
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 4, April 2008, Pages 1861–1877
S 0002-9947(07)04248-1
Article electronically published on November 19, 2007

THE CAUCHY PROBLEM AND INTEGRABILITY
OF A MODIFIED EULER-POISSON EQUATION

FERIDE TIĞLAY

Abstract. We prove that the periodic initial value problem for a modified
Euler-Poisson equation is well-posed for initial data in Hs(Tm) when s >
m/2 + 1. We also study the analytic regularity of this problem and prove
a Cauchy-Kowalevski type theorem. After presenting a formal derivation of
the equation on the semidirect product space Diff � C∞(T) as a Hamiltonian
equation, we concentrate on one space dimension (m = 1) and show that the
equation is bihamiltonian.

In this paper we study the periodic Cauchy problem for the modified Euler-
Poisson equation (mEP)

(mEP) ∂tn + div(nv) = 0,
∂tv + (v.∇)v + gradΛ−2n = 0, x ∈ T

m, t ∈ R,

as well as its Hamiltonian structure and integrability.
The equation (mEP) is related to the Euler-Poisson equation

(1)
∂tn + div(nv) = 0,
∂tv + (v.∇)v + gradφ = 0,
∆φ − eφ + n = 0, x ∈ T

m, t ∈ R,

which describes the fluctuations in the ion density of a two-component plasma of
positively charged ions and negatively charged electrons (therefore it is also called
ion acoustic plasma equation [LiSat]).

Linearizing the operator N(φ) = eφ−∆φ at φ = 0 in the Euler-Poisson equation
(1), we obtain the local form of the modified Euler-Poisson equation (mEP):

(2)
∂tn + div(nv) = 0,
∂tv + (v.∇)v + gradφ = 0,
∆φ − φ + n = 0, x ∈ T

m, t ∈ R.

Equation (2), like the Euler-Poisson equation (1), admits an approximation which
preserves dispersion and leads to KdV (see Remark 1). Inverting the operator
Λ := I − ∆, we write the system in (2) in the nonlocal form (mEP).

Besides its relation to the Euler-Poisson equation (1), the modified Euler-Poisson
equation is also remarkable for its bihamiltonian structure in one space dimension
that we describe here.
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Many different techniques have been developed based on Picard’s contraction
theorem on Banach spaces in the study of nonlinear partial differential equations.
One approach originated in an observation of V. Arnold [Arn] that the initial value
problem for the classical Euler equations of a perfect fluid can be stated as a
problem of finding geodesics on the group of volume preserving diffeomorphisms.
Subsequently, this observation was used by D.G. Ebin and J. Marsden in [EMa]
who developed the necessary functional analytic tools and established sharp local
well-posedness results for the Euler equations in a class of Sobolev spaces.

The first section of this work is devoted to developing an appropriate analytic
framework for the modified Euler-Poisson equation (mEP) using a similar approach
and proving the following theorem.

Theorem 1. For s > m/2 + 1, given any initial data (n0, v0) ∈ Hs−1(Tm, R) ×
Hs(Tm, Rm), there exists a T > 0 and a unique solution (n, v) to the Cauchy
problem for the modified Euler-Poisson equation (mEP) such that

v ∈ C([0, T ), Hs(Tm, Rm)) ∩ C1([0, T ), Hs−1(Tm, Rm))

and

n ∈ C([0, T ), Hs−1(Tm, R)) ∩ C1([0, T ), Hs−2(Tm, R)),

and the solution (n, v) depends continuously on the initial data (n0, v0).

Another powerful tool in the study of partial differential equations is the Cauchy-
Kowalevski theorem. An abstract version of this theorem was developed by
L.V. Ovsjannikov [Ovs1, Ovs2], F. Treves [Tre], L. Nirenberg [Nir], T. Nishida
[Nis] and M.S. Baouendi and C. Goulaouic [BG] among others and subsequently
applied to the Euler and Navier-Stokes equations.

The study of analytic regularity of solutions to the Camassa-Holm equation by
A. Himonas and G. Misio�lek [HM1], [HM3] using this abstract theorem led us to
investigate the analytic regularity for (mEP). In Section 2, we prove the existence
and uniqueness of local analytic solutions to the Cauchy problem for the equation
(mEP).

Theorem 2. If the initial data (n0, v0) is analytic on T
m×T

m, then there exists an
ε > 0 and a unique solution (n, v) of the Cauchy problem for the equation (mEP)
that is analytic both in x and t on T

m × T
m for all t in (−ε, ε).

This result can be viewed as a Cauchy-Kowalevski type result for the equa-
tion (mEP). Even though the equation (mEP) admits an approximation by the
Korteweg-De Vries equation, the analytic regularity results for the two equations
are quite different. In contrast with the Korteweg-De Vries equation whose solu-
tions are analytic in the space variable for all time but not analytic in the time
variable (see [Tru], [KaM]), the solutions to the modified Euler-Poisson equation
are analytic in both space and time variables.

In the third section we derive the equation (mEP) as a Hamiltonian equation
on the semidirect product space Diff(Tm) � C∞(Tm) following the treatment of
V. Arnold and B. Khesin in [AK] and J. Marsden, T. Ratiu and A. Weinstein in
[MRW] of the Hamiltonian formalism related to fluid and gas dynamics. Then we
concentrate on the one space dimension m = 1 and prove the following theorem.
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Theorem 3. For m = 1 the modified Euler-Poisson equation (mEP) is bihamilto-
nian with the pair of Hamiltonian functionals

H1 =
∫

1
2
(v2n + (Λ−2∂xn)2 + (Λ−2n)2)dx

and
H2 =

∫
nv dx.

In the proof we use prolongations to check the compatibility of the induced
Poisson brackets by these Hamiltonian structures. In particular the modified Euler-
Poisson equation (mEP) can be derived as a Hamiltonian equation on the semidirect
product space of the Virasoro algebra with the smooth functions on the torus vir�

C∞(T) along with a nonlocal hierarchy of equations called Hunter-Zheng equations
(see [BDP] for the bihamiltonian structure of the Hunter-Zheng equations).

Remark 1. The Korteweg-de Vries equation (KdV) can be derived as an approxi-
mation to the Euler-Poisson equation by a perturbation analysis (see [Sat]). Using
this approach it is straightforward to obtain an approximation to the system of
equations in (2) which preserves the dispersion and leads to KdV.

1. Local well-posedness in Sobolev spaces

In this section we study the Cauchy problem for the modified Euler-Poisson
equation (mEP) where n = n(t, x) : R × T

m → R and v = v(t, x) : R × T
m → R

m

and Λ−2 = (I − ∆)−1 is the Bessel potential.
In order to prove Theorem 1 we use the method of first restating the problem

as an initial value problem for an ordinary differential equation on the group of
diffeomorphisms of Sobolev class Hs and then applying the existence theorem for
vector fields on Banach manifolds.

Proposition 1. For s > m/2 + 1, a pair (n, v) ∈ Hs−1(Tm, R)×Hs(Tm, Rm) is a
solution to the Cauchy problem for (mEP) with initial data (n0, v0) if and only if
v = η ◦ γ−1 and n = ζ ◦ γ−1, where (γ, ζ, η) is a solution to

∂tζ = −((ζ ◦ γ−1)div(η ◦ γ−1)) ◦ γ,

∂tη = −(grad(Λ−2(ζ ◦ γ−1))) ◦ γ,(3)
∂tγ = η,

with initial conditions ζ(0, x) = n0(x), η(0, x) = v0(x), γ(0, x) = idx.

Therefore the Cauchy problem for (mEP) can be reformulated as an initial value
problem for the ordinary differential equation

(4)
d

dt
(γ, ζ, η) = (η, F (γ, η, ζ), G(γ, ζ)),

where

G(γ, ζ) = −(gradΛ−2(ζ ◦ γ−1)) ◦ γ,

F (γ, ζ, η) = −((ζ ◦ γ−1)div(η ◦ γ−1)) ◦ γ)

with initial data (γ0, η0, ζ0) = (idx, v0(x), n0(x)).
In the proof of Theorem 1 we repeatedly use three standard results on Sobolev

spaces: The Schauder ring property, the Sobolev imbedding theorem (that we refer
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to as the Sobolev lemma) and the composition lemma (see, for example, [S] and
[Ad]).

Proof of Theorem 1. If the map

Ds(Tm) × Hs−1(Tm, R) × Hs(Tm, Rm) → Hs(Tm, Rm) × Hs−1(Tm, R),
×Hs(Tm, Rm)

(γ, ζ, η) �→ (η, F, G)

is locally Lipschitz, then by the fundamental theorem for ordinary differential equa-
tions on Banach spaces [Di] there is a unique solution

(γ, η, ζ) ∈ Ds(Tm) × Hs(Tm, Rm) × Hs−1(Tm, R)

to the problem (4) for s > m/2 + 1 with initial data

ζ(0, x) = n0(x), η(0, x) = v0(x), γ(0, x) = x.

Note that the dependence of the solution of problem (4) on initial data is smooth.
However the map γ �→ γ−1 on Ds is continuous but not on C1. Therefore we only
have continuous dependence on initial data of the solution to the Cauchy problem
for (mEP).

By Proposition 1 the proof of Theorem 1 is reduced to showing that the maps

γ �→F (γ, η, ζ) ∈ L(Hs(Tm, Rm), Hs−1(Tm, R)),

ζ �→F (γ, η, ζ) ∈ L(Hs−1(Tm, R), Hs−1(Tm, R)),

η �→F (γ, η, ζ) ∈ L(Hs(Tm, Rm), Hs−1(Tm, R)),(5)

γ �→G(γ, ζ) ∈ L(Hs(Tm, Rm), Hs(Tm, Rm)),

ζ �→G(γ, ζ) ∈ L(Hs−1(Tm, R), Hs(Tm, Rm))

are locally Lipschitz in γ, η and ζ (uniformly with respect to the remaining vari-
ables).

In the following estimates, the subscripts γ and ζ of a constant indicate the
dependence of the constant on ‖γ‖Hs and ‖ζ‖Hs−1 respectively.

γ �→ G(γ, ζ) is locally Lipschitz. Let γ1, γ2 ∈ Ds(Tm) and ζ̄ ∈ Hs−1(Tm, R). By
the composition lemma,

‖gradΛ−2(ζ̄ ◦ γ−1
1 ) ◦ γ1 − gradΛ−2(ζ̄ ◦ γ−1

2 ) ◦ γ2‖Hs

≤ Cγ2‖gradΛ−2(ζ̄ ◦ γ−1
1 ) ◦ γ − gradΛ−2(ζ̄ ◦ γ−1

2 )‖Hs ,

where γ = γ1 ◦ γ−1
2 . Let ζ = ζ̄ ◦ γ−1

2 . Then it is enough to show that the following
estimate holds:

(6) ‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ‖Hs ≤ Cγ,ζ‖γ − idx‖Hs .

Next we show that (6) holds for s > m/2 + 1. The left side of the inequality (6)
has the following form:

‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ‖Hs

	 ‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ‖L2(7)

+ ‖div(gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ)‖Hs−1 .(8)
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We first estimate the L2 term in (7). For any r > m/2 + σ we have the Sobolev
imbedding into a Hölder space

Hr(Tm) ↪→ Cσ(Tm)

with a bound

(9) |u(x) − u(y)| ≤ C‖u‖Hr |x − y|σ,

for any x, y ∈ T. Therefore using the composition lemma and applying (9) with
r = s − 1 and σ = (s − 1 − m/2)/2 we find

‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ‖L2

≤ ‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2(ζ ◦ γ−1)‖L2

+ ‖gradΛ−2(ζ ◦ γ−1) − gradΛ−2ζ‖L2

≤ Cγ‖ζ‖Hs−1

(
‖γ − idx‖σ+1

Hs + ‖γ−1 − idx‖σ
Hs

)
.

Adding and subtracting the appropriate terms we estimate the Hs−1 term in (8)
by the sum

≤

∥∥∥∥∥∥
n∑

i=1

n∑
j=1

∂j∂iΛ−2(ζ ◦ γ−1) ◦ γ(∂iγj − δj
i )

∥∥∥∥∥∥
Hs−1

(10)

+ ‖∆Λ−2(ζ ◦ γ−1) ◦ γ − ∆Λ−2ζ‖Hs−1 .(11)

Using Schauder ring property and composition lemma the first summand in (10) is
bounded by

≤ ‖ζ‖Hs−1‖γ − idx‖Hs .

In order to estimate the second summand (11) we add and subtract the terms
Λ−2(ζ ◦ γ−1) ◦ γ and Λ−2ζ. After cancellations we obtain

= ‖Λ−2(ζ ◦ γ−1) ◦ γ − Λ−2ζ‖Hs−1

≤ ‖Λ−2(ζ ◦ γ−1) ◦ γ − Λ−2(ζ ◦ γ−1)‖Hs−1(12)

+ ‖Λ−2(ζ ◦ γ−1) − Λ−2ζ‖Hs−1 .(13)

Let u be Λ−2(ζ ◦ γ−1). Then we have

‖Λ−2(ζ ◦ γ−1) ◦ γ − Λ−2(ζ ◦ γ−1)‖Hs−1 =

∥∥∥∥∥
∫ γ(x)

x

Du(y)dy

∥∥∥∥∥
Hs−1

≤ ‖u‖C1‖γ − idx‖Hs−1 .

Using the Sobolev lemma with the composition lemma we obtain the estimate

≤ ‖u‖Hs‖γ − idx‖Hs−1

≤ Cγ‖ζ‖Hs−1‖γ − idx‖Hs(14)

for (12).
For s > m/2 + 2 the term (13) can easily be estimated like (12). For m/2 + 1 <

s ≤ m/2 + 2 we first observe that the estimate

(15) ‖Λ−2(ζ ◦ γ−1) − Λ−2ζ‖Hs−1 ≤ ‖ζ ◦ γ−1 − ζ‖L2
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holds for s − 3 ≤ 0, and then using (9) as before, we obtain the following estimate
for (13):

≤ Cγ‖ζ‖Hs−1‖γ−1 − idx‖σ
Hs(16)

where σ is equal to (s−1−m/2)/2 > 0. However the assumption s−3 ≤ 0 does not
follow from s ≤ m/2+2 if m ≥ 3. Nevertheless one can use the following inductive
argument until s− (2k + 1) ≤ 0 (it ends in finitely many steps since s ≤ m/2 + 2).

If s − 3 > 0 we split (13) as in (7)-(8). The L2 part can be estimated as for
s − 3 ≤ 0. The Hs−2 part

‖D(Λ−2(ζ ◦ γ−1) ◦ γ − Λ−2ζ)‖Hs−2

= ‖gradΛ−2(ζ ◦ γ−1) ◦ γ.Dγ − gradΛ−2ζ‖Hs−2(17)

is bounded by

≤ ‖gradΛ−2(ζ ◦ γ−1) ◦ γ.(Dγ − 1)‖Hs−2(18)

+ ‖gradΛ−2(ζ ◦ γ−1) ◦ γ − gradΛ−2ζ‖Hs−2 .(19)

Here the first summand (18) is estimated using the Schauder ring property with
the composition lemma

‖gradΛ−2(ζ ◦ γ−1) ◦ γ.(Dγ − 1)‖Hs−2 ≤ Cγ‖ζ‖Hs−1‖γ − idx‖Hs .

For the second summand (19) we use the steps (6)-(14) to reduce it to estimating

(20) ‖Λ−2(ζ ◦ γ−1) − Λ−2ζ‖Hs−3 .

If s − 5 ≤ 0 we proceed as in (15)-(16). Otherwise we repeat the steps (17)-(20).

γ �→ F (γ, ζ, η) is locally Lipschitz. Let γ1, γ2 ∈ Hs(Tm, Rm) and

ζ ∈ Hs−1(Tm, R), η ∈ Hs(Tm, Rm).

Then by the Schauder ring property we have

‖ζ(div(η ◦ γ−1
1 ) ◦ γ1) − ζ(div(η ◦ γ−1

2 ) ◦ γ2)‖Hs−1

≤ ‖ζ‖Hs−1‖
∑
j,m

∂mηj∂j(γ−1
1 )m ◦ γ1 − ∂mηj∂j(γ−1

2 )m ◦ γ2‖Hs−1

≤ Cγ1,γ2,ζ

∑
j,m

‖∂mηj‖Hs−1‖∂j(γ−1
1 )m − ∂j(γ−1

2 )m‖Hs−1 .

Using the Schauder ring property one more time we bound this term by

≤ Cγ1,γ2,ζ,η‖η‖Hs‖γ1 − γ2‖Hs ,

and therefore γ �→ F (γ, ζ, η) is locally Lipschitz.
It is straightforward to show that the second, third and fifth maps in (5) are

uniformly Lipschitz using properties of Sobolev spaces. This completes the proof
of Theorem 1. �

Next we observe that the Cauchy problems for the equation (mEP) and the Euler
equations of an incompressible fluid are not only similar for low regularity (Sobolev
class) data but also for high regularity (analytic) data.
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2. Analytic regularity

In this section we give a proof of Theorem 2 that states the analytic regularity
(i.e., existence and uniqueness of analytic solutions for analytic initial data) of the
Cauchy problem for (mEP).

Our approach is motivated by the work of M.S. Baouendi and C. Goulaouic
[BG] who studied analytic regularity of the Cauchy problem for Euler equations of
incompressible fluids.

The proof of Theorem 2 relies on a contraction argument in a decreasing scale
of Banach spaces Xs (i.e., if s′ < s implies Xs ⊂ Xs′ and ||| · |||s′ ≤ ||| · |||s).

For s > 0, let the spaces Es be defined as

Es =

{
u ∈ C∞(Tm) :

∫
Tm

u dx = 0 and |||u|||s = sup
|k|≥0

‖∂k
xu‖Hσs|k|

k!/(|k| + 1)2
< ∞

}
,

where σ is any integer such that σ > 1+m/2 and let Xs be given by the Cartesian
product Es × Es. The norm ||| · |||Xs

can be chosen to be any of the standard
product norms on Es × Es. The following lemma states the ring property for the
spaces Es.

Lemma 1. Let 0 < s < 1. There is a constant c > 0 which is independent of s
such that we have

|||uv|||s ≤ c|||u|||s|||v|||s
for any u, v ∈ Es.

We omit the proof of Lemma 1 (see [HM1] for the case m = 1). First we rewrite
the equation (mEP) in a more convenient form. Let n and v be denoted by u1 and
u2 respectively. Then we can write the equation (mEP) in terms of (u1, u2) as

(21)
∂tu1 = F1(u1, u2) := P2(u1u2),
∂tu2 = F2(u1, u2) := P4(u2)u2 + P1P3u1

where
P1(n) := −grad(n), P3(n) := Λ−2n,
P2(v) := −div(v), P4(u)v := −(∇vu) = −(Du)v.

The following lemmas give the suitable bounds on these operators to prove The-
orem 2.

Lemma 2. For 0 < s′ < s < 1, we have

|||P1n|||s′ ≤ C

s − s′
|||n|||s,

|||P2v|||s′ ≤ c

s − s′
|||v|||s.

Proof. By the definition of |||.|||s, we have

|||P1n|||s′ = sup
|k|≥0

‖∂kP1n‖Hσs′
|k|

k!/(|k| + 1)2
.

The Hσ norm on the right hand side can be written in the local coordinates up to
a constant as

‖∂k(grad(n))‖Hσ(Tm,Rm) 	
m∑

j=1

‖∂k∂jn‖Hσ(Tm,R).
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Then we have the estimates

|||P1n|||s′ ≤ c sup
|k|≥0

sup
|β|=1

‖∂k+βn‖Hσs′
|k|

k!/(|k| + 1)2

= c sup
|k|≥0

sup
|β|=1

‖∂k+βn‖Hσs|k|+1

(k + β)!/(|k| + 2)2
(k + β)!
(|k| + 2)2

s′|k|

s|k|+1

(|k| + 1)2

k!
.

Note that

sup
|k|≥0

sup
|β|=1

‖∂k+βn‖Hσs|k|+1

(k + β)!/(|k| + 2)2
≤ |||n|||s.

Therefore we have

(22) |||P1n|||s′ ≤ m|||n|||s sup
|k|≥0

sup
|β|=1

s′|k|

s|k|+1

(k + β)!
k!

(
|k| + 1
|k| + 2

)2

.

Note also that

sup
|β|=1

(k + β)!
k!

= sup
1≤i≤m

(ki + 1) ≤ |k| + 1.

Then it follows from formula (24) that the inequality

(23) sup
|k|≥0

sup
|β|=1

s′|k|

s|k|+1

(k + β)!
k!

(
|k| + 1
|k| + 2

)2

≤ C

s − s′

holds. By (22) and (23) we obtain

|||P1n|||s′ ≤ C

s − s′
|||n|||s.

The estimate for P2 follows similarly. �

Lemma 3. For any 0 < s < 1, the estimate

|||P3(u)|||s ≤ |||u|||s

holds if u ∈ Es.

Lemma 4. For 0 < s′ < s < 1, we have

|||P4(u)v|||s′ ≤ c

s − s′
|||v|||s′ |||u|||s.

Proof. We write P4(u)v in terms of the linear operator Du as P4(u)v = (Du)v.
Then by Lemma 1 we have

|||P4(u)v|||s′ = |||(Du)v|||s′

= |||
m∑

i,j=1

vi∂iuj |||s′

≤
m∑

i,j=1

|||vi|||s′ |||∂iuj |||s′ .
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Now we reduce the proof to the case that we handled in the proof of Lemma 2:

|||P4(u)v|||s′ ≤ c|||v|||s′

m∑
i,j=1

|||∂iuj |||s′

≤ c|||v|||s′

m∑
j=1

sup
|k|≥0

sup
|β|=1

‖∂k+βuj‖Hσs′|k|

k!/(|k| + 1)2

≤ c|||v|||s′ |||u|||s sup
|k|≥0

sup
|β|=1

s′|k|

s|k|+1

(k + β)!
k!

(
|k| + 1
|k| + 2

)2

.

Clearly, to finish the proof, it is enough to show that

(24)
s′k

sk+1

(
k + 1
k + 2

)2

(k + 1) ≤ 1
s − s′

.

Let s′ = λs, 0 < λ < 1 and f(λ) = (k + 1)(1 − λ)λk. Then,

s′
k

sk+1

(
k + 1
k + 2

)2

(k + 1) =
λksk

sk+1

(
k + 1
k + 2

)2

(k + 1)

=
1

s(1 − λ)
f(λ)

(
k + 1
k + 2

)2

.

For k = 0 it is clear that f(λ) ≤ 1. For k ≥ 1 the function f(λ) = (k+1)(1−λ)λk

is continuous in the interval 0 < λ < 1, and it has zeros at the endpoints of the

interval [0, 1] and a maximum at λ = k
k+1 such that f( k

k+1 ) =
(

k
k+1

)k

< 1. Then
we have

(λk − λk+1)
(

k + 1
k + 2

)2

(k + 1) ≤ 1.

Therefore
λksk

sk+1

(
k + 1
k + 2

)2

(k + 1) ≤ 1
s(1 − λ)

,

and the formula (24) holds. Using the formula (24) we obtain the desired estimate

|||P4(u)v|||s′ ≤ c

s − s′
|||v|||s′ |||u|||s.

�

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We refer to the version of the abstract Cauchy-Kowalevski
theorem in [Nis]. We only need to verify the first two conditions of this theorem
since the map F (u1, u2) does not depend on t explicitly.

Clearly, t �−→ F (t, u(t)) = (F1(u1, u2), F2(u1, u2)) is holomorphic if t �−→ u1(t)
and t �−→ u2(t) are both holomorphic. We only need to show that F1(u1, u2) and
F2(u1, u2) are in Es′ if u1, u2 ∈ Es. We begin with estimates on F1.

By Lemma 2 and Lemma 1, we have

|||F1(u1, u2)|||s′ = |||P2(u1u2)|||s′ ≤ c

s − s′
|||u1|||s|||u2|||s.

Similarly, for F2, using Lemmas 2, 3 and 4 we have

|||F2(u1, u2)|||s′ = |||P4(u2)u2 + P1P3u1|||s′ ≤ c

s − s′
(
|||u2|||2s + |||u1|||s

)
.
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We proceed to establish the second condition of the abstract Cauchy-Kowalevski
theorem. We will show that for some c independent of t,

|||F1(u1, u2) − F1(v1, v2)|||s′ ≤ c

s − s′
|||u − v|||Xs

,

and similarly

|||F2(u1, u2) − F2(v1, v2)|||s′ ≤ c

s − s′
|||u − v|||Xs

where u = (u1, u2) and v = (v1, v2).
To obtain the first estimate above, after applying Lemma 2, we add and subtract

the term u1v2 and use Lemma 1:

|||F1(u1, u2) − F1(v1, v2)|||s′ = |||P2(u1u2 − v1v2)|||s′

≤ c

s − s′
(|||u1|||s|||u2 − v2|||s + |||u1 − v1|||s|||v2|||s) .

Then, assuming that |||u|||s < R and |||v|||s < R, we have

|||F1(u1, u2) − F1(v1, v2)|||s′ ≤ c

s − s′
|||u − v|||Xs

.

To estimate the F2 component, we use Lemmas 2 and 3:

|||F2(u1, u2) − F2(v1, v2)|||s′ = |||(P4u2)u2 − (P4v2)v2 + P1P3(u1 − v1)|||s′

≤ |||(P4u2)u2 − (P4v2)v2|||s′ +
c

s − s′
|||u1 − v1|||s.(25)

Note that

P4(u2)u2 − P4(v2)v2 = P4(u2)(u2 − v2) + P4(u2 − v2)v2.

Using Lemma 4 and the above identity, (25) implies

|||F2(u1, u2) − F2(v1, v2)|||s′ ≤ c

s − s′
(|||u2|||s|||u2 − v2|||s′+

+|||u2 − v2|||s|||v2|||s′ + |||u1 − v1|||s) .

Therefore the estimate

|||F2(u1, v1) − F2(u2, v2)|||s′ ≤ c

s − s′
|||u − v|||Xs

holds. This completes the proof of Theorem 2. �

3. Bihamiltonian structure and integrability

A number of partial differential equations that describe fluid motion can be de-
rived as equations for geodesics on various infinite dimensional Lie groups. For
instance, the Euler equation for ideal incompressible fluid flow is the geodesic equa-
tion on the group of volume-preserving diffeomorphisms of a Riemannian manifold
M with a right invariant metric given by the L2 inner product on the tangent space
at the identity of the group [EMa]. Other examples are

• the Korteweg-de Vries equation and Camassa-Holm equation on the
Bott-Virasoro group (see for example [OK] and [Mis3]),

• the ideal incompressible MHD (magnetohydrodynamics) on the semidirect
product of volume preserving diffeomorphisms with the divergence free vec-
tor fields,

• the Hunter-Saxton equation on the homogeneous space of all diffeomor-
phisms of the unit circle modulo the rotations [KM], etc.
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In contrast with all the examples we gave above, the energy of the modified
Euler-Poisson equation (mEP) is not a quadratic form, therefore it cannot be in-
terpreted as a Riemannian metric. However, there still is a variational problem
on the cotangent space of the configuration space of this equation. Here we derive
the equation (mEP) from this variational problem. Note that all the computations
that follow are formal.

Let g be a Lie algebra with the bracket operation [·, ·] and g∗ be its dual given
by the pairing

〈·, ·〉 : g
∗ × g → R.

Then g∗ with the Lie-Poisson bracket defined by

{F, G}(m) = 〈m,

[
δF

δm
,
δG

δm

]
〉

for F, G : g∗ → R is a Poisson manifold.
Hamilton’s equations for H ∈ C∞(P ) on a Poisson manifold (P, {·, ·}) are given

by

(26) Ḟ = {F, H} for all F ∈ C∞.

Given a Lie-Poisson manifold, Hamilton’s equations (26) can be written as

Ḟ (m) = {F, H}(m),

〈 δF

δm
, ∂tm〉 = −〈m,

[
δH

δm
,
δF

δm

]
〉

= −〈ad∗δH/δmm,
δF

δm
〉.

Therefore

(27) ∂tm = −ad∗δH/δmm

is an equivalent formulation of the Hamilton equation on a Lie-Poisson manifold.
Here we exploit the tools and techniques used to study the Hamiltonian for-

mulation of the Euler equations for a compressible fluid [MRW] to show that the
modified Euler-Poisson equation (mEP) can be derived as a Hamiltonian equation.

On the Cartesian product space Diff(Tm) × C∞(Tm) of the group of diffeomor-
phisms of T

m and the vector space C∞(Tm) of all smooth functions on T
m, the

operation
(φ, a) ◦ (ψ, b) = (φ ◦ ψ, a ◦ ψ−1 + b),

called the semidirect product, induces a Lie group structure. We denote this group
by

G = Diff(Tm) � C∞(Tm)
following the conventional notation for semidirect product spaces. The correspond-
ing Lie algebra is the space g = Vect(Tm) � C∞(Tm) with the bracket

[(v, a), (w, b)] = ([v, w],Lvb − Lwa)

where v, w ∈ Vect(Tm) and a, b ∈ C∞(Tm). Here [v, w] is the usual commutator
of vector fields on T

m and Lwa is the Lie derivative of a in the direction of w
and is given by Lwa = d

ds

∣∣
s=0

(a ◦ ζs) where ζs is any curve on Diff(Tm) such
that ζs|s=0 = id and d

ds

∣∣
s=0

ζs = w. Note that in this setting the composition
of the diffeomorphisms is the group operation on Diff(Tm), and the composition
of a smooth function with a diffeomorphism a ◦ γ−1 is the natural action of the
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diffeomorphism γ on the function a. In general, the semidirect product structure
on the Cartesian product of a Lie group and a vector space on which the group
acts is defined using the group operation and the action of the group on the vector
space (see [AK], [MRW]).

In this context, a Hamiltonian formulation of the modified Euler-Poisson equa-
tion (mEP) can be stated as follows:

Theorem 4. The modified Euler-Poisson equation (mEP) is a Hamiltonian equa-
tion on g∗ with respect to the linear Lie-Poisson structure and the energy function

(28) H(M, n) = −
∫

Tm

(
1
2n

〈M, M〉 + Φ(n)
)

dx

where M = nv ∈ Vect(Tm) and Φ′(n) = Λ−2(n).

Proof. We want to derive the equations for v and n from

(29) ∂tm = −ad∗δH/δmm

where m = (M, n) = (nv, n) and (v, n) ∈ g∗.
The variational derivative δH

δm is given by
(

δH
δM , δH1

δn

)
with

δH1

δM
= −M/n = −v,(30)

δH1

δn
=

1
2n2

〈M, M〉 − Φ′(n) =
1
2
〈v, v〉 − Φ′(n).(31)

Evaluating equation (29) on an arbitrary pair (w, b) ∈ g, we obtain

〈∂tm, (w, b)〉 = −〈ad∗δH1/δmm, (w, b)〉.
Then by the definition of the coadjoint operator ad∗ and the bracket on g, we have

〈∂tm, (w, b)〉 = −〈(M, n),
[(

δH1

δM
,
δH1

δn

)
, (w, b)

]
〉

= 〈(M, n),
([

w,
δH1

δM

]
,Lw

δH1

δn
− L δH1

δM
b

)
〉.

In what follows we identify the dual space g∗ with the algebra g using the pairing
〈·, ·〉 on g∗ × g given by

(32) 〈(v, a), (w, b)〉 =
∫

Tm

〈v, w〉 dx +
∫

Tm

ab dx.

Then substituting nv for M and using (30) and (31), we obtain

〈∂tm, (w, b)〉 =
∫

Tm

〈[w,−v], nv〉dx

+
∫

Tm

n

(
Lw(

1
2
〈v, v〉 − Φ′(n)) − L−vb

)
dx.

By the definition of the bracket [·, ·] on Vect(Tm), we have

〈∂tm, (w, b)〉 =
∫

Tm

〈(v.∇)w, nv〉 − 〈(w.∇)v, nv〉dx

+
∫

Tm

n

(
Lw(

1
2
〈v, v〉 − Φ′(n)) − L−vb

)
dx.
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Furthermore, we can compute the Lie derivatives on the right hand side and write
the above equality as follows:

〈∂tm, (w, b)〉 =
∫

Tm

〈(v.∇)w, nv〉 − 〈(w.∇)v, nv〉dx

+
∫

Tm

〈nw, grad(
1
2
〈v, v〉 − Φ′(n))〉 + 〈nv, grad(b)〉dx.

Using the identities

〈v, grad〈v, w〉〉 = 〈w, (v.∇)v〉 + 〈v, (v.∇)w〉

and

〈w,
1
2
grad〈v, v〉〉 = 〈v, (w.∇)v〉

we obtain

〈∂tm, (w, b)〉 =
∫

Tm

〈grad〈v, w〉, nv〉 − 〈(v.∇)v, nw〉

− 〈nw, grad(Φ′(n))〉+ 〈nv, grad(b)〉dx.

Integrating by parts the first and the last summands on the right hand side, we
obtain

〈∂tm, (w, b)〉 =
∫

Tm

−div(nv)〈v, w〉−〈(v.∇)v, nw〉−〈nw, grad(Φ′(n))〉−bdiv(nv)dx.

Note that
〈∂tm, (w, b)〉 = 〈((∂tn)v + n(∂tv), ∂tn), (w, b)〉.

Then by (32), we have

∂tn = −div(nv),

(∂tn)v + n(∂tv) = −div(nv)v − n(v.∇)v − ngrad(Φ′(n))

which is equivalent to

∂tn = −div(nv),

∂tv = −(v.∇)v − grad(Φ′(n)).

�

Note that for one space dimension (m = 1) the Hamiltonian H1 in (28) is given
by

(33) H1 =
∫

1
2

(
v2n + (Λ−2∂xn)2 + (Λ−2n)2

)
dx

in terms of v and n. Then using the differential operator D1 that is defined as

D1 =
(

0 −∂
−∂ 0

)
,

one can rewrite the equation (mEP) in the Hamiltonian form

(34) ∂t

(
v
n

)
= D1

(
δH1/δv
δH1/δn

)
.
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The Poisson bracket induced by the matrix differential operator D1 is given by

{F, H}(v, n) = 〈(v, n),
([(

δF

δv
,
δF

δn

)
,

(
δH

δv
,
δH

δn

)])
〉

=
∫ (

δF

δn
∂x

δH

δv
− δH

δn
∂x

δF

δv

)
dx.

Another conserved quantity for (mEP) is

(35) H2 =
∫

nv dx.

For one space dimension (m = 1) we can use H2 to write (mEP) in yet another
form as

(36) ∂t

(
v
n

)
= D2

(
δH2/δv
δH2/δn

)

where D2 is defined as

D2 =
(

−Λ−2∂x −∂xv
∂xv −(n∂ + ∂n)

)
.

We prove Theorem 3 by showing that (34) and (36) are Hamiltonian forms of the
modified Euler-Poisson equation (mEP) and that the induced Poisson structures
are compatible.

Proof of Theorem 3. The matrix differential operator D1 is skew-adjoint and does
not depend on v or n nor any of their derivatives; therefore the bracket given by
D1 satisfies the Jacobi identity; and hence is indeed a Poisson bracket.

We can easily check that D2 is skew-adjoint as well:∫
(φ1, φ2)D2(θ1, θ2)dx

=
∫

φ1(Λ−2∂xθ1 − θ2∂xv) + φ2(→ ∂xv − n∂xθ2 − ∂x(nθ2))dx

= −
∫

(→ Λ−2∂xφ1 − φ2 → ∂xv + φ1θ2∂xv − θ2∂x(φ2n) − nθ2∂xφ2)dx

=
∫

(θ1, θ2)D∗
2(φ1, φ2)dx.

To verify the Jacobi identity for the bracket induced by D2 we adapt the notation
of prolongations (see [Ol] for details). Let Θ2 be the functional bivector associated
to D2:

Θ2 =
1
2

∫
(θ1, θ2)D2(θ1, θ2)dx

=
1
2

∫
{θ1 ∧ Λ−2∂xθ1 − θ1 ∧ θ2∂xv

+θ2 ∧ θ1∂xv − θ2 ∧ n∂xθ2 − θ2 ∧ ∂x(θ2n)}dx

=
1
2

∫
{θ1 ∧ Λ−2∂xθ1 − 2(∂xv)θ1 ∧ θ2 − 2θ2 ∧ n∂xθ2}dx.



THE CAUCHY PROBLEM AND A MODIFIED EULER-POISSON EQUATION 1875

Then D2 is Hamiltonian since

pr vD2θ(Θ2) = −1
2

∫
{2(θ1∂xv − n∂xθ2 − ∂x(θ2n)) ∧ θ2 ∧ ∂xθ2

+∂x(Λ−2∂xθ1 − θ2∂xv) ∧ θ1 ∧ θ2}dx

= −
∫
{Λ−2∂2

xθ1 ∧ θ1 ∧ θ2}dx

= −
∫
{Λ−2θ1 ∧ θ1 ∧ θ2}dx

= −1
2

∫
{∂2

x(Λ−2θ1 ∧ Λ−2θ1) ∧ θ2}dx

= 0.

These two Hamiltonian structures, (34) and (36), are compatible, i.e., the equa-
tion (mEP) is bihamiltonian in one space dimension. To prove the compatibility it
is enough to check that

(37) pr vD1θ(ΘD2) + pr vD2θ(ΘD1) = 0

holds, where ΘDi
denotes the corresponding bivector for Di. Both summands in

(37) vanish:

pr vD1θ(ΘD2) =
1
2

∫
{−2∂xθ1 ∧ θ2 ∧ ∂xθ2 − 2∂2

xθ2 ∧ θ1 ∧ θ2}dx

= −
∫

∂x(θ1 ∧ θ2 ∧ ∂xθ2)dx

= 0,

and similarly we have
pr vD2θ(ΘD1) = 0

since

ΘD1 =
1
2

∫
{−θ1 ∧ ∂xθ2 − θ2 ∧ ∂xθ1}dx

= −
∫
{θ1 ∧ ∂xθ2}dx.

Therefore the modified Euler-Poisson equation (mEP) is bihamiltonian for m = 1,
and this completes the proof of Theorem 3. �
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