �

Corollary 3. Let G be a simple algebraic group and let M ∈ Cp be a G-module
which is not projective as a G(Fp)-module.

(a) If M is indecomposable in mod(G(Fp)) and rank(G)≥2, then dim |G(Fp)|M
≥ 2.

(b) If G has an underlying root system of type An, then dim |G(Fp)|M ≥ n.

Proof. For (a), suppose that M is a nonprojective indecomposable module over
G(Fp). Then M is nonprojective over g by [LN, Cor. 3.5]. Therefore, G ·xβ ⊆ |g|M
for β the highest long root vector. Now the result follows from Proposition 10 and
Corollary 2. Part (b) is a direct consequence of Proposition 10. �

It is interesting to note that for simple algebraic groups with root systems other
than of type An, the minimal orbit is rigid [CM, Lem. 7.1.5], and thus cannot be
Richardson.

5.3. Rank 2 groups. For λ ∈ X(T ), let Φλ = {α ∈ Φ+ : 〈λ + ρ, α∨〉 ∈ pZ}.
When p is good, there exists a subset J of simple roots and w ∈ W such that
w(Φλ) = ΦJ . Let uJ be the nilpotent radical of the parabolic algebra determined
by J . In [NPV, (6.6.1) Cor.] the support varieties of simple modules for g were
calculated for rank 2 groups. The next result shows how to use this information
to calculate the dimensions of the support varieties for simple modules over G(Fp)
when G has rank two.
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Theorem 8. Let G be a simple algebraic group of rank 2 with underlying root
system A2 (resp. B2 or G2) with p > 3 (resp. p > 7, or p > 19) and let λ ∈ X1(T ).

(a) If λ = (p − 1)ρ, then dim |G(Fp)|L(λ) = 0.

(b) If λ �= (p − 1)ρ, then dim |G(Fp)|L(λ) =

{
2 for A2,

3 for B2 and G2.

Proof. (a) Observe that λ = (p−1)ρ if and only if Φλ = Φ. Furthermore, L((p−1)ρ)
is the Steinberg module which is projective over G(Fp); thus |G(Fp)|L(λ) = {0}.

(b) We may now assume that Φλ is a subroot system of Φ which is empty or
of type A1. Let J = {α} be the set consisting of one simple root. By [NPV,
6.6.1], we have that G · uJ ⊆ |g|L(λ). Note that uJ is the nilpotent radical of a
minimal parabolic subalgebra Pα. By a result of Steinberg [Hum4, Lemma 5.8
(i)], we have G · u{α} = G · u{β} for any simple root β since G is simple. Thus
we can choose the simple root α such that uJ contains a sufficiently large abelian
subalgebra defined over Fp. For type A2, uJ is abelian of dimension 2, which is
also the p-rank of the group G(Fp). For the types B2 and G2, we can choose α to
be the short simple root. Then uα contains a three dimensional abelian subalgebra
(a sum of three commuting root spaces). Note that G(Fp) has p-rank 3 for both
B2 and G2 (for p > 3). If J = ∅, then uJ is the unipotent radical of a Borel
subalgebra. An elementary abelian p-subgroup of maximal rank is contained in the
Borel subgroup which gives an abelian Lie subalgebra of g(Fp) (see Proposition 7).
Thus dim |G(Fp)|H0(λ) is the p-rank of the group G(Fp). �

We refer the reader to [GLR, Table 3.3.1] for a list of p-ranks of finite simple
groups of Lie type.

5.4. Induced modules. In [NPV, (6.2.1) Thm.], it was shown that for p good and
λ ∈ X(T )+, if J ⊂ Π with w(Φλ) = ΦJ , then |g|H0(λ) = G ·uJ . The theorem below
allows us to use this computation to determine the dimension of support varieties
for H0(λ) over G(Fp). The ease of these computations illustrates the power of this
geometric approach.

Theorem 9. Let G be a connected reductive algebraic group with p good for G.
Suppose λ ∈ X(T )+ such that 〈λ, α∨

0 〉 < p(p − 1)/c.

(a) If J ′ is a subset of the simple roots such that uJ′ is abelian and uJ′ ⊆
|g|H0(λ), then

dimk uJ′ ≤ dim |G(Fp)|H0(λ) ≤ min{p -rankG(Fp),
1
2

dim |g|H0(λ)}.

(b) If w(Φλ) = ΦJ for some w ∈ W and uJ is abelian, then dimk |G(Fp)|H0(λ) =
dimk uJ .

(c) If Φλ = ∅, then dim |G(Fp)|H0(λ) = dim |G(Fp)|k.

Proof. The assumption on λ insures that H0(λ) is in Cp. (a) Suppose that uJ′ ⊆
|g|H0(λ) where uJ′ is abelian. Then uJ′ ⊆ N Fp ∩|g|H0(λ) ⊆ ψ(|G(Fp)|H0(λ)). Hence,
dimk uJ′ ≤ dim |G(Fp)|H0(λ). The other inequality follows by [LN, Thm. 3.4(b)]
and the fact that the dimension of the support variety of a module is always bounded
by the dimension of the support variety of the trivial module which is precisely the
p-rank of the group.
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(b) Under the hypotheses we have |g|H0(λ) = G·uJ where uJ is abelian. Therefore
by part (a), dimk uJ ≤ dim |G(Fp)|H0(λ). On the other hand, by [LN, Thm. 3.4(b)],
we have

dim |G(Fp)|H0(λ) ≤
1
2

dim |g|H0(λ) = dimk uJ .

The last equality uses the dimension formula (see [C, 5.10.2] and [Hum4, 6.7]).
(c) When Φλ = ∅, then the elementary abelian p-subgroup of G(Fp) contained in

the unipotent radical of the Borel subgroup B corresponds to an abelian subalgebra
of gFp

which is contained in uJ and which has dimension equal to the p-rank of the
finite group (see Proposition 7). �

5.5. Computations for GLn. We now concentrate on the group G = GLn with
underlying root system of type An−1. The p-rank of GLn(Fp) is given for n ≤ 7 in
the table below.

group p-rank
GL2(Fp) 1
GL3(Fp) 2
GL4(Fp) 4
GL5(Fp) 6
GL6(Fp) 9
GL7(Fp) 12

By using Theorem 9, the dimensions of the support varieties for the induced modules
H0(λ) with λ ∈ X1(T ) can be computed completely for n ≤ 5. They can also be
computed in all but two cases for n = 6 and n = 7. These computations are given in
the tables below. In the two exceptional cases, the unipotent radical corresponding
to the stabilizer Φλ is not abelian and an elementary abelian p-subgroup of largest
rank is not contained in the unipotent radical.

GL2(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 1
A1 0

GL3(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 2
A1 2
A2 0

GL4(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 4
A1 4
A1 × A1 4
A2 3
A3 0

GL5(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 6
A1 6
A1 × A1 6
A2 6
A2 × A1 6
A3 4
A4 0
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GL6(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 9
A1 9
A1 × A1 9
A2 9
A1 × A1 × A1 8 or 9
A2 × A1 9
A3 8 or 9
A2 × A2 9
A3 × A1 8
A4 5
A5 0

GL7(Fp)
Φλ dim |G(Fp)|H0(λ)

∅ 12
A1 12
A1 × A1 12
A2 12
A1 × A1 × A1 12
A2 × A1 12
A3 12
A2 × A1 × A1 12
A2 × A2 12
A3 × A1 12
A4 10 or 11
A3 × A2 12
A4 × A1 10
A5 6
A6 0

6. Appendix

6.1. For a dominant integral weight λ ∈ X(T )+, we express λ =
∑l

i=1 λiωi in terms
of the fundamental weights ω1, ω2, . . . , ωl. We give an estimate for t∨(ωi) for each
root system using the table in [Hum1, 13.2] and the fact that 0 ≤ t∨(αi) ≤ 2 (see
Corollary 1).

In this appendix we list all ai = t∨(ωi) =
∑l

j=1 2bij for t∨(αi) = 2. Hence,
ai is twice the sum of the coefficients of ωi when expressed in terms of simple
roots. Set ni = 〈ωi, α

∨
0 〉 and bi = ai/ni. Then 〈λ, α∨

0 〉 =
∑l

i=1 niλi and t∨(λ) ≤∑l
i=1 biniλi ≤ c〈λ, α∨

0 〉, where c = maxi{bi}. The Coxeter number h is given by
the formula h = 1 +

∑l
i=1 ni.

Type (n1, . . . , nl) h c
Al (1, 1, . . . , 1) l + 1 ((l + 1)/2)2

Bl (2, 2, . . . , 2, 1) 2l l(l + 1)/2
Cl (1, 2, . . . , 2) 2l l2/2
Dl (1, 2, . . . , 2, 1, 1) 2l − 2 l(l − 1)/2
E6 (1, 2, 2, 3, 2, 1) 12 16
E7 (2, 2, 3, 4, 3, 2, 1) 18 27
E8 (2, 3, 4, 6, 5, 4, 3, 2) 30 46
F4 (2, 4, 3, 2) 12 11
G2 (2, 3) 6 4

6.2. The quantity ai is given below for all indecomposable root systems.
Type A. For i = 1, 2, . . . , l,

ai =
2

l + 1
[(l − i + 1)

i∑
j=1

j + i
l∑

j=i+1

(l − j + 1)] = i(l − i + 1),(6.2.1)

c = (l + 1)2/4.(6.2.2)
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Type B. For i = 1, 2, . . . , l − 1,

ai =
i∑

j=1

2j + i

l∑
j=i+1

2 = i(2l − i + 1) ≤ l(l + 1),(6.2.3)

al =
1
2

l∑
j=1

2j = l(l + 1)/2,(6.2.4)

c = l(l + 1)/2.(6.2.5)

Type C. For i = 1, 2, . . . , l − 1,

ai =
i−1∑
j=1

2j + i(2 + · · · + 2 + 1) = i(2l − i),(6.2.6)

c =

{
l2/2 if l > 3,

5 if l = 3.
(6.2.7)

Type D. For i = 1, 2, . . . , l − 2,

ai =
i∑

j=1

2j + i(2 + · · · + 2 + 1 + 1) = i(2l − 3 − i),(6.2.8)

al−1 = al ≤ (1 + 2 + · · · + (l − 2)) + 2l − 2 = l(l − 1)/2,(6.2.9)
c = l(l − 1)/2 (l ≥ 4).(6.2.10)

Exceptional groups.
Index Type E6 Type E7 Type E8 Type F4 Type G2

i ai bi ai bi ai bi ai bi ai bi

1 16 16 34 17 92 46 22 11 6 3
2 22 11 49 25 136 46 42 11 10 4
3 30 15 66 22 182 26 30 10
4 42 12 96 24 270 45 16 8
5 30 15 75 25 220 44
6 16 16 52 26 168 42
7 27 27 114 38
8 58 29
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