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A NEW CONSTRUCTION OF QUANTUM
ERROR-CORRECTING CODES

KEQIN FENG AND CHAOPING XING

Abstract. In this paper, we present a characterization of (binary and non-
binary) quantum error-correcting codes. Based on this characterization, we
introduce a method to construct p-ary quantum codes using Boolean functions
satisfying a system of certain quadratic relations. As a consequence of the
construction, we are able to construct quantum codes of minimum distance 2.

In particular, we produce a class of binary quantum ((n, 2n−2− 1
2

( n−1
(n−1)/2

)
, 2))-

codes for odd length n ≥ 5. For n ≥ 11, this improves the result by Rains in
Quantum codes of minimal distance two, 1999, showing the existence of binary
quantum ((n, 3 ·2n−4, 2))-codes for odd n ≥ 5. Moreover, our binary quantum

((n, 2n−2 − 1
2

( n−1
(n−1)/2

)
, 2))-codes of odd length achieve the Singleton bound

asymptotically.
Finally, based on our characterization some propagation rules of quantum

codes are proposed and the rules are similar to those in classical coding theory.
It turns out that some new quantum codes are found through these propagation
rules.

1. Introduction

Quantum information has received much attention for the past few years. Since
the pioneering work in [2, 3, 12, 13, 14], the theory of quantum error-correcting
codes has developed rapidly.

As in classical coding theory, one of the central tasks in quantum coding theory is
to construct good quantum codes. The first systematic mathematical construction
is given by Calderbank et al. [2] in the binary case and then generalized by Rains
[8], Ashikhmin and Knill [1] and Matsumoto and Uyematsu [7] to the non-binary
case. The p-ary quantum codes by this construction are called stabilizer quantum
codes and are derived from classical codes over finite fields Fp or Fp2 through various
techniques. Another construction is presented by Schlingemann and Werner [11]
using combinatorial properties of matrices over finite fields. Many good quantum
codes with various parameters have been constructed in these ways, but all p-ary
quantum codes produced by these constructions have dimensions being powers of
p. On the other hand, quantum codes with general dimensions have been studied
by Knill [4, 5] and Rains [9], etc.

One extreme situation is the construction of quantum codes with minimum dis-
tance 2. For p-ary quantum codes with p > 2, the optimal quantum codes with
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minimum distance 2, i.e., quantum codes with length n, minimum distance 2 and
dimension pn−2, are in fact readily obtained using the stabilizer method [2, 8, 1, 7].
For the binary case, optimal quantum codes with minimum distance 2 and dimen-
sion 2n−2 have been constructed [2, 9]. However, hardly anything is known about
the dimension of optimal binary quantum codes with odd length and minimum
distance 2.

In this paper we present a characterization of (binary and non-binary) quantum
codes. Based on this characterization, we are able to derive a method to construct
pure p-ary quantum codes with dimensions not necessarily equal to powers of p.
With this method, the construction of quantum codes is reduced to finding functions
from Fn

p to Fp satisfying a system of quadratic relations. As the first consequence
of the construction, we are able to construct quantum codes of minimum distance
2. In particular, we produce a class of binary quantum ((n, 2n−2 − 1

2

(
n−1

(n−1)/2

)
, 2))-

codes for odd length n ≥ 5. By a simple propagation rule, Rains [9] gives a
family of binary quantum ((n, 3 · 2n−4, 2))-codes for odd n ≥ 5. For n ≥ 11, our
codes are better than those by Rains [9] in the sense that our codes are bigger in
size. Moreover, our binary quantum ((n, 2n−2 − 1

2

(
n−1

(n−1)/2

)
, 2))-codes of odd length

achieve the quantum Singleton bound asymptotically.
Other advantages of our characterization of quantum codes include the formu-

lation of propagation rules for quantum codes. Classical coding theory has a much
longer history, and various constructions and propagation rules have been proposed.
Based on our characterization of quantum codes, we can induce some propagation
rules for quantum codes similar to those in classical coding theory. In particular,
some new binary quantum codes are found based on our propagation rules.

The paper is organized as follows. We recall the definitions and basic facts on
quantum codes in Section 2 and show our characterization of quantum codes in
Section 3. Then we present our construction of quantum codes by using quadratic
functions and show several consequences in Section 4. Finally in Section 5, some
propagation rules are derived based on our characterization in Section 3.

2. Basic facts on quantum codes

Binary quantum codes have been generalized to q-ary quantum codes with q
being any prime number [8] and even a power of a prime [1]. In this paper we restrict
ourselves to p-ary quantum codes with p being a prime number for simplicity. First
we recall the definition of quantum codes.

Let Cp be a complex vector space of dimension p and let {| 0 >, | 1 >, · · · ,
| p − 1 >} be an orthonormal basis of Cp with respect to the hermitian inner
product, denoted by 〈·, ·〉, or 〈·|·〉 or (·, ·). A p-ary quantum state | v > is a non-zero
vector in Cp:

0 �=| v >=
p−1∑
i=0

αi | i >=
∑
c∈Fp

αc | c > (αc ∈ C),

where Fp denotes the finite field with p elements.
For n ≥ 1, the n-th tensor product (Cp)⊗n = Cpn

has a basis{
| c >=| c1 > ⊗ | c2 > ⊗ · · · ⊗ | cn >: c = (c1, · · · , cn) ∈ Fn

p

}
.
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A p-ary n-system state | v > is a non-zero vector in (Cp)⊗n:

0 �=| v >=
∑
c∈Fn

p

αc | c >,

where αc ∈ C.
Let ζ be the p-th primitive root of unity: ζp = e

2πi
p ∈ C. There are three types

of quantum bit errors: σa, τb and the composition σaτb, where a, b ∈ Fp. They act
on a quantum state as unitary linear operators on Cp defined by

σa | v >=| v + a >, τb|v >= ζbv|v > .

Thus,

σaτb | v >= ζbv | v + a >= ζ−abζ(a+v)b|v + a >= ζ−abτbσa|v > .

Hence, the set of bit errors{
ζλσaτb : 0 ≤ λ ≤ p − 1, a, b ∈ Fp

}
forms a group under the group law σaτb = ζ−abτbσa, σaσa′ = σa+a′ and τbτb′ =
τb+b′ . It is clear that the identity of this group is σ0 = τ0 and two elements ζλσaτb

and ζλ′
σa′τb′ are equal if and only if (λ, a, b) = (λ′, a′, b′).

A quantum error e on an n-system state is a unitary linear operator on (Cp)⊗n

of the form

(2.1) e = ζλw1 ⊗ · · · ⊗ wn

with wi = σai
τbi

for some ai, bi, λ ∈ Fp, i = 1, . . . , n. It acts on the basis elements
| v >=| v1 > ⊗ · · · ⊗ |vn > bit-by-bit:

(2.2) e | v >= ζλ(w1 | v1 >) ⊗ · · · ⊗ (wn | vn >) = ζλ+b·v | v + a >,

where a = (a1, · · · , an),b = (b1, · · · , bn) ∈ Fn
p and b · v =

∑n
i=1 bivi ∈ Fp is the

usual inner product in Fn
p . Let

X(a) = σa1 ⊗ · · · ⊗ σan
, Z(b) = τb1 ⊗ · · · ⊗ τbn

.

Then the quantum error e in (2.1) can be denoted by e = ζλX(a)Z(b) and the set
of all quantum errors

En :=
{
ζλX(a)Z(b) : a,b ∈ Fn

p , λ ∈ Fp

}
forms a non-abelian group of order p2n+1 under the group law

X(a)X(a′) = X(a+a′); Z(b)Z(b′) = Z(b+b′); X(a)Z(b) = ζ−a·bZ(b)X(a).

For two error operators e = ζλX(a)Z(b) and e′ = ζλ′
X(a′)Z(b′), we have the

following basic relationships:

(2.3) ep = I (identity) , ee′ = ζa′·b−a·b′
e′e.

It is easy to verify that the center C(En) of En is
{
ζλI : λ ∈ Fp

}
. It follows from

(2.3) that the quotient group

En = En/C(En)

is an elementary p-group of order |En| = p2n, hence it is isomorphic to the additive
group F2n

p . For simplicity, we denote the canonical image of e = ζλX(a)Z(b) in
En by e = (a | b) ∈ F2n

p ; then (a | b) · (a′ | b′) = (a + a′ | b + b′).
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In quantum mechanics, two n-system states | v > and α | v > (α ∈ C∗) represent
the same quantum state. Thus, e and ζλe are the same error operator on (Cp)⊗n,
so that we can define the action of e ∈ En by e | v >= e | v >.

For e = ζλX(a)Z(b) ∈ En and e = (a | b) ∈ En with a = (a1, · · · , an), b =
(b1, · · · , bn) ∈ Fn

p , we define the quantum weight of e and e by

wQ(e) = wQ(e) = #
{
i : 1 ≤ i ≤ n, (ai, bi) �= (0, 0) ∈ F2

p

}
.

For 0 ≤ l ≤ n, we denote by

En(l) = {e ∈ En : wQ(e) ≤ l}, En(l) = {e ∈ En : wQ(e) ≤ l}

the subsets En and En of, respectively, weight less than or equal to l. It is easy to
see that |En(l)| =

∑l
i=0(p

2 − 1)i
(
n
i

)
and |En(l)| = p · |En(l)|.

Definition 2.1. Let p be a prime number. A complex linear subspace Q �= {0} of(
Cp

)⊗n = Cpn

is called a quantum code of length n.

We denote by K = dimC Q the dimension of Q over C and put k = logp K. Then
k is a real number and 0 ≤ k ≤ n.

The minimum distance of a quantum code Q is defined to be the largest positive
integer d satisfying the following condition:

for any | u > and | v > in Q with 〈u | v〉 = 0 and e ∈ En(d−1), we
have 〈u | e | v〉 = 0, where 〈, 〉 denotes the hermitian inner product
in (Cp)⊗n.

A p-ary quantum code Q with length n, dimension K (k = logp K) and minimum
distance d is denoted by ((n, K, d))p or [[n, k, d]]p. A quantum ((n, K, d))p-code Q

is called pure if 〈u | e | v〉 = 0 for all e ∈ En(d − 1) \ {0} and u,v ∈ Q (note that
we do not require 〈u|v〉 = 0 here).

As in classical coding theory, we have the following two fundamental bounds.

Lemma 2.2. Let Q be a quantum ((n, K, d))p-code and put k = logp K.

(i) (quantum Hamming bound [2]) If Q is pure, then

pn ≥ K

� d−1
2 �∑

i=0

(p2 − 1)i

(
n

i

)
.

(ii) (quantum Singleton bound [8]) If K > 1, then

K ≤ pn−2d+2 (or n ≥ k + 2d − 2).

3. A characterization of quantum codes

In this section, we present a characterization on quantum Q = ((n, K, d))p-codes.
It gives an alternative way to construct quantum codes.

An n-system state |v >=
∑

c∈Fn
p

αc|c > can be identified with a mapping ϕ:
Fn

p → C defined by ϕ(c) = αc for all c ∈ Fn
p .

For a map ϕ: Fn
p → C and a partition {1, 2, · · · , n} = A ∪ B, we denote ϕ(c)

by ϕ(cA, cB), where cA and cB are the subvectors of c whose coordinate positions
belong to A and B, respectively. For two maps ϕ, ψ : Fn

p → C, we define their
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hermitian inner product by

(ϕ, ψ) =
∑
c∈Fn

p

ϕ(c)ψ(c) ∈ C,

where ϕ(c) stands for the conjugate of the complex number ϕ(c).
Now we state and prove our characterization on quantum codes.

Theorem 3.1. (i) There exists a quantum ((n, K, d))p-code with K ≥ 2 if and
only if there exist K non-zero mappings

(3.1) ϕi : Fn
p → C (1 ≤ i ≤ K)

satisfying the following condition:
for each partition {1, 2, · · · , n} = A ∪ B with | A |= d − 1 and
| B |= n − d + 1, and any cA, c′A ∈ Fd−1

p , 1 ≤ i, j ≤ n,

(3.2)
∑

cB∈Fn−d+1
p

ϕi(cA, cB)ϕj(c′A, cB) =
{

0 if 1 ≤ i �= j ≤ K;
f if 1 ≤ i = j ≤ K,

where f = f(cA, c′A) is independent of i.
(ii) There exists a pure quantum ((n, K, d))p-code with K ≥ 1 if and only if

there exist K mappings Fn
p → C (1 ≤ i ≤ K) such that

(I) the rank of the matrix (ϕi(c))1≤i≤K, c∈Fn
p

is K;
(II) for each partition {1, 2, · · · , n} = A ∪ B with | A |= d − 1 and

| B |= n − d + 1, and any cA, c′A ∈ Fd−1
p , 1 ≤ i, j ≤ n,

(3.3)
∑

cB∈Fn−d+1
p

ϕi(cA, cB)ϕj(c′A, cB) =
{

0 if cA �= c′A;
(ϕi, ϕj)/pd−1 if cA = c′A.

Proof. (i) Let Q be a K-dimensional subspace of Cpn

with an orthonormal basis:

| vi >=
∑
c∈Fn

p

ϕi(c) | c > (1 ≤ i ≤ K),

i.e.,

(ϕi, ϕj) =
∑
c∈Fn

p

ϕi(c)ϕj(c) = 〈vi | vj〉 =
{

0 if i �= j;
1 if i = j.

For two vectors in Q

| u >=
K∑

i=1

αi | vi >, | u′ >=
K∑

i=1

α′
i | vi > (αi, α

′
i ∈ C),

we have

(3.4) 〈u | u′〉 =
K∑

i, j=1

αiα
′
j〈vi | vj〉 =

K∑
i=1

αiα
′
i.

For each e = X(a)Z(b) with wQ(e) = l, let

A = {i | 1 ≤ i ≤ n, (ai, bi) �= (0, 0)}.
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Then we have a partition {1, 2, · · · , n} = A ∪ B with |A| = l, |B| = n − l, and
e = X(aA,0B)Z(bA,0B). Thus,

e | u′ > =
K∑

j=1

α′
je | vj >=

K∑
j=1

α′
j

∑
c∈Fn

p

ϕj(c)e | c >

=
K∑

j=1

α′
j

∑
c∈Fn

p

ϕj(c)ζb·c | a + c > (by (2.2))

=
K∑

j=1

α′
j

∑
cA∈Fl

p, cB∈Fn−l
p

ϕj(cA, cB)ζbA·cA | aA + cA, cB >

=
K∑

j=1

α′
j

∑
cA, cB

ζbA·(cA−aA), ϕj(cA − aA, cB) | cA, cB > .

Therefore,

(3.5) 〈u | e | u′〉 = ζ−bA·aA

∑
i, j=1

αiα
′
j

∑
cA, cB

ϕi(cA, cB)ϕj(cA − aA, cB)ζbA·cA .

By Definition 2.1, Q is a quantum code with minimum distance d if and only if
〈u | e | u′〉 = 0 for any orthogonal | u > and | u′ > in Q and e ∈ En(d − 1). It
follows from (3.4) and (3.5) that this is equivalent to the following:

for each partition {1, 2, · · · , n} = A ∪ B with |A| = d − 1, |B| =
n−d+1 and aA,bA ∈ Fd−1

p with (aA,bA) �= (0,0),
∑K

i=1 αiα
′
j = 0

implies that

(3.6)
K∑

i, j=1

αiα
′
j

∑
cA, cB

ϕi(cA, cB)ϕj(cA − aA, cB)ζbA·cA = 0.

By the Fourier transform, the condition (3.6) is equivalent to

(3.7)
K∑

i, j=1

αiα
′
j

∑
cB

ϕi(cA, cB)ϕj(c′A, cB) = 0

for each partition {1, 2, · · · , n} = A ∪B with |A| = d− 1, |B| = n− d + 1 and any
cA, c′A ∈ Fd−1

p . Let

M = (mij)1≤i,j≤K , mij =
∑
cB

ϕi(cA, cB)ϕj(c′A, cB) ∈ C.

The above condition becomes that for any a=(a1, · · · , aK), a′ = (a′
1, · · · , a′

K) ∈ CK ,
〈a, a′〉 = 0 implies that aMa′T = 0. It is easy to see that under the assumption
K ≥ 2, the condition is equivalent to the equality Ma′T = fa′T for any a′ ∈ CK ,
where f ∈ C is independent of a′. Thus, M = fIK . This implies that our condition
is equivalent to the condition (3.2).

(ii) Let | vi >=
∑

c∈Fn
p

ϕi(c) | c > (1 ≤ i ≤ K). Let Q be the subspace of

Cpn

with the basis | vi > (1 ≤ i ≤ K). By definition, Q is a pure quantum
((n, K, d))p-code if and only if 〈vi | e | vj〉 = 0 for 1 ≤ i, j ≤ K and each e ∈ En
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with 1 ≤ wQ(e) ≤ d−1. By arguments similar to those in (i), this requirement can
be transformed into

(3.8)
∑

cA, cB

ϕi(cA, cB)ϕj(cA − aA, cB)ζbA·cA = 0

for each partition {1, 2, · · · , n} = A ∪B with |A| = d− 1, |B| = n− d + 1 and any
aA,bA ∈ Fd−1

p such that (aA,bA) �= (0,0).
If aA �= 0, then (3.8) is satisfied for all bA ∈ Fd−1

p . This implies the first equality
of condition (II).

If aA = 0, then for all 0 �= bA ∈ Fd−1
p ,∑

cA, cB

ϕi(cA, cB)ϕj(cA, cB)ζbA·cA = 0.

By the Fourier transform, this is equivalent to∑
cB

ϕi(cA, cB)ϕj(cA, cB) = fij ,

where fij ∈ C is independent of cA. Then we have

(ϕi, ϕj) =
∑

cA, cB

ϕi(cA, cB)ϕj(cA, cB) =
∑

cA∈Fd−1
p

fij = fijp
d−1,

i.e., fij = (ϕi, ϕj)/pd−1. This completes the proof. �

For stabilizer quantum codes (see [2] for p = 2, and [1] for p ≥ 3), ϕi are simply
maps from Fn

p to the set {ζi : i = 0, 1, · · · , p − 1} ∪ {0}.
Now we consider even simpler maps ϕ from Fn

p to {ζi : i = 0, 1, · · · , p− 1}. It is
clear that ϕ is determined by a function f from Fn

p to Fp through the relationship

ϕ(c) = ζf(c) (c ∈ Fn
p ).

As a direct consequence of Theorem 3.1, we obtain the following construction of
quantum codes.

Theorem 3.2. (i) Suppose that n ≥ 2, 1 ≤ d ≤ n and 2 ≤ K ≤ pn. If
there exist K functions fi : Fn

p → Fp (1 ≤ i ≤ K) such that for any
partition {1, 2, · · · , n} = A ∪B with |A| = d − 1, |B| = n− d + 1, and any
cA, c′A ∈ Fd−1

p ,

(3.9)
∑

cB∈Fn−d+1
p

ζfi(cA, cB)−fj(c
′
A, cB) =

{
0 if 1 ≤ i �= j ≤ K;
f if 1 ≤ i = j ≤ K,

where f = f(cA, c′A) ∈ C is independent of i, then there exists a quantum
((n, K, d))p-code.

(ii) Suppose that n ≥ 2, 1 ≤ d ≤ n and 1 ≤ K ≤ pn. If there exist K functions
fi : Fn

p → Fp (1 ≤ i ≤ K) such that
(I) the rank of the matrix (ζfi(c))1≤i≤K, c∈Fn

p
is K;

(II) for each partition {1, 2, · · · , n} = A∪B with |A| = d−1 |B| = n−d+1,
and any cA, c′A ∈ Fd−1

p , 1 ≤ i, j ≤ K,

(3.10)
∑

cB∈Fn−d+1
p

ζfi(cA, cB)−fj(c
′
A, cB) =

{
0 if cA �= c′A;
fij if cA = c′A,
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where fij is independent of cA (so that fij =p−(d−1)
∑

c∈Fn
p

ζfi(c)−fj(c)),
then there exists a pure quantum ((n, K, d))p-code.

Remark 3.3. (i) If fij in condition (I) of Theorem 3.2(ii) are equal to 0 for
all 1 ≤ i �= j ≤ K, then all rows in the matrix (ζfi(c))1≤i≤K, c∈Fn

p
are

orthogonal to each other. Hence, condition (I) is satisfied automatically.
(ii) All p-ary quantum codes previously constructed in [1, 2, 11] have dimensions

K being powers of p (note that quantum codes with general dimensions
have been considered by Knill [4, 5] and Rains [9], etc.). Theorems 3.1 and
3.2 in this paper make it possible to construct good quantum codes with
arbitrary dimension. In the next section, we try to construct quadratic
functions satisfying condition (3.10) in Theorem 3.2. We will show that,
even in this simple case, several new quantum codes can be obtained and
some previous results are improved.

4. Quantum codes from quadratic functions

For a matrix H = (hij)1≤i≤m, 1≤j≤n over Fp and a partition {1, 2, · · · , n} =
A ∪ B, we denote by HA and HB the submatrices

HA = (hij)1≤i≤m; j∈A, HB = (hij)1≤i≤m; j∈B .

However, if H is a square matrix, i.e., m = n, we have a different way to define four
submatrices HAA, HAB, HBA and HBB, where, for example, HAB = (hij)i∈A, j∈B.

Theorem 4.1. Suppose that d ≥ 2, 1 ≤ k ≤ n and 1 ≤ K ≤ pk. Let Nk×n and
Mn×n be two matrices, and let {v1, · · · ,vK} be K distinct vectors in Fk

p. Suppose
M = (mij) is a zero-diagonal symmetric matrix (i.e., mii = 0 and mij = mji for
1 ≤ i, j ≤ n) and the following condition is satisfied:

for each partition {1, 2, · · · , n} = A ∪ B with |A| = d − 1, |B| =
n − d + 1, any c ∈ Fd−1

p and 1 ≤ i, j ≤ K, the equality

(4.1) (vi − vj)NB = cMAB

implies that c = 0 and vi = vj.
Then there exists a pure quantum ((n, K, d))p-code. In particular, if the rank of(

NB

MAB

)
is k+d−1 for each partition {1, 2, · · · , n} = A∪B with |A| = d−1, |B| =

n − d + 1, then there exists a pure quantum [[n, k, d]]p-code.

Proof. For a square matrix H = (hij)1≤i, j≤t, we denote it by H̃ = (h̃ij)1≤i, j≤t,
where

h̃ij =
{

hij if i < j;
0 otherwise.

Consider quadratic functions fi : Fn
p → Fp (1 ≤ i ≤ K) are defined by

fi(x) = viNxT + xM̃xT ,

where xT stands for the transpose of x = (x1, · · · , xn).
Then for each partition

(4.2) {1, 2, · · · , n} = A ∪ B, |A| = d − 1, |B| = n − d + 1,

we have

fi(cA,xB) = viNAcT
A + viNBxT

B + cAMABxT
B + cAM̃AAcT

A + xBM̃BBxT
B.
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Therefore,

fi(cA,xB) − fj(c′A,xB) = viNAcT
A − vjNAc′TA + (vi − vj)NBxT

B

+ (cA − c′A)MABxT
B + cAM̃AAcT

A − c′AM̃AAc′TA

= g(cA, c′A,vi,vj) + (vi − vj , cA − c′A)
(

NB

MAB

)
xT

B,

where

g := g(cA, c′A,vi,vj) := viNAcT
A − vjNAc′TA + cAM̃AAcT

A − c′AM̃AAc′TA.

If i = j and cA = c′A, then∑
cB∈Fn−d+1

p

ζfi(cA, cB)−fj(c
′
A, cB) =

∑
cB∈Fn−d+1

p

1 = pn−d+1.

Otherwise, u := (vi−vj , cA−c′A)
(

NB

MAB

)
�= 0 ∈ Fn−d+1

p by assumption. Hence,

∑
cB∈Fn−d+1

p

ζfi(cA, cB)−fj(c
′
A, cB) = ζg

∑
cB∈Fn−d+1

p

ζu· cB = 0.

By Theorem 3.2, it follows that there exists a pure quantum ((n, K, d))p-code.

If the rank of
(

NB

MAB

)
is k + d − 1 over Fp for each partition (4.2), then (4.1)

implies that (vi −vj , c) = (0,0). Therefore, we can choose {v1, · · · ,vK} = Fk
p and

hence K = pk. This completes the proof of Theorem 4.1. �
Remark 4.2. The last statement in Theorem 4.1 was essentially proved in [11] where
quantum [[5, 1, 3]]p-codes for all prime number p were obtained in this way.

At the end of this paper we show two applications of Theorem 4.1.

Theorem 4.3. (i) If p > 2 is a prime, then there exist pure quantum
((n, pn−2, 2))p-codes for all n ≥ 2.

(ii) If p = 2, then there exist binary pure quantum ((n, Kn, 2))p-codes for all
n ≥ 4, where

Kn =
{

2n−2 if n is even;
2n−2 − 1

2

(
n−1

(n−1)/2

)
if n is odd.

Proof. Let k = n−1. Let M = (mij)1≤i,j≤n be the symmetric matrix with mij = 1
for all i �= j and mii = 0 for all i = 1, 2, · · · , n and choose

N =

⎛
⎜⎝

1
...In−1
1

⎞
⎟⎠ .

For a partition {1, 2, · · · , n} = A ∪ B with |A| = 1, |B| = n − 1, let A = {λ}
(1 ≤ λ ≤ n). We have

MAB = (1, · · · , 1) ∈ Fn−1
p

and Nλ is the sub-matrix of N obtained by deleting the λ-th column of N , i.e.,

(4.3) N1 =

⎛
⎜⎝

0 · · · 0 1
...In−2
1

⎞
⎟⎠ , · · · , Nn−1 =

⎛
⎜⎝

1
In−2 ...

0 · · · 0 1

⎞
⎟⎠ , Nn = In−1.
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It is easy to see that det(Nλ) = ±1, and hence all matrices Nλ are invertible. In
this case, the equality (4.1) of Theorem 4.1 becomes

(4.4) (vi − vj)Nλ = c(1, 1, · · · , 1) ∈ Fn−1
p .

If c = 0, then vi = vj since each Nλ is invertible.
From now on, we assume 0 �= c ∈ Fp. By combining (4.3) with (4.4), we have

that vi − vj = caλ (1 ≤ λ ≤ n), where

a1 = (3 − n, 1, · · · , 1), a2 = (1, 3 − n, 1, · · · , 1), · · · ,

an−1 = (1, · · · , 1, 3 − n), an = (1, 1, · · · , 1).

In order to get a pure quantum ((n, K, 2))p-code from Theorem 4.1, we have to find
a subset S = {v1, · · · ,vK} of Fn−1

p satisfying the following condition:

(∗) vi − vj are not equal to caλ for all 1 ≤ i �= j ≤ K, 1 ≤ λ ≤ n.

If n ≡ 2 (mod p), then a1 = a2 = · · · = an = (1, · · · , 1) ∈ Fn−1
p . Let S be the dual

subspace of the 1-dimensional subspace spanned by 1 = (1, · · · , 1) in Fn−1
p , i.e.,

S = {c = (c1, · · · , cn−1) ∈ Fn−1
p : c · 1 = c1 + · · · + cn−1 = 0}.

Since S is a linear subspace of Fn−1
p , any difference of two distinct vectors in S

belongs to S. However, aλ �∈ S since aλ · 1 = 1 (1 ≤ λ ≤ n). Therefore, the set S
satisfies the condition (∗) and K = |S| = pn−2.

If n �≡ 2 (mod p), then a1, · · · ,an−1 are linearly independent as

det

⎛
⎜⎜⎜⎝

a1

a2

...
an−1

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎝

3 − n 1
. . .

1 3 − n

⎞
⎟⎠ = (2 − n)n−2 �= 0 ∈ Fp.

Therefore, we have an invertible (n − 1) × (n − 1) matrix L over Fp such that
aλL = a′

λ (1 ≤ λ ≤ n − 1), where

a′
1 = (1, 0, · · · , 0), a′

2 = (0, 1, 0, · · · , 0), · · · , a′
n−1 = (0, · · · , 0, 1).

Hence,

a′
n = anL = (a1 + · · · + an−1)L = a′

1 + · · · + a′
n−1 = (1, · · · , 1).

Let S′ = {v′
1, · · · ,v′

K}, where v′
λ = vλL (1 ≤ λ ≤ K). In order for vi to satisfy

(∗), we have to find S′ satisfying the following condition:

(∗′) v′
i − v′

j are not equal to ca′
λ for all 1 ≤ i �= j ≤ K, 1 ≤ λ ≤ n.

For p ≥ 3, we are able to find α ∈ Fp such that α �= 0, 2 − n. Let S′ be the dual
subspace of the 1-dimensional subspace spanned by b = (1, · · · , 1, α) in Fn−1

p :

S′ = {c = (c1, · · · , cn−1) ∈ Fn−1
p | c · b = c1 + · · · + cn−2 + αcn−1 = 0 ∈ Fp}.

It is easy to check that a′
λ �∈ S′ (1 ≤ λ ≤ n). This implies that the set S′ satisfies

the condition (∗)′. Therefore, the set S = {vL−1 | v ∈ S′} satisfies the condition
(∗) and K = |S| = |S′| = pn−2.

Next we consider the case of p = 2 and odd n. In this case,

a1 = (0, 1, · · · , 1), a2 = (1, 0, 1, · · · , 1),

an−1 = (1, 1, · · · , 1, 0), an = (1, 1, · · · , 1) ∈ Fn−1
2 .



A NEW CONSTRUCTION OF QUANTUM ERROR-CORRECTING CODES 2017

As the Hamming weight of aλ is at least n− 2 for all 1 ≤ λ ≤ n, we want to find a
subset S of Fn−1

2 such that the Hamming weight dH(vi−vj) ≤ n−3 for all distinct
vectors vi and vj in S. Let 0 ≤ i ≤ n and let Si be the set of the vectors in Fn−1

2

with Hamming weight i. It is easy to see that the set S =
⋃n−3

2
i=0 Si satisfies (∗) and

K = |S| =

n−3
2∑

i=0

(
n − 1

i

)
= 2n−2 − 1

2

(
n − 1

(n − 1)/2

)
.

This completes the proof. �
Remark 4.4. (i) For even n ≥ 4, binary quantum ((n, 2n−2, 2))-codes have

been constructed in [2, 9]. For odd length n, a pure binary quantum
((5, 6, 2))-code was obtained in [10]. This code is optimal in the sense that
binary quantum ((5, K, 2))-codes do not exist for K ≥ 7. By a simple prop-
agation rule, Rains [9] obtains a family of binary quantum ((n, 3 ·2n−4, 2))-
codes for all odd n ≥ 5. Our binary quantum ((n, 2n−2 − 1

2

(
n−1

(n−1)/2

)
, 2))-

codes obtained in Theorem 4.3 are better than Rains’ result for 2 � n ≥
11. For instance, we have the binary quantum codes ((11, 386, 2)) and
((13, 1586, 2)), while the previous result only indicates the existence of
((11, 384, 2)) and ((13, 1536, 2)).

(ii) If p > 2, Theorem 4.3 shows that we have pure ((n, pn−2, 2))p-codes for all
n ≥ 2. This class of codes achieve the Singleton bound, and hence they are
optimal.

(iii) Rains [9] defines an asymptotic quantity

K2 = lim
m→∞

K0(2m + 1)/22m−2,

where K0(2m + 1) denotes the maximal dimension K of binary pure quan-
tum ((2m+1, K, 2))-codes. By the quantum Singleton bound we know that
K2 ≤ 2. Rains’ result gives only K2 ≥ 3/2. Now we are able to prove that
K2 = 2.

Corollary 4.5. K2 = 2.

Proof. It is sufficient to show that K2 ≥ 2. By Theorem 4.3 and Stirling’s formula
we have

K2 ≥ lim
2�n→0

23−n

(
2n−2 − 1

2

(
n − 1

(n − 1)/2

))
= 2 − lim

2�n→∞

(
n − 1

(n − 1)/2

)
/2n−2

≥ 2 − lim
2�n→∞

2n

2n−2
√

πn/2
= 2.

This completes the proof. �

5. Propagation rules

In classical coding theory, through the last few decades many propagation rules,
such as direct sum, lengthening, shortening, deleting, subcodes, and (u|u + v)-
construction, have been proposed. Some of these propagation rules have been
realized in quantum coding theory in one way or another (see [2, 9]). It is natural
to ask whether these propagation rules in classical coding theory have analogs in
quantum coding theory. In this section, we derive some analogous propagation
rules for quantum codes based on the characterization of quantum codes in Section
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3. Some propagation rules in this section are obvious, while others are not. For
instance, some new binary quantum codes and many other best known quantum
codes can be obtained from these new propagation rules in this section.

Theorem 5.1. Suppose there is a p-ary ((n, K, d))-quantum code Q. Then

(i) (subcode) there exists a p-ary ((n, K − 1,≥ d))-quantum code Q1;
(ii) (puncturing) there exists a p-ary ((n− 1, K,≥ d − 1))-quantum code Q2.

Furthermore, if Q is pure, then Qi are pure as well for all 1 ≤ i ≤ 2.

Proof. By Theorem 3.1, a p-ary ((n, K−1, d))-quantum code can be identified with
a set {ϕi}K

i=1 of non-zero mappings from Fn
p to C satisfying condition (3.2).

(i) If we throw ϕK away, then it is easy to verify that the set {ϕi}K−1
i=1 gives a

p-ary ((n, K − 1,≥ d))-quantum code.
(ii) As ϕi is not identical to zero, there exists an element ai = (a(i)

1 , · · · , a
(i)
n ) ∈ Fn

p

such that ϕi(ai) �= 0. Define a new mapping

φi : Fn−1
p → C; (x1, · · · , xn−1) �→ ϕi(x1, · · · , xn−1, a

(i)
n )

for all 1 ≤ i ≤ K. It is clear that every φi is not identical to zero for all 1 ≤ i ≤ K.
Now we have to show that condition (3.2) is satisfied for the set {φi}K

i=1.
For any partition A1 ∪B = {1, . . . , n− 1} with |A1| = d − 2, put A = A1 ∪ {n}.

Then we get a partition A ∪ B = {1, . . . , n} with |A| = d − 1. For any cA1 , c
′
A1

∈
Fd−2

p , let cA = (cA1 , a
(i)
n ) and c′A = (c′A1

, a
(j)
n ). Then by (3.2) we have

(5.1)∑
cB

φi(cA1 , cB)φj(cA1 , cB) =
∑
cB

ϕi(cA, cB)ϕj(c′A, cB) =
{

0 i �= j;
f(cA, c′A) i = j.

If Q is pure, i.e., the set {ϕi}K
i=1 satisfies conditions (I) and (II) in Theorem

3.1(ii), then it is easy to check that the sets {ϕi}K−1
i=1 and {φi}K

i=1 satisfy conditions
(I) and (II) in Theorem 3.1(ii) as well, that is, Qi are pure for all 1 ≤ i ≤ 2. �

Example 5.2. In this example, we can see that some good quantum codes can be
obtained by applying the first propagation rule in Theorem 5.1, while the second
propagation rule provides some new codes.

(i) By Table III of [2], we know the existence of a binary ((12, 16, 4))-quantum
code. Hence, from the first propagation rule in Theorem 5.1, we get binary
((12, K, 4))-quantum codes for all K ≤ 16. By Table III of [2], we know
that the ((12, 8, 4)) and ((12, 4, 4))-quantum codes are the best in the sense
that, given length n and dimension K, the minimum distance is the best
among the known ones. One can find many such examples in this way by
using Table III of [2].

(ii) By Table III of [2], we know the existence of a binary ((28, 28, 6))-quantum
code. Hence, from the second propagation rule in Theorem 5.1, we obtain
a binary ((27, 28, 5))-quantum code. This is a new code compared with
Table III of [2] as the code of length 27 and dimension 28 in Table III of
[2] has minimum distance only equal to 4. Furthermore, we can get many
best known codes by applying this propagation rule. For instance, a binary
((16, 4, 6))-quantum code gives rise to a binary ((15, 4, 5))-quantum code.



A NEW CONSTRUCTION OF QUANTUM ERROR-CORRECTING CODES 2019

Theorem 5.3 (direct sum). One has a p-ary ((n1 + n2, K1K2, min{d1, d2}))-
quantum code Q if there exist p-ary ((ni, Ki, di))-quantum codes for i = 1, 2. Fur-
thermore, Q is pure if both Q1 and Q2 are pure.

Proof. By Theorem 3.1, assume that {ϕi}K1
i=1 and {φi}K2

i=1 give p-ary ((n1, K1, d1))
and ((n2, K2, d2))-quantum codes, respectively. For each pair (i, j) with 1 ≤ i ≤ K1

and 1 ≤ j ≤ K2, define a function

σij : Fn1+n2
p → C; (x1, . . . , xn1 , y1, . . . , yn2) �→ ϕi(x1, . . . , xn1)φj(y1, . . . , yn2).

Then the set {σij}1≤i≤K1,1≤j≤K2 gives rise to the desired quantum code. The
details of the proof are omitted here. �
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