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CENTRAL INVARIANTS AND HIGHER INDICATORS
FOR SEMISIMPLE QUASI-HOPF ALGEBRAS

SIU-HUNG NG AND PETER SCHAUENBURG

Abstract. In this paper, we define the higher Frobenius-Schur (FS-)indicators
for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the
categorical counterpart developed in a 2005 preprint. When H is an ordi-
nary Hopf algebra, we show that our definition coincides with that introduced
by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant
central elements of H such that the higher FS-indicators of a module V are
obtained by applying its character to these elements. As an application, we
show that FS-indicators are sufficient to distinguish the four gauge equivalence
classes of semisimple quasi-Hopf algebras of dimension eight corresponding to
the four fusion categories with certain fusion rules classified by Tambara and
Yamagami. Three of these categories correspond to well-known Hopf algebras,
and we explicitly construct a quasi-Hopf algebra corresponding to the fourth
one using the Kac algebra. We also derive explicit formulae for FS-indicators
for some quasi-Hopf algebras associated to group cocycles.

Introduction

The (degree 2) Frobenius-Schur indicator ν2(V ) of an irreducible representation
V of a finite group G has been generalized to simple modules of semisimple Hopf
algebras by Linchenko and Montgomery [LM00], to certain C∗-fusion categories by
Fuchs, Ganchev, Szlachányi, and Vecsernyés [FGSV99], and to simple modules of
semisimple quasi-Hopf algebras by Mason and the first author [MN05]. A more
general version of the Frobenius-Schur Theorem holds for the simple modules of
semisimple Hopf algebras or even quasi-Hopf algebras. In particular, the Frobenius-
Schur indicator of a simple module is non-zero if, and only if, the simple module is
self-dual, and its value can only be 0, 1 or −1.

In proving that ±1 are the only possible non-zero values for the Frobenius-Schur
indicator of a simple module of a semisimple quasi-Hopf algebra H over C [MN05],
the fact that H-modfin is pivotal, proved by Etingof, Nikshych, and Ostrik [ENO],
has been used. Based on the pivotal structure, the second author [Sch04] later
introduced a categorical definition of degree 2 Frobenius-Schur indicators and gave
a different proof of the Frobenius-Schur Theorem for quasi-Hopf algebras.

The higher indicators of irreducible representations of a finite group do not have
a direct interpretation as the degree 2 indicators (cf. [Isa94]). The n-th Frobenius-
Schur indicator of a finite-dimensional module V with character χ of a semisimple
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Hopf algebra H has been defined by Kashina, Sommerhäuser, and Zhu [KSZ] as
the value of χ at the n-th Sweedler power of the normalized integral of H. It has
been shown in their paper that these indicators carry rich information on H, as well
as its module category. Moreover, the values of the n-th indicators are cyclotomic
integers in Qn.

In the paper [NS], the authors introduced the notion of higher Frobenius-Schur
indicators of an object V in a C-linear pivotal category C. These indicators are
invariants of the pivotal category. If V is simple and νn(V ) �= 0, then the dual
object V ∨ of V occurs in V ⊗(n−1). Again, the n-th indicator of any object in C is a
cyclotomic integer in Qn. In addition, if C is a pseudo-unitary fusion category over
C, then the higher indicators will be preserved by any C-linear monoidal equivalence
from C to any other pseudo-unitary fusion category over C.

In this paper, we continue our study of Frobenius-Schur indicators defined in [NS]
for the module category of a semisimple complex quasi-Hopf algebra H. It has been
proved in [ENO] that H-modfin is pseudo-unitary; equivalently, H-modfin admits a
unique pivotal structure j for which the pivotal dimension of V ∈ H-modfin is the
ordinary dimension of V . We will refer to this pivotal structure as the canonical
pivotal structure on H-modfin. It has been shown in [MN05] that the canonical
pivotal structure j is given by the trace-element g of H, namely

jV : V → V ∨∨, jV (x)(f) = f(g−1x) for x ∈ V, f ∈ V ∨ ,

and g can be expressed in terms of the integral, the associator and the antipode of
the quasi-Hopf algebra. For the canonical pivotal structure of H-modfin, we prove
(Theorem 4.1) that there exists a canonical central element µn(H) for each positive
integer n such that the n-th Frobenius-Schur indicator νn(V ) of V is given by

(0.1) νn(V ) = χ(µn(H)),

where χ is the character of the H-module V . The elements µn(H) are invariant
under gauge transformations and independent of the choice of antipode of H. More-
over, we find an expression for µn(H) in terms of the integral, the associator and the
antipode of H (Proposition 4.5). These results are extensions of the corresponding
degree 2 results in sections 3 and 4 of [MN05]. The formula (0.1) also implies that
our definition of higher indicators coincides with the one introduced in [KSZ] when
H is a Hopf algebra.

The organization of the paper is as follows: we cover some basic definitions and
facts about quasi-Hopf algebras H, including some important elements of H⊗H
and identities introduced by Drinfel′d [Dri90], Hausser, and Nill [HN], in Section
1. In Section 2, we prove that two finite-dimensional Hopf algebras over a field k
are gauge equivalent if, and only if, their module categories are k-linear monoidally
equivalent. In addition, if H is semisimple and k = C, then H-modfin is a spherical
fusion category with respect to a canonical pivotal structure. Moreover, the canoni-
cal pivotal structure of H-modfin is preserved by any C-linear monoidal equivalence
from H-modfin to K-modfin for some quasi-Hopf algebra K over C. In Sections
3 and 4, we define the (n, r)-th Frobenius-Schur indicators νn,r(V ) of a finite-
dimensional H-module V . We determine the central elements µn(H) whose action
on the H-modules gives the n-th Frobenius-Schur endomorphisms introduced in
[NS]. The element µn(H) is an invariant under gauge transformations on H and
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νn(V ) = χ(µn(H)) where χ is the character of V . As an example, we derive a for-
mula for the higher indicators for the semisimple quasi-Hopf algebra obtained from
a semisimple Hopf algebra with a central group-like element of order 2 in Section
5. In Section 6, we use this formula to show that Frobenius-Schur indicators suffice
to identify and distinguish the four gauge equivalence classes of non-commutative
semisimple quasi-Hopf algebras of dimension 8 whose fusion rules (or K(H)) con-
tain an abelian group isomorphic to Z2 × Z2. The corresponding categories were
classified by Tambara and Yamagami. Finally, in Section 7, we obtain formulae for
the higher FS-indicators for the dual of the group algebra of a finite group G with
quasi-Hopf algebra structure determined by a group 3-cocycle, and for its double,
known as the twisted double Dω(G).

1. Preliminaries and notation

In this section, we recall the definition of quasi-Hopf algebras, some properties
described in [Dri90] and [Kas95], and some interesting results obtained in [HN],
[HN99b], and [HN99a]. In the sequel, we will use the notation introduced in this
section.

A quasi-bialgebra over a field k is a quadruple (H, ∆, ε, φ), in which H is an
algebra over k, ∆: H → H ⊗ H and ε : H → k are algebra maps, and φ ∈ H⊗3 is
the associator. Here our convention of associator φ is given by the equation

φ(∆ ⊗ id)∆(h) = (id⊗∆)∆(h)φ .

A quasi-bialgebra (H, ∆, ε, φ) is called a quasi-Hopf algebra if there exist an anti-
algebra automorphism S of H and elements α, β ∈ H such that for all elements
h ∈ H, we have

S(h(1))αh(2) = ε(h)α, h(1)βS(h(2)) = ε(h)β ,(1.2)

φ(1)βS(φ(2))αφ(3) = 1, S(φ(−1))αφ(−2)βS(φ(−3)) = 1 ,(1.3)

where φ = φ(1)⊗φ(2)⊗φ(3), φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3) and ∆(h) = h(1) ⊗ h(2). In
the above equations, the summation notation of the tensors has been suppressed.
For simplicity, we will continue to do so in the sequel. The triple (S, α, β) or some-
times just the anti-automorphism S is called an antipode for H. We will simply write
H for a quasi-bialgebra (H, ∆, ε, φ) or a quasi-Hopf algebra (H, ∆, ε, φ, α, β, S).

The module category H-mod of the quasi-bialgebra H is a k-linear monoidal
category, or simply a tensor category. If H is a quasi-Hopf algebra, then the tensor
category H-modfin of all finite-dimensional H-modules is rigid, i.e. H-modfin ad-
mits both left and right duality. Given any V ∈ H-modfin with the left H-module
structure given by ρ : H → Endk(V ), the left dual (V ∨, ev, db) of V is defined as
follows:

(1) V ∨ = Homk(V, k) with the H-action given by h �→ ρ(S(h))∗,
(2) ev : V ∨⊗V → k and db: k → V ⊗V ∨ defined by

ev(f⊗v) = f(αv) and db(1) =
∑

i

βvi⊗vi ,

where {vi} is a basis for V and {vi} the corresponding dual basis.
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Similarly, one can define ∨V = Homk(V, k) with the left H-action given by h �→
ρ(S−1(h))∗ and the linear maps ev′ : V ⊗∨V → k and db′ : k → ∨V ⊗V by

ev′(v⊗f) = f(S−1(α)v) and db′(1) =
∑

i

vi⊗S−1(β)vi .

Then (∨V , ev′, db′) defines a right dual of V (cf. [Dri90] and [Kas95] for the details).
Following [Kas95], a gauge transformation on a quasi-bialgebra H = (H, ∆, ε, φ)

is an invertible element F of H ⊗ H such that

(ε ⊗ id)(F ) = 1 = (id⊗ε)(F ) .

Using a gauge transformation F on H, one can define an algebra map ∆F : H →
H ⊗ H by

(1.4) ∆F (h) = F∆(h)F−1

for any h ∈ H, and an invertible element φF of H ⊗ H ⊗ H by

(1.5) φF = (1 ⊗ F )(id⊗∆)(F )φ(∆ ⊗ id)(F−1)(F−1 ⊗ 1) .

Then HF = (H, ∆F , ε, φF ) is also a quasi-bialgebra. If H = (H, ∆, ε, φ, α, β, S) is
a quasi-Hopf algebra, then so is HF = (H, ∆F , ε, φF , αF , βF , S), where

αF =
∑

i

S(di)αei and βF =
∑

i

fiβS(gi)

with F =
∑

i fi ⊗ gi and F−1 =
∑

i di ⊗ ei.
Two quasi-bialgebras A and B are said to be gauge equivalent if there exists

a gauge transformation F on B such that A and BF are isomorphic as quasi-
bialgebras. Let σ : A → BF be such a quasi-bialgebra isomorphism. Then the
functor σ(-) : B-mod → A-mod, with σV the left A-module with the underlying
space V and the left A-action given by

(1.6) a · v = σ(a)v (a ∈ A, v ∈ V ),

and σf = f for any map f in B-mod, is a k-linear equivalence. Let ξ : σV ⊗σW →
σ(V ⊗ W ) be the linear map

V ⊗ W
F ·−→ V ⊗ W

for any V, W ∈ B-mod. Then (σ(-), ξ, id) is a k-linear monoidal equivalence, or
simply a tensor equivalence, from B-mod to A-mod (cf. [Kas95]).

In [HN], [HN99b] and [HN99a], Frank Hausser and Florian Nill introduced some
interesting elements in H ⊗ H for a quasi-Hopf algebra H = (H, ∆, ε, φ, α, β, S) in
the course of studying the corresponding theories of quantum double, integral and
the fundamental theorem for quasi-Hopf algebras. These elements of H ⊗ H are
given by

qR = φ(1) ⊗ S−1(αφ(3))φ(2) , pR = φ(−1) ⊗ φ(−2)βS(φ(−3)) ,(1.7)

qL = S(φ(−1))αφ(−2) ⊗ φ(−3) , pL = φ(2)S−1(φ(1)β) ⊗ φ(3) .(1.8)
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The elements qL and pL also occurred in [Dri90]. One can show (cf. [HN]) that
they obey the relations (for all h ∈ H)

(h ⊗ 1) qR = (1 ⊗ S−1(h(2))) qR ∆(h(1)),(1.9)

pR (h ⊗ 1) = ∆(h(1)) pR (1 ⊗ S(h(2))),

(1 ⊗ h) qL = (S(h(1)) ⊗ 1) qL ∆(h(2)),(1.10)

pL (1 ⊗ h) = ∆(h(2)) pL (S−1(h(1)) ⊗ 1) ,

where ∆(h) = h(1) ⊗ h(2). Suppressing the summation symbol and indices again,
we write qR = q

(1)
R ⊗ q

(2)
R , etc. These elements also satisfy the identities (cf. [HN]):

∆(q(1)
R ) pR (1 ⊗ S(q(2)

R )) = (1 ⊗ S−1(p(2)
R )) qR ∆(p(1)

R ) = 1 ⊗ 1,(1.11)

∆(q(2)
L ) pL (S−1(q(1)

L ) ⊗ 1) = (S(p(1)
L ) ⊗ 1) qL ∆(p(2)

L ) = 1 ⊗ 1.(1.12)

2. Module categories of quasi-Hopf algebras

In this section, we recall the canonical pivotal structure of the module categories
of finite-dimensional semisimple quasi-Hopf algebras over C and some properties
of these tensor categories. We also prove that two finite-dimensional quasi-Hopf
algebras are gauge equivalent if, and only if, their module categories are tensor
equivalent.

It is well known that if H and K are gauge equivalent quasi-bialgebras, then
H-mod and K-mod are equivalent tensor categories (cf. [Kas95]). The converse
for finite-dimensional Hopf algebras was proved in [Sch96]. The quasi-bialgebra
case was proved in [EG02, section 6]. Here we give a more straightforward proof
for the case of finite-dimensional quasi-Hopf algebras.

Lemma 2.1. Let H be a quasi-Hopf algebra over a field k, R a k-algebra and V
an H-R-bimodule. Then θ : H ⊗ V → H ⊗ ◦V given by

θ(h ⊗ v) = q
(1)
R h(1) ⊗ S(q(2)

R h(2))v,

for any h ∈ H and v ∈ V , is a natural H-R-bimodule isomorphism, where ◦V
denotes the trivial H-module with the underlying space V and the right R-actions
on H ⊗ V and H ⊗ ◦V are induced by the right R-action on V .

Proof. It follows directly from (1.9) that θ is a natural bimodule homomorphism.
Consider the H-module map θ̄ : H ⊗ ◦V → H ⊗ V given by

θ̄(h ⊗ v) = h(1)p
(1)
R ⊗ h(2)p

(2)
R v .

Using (1.9) and (1.11), one can easily verify that θθ̄ = θ̄θ = id. Hence, the result
follows. �

Theorem 2.2. Let H be a finite-dimensional quasi-Hopf algebra, and B a quasi-
bialgebra over a field k. If H-mod and B-mod are tensor equivalent (in particular
if B is finite-dimensional, and H-modfin and B-modfin are tensor equivalent), then
B is gauge equivalent to H as quasi-bialgebras.

Proof. Let (F , ξ, ξ0) be a tensor equivalence from H-mod to B-mod. By the
Morita Theorems, we may assume that F = T ⊗H − for some T ∈ B-H-mod such
that TH is a progenerator, and in particular, T is finite-dimensional. Moreover,
the algebra homomorphism σ′ : B → EndH(TH) given by the B-module structure
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of T , is an isomorphism. To show that H ∼= B as algebras, it suffices to prove
that T ∼= H as right H-modules. By Lemma 2.1, there exists an H-H-bimodule
isomorphism θ : H⊗H → H⊗◦H . Thus, we have

T⊗T ∼= F(H)⊗F(H)
ξ∼= F(H⊗H)

F(θ)∼= F(H⊗◦H) = T⊗HH⊗◦H ∼= T⊗◦H

as left B-modules. Obviously, all the above unlabeled isomorphisms are B-H-
bimodule isomorphisms. Since θ is an H-H-bimodule isomorphism, F(θ) is a B-
H-bimodule isomorphism. The naturality of ξ implies that ξ : F(H)⊗F(H) →
F(H⊗H) is also a B-H⊗H-bimodule isomorphism. Thus, we have

T⊗T ∼= T⊗◦H

as B-H-bimodules, and hence T ∼= H as right H-modules by the Krull-Schmidt
Theorem. Let σ : B → H be the composition map

B
σ′
−→ EndH(TH) ∼= EndH(HH) ∼= H .

As in (1.6), the algebra map σ induces a k-linear equivalence σ(-) : H-modfin →
B-modfin and T ∼= σH as B-H-bimodules. The following B-module isomorphisms

T⊗HV ∼= σH⊗HV ∼= σV

are natural in V and hence σ(-) is k-linearly equivalent to F . Therefore, one may
assume F(-) = σ(-). Note that (F , zξ, z−1ξ0) is also a tensor equivalence for any
non-zero scalar z. One may further assume ξ0 = idk and so we have εHσ = εB . Let

F ′ = ξH,H(1⊗1) and F = ξ−1
H,H(1⊗1) .

Since ξH,H is a B-H⊗H-bimodule isomorphism, we have

ξH,H(u⊗v) = ξH,H(1⊗1)(u⊗v) = F ′(u⊗v)

for all u, v ∈ H, and

F ′(σ ⊗ σ)(∆B(b)) = ξ(b · (1⊗1)) = b · ξ(1⊗1) = ∆H(σ(b))F ′

for all b ∈ B. By naturality again, ξX,Y = F ′· for any free H-modules X and Y .
Moreover, we have

FF ′ = ξ−1(1⊗1)(F ′) = ξ−1(F ′) = ξ−1(ξ(1⊗1)) = 1⊗1

and, similarly, F ′F = 1⊗1. Therefore, F is invertible in H⊗H. Finally, by the
commutativity of the diagrams

σH

σH⊗σH

ε⊗ id ����
��

��
��

ξ ��

id⊗ε
����������

σ(H⊗H) ,

ε⊗ id����������

id⊗ε
����������

σH

σ((H ⊗ H) ⊗ H)
σ(φH ·) ��

σ(H ⊗ (H ⊗ H))

σ(H ⊗ H) ⊗σ H

ξ

��

σH ⊗ σ(H ⊗ H)

ξ

��

(σH ⊗ σH) ⊗ σH
φB · ��

ξ⊗id

��

σH ⊗ (σH ⊗ σH) ,

id⊗ξ

��

we obtain
1 = (id⊗εH)(F ) = (εH ⊗ id)(F ) ,

and

(σ ⊗ σ ⊗ σ)(φB) = (1 ⊗ F )(id⊗∆)(F )φH(∆ ⊗ id)(F−1)(F−1 ⊗ 1) .
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Therefore, F is a gauge transformation on H and σ : B → HF is quasi-bialgebra
isomorphism. �

Recall that a pivotal structure for a rigid monoidal category C is an isomorphism
j : Id → (-)∨∨ of monoidal functors. A pivotal monoidal category is a rigid monoidal
category with a pivotal structure.

Assume that H is a finite-dimensional semisimple quasi-Hopf algebra over C.
It follows from [ENO, Section 8] that H-modfin admits a unique pivotal structure
such that the left pivotal dimension ptr�(idV ) of any finite-dimensional H-module
V is identical to its usual dimension dim(V ), where

ptr�(f) :=
(
C

db−→ V ⊗V ∨ jV ⊗ idV ∨−−−−−−→ V ∨∨⊗V ∨ ev−→ C
)

for any f ∈ EndH(V ). We will refer to the pivotal structure described above as
the canonical pivotal structure in the sequel. The canonical pivotal structure will
be automatically preserved by any tensor equivalence to any other pseudo-unitary
fusion category over C. It can be described explicitly in terms of the trace element
gH of H (cf. [MN05]).

Remark 2.3. Let V ∈ H-modfin and let V =
⊕

i Xi be a decomposition of V
as a direct sum of simple H-modules Xi. Let ιi : Xi → V and πi : V → Xi be
the embeddings and projections associated with the decomposition. For any f ∈
EndH(V ), we have πifιi = fi idXi

for some scalar fi ∈ C by Schur’s Lemma.
Therefore,

ptr�(f) =
∑

i

ptr�(fιiπi) =
∑

i

ptr�(πifιi) =
∑

i

fi ptr�(idXi
) =

∑
i

fi dim(Xi),

which is identical to the usual trace of f . In particular,

ptr�(f) = ptr�(f∨) = ptrr(f) .

Therefore, H-modfin is a (non-strict) spherical fusion category over C. This ob-
servation has been proved, in a more general context, by Müger [Müg03, Lemma
2.8].

In [ENO, Section 8] the existence of the canonical pivotal structure on H-modfin

is deduced from the fact that H-modfin is pseudo-unitary ; conversely, it is not hard
to see that a spherical fusion category with positive pivotal dimensions is pseudo-
unitary in the sense of [ENO].

Proposition 2.4. Let H and K be gauge equivalent finite-dimensional semisim-
ple quasi-Hopf algebras over C. Then every tensor equivalence from H-modfin to
K-modfin preserves their canonical pivotal structures.

Proof. Since H-modfin and K-modfin are pseudo-unitary, the statement follows
immediately from [NS, Corollary 6.2]. �

3. Frobenius-Schur indicators for semisimple quasi-Hopf algebras

In this section, we recall the definition of Frobenius-Schur indicators of an object
in a linear pivotal category (cf. [NS] for the details). We then give a definition of
higher Frobenius-Schur indicators for any finite-dimensional representations of a
semisimple quasi-Hopf algebra H over C using the canonical pivotal structure of
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H-modfin described in Section 2. It follows from [NS] that these indicators are
invariants of the tensor category H-modfin and hence gauge invariants of H.

Let C be a finite k-linear pivotal category, that is, a k-linear rigid monoidal
category with a pivotal structure j : Id → (−)∨∨ such that C(V, W ) is a finite-
dimensional k-linear space for all V, W ∈ C. We denote by V ⊗n the n-fold tensor
power of an object V ∈ C with rightmost parentheses; thus V ⊗0 = I, the neutral
object of C, and V ⊗(n+1) = V ⊗V ⊗n. There is a unique isomorphism

Φ(n) : V ⊗(n−1)⊗V → V ⊗n

composed of instances of the associativity isomorphisms Φ; explicitly Φ(1) is the
identity, and

Φ(n+1) =
(

(V ⊗V ⊗(n−1))⊗V
Φ−→ V ⊗(V ⊗(n−1)⊗V ) V ⊗Φ(n)

−−−−−→ V ⊗(n+1)

)
.

Define A : C(I, V ⊗W ) → C(V ∨, W ) and TV W : C(V ∨, W ) → C(W∨, V ) for V, W
∈ C by

A(f) =
(

V ∨ V ∨⊗f−−−−→ V ∨⊗(V ⊗W ) Φ−1

−−−→ (V ∨⊗V )⊗W
ev⊗W−−−−→ W

)
,

TV W (f) = (W∨ f∨

−−→ V ∨∨ j−1
V−−→ V ),

and put

EV W =
(
C(I, V ⊗W ) A−→ C(V ∨, W ) TV W−−−→ C(W∨, V ) A−1

−−−→ C(I, W⊗V )
)

,

E
(n)
V =

(
C(I, V ⊗n)

E
V,V ⊗(n−1)

−−−−−−−−→ C(I, V ⊗(n−1)⊗V )
C(I,Φ(n))−−−−−−→ C(I, V ⊗n)

)
.

Note that E
(1)
V = idC(I,V ) as I∨∨ = I. Following [NS], for any positive integers n, r,

the (n, r)-th Frobenius-Schur indicator of V is the scalar

νn,r(V ) = Tr
((

E
(n)
V

)r)
.

We will call νn(V ) := νn,1(V ) the n-th Frobenius-Schur indicator of V . Now,
we can define the Frobenius-Schur indicators for the representations of a semisimple
quasi-Hopf algebra over C.

Definition 3.1. Let H be a semisimple quasi-Hopf algebra over C and let C be
the spherical category H-modfin with the canonical pivotal structure described at
the end of Section 2. For any V ∈ C, we call νn,r(V ) the (n, r)-th Frobenius-Schur
indicator of V and call νn(V ) the n-th Frobenius-Schur indicator of V .

Proposition 3.2. Let H, K be gauge equivalent finite-dimensional semisimple
quasi-Hopf algebras over C via the gauge transformation F on H and the quasi-
bialgebra isomorphism σ : K → HF . For any tensor equivalence F from H-modfin

to K-modfin,
νn,r(V ) = νn,r(F(V ))

for any V ∈ H-modfin and positive integers n, r. In particular,

νn,r(V ) = νn,r(σV ) .

Proof. The result follows directly from Proposition 2.4 and [NS, Corollary 4.4]. �
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Remark 3.3. Proposition 3.2 implies that the (n, r)-th Frobenius-Schur indicators
are gauge invariants of H.

Remark 3.4. Let H be a semisimple Hopf algebra over C. By a well-known result of
Larson and Radford [LR88], the antipode of H is an involution, and so the canonical
pivotal structure of H-modfin is given by the natural isomorphism j : V → V ∨∨ of
C-linear spaces. If one identifies HomH(C, V ) with the invariant space V H for any
V ∈ H-modfin, then

E
(n)
V

(∑
u1⊗ · · · ⊗un

)
=

∑
u2⊗ · · ·⊗un⊗u1

for any
∑

u1⊗ · · ·⊗un ∈ (V ⊗n)H . By [KSZ, Corollary 2.3], νn(V ) = Tr(E(n)
V ) is

identical to the n-th indicator of V defined by Kashina, Sommerhäuser and Zhu
[KSZ]. Therefore, the definition of higher indicators given in Definition 3.1 is indeed
a generalization of the higher indicators for Hopf algebras.

4. Frobenius-Schur endomorphisms–central gauge invariants

In [NS], we have defined the n-th Frobenius-Schur endomorphism of an object
in a semisimple pivotal monoidal category and related it to the Frobenius-Schur
indicators. In the category H-modfin for a semisimple quasi-Hopf algebra H, the
Frobenius-Schur endomorphism is given by multiplication with a central element
µn(H) ∈ H. In this section we will obtain an explicit formula for this element
µn(H) in terms of the quasi-Hopf algebra structure and the normalized integral
of H. In the case of an ordinary Hopf algebra, this formula simplifies to the
n-th Sweedler power of the integral, so that χ(µn(H)) specializes to the original
definition of νn(V ) in [KSZ].

Let k be a field and C a finite k-linear semisimple pivotal category with pivotal
structure j : Id → (−)∨∨ and neutral object I such that

C(X, X) ∼= C(I, I) ∼= k

for all simple objects X of C. By [NS], there exists a unique natural isomorphism
τV T : V ⊗T → T⊗V for any I-isotypical object T and for any V ∈ C such that
τV I = idV . One can define the n-th Frobenius-Schur endomorphism of V as
the composition

(4.13)
FS(n)

V =
(

V
U−→Y ⊗(V ⊗(n−1)⊗V ) Y ⊗Φ(n)

−−−−−→ Y ⊗V ⊗n Y ⊗π−−−→

Y ⊗(V ⊗n)triv τ−→ (V ⊗n)triv⊗Y
ι⊗Y−−−→ V ⊗n⊗Y

C−→ V

)
,

where

U =
(
V

db′ ⊗V−−−−→ (Y ⊗V ⊗(n−1))⊗V
Φ−→ Y ⊗(V ⊗(n−1)⊗V )

)
,

C =
(
(V ⊗V ⊗(n−1))⊗Y

Φ−→ V ⊗(V ⊗(n−1)⊗Y ) V ⊗ ev′
−−−−→ V

)
,

((V ⊗n)triv, ι, π) is the I-isotypical component of V ⊗n, and (Y, ev′, db′) is a right
dual of V ⊗n. Moreover, by [NS, Theorem 7.6],

(4.14) νn(V ) = ptr�(FS(n)
V ) ,
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where

ptr�(f) : =
(

I
db−→ V ⊗V ∨ f⊗V ∨

−−−−→ V ⊗V ∨ jV ⊗V ∨

−−−−−→ V ∨∨⊗V ∨ ev−→ I

)
for any f ∈ C(V, V ). In the above equation, the identification C(I, I) = k has been
used.

Now, let C = H-modfin for some finite-dimensional semisimple quasi-Hopf al-
gebra H = (H, ∆, ε, φ, α, β, S) over C. As described in Section 1, for any V ∈ C,
(∨V , ev′, db′) defines a right dual of V . Thus the maps U and C in the definition of
the Frobenius-Schur endomorphism can be expressed in terms of q and p as follows.
Let {ui} be a basis for V ⊗(n−1) and {ui} its dual basis for ∨ (

V ⊗(n−1)
)
. For any

x ∈ V , u ∈ V ⊗n and f ∈ ∨ (
V ⊗(n−1)

)
, we have

U(x) = ui⊗p
(1)
L ui⊗p

(2)
L x and C(x⊗u⊗f) = q

(1)
R f(q(2)

R u)x .

By [HN], H admits a unique normalized two-sided integral Λ, that is, the two-sided
integral of H such that ε(Λ) = 1. Then the trivial isotypical component V triv of a
finite-dimensional H-module V is given by ΛV , and π(x) = Λx defines a retraction
of the inclusion map ι : V triv → V .

Let us define

∆(0) = ε, ∆(1) = idH , ∆(2) = ∆, φ1 = 1H , φ2 = 1H⊗1H ,

and recursively

(4.15) ∆(n+1) = (idH ⊗∆)∆(n), φn+1 = (1⊗φn)(φ(1)⊗∆(n−1)(φ(2))⊗φ(3))

for any positive integer n ≥ 2. Then Φ(n) : V ⊗(n−1)⊗V → V ⊗n is given by the
action of φn on V ⊗n. For any h ∈ H, we will suppress the summation notation and
simply write

h(1)⊗ · · ·⊗h(n)

for ∆(n)(h). In this notation, for any V ∈ C, the action of an element h of H on
V ⊗n is given by

h · (x1⊗ · · ·⊗xn) = h(1)x1⊗ · · ·⊗h(n)xn

for x1⊗ · · ·⊗xn ∈ V ⊗n.
Now we can derive a formula for the n-th Frobenius-Schur endomorphism FS(n)

V

in C. By (4.13), we obtain

FS(n)
V (x) =

∑
i1,··· ,in−1

q
(1)
R Λ(1)φ

(1)
n p

(1)
L,(1)xi1〈q

(2)
R,(1)Λ(2)φ

(3)
n p

(1)
L,(2)xi2 , x

i1〉

·〈q(2)
R,(2)Λ(3)φ

(4)
n p

(1)
L,(3)xi3 , x

i2〉
...

·〈q(2)
R,(n−2)Λ(n−1)φ

(n−1)
n p

(1)
L,(n−1)xin−1 , x

in−2〉

·〈q(2)
R,(n−1)Λ(n)φ

(n)
n p

(2)
L x, xin−1〉
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where {xi} is a basis for V and {xi} is its dual basis for V ∗. Since
∑

i xi〈v, xi〉 = v

for all v ∈ V , one can simplify FS(n)
V (x) as follows:

(4.16)

FS(n)
V (x) =

(
q
(1)
R Λ(1)φ

(1)
n p

(1)
L,(1)

)
·
(
q
(2)
R,(1)Λ(2)φ

(3)
n p

(1)
L,(2)

)
· · ·

(
q
(2)
R,(n−2)Λ(n−1)φ

(n−1)
n p

(1)
L,(n−1)

)
·
(
q
(2)
R,(n−1)Λ(n)φ

(n)
n p

(2)
L

)
x

= m
(
(q(1)

R ⊗∆(n−1)(q(2)
R )) · ∆(n)(Λ) · φn · (∆(n−1)(p(1)

L )⊗p
(2)
L )

)
x ,

where m is the multiplication on H. Let us define

(4.17) µn(H) := m
(
(q(1)

R ⊗∆(n−1)(q(2)
R )) · ∆(n)(Λ) · φn · (∆(n−1)(p(1)

L )⊗p
(2)
L )

)
for any integer n ≥ 1. The following theorem shows that µn(H) is a central gauge
invariant of H.

Theorem 4.1. Let H = (H, ∆, ε, φ, α, β, S) be a finite-dimensional semisimple
quasi-Hopf algebra over C and n a positive integer. The element µn(H) is in the
center of H, and it is invariant under gauge transformations on H. Moreover, for
any V ∈ H-modfin,

νn(V ) = χ(µn(H))

where χ is the character of V . In addition, if both α and β are invertible elements
of H, then the element µn(H) is given by

µn(H) = m(∆(n)(Λ)φn)(βα)−1 = (βα)−1m(∆(n)(Λ)φn)

where Λ is the normalized two-sided integral of H.

Proof. Since FS(n)
H is an H-module map, the equality (4.16) implies that µn(H)

must lie in the center of H. It follows from Remark 2.3 and (4.14) that

νn(V ) = ptr�(FS(n)
V ) = Tr(FS(n)

V ) = χ(µn(H))

where Tr(FS(n)
V ) denotes the usual trace of the linear operator FS(n)

V .
Let K be another semisimple quasi-Hopf algebra over C such that K is gauge

equivalent to H via the gauge transformation F on H and the quasi-bialgebra iso-
morphism σ : K → HF . Then (σ(-), F · , id) is a tensor equivalence from H-modfin

to K-modfin. By [NS, Lemma 7.3], the functor σ(-) preserves Frobenius-Schur
endomorphisms. Therefore,

σ(µn(K))x = µn(K) · x = FS(n)
K (x) = FS(n)

σH(x) = σ(FS(n)
H )(x) = µn(H)x

for all x ∈ σH. Therefore, σ(µn(K)) = µn(H). In particular, µn(HF ) = µn(H).
By [MN05, Lemma 3.1], we have the equations

(4.18) βq
(1)
X Λ(1)⊗q

(2)
X Λ(2) = ∆(Λ) = Λ(1)p

(1)
Y ⊗Λ(2)p

(2)
Y α

for any X, Y ∈ {R, L}. Following from (4.18) and the equation

(4.19) φn(∆(n−1)⊗ id)∆(Λ) = ∆(n)(Λ)φn ,

we have

(βq
(1)
R ⊗∆(n−1)(q(2)

R )) · ∆(n)(Λ) · φn · (∆(n−1)(p(1)
L )⊗p

(2)
L α) = ∆(n)(Λ)φn .
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Since µn(H) is in the center of H,

βαµn(H) = µn(H)βα = βµn(H)α = m
(
∆(n)(Λ)φn

)
.

In addition, if β and α are invertible elements of H, the last statement follows. �

Remark 4.2. Since two semisimple quasi-Hopf algebras H, H ′ with identical quasi-
bialgebra structures but different antipodes are gauge equivalent via the gauge
transformation 1⊗1 and the quasi-bialgebra isomorphism idH , Theorem 4.1 implies
that µn(H) = µn(H ′). Therefore, µn(H) is independent of the choice of antipode
of H.

Remark 4.3. Let H be a semisimple Hopf algebra over C. Then by Theorem 4.1 we
have νn(V ) = χ(m(∆(n)(Λ))) = χ(Λ[n]) for a finite-dimensional H-module V with
character χ. This recovers the formula used to introduce the n-th Frobenius-Schur
indicator of V in [KSZ].

Equation (4.17) contains the elements pL and qR which we recalled in (1.7) and
(1.8). In fact it turns out that any combination of the p’s and q’s will give the same
result. We need the following observation for the proof.

Lemma 4.4. Let n be a positive integer and let t be an element of H⊗(n+1). For
any G ∈ H⊗n,

m ((1 ⊗ G)t) = m (t(G ⊗ 1))

where m is the multiplication on H.

Proof. The statement can be easily verified by direct computation. �

Proposition 4.5. Let H = (H, ∆, ε, φ, α, β, S) be a finite-dimensional semisimple
quasi-Hopf algebra over C and n a positive integer. Then

µn(H) = m
(
(q(1)

X ⊗∆(n−1)(q(2)
X )) · ∆(n)(Λ) · φn · (∆(n−1)(p(1)

Y )⊗p
(2)
Y )

)
for any X, Y ∈ {R, L}.

Proof. Let

TX,Y = m
(
(q(1)

X ⊗∆(n−1)(q(2)
X )) · ∆(n)(Λ) · φn · (∆(n−1)(p(1)

Y )⊗p
(2)
Y )

)
for any X, Y ∈ {R, L}. By definition, TR,L = µn(H). Recall from [MN05] that

(4.20)
∆(Λ)pY (h⊗1) = ∆(Λ)pY (1⊗S(h)),

(1⊗h)qX∆(Λ) = (S(h)⊗1)qX∆(Λ)
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for all h ∈ H. Then we have

TL,L = m
(
(id⊗∆(n−1))(qL)∆(n)(Λ)φn(∆(n−1)⊗ id)(pL)

)
(4.19)
= m

(
(id⊗∆(n−1))(qL)φn(∆(n−1)⊗ id)(∆(Λ)pL)

)
= m

(
(q(1)

L ⊗ 1)φn(∆(n−1)⊗ id)(∆(Λ)pL(q(2)
L ⊗1))

)
by Lemma 4.4

(4.20)
= m

(
(q(1)

L ⊗ 1)φn(∆(n−1)⊗ id)(∆(Λ)pL(1⊗S(q(2)
L )))

)
= q

(1)
L m

(
∆(n)(Λ)φn(∆(n−1)⊗ id)(pL)

)
S(q(2)

L )

(4.18)
= q

(1)
L m

(
(id⊗∆(n−1))((βq

(1)
R ⊗q

(2)
R )∆(Λ))φn(∆(n−1)⊗ id)(pL)

)
S(q(2)

L )

= q
(1)
L βµn(H)S(q(2)

L )

= q
(1)
L βS(q(2)

L )µn(H) by Theorem 4.1

= µn(H) .

Thus, we have TX,L = µn(H) for X ∈ {L, R}. Now, for Y = L or R, we have

TX,Y = m
(
(id⊗∆(n−1))(qX)∆(n)(Λ)φn(∆(n−1)⊗ id)(pY )

)
= m

(
(id⊗∆(n−1))(qX)∆(n)(Λ)φn(1⊗p

(2)
Y )(∆(n−1)(p(1)

Y )⊗1)
)

= m
(
(id⊗∆(n−1))((1⊗p

(1)
Y )qX)∆(n)(Λ)φn(1⊗p

(2)
Y )

)
by Lemma 4.4

= m
(
(id⊗∆(n−1))((1⊗p

(1)
Y )qX∆(Λ))φn(1⊗p

(2)
Y )

)
(4.20)
= m

(
(id⊗∆(n−1))((S(p(1)

Y )⊗1)qX∆(Λ))φn(1⊗p
(2)
Y )

)
= S(p(1)

Y )m
(
(id⊗∆(n−1))(qX∆(Λ))φn

)
p
(2)
Y

= S(p(1)
Y )m

(
(id⊗∆(n−1))(qX)∆(n)(Λ)φn

)
p
(2)
Y

(4.18)
= S(p(1)

Y )m
(
(id⊗∆(n−1))(qX)φn(∆(n−1)⊗ id)(∆(Λ)(p(1)

L ⊗p
(2)
L α))

)
p
(2)
Y

= S(p(1)
Y )µn(H)αp

(2)
Y

= µn(H).

This proves the statement. �

5. Hopf algebras with central group-like elements

Let H be a finite-dimensional Hopf algebra over C and G(H) the group of all
group-like elements of H. Let G be a subgroup of G(H) which lies in the center of
H, ω a normalized 3-cocycle on G with coefficients in C× and j : G → Ĝ a group
isomorphism. Then j can be extended to a Hopf algebra isomorphism from C[G]
to C[Ĝ] = C[G]∗. Let

ex =
1
|G|

∑
y∈G

j(y)(x)−1y .
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By the orthogonality of characters of finite groups,

j(ex)(z) =
1
|G|

∑
y∈G

j(y)(x)−1j(y)(z) =
1
|G|

∑
y∈G

j(y)(x−1z) = δx,z .

Therefore, {j(ex)|x ∈ G} is the dual basis of G for C[G]∗. In particular, {ex}x∈G

is the complete set of orthogonal primitive idempotents of C[G], and we have the
equalities

(5.21) S(ex) = ex−1 , ε(ex) = δ1,x, ∆(ex) =
∑
y∈G

exy−1⊗ey

for all x ∈ G. One can construct a new quasi-Hopf algebra using these data of H.
The following lemma is a joint observation with Geoffrey Mason.

Lemma 5.1. Let H be a Hopf algebra over C and G a subgroup of G(H). If G lies
in the center of H, then for any normalized 3-cocycle ω on G with coefficients in C×

and for any group isomorphism j : G → Ĝ, the tuple H(G,ω,j) = (H, ∆, ε, φ, α, β, S)
is a quasi-Hopf algebra, where φ, α and β are defined by

(5.22) φ =
∑

x,y,z∈G

ω(x, y, z)−1ex⊗ey⊗ez, α = 1, β =
∑
x∈G

ω(x, x−1, x)ex ,

and ∆, ε and S are the comultiplication, counit and antipode of H. If ω′ is cohomol-
ogous to ω, then H(G,ω,j) and H(G,ω′,j) are gauge equivalent quasi-Hopf algebras.

Proof. Note that

φ−1 =
∑

x,y,z∈G

ω(x, y, z)ex⊗ey⊗ez and β−1 =
∑
x∈G

ω(x, x−1, x)−1ex.

Using the fact that C[G] lies in the center of H and (5.21), it is straightforward
to verify that H(G,ω,j) is a quasi-Hopf algebra. Let ω′ = ωδb for some normalized
2-cochain b of G with coefficients in C× where

δb(x, y, z) =
b(y, z)b(x, yz)
b(xy, z)b(x, y)

for x, y, z ∈ G. We define

F =
∑

x,y∈G

b(x, y)−1ex⊗ey .

Since b is a normalized cochain, F is a gauge transformation on H(G,ω,j). Moreover,

φF =
∑

x,y,z∈G

ω(x, y, z)−1δb−1(x, y, z) ex⊗ey⊗ez =
∑

x,y,z∈G

ω′(x, y, z)−1 ex⊗ey⊗ez .

Since F lies in the center of H⊗H, ∆F = ∆ and so H(G,ω′,j) = HF
(G,ω,j) as quasi-

bialgebras. �

Remark 5.2. H and H(G,ω,j) are identical as bialgebras, and so their module cat-
egories are linearly equivalent. If H is also semisimple, then H and H(G,ω,j) have
the same fusion rules for their irreducible representations. However, in general,
H-modfin and H(G,ω,j)-modfin are not equivalent tensor categories if ω is not a
coboundary. We will see examples for this below.
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Let us further assume that H is a semisimple Hopf algebra over C with a central
group-like element u of order 2 and G is the subgroup generated by u. Note that
there is exactly one group isomorphism j from G to Ĝ and H3(G, C×) is an abelian
group of order 2.

Consider the function ω : G × G × G → C× defined by

ω(x, y, z) =
{

−1 if x = y = z = u,
1 otherwise .

One can easily verify that ω is a non-trivial 3-cocycle of G and so ω represents the
unique non-trivial cohomology class of H3(G, C×). We will simply write Hu for the
quasi-Hopf algebra H(G,ω,j).

Let χ be the non-trivial character of G. Then j(u) = χ and so

(5.23) e1 =
1
2
(1 + u), eu =

1
2
(1 − u) and β = e1 − eu = u .

We will proceed to obtain a formula of µn(Hu). Let us denote the n-th Sweedler
power of an element x of H by x[n]. It is easy to see that

x[n] =
{

x if n is odd,
ε(x)1 if n is even

for any x ∈ C[G]. In particular,

e[n]
z =

{
ez if n is odd,

δz,11 if n is even

for any z ∈ G. Thus, for any positive integer n, we have

m
(
φ(1)⊗∆(n)(φ(2))⊗φ(3)

)
=

∑
x,y,z∈G

ω(x, y, z)−1exe[n]
y ez = un ,

where m is the multiplication of H. Since C[G] is commutative, by (4.15), we have

(5.24) m(φr) = u(r−1)(r−2)/2

for all r ≥ 1. Indeed the formula is clearly correct for r = 1, 2, and for r ≥ 2 we
have inductively

m(φr+1) = m
(
(1⊗φr)(φ(1)⊗∆(r−1)(φ(2))⊗φ(3))

)
= m(φr)m

(
φ(1)⊗∆(r−1)(φ(2))⊗φ(3)

)
= u(r−1)(r−2)/2ur−1 = ur(r−1)/2 .

Proposition 5.3. Let H be a finite-dimensional semisimple Hopf algebra over C
with a central group-like element u of order 2. Suppose that V is a finite-dimensional
simple H-module with character χ, and that V is the Hu-module associated with V .
Then the n-th Frobenius-Schur indicator of V is given by

νn(V ) = νn(V )χ(u(n−3)n/2)/χ(1)

for any positive integer n, where νn(V ) is the n-th Frobenius-Schur indicator of V
considered as an H-module.

Proof. Since u is in the center of H, φn is also in the center of H⊗n. Thus, by
Theorem 4.1 and (5.24), we have

µn(Hu) = m(∆(n)(Λ)φn)(βα)−1 = m(∆(n)(Λ))m(φn)u−1

= Λ[n]u(n−2)(n−1)/2u−1 = Λ[n]u(n−3)n/2 ,
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where Λ is the normalized integral of H. The second and the third equalities follow
from (5.23) and (5.24). By Theorem 4.1,

νn(V ) = χ(Λ[n]u(n−3)n/2))

= χ(Λ[n])χ(u(n−3)n/2)/χ(1)

= νn(V )χ(u(n−3)n/2)/χ(1) .

The second equality follows from the fact that u acts on V as a scalar. �

Example 5.4. As the simplest example, consider H = C[G], where G is the group
of order 2 generated by u. Let V be the non-trivial 1-dimensional H-module. Since
u acts on V as the scalar −1, we have νn(V ) = 1+(−1)n

2 for all positive integers n.
By Proposition 5.3, we have

νn(V ) =
1 + (−1)n

2
(−1)n(n−3)/2 = cos

(nπ

2

)
.

6. Examples and applications

In [TY98], Tambara and Yamagami have classified the fusion categories over C
with five simple objects {a, b, c, d, m} and fusion rules:

(1) am = ma = bm = mb = cm = mc = dm = md = m,
(2) mm = a + b + c + d, and
(3) {a, b, c, d} forms an abelian group isomorphic to Z2 × Z2 .

They found that there are four inequivalent such fusion categories. Three of these
are tensor equivalent to the module categories of the following Hopf algebras: C[Q8],
C[D8] and the 8-dimensional Kac algebra K, where Q8 and D8 are, respectively, the
quaternion group and the dihedral group of order 8. Susan Montgomery raised the
question whether one can explicitly construct a quasi-Hopf algebra whose module
category is tensor equivalent to the fourth fusion category with the above fusion
rules. Such a quasi-Hopf algebra is known to exist because the simple objects in the
category have positive integer dimensions, and in principle it can be reconstructed
from the description of the category in [TY98]. However, this general approach
is bound to be tedious and yield a rather unwieldy result. The question remains
whether the gauge equivalence class of quasi-Hopf algebras corresponding to the
fourth category contains a nice representative which admits a more conceptual or
concise description. In this section, we will answer this question by showing that
these four fusion categories are tensor equivalent to

C[D8]-modfin, C[Q8]-modfin, K-modfin, and Ku-modfin,

where u is the unique order 2 central group-like element of K. In particular, we
show that C[D8] is gauge equivalent to the quasi-Hopf algebra C[Q8]u, and C[D8]u
is gauge equivalent to C[Q8]

Let H = C[Q8], C[D8] or K. Then H has a unique central group-like element
u of order 2 and it has only one 2-dimensional irreducible representation V . We
proceed to compute the Frobenius-Schur indicators of V in H-modfin and those of
V in Hu-modfin.

The 8-dimensional Kac algebra K is a semisimple Hopf algebra over C generated
by x, y, z as a C-algebra with the relations:

x2 = 1, y2 = 1, z2 =
1
2
(1 + x + y − xy), xy = yx, xz = zy, yz = zx .
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The coalgebra structure is given by

∆(x) = x ⊗ x, ∆(y) = y ⊗ y, ε(x) = ε(y) = 1 ,

∆(z) =
1
2
(1⊗1 + x⊗1 + 1⊗y − y⊗x)(z⊗z), ε(z) = 1 .

The antipode of K is determined by

S(x) = x, S(y) = y, S(z) = z .

Note that u = xy is the unique central group-like element of order 2 of K (cf.
[Mas95] and [TY98] for more details on this Kac algebra). Let V be the degree 2
irreducible representation of K and χ the character of V . We have χ(u) = −2. The
higher Frobenius-Schur indicators of V considered as a K-module are given by

χ(Λ[n]) = 1, 0, 0, 0, 1, 0, 2

where n = 2, . . . , 8 and Λ is the normalized integral of K given by

Λ =
1
8
((1 + x + y + xy) + (1 + x + y + xy)z) .

By Proposition 5.3, the n-th Frobenius-Schur indicators (n = 2, . . . , 8) of V consid-
ered as a Ku-module are

−1, 0, 0, 0,−1, 0, 2 .

Since Q8 and D8 have centers of order 2, each of C[Q8] and C[D8] has a unique
central group-like element u of order 2. Let H = C[Q8] or C[D8], V the degree 2
irreducible representation of H and χ the character of V . Then χ(u) = −2.

For D8, the Frobenius-Schur indicators νn(V ) of V (n = 2, . . . , 8) are well known
to be

1, 0, 2, 0, 1, 0, 2 .

The Frobenius-Schur indicators νn(V ) of V (n = 2, . . . , 8) for Q8 are

−1, 0, 2, 0,−1, 0, 2 .

By Proposition 5.3, we can complete the following table of the Frobenius-Schur
indicators for the 2-dimensional irreducible representation V of these quasi-Hopf
algebras.

ν2(V ) ν3(V ) ν4(V ) ν5(V ) ν6(V ) ν7(V ) ν8(V )
K 1 0 0 0 1 0 2
Ku −1 0 0 0 −1 0 2

C[D8] 1 0 2 0 1 0 2
C[D8]u −1 0 2 0 −1 0 2
C[Q8] −1 0 2 0 −1 0 2
C[Q8]u 1 0 2 0 1 0 2

As a conclusion from this table and the results of [TY98], we have the following
theorem.

Theorem 6.1. The fusion categories

K-modfin, Ku-modfin, C[D8]-modfin, C[Q8]-modfin

form a complete set of inequivalent fusion categories with the fusion rules given
at the beginning of this section. Moreover, the quasi-Hopf algebra C[D8]u is gauge
equivalent to C[Q8], and C[Q8]u is gauge equivalent to C[D8]
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Proof. It follows from the above table and Proposition 3.2 that the fusion categories

K-modfin, Ku-modfin, C[D8]-modfin, C[Q8]-modfin

are inequivalent tensor categories. Since there are in total four inequivalent fu-
sion categories with the same fusion rules given at the beginning of this section
(cf. [TY98]), the categories K-modfin, Ku-modfin, C[D8]-modfin, C[D8]u-modfin

account for all these fusion categories. Since the Frobenius-Schur indicators of the
degree 2 irreducible representation of C[Q8]u are the same as that of C[D8] and
the fusion rules of C[Q8]u-modfin and C[D8]-modfin are the same, the categories
C[D8]-modfin and C[Q8]u-modfin are tensor equivalent. By Theorem 2.2, C[D8]
and C[Q8]u are gauge equivalent quasi-Hopf algebras. Similarly, one can show that
the quasi-Hopf algebras C[Q8] and C[D8]u are also gauge equivalent. �

7. Higher indicators for quasi-Hopf algebras

associated to group cocycles

In this section we will derive explicit Frobenius-Schur (FS)-indicator formulae
for two kinds of quasi-Hopf algebras associated to a 3-cocycle on a finite group G.
In particular, Bantay’s formula for the second FS-indicator for a twisted quantum
double of a finite group derived in [MN05] is a special case of these formulae (see
also [Ban00] and [Ban97]).

Let G be a finite group and ω a normalized 3-cocycle on G with coefficients
in C×. One can construct a quasi-Hopf algebra H(G, ω) = (C[G]∗, ∆, ε, φ, α, β, S)
where multiplication, identity, comultiplication, counit and antipode are the same
as the structure maps of the Hopf algebra C[G]∗, and φ, α, and β are given by

φ =
∑

a,b,c∈G

ω(a, b, c)e(a)⊗e(b)⊗e(c) , α = 1, and β =
∑
a∈G

ω(a, a−1, a)−1e(a) ,

where {e(x) | x ∈ G} is the dual basis of G for C[G]∗. The quantum double of
H(G, ω) is called the twisted quantum double Dω−1

(G).

The quasi-Hopf algebras H(G, ω). The basis {e(g) | g ∈ G} for H(G, ω) is a
complete set of primitive idempotents of H(G, ω), and its dual basis {χx | x ∈ G}
is the complete set of irreducible characters of H(G, ω).

Proposition 7.1. Let G be a finite group and ω a normalized 3-cocycle on G
with coefficients in C×. For any simple H(G, ω)-module Vx with character χx and
positive integer n,

(7.25) νn(Vx) = δxn,1

n−1∏
r=1

ω(x, xr, x) .

In particular, if n is not a multiple of the order o(x) of x, then νn(Vx) vanishes.
νo(x)(Vx) is a root of unity whose order is the same as that of the cohomology class
res〈x〉[ω] ∈ H3(〈x〉, C×), and νs·o(x)(Vx) = νo(x)(Vx)s for s ∈ N.

Proof. Clearly, e(1) is the normalized integral of H(G, ω). For any x ∈ G and
integer n ≥ 1,

e(x)[n] = m
(
∆(n)(e(x))

)
=

∑
yn=x

e(y) ,
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where ∆(1) = id and ∆(n+1) = (id⊗n−1 ⊗∆)∆(n) for n ≥ 1, and m denotes the
multiplication of H(G, ω). By the commutativity of H(G, ω) and Theorem 4.1, we
have

νn(Vx) = χx

(
e(1)[n]β−1m(φn)

)
,

where

φ1 = 1H , φ2 = 1⊗1, φr+1 = (1⊗φn)(id⊗∆(r−1)⊗ id)(φ) .

for any integer r ≥ 2. Note that

m
(
(id⊗∆(r)⊗ id)(φ)

)
=

∑
a,b,c∈G

ω(a, b, c)e(a)e(b)[r]e(c) =
∑
y∈G

ω(y, yr, y)e(y) .

Hence, by induction,

m(φn) =
∑
y∈G

n−2∏
r=1

ω(y, yr, y)e(y) .

Thus, we have

νn(Vx) = χx

( ∑
yn=1

e(y)ω(y, y−1, y)
n−2∏
r=1

ω(y, yr, y)

)
= δxn,1

n−1∏
r=1

ω(x, xr, x) .

Following the description in [MS89], the class of the 3-cocycle ωx of the cyclic
subgroup 〈x〉 of order N defined by

ωx(x�, xm, xn) = exp
(

2πi

N2
�̂(m̂ + n̂ − m̂ + n)

)
generates the group H3(〈x〉, C×), where n̂ denotes the remainder upon the division
of n by N . Then we have

ωx(x, xr, x) = exp
(

2πi

N2
(r̂ + 1 − r̂ + 1)

)
=

{
exp

(
2πi
N

)
= ζ if r ≡ −1 mod N,

1 otherwise.

Obviously, there is a 3-coboundary f of G such that

ωf = ωt
x on 〈x〉 for some integer t.

Since νn(Vx) is a gauge invariant,

νNs(Vx) =
Ns−1∏
r=1

ωt
x(x, xr, x) = (ζt)s.

Of course, the order of ζt is the same as the order of res〈x〉[ω]. �

The twisted quantum double Dω(G) of a finite group. The twisted quantum
double Dω(G) of G with respect to ω is the semisimple quasi-Hopf algebra with
underlying vector space C[G]∗⊗C[G] in which multiplication, comultiplication ∆,
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associator φ, counit ε, antipode S, α and β are given by

(e(g)⊗x)(e(h)⊗y) = θg(x, y)δgx,he(g)⊗xy ,(7.26)

∆(e(g)⊗x) =
∑

hk=g

γx(h, k)e(h)⊗x⊗e(k)⊗x ,(7.27)

φ =
∑

g,h,k∈G

ω(g, h, k)−1e(g)⊗1⊗e(h)⊗1⊗e(k)⊗1 ,(7.28)

ε(e(g)⊗x) = δg,1, α = 1, β =
∑
g∈G

ω(g, g−1, g)e(g)⊗1 ,

S(e(g)⊗x) = θg−1(x, x−1)−1γx(g, g−1)−1e(x−1g−1x)⊗x−1 ,

(7.29)

where δg,1 is the Kronecker delta, gx = x−1gx, and

θg(x, y) =
ω(g, x, y)ω(x, y, (xy)−1gxy)

ω(x, x−1gx, y)
,

γg(x, y) =
ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)

for any x, y, g ∈ G (cf. [DPR90]).
By induction, one can show that

(7.30) φn =
∑

a1,··· ,an∈G

(
n−2∏
i=1

ω(ai, ai+1 · · · an−1, an)−1

)
e(a1)⊗1⊗ · · · ⊗e(an)⊗1

for any integer n ≥ 2. The normalized integral of Dω(G) is given by

Λ =
1
|G|

∑
x∈G

e(1)⊗x .

Therefore,

∆(Λ) =
1
|G|

∑
x,a∈G

γx(a−1, a)e(a−1)⊗x⊗e(a)⊗x

and, by induction, we have

(7.31) ∆(n)(Λ) =
1
|G|

∑
x,a1,...,an∈G

1=a1···an

(
n−1∏
i=1

γx(ai, ai+1 · · · an)

)
e(a1)⊗x · · · ⊗e(an)⊗x

for any integer n ≥ 1. Thus, we have

Proposition 7.2. Let G be a finite group and ω a normalized 3-cocycle of G with
coefficients in C×. Then, for any integer n ≥ 2, the n-th Frobenius-Schur indicator
of any representation V of Dω(G) with character χ is given by

(7.32)

νn(V ) =
1
|G|

∑
x,a∈G

x−n=(ax−1)n

(
n−2∏
i=1

γx(axi

, axi+1 · · · axn−1
)θa(xi, x)

ω(axi , axi+1 · · · axn−1 , axn)

)

· γx(a, a−1)θa(xn−1, x)
ω(a, a−1, a)

· χ (e(a)⊗xn) .
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Proof. Since both α and β of Dω(G) are invertible, by Theorem 4.1, we have

(7.33) µn(Dω(G)) = β−1m(∆(n)(Λ)φn) .

By (7.30) and (7.31), we obtain that

∆(n)(Λ)φn =
1
|G|

∑
x,a1,··· ,an∈G

1=a1···an

(
n−2∏
i=1

γx(ai+1, ai+2 · · · an)
ω(ax

i , ax
i+1 · · · ax

n−1, a
x
n)

)
· γx(a1, a

−1
1 )

· e(a1)⊗x⊗ · · · ⊗e(an)⊗x .

Thus we have

β−1m
(
∆(n)(Λ)φn

)
=

1
|G|

∑
x,a∈G

aax·axn−1=1

(
n−2∏
i=1

γx(axi

, axi+1 · · · axn−1
)θa(xi, x)

ω(axi , axi+1 · · · axn−1 , axn)

)

· γx(a, a−1)θa(xn−1, x) · β−1 · (e(a)⊗xn)

=
1
|G|

∑
x,a∈G

x−n=(ax−1)n

(n−2∏
i=1

γx(axi

, axi+1 · · · axn−1
)θa(xi, x)

ω(axi , axi+1 · · · axn−1 , axn)

)

· γx(a, a−1)θa(xn−1, x)
ω(a, a−1, a)

· (e(a)⊗xn).

The statement follows easily from (7.33) and Theorem 4.1. �
Remark 7.3. The formula for the higher indicators may look different if one uses
another form of µn(H). For example, µn(Dω(G)) = β−1m(φn(∆(n−1)⊗ id)∆(Λ))
since φn(∆(n−1)⊗ id)∆(Λ) = ∆(n)(Λ)φn. Using this form of the cental invariant
µn(Dω(G)), one will obtain

νn(V ) =
1
|G|

∑
(ax−1)n=x−n

(
n−2∏
i=1

γx(axi−1
, axi · · · axn−2

)θa(xi, x)
ω(axi−1 , axi · · · axn−2 , axn−1)

)

· γx(a−xn−1
, axn−1

)θa(xn−1, x)
ω(a, a−1, a)

· χ (e(a)⊗xn) .

(7.34)
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