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SYMMETRIC MARKOV CHAINS ON Z
d

WITH UNBOUNDED RANGE

RICHARD F. BASS AND TAKASHI KUMAGAI

Abstract. We consider symmetric Markov chains on Z
d where we do not

assume that the conductance between two points must be zero if the points
are far apart. Under a uniform second moment condition on the conductances,
we obtain upper bounds on the transition probabilities, estimates for exit time

probabilities, and certain lower bounds on the transition probabilities. We
show that a uniform Harnack inequality holds if an additional assumption is
made, but that without this assumption such an inequality need not hold. We
establish a central limit theorem giving conditions for a sequence of normalized
symmetric Markov chains to converge to a diffusion on R

d corresponding to
an elliptic operator in divergence form.

1. Introduction

Let Xn be a symmetric Markov chain on Z
d. We say that Xn has bounded range

if there exists K > 0 such that P(Xn+1 = y | Xn = x) = 0 whenever |y − x| ≥ K.
The range is unbounded if for every K there exists x and y (depending on K) with
|x − y| > K such that P(Xn+1 = y | Xn = x) > 0. There is a great deal known
about Markov chains on graphs when the chains have bounded range. The purpose
of this paper is to obtain results for Markov chains on Z

d that have unbounded
range.

Suppose Cxy is the conductance between x and y. We impose a condition on
Cxy (see (A3) below) which essentially says that the Cxy satisfy a uniform second
moment condition. Let Yt be the continuous time Markov chain on Z

d determined
by the Cxy, while Xn is the discrete time Markov chain determined by these con-
ductances. The transition probabilities for the Markov chain X are defined by

P
x(X1 = y) =

Cxy∑
z Cxz

,

while the process Yt is the Markov chain that has the same jumps as X but where
the times between jumps are independent exponential random variables. When
(A3) holds, together with two very mild regularity conditions, we obtain upper
bounds on the transition probabilities of the form

P(Yt = y | Y0 = x) ≤ ct−d/2
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and some corresponding lower bounds when x and y are not too far apart. Unlike
the case of bounded range, reasonable universal bounds of Gaussian type need not
hold when the range is unbounded. We also obtain bounds on the exit probabilities
P(sups≤t |Ys − x| > λt1/2).

We say a uniform Harnack inequality holds for X if whenever h is nonnegative
and harmonic for the Markov chain X in the ball B(x0, R) of radius R > 1 about
a point x0, then

h(x) ≤ Ch(y), |x − x0|, |y − x0| < R/2,

where C is independent of R. Even when Xn is a random walk, i.e., the increments
Xn−Xn−1 form an independent identically distributed sequence, a uniform Harnack
inequality need not hold. However, if we impose an additional strong assumption
(see (A4)) on the conductances, then we can prove such a Harnack inequality.

We prove that if we have Markov chains X(n) on Z
d satisfying assumption (A3)

uniformly in n, the sequence of processes X
(n)
t = X[n2t]/n is tight in the space

D[0,∞) of right continuous, left limit functions, and all subsequential limit points
are continuous processes. Under an additional condition on the conductances (A5)
(different than the one needed for the Harnack inequality), we then show that the
X

(n)
· converge weakly as processes to the law of the diffusion corresponding to an

elliptic operator

Lf(x) =
d∑

i,j=1

∂

∂xi

(
aij(·)

∂f

∂xj
(·)

)
(x)

in divergence form. The exact statement is given by Theorem 6.1.
In the case of bounded range Markov chains on Z

d some of our estimates have
been obtained by [SZ], and we obviously owe a debt to that paper. Not all of their
methods extend to the unbounded case, however. In particular,

(1) New techniques were needed to obtain the exit probability estimates.
(2) A new method was needed to obtain lower bounds for the process killed on

exiting a ball. This method should apply in many other instances, and is
of interest in itself.

(3) Harnack inequalities in the case of unbounded range are quite a bit more
subtle, and this section is all new.

(4) In the proof of the central limit theorem, new methods were needed to
handle the case of unbounded range. Moreover, even in the bounded range
case our result covers more general situations.

There are many versions of central limit theorems that investigate the asymptotic
behavior of

∑n
i=1 f(Xi) when Xn is a symmetric Markov chain on a graph. These

are quite different from the central limit theorem of this paper. Our formulation
has much more in common with the work of Stroock and Varadhan [SV], Chapter
11. There they consider certain nonsymmetric chains and show convergence to the
law of a diffusion corresponding to an operator in nondivergence form:

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x).

Our result is the analogue for symmetric chains and operators in divergence form.
The next section sets up the notation and framework and states the assumptions

we need. Section 3 has the exit time and hitting time estimates, Section 4 has the



SYMMETRIC MARKOV CHAINS ON Z
d WITH UNBOUNDED RANGE 2043

lower bounds, and Section 5 discusses the Harnack inequality. Our central limit
theorem is proved in Section 6.

The letter c with or without subscripts and primes will denote finite positive
constants whose exact value is unimportant and which may change from line to
line.

2. Framework

We let | · | be the Euclidean norm and B(x, r) := {y ∈ Z
d : |x − y| < r}. We

sometimes write |A| for the cardinality of a set A ⊂ Z
d.

For each x, y ∈ Z
d with x �= y, let Cxy ∈ [0,∞) be such that Cxy = Cyx. We

call Cxy the conductance between x and y. Throughout the paper, we assume the
following:

(A1) There exist c1, c2 > 0 such that

c1 ≤ νx :=
∑
y∈Zd

Cxy ≤ c2 for all x ∈ Z
d.

(A2) There exist M0 ≥ 1, δ > 0 such that the following holds: for any x, y ∈ Z
d

with |x − y| = 1, there exist N ≥ 2 and x1, . . . , xN ∈ B(x, M0) such that x1 = x,
xN = y and Cxixi+1 ≥ δ for i = 1, . . . , N − 1.

(A3) There exists a decreasing function ϕ : N → R+ with
∑∞

i=1 id+1ϕ(i) < ∞
such that

Cxy ≤ ϕ(|x − y|) for all x, y ∈ Z
d.

Note that (A1) and (A2) are very mild regularity conditions. (A1) prevents
degeneracies, while (A2) says, roughly speaking, that the chain is locally irreducible
in a uniform way. (A3) is the substantive assumption and says that the Cxy satisfy
a uniform finite second moment condition. In fact, (A3) implies the following: there
exists C0 > 0 such that

(2.1) sup
x∈Zd

∑
y∈Zd

|x − y|2Cxy ≤ C0.

To see this, ∑
y∈Zd

|x − y|2Cxy ≤
∑
y∈Zd

|x − y|2ϕ(|x − y|)(2.2)

=
∞∑

i=0

∑
i<|x−y|≤i+1

|x − y|2ϕ(|x − y|)

≤ c3

∑
i

(i + 1)2ϕ(i)(i + 1)d−1 < ∞

for all x ∈ Z
d, where (A3) is used in the last inequality.

Define a symmetric Markov chain by

P
x(X1 = y) =

Cxy

νx
for all x, y ∈ Z

d.

Define pn(x, y) := P
x(Xn = y) and p̄n(x, y) = pn(x, y)/νy. Note that p̄n(x, y) =

p̄n(y, x). By (A1), the ratio of pn(x, y) to p̄n(x, y) is bounded above and below by
positive constants.
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Let µx ≡ 1 for all x ∈ Z
d and for each A ⊂ Z

d, define µ(A) =
∑

y∈A µy = |A|
and ν(A) =

∑
y∈A νy. Note that L2(Zd, µ) = L2(Zd, ν) by (A1). Now, for each

f ∈ L2(Zd, µ), define

E(f, f) = 1
2

∑
x,y∈Zd

(f(x) − f(y))2Cxy,

F = {f ∈ L2(Zd, µ) : E(f, f) < ∞}.

It is easy to check (E ,F) is a regular Dirichlet form on L2(Zd, µ) and the gener-
ator is ∑

y∈Zd

(f(y) − f(x))Cxy.

Let Yt be the corresponding continuous time µ-symmetric Markov chain on Z
d.

Let {Ux
i : i ∈ N, x ∈ Z

d} be an independent sequence of exponential random
variables, where the parameter for Ux

i is νx, and that is independent of Xn, and
define T0 = 0, Tn =

∑n
k=1 U

Xk−1
k . Set Ỹt = Xn if Tn ≤ t < Tn+1; it is well known

that the laws of Ỹ and Y are the same, and hence Ỹ is a realization of the continuous
time Markov chain corresponding to (a time change of) Xn. Note that by (A1),
the mean exponential holding time at each point for Ỹ can be controlled uniformly
from above and below by a positive constant. Let p(t, x, y) be the transition density
for Yt with respect to µ.

We now introduce several processes related to Yt, needed in what follows. For
each D ≥ 1, let S = D−1

Z
d and define the rescaled process as Vt = D−1YD2t. Let

µD be a measure on S defined by µD(A) = D−dµ(DA) = D−d|A| for A ⊂ S. We
can easily show that the Dirichlet form corresponding to Vt is

ED(f, f) = 1
2

∑
x,y∈S

(f(x) − f(y))2D2−dCDx,Dy,

and the infinitesimal generator of Vt is

ADf(x) =
∑
y∈S

(f(y) − f(x))CDx,DyD
2 =

∑
y∈S

(f(y) − f(x))
CDx,DyD

2−d

µD
x

,

for each f ∈ L2(S, µD), where we denote µD
x := µD({x}) = D−d for each x ∈ S.

The heat kernel pD(t, x, y) for Vt with respect to µD can be expressed as

(2.3) pD(t, x, y) = Ddp(D2t, Dx, Dy) for all x, y ∈ S, t > 0.

For λ ≥ 1, let Wλ
t be a process on S with the large jumps of Vt removed. More

precisely, Wλ
t is a process whose Dirichlet form and infinitesimal generator are

ED,λ(f, f) = 1
2

∑
x,y∈S

|x−y|≤λ1/2

(f(x) − f(y))2D2−dCDx,Dy,

Aλf(x) =
∑
y∈S

|x−y|≤λ1/2

(f(y) − f(x))
CDx,DyD

2

µD
x

for each f ∈ L2(S, µD). We denote the heat kernel for Wλ
t by pD,λ(t, x, y), x, y ∈ S.
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3. Heat kernel estimates

3.1. Nash inequality. For f ∈ L2(Zd, µ), let

ENN (f, f) = 1
2

∑
x,y∈Zd;|x−y|=1

(f(x) − f(y))2,

which is the Dirichlet form for the simple symmetric random walk in Z
d. We will

prove the following Nash inequality.

Proposition 3.1. There exists c1 > 0 such that for any f ∈ L2(Zd, µ),

(3.1) ‖f‖2(1+2/d)
2 ≤ c1E(f, f)‖f‖4/d

1 .

In particular,

p(t, x, y) ≤ c1t
−d/2 for all x, y ∈ Z

d, t > 0,(3.2)

pD(t, x, y) ≤ c1t
−d/2 for all x, y ∈ S, t > 0.(3.3)

Remark 3.2. Since p(t, x, y) = P
x(Yt = y)/µy, we have p(t, x, y) ≤ 1/µy, so (3.2)

is a crude estimate for small t. However, we will continue to use it since we are
mainly interested in the large time asymptotics.

Proof. Note that the equivalence of (3.1) and (3.2) is a well-known fact (see [CKS]).
The Markov chain corresponding to ENN is a (continuous time) simple random

walk; let rt be its transition probabilities. Since, as is well known, we have rt(x, x) ≤
ct−d/2, then by [CKS] we have

‖f‖2(1+2/d)
2 ≤ c1ENN (f, f)‖f‖4/d

1 for all f ∈ L2(Zd, µ).

See also [SZ]. By (A2), there exists c2 > 0 such that

ENN (f, f) ≤ c2E(f, f) for all f ∈ L2(Zd, µ).

Using these facts and (2.3), we have the desired result. �

3.2. Exit time probability estimates. In this subsection, we will obtain some
exit time estimates. The argument presented here was first established in [BL1]
and then extended and simplified in [CK], [HK].

Lemma 3.3. There exists c1 > 0 such that

(3.4) pD,λ(t, x, y) ≤ c1 t−
d
2 exp

(
−λ− 1

2 |x − y|
)

for all t ∈ (0, 1], x, y ∈ S and λ ≥ M2
0 , where M0 is given in (A2).

Proof. Since λ ≥ M2
0 , by (A2), we have ENN (f, f) ≤ cED,λ(f, f) for all f ∈

L2(Zd, µ). So we have (3.1) where E(f, f) is replaced by E1,λ(f, f), and by a scaling
argument we have

pD,λ(t, x, y) ≤ c1t
−d/2 for all x, y ∈ S, t > 0.

Thus by Theorem (3.25) of [CKS], we have

(3.5) pD,λ(t, x, y) ≤ c1 t−
d
2 exp (−E(2t, x, y))

for all t ≤ 1 and x, y ∈ S, where

E(t, x, y) = sup{|ψ(y) − ψ(x)| − t Λ(ψ)2 : Λ(ψ) < ∞},
Λ(ψ)2 = ‖e−2ψΓλ[eψ]‖∞ ∨ ‖e2ψΓλ[e−ψ]‖∞,
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and Γλ is defined by

(3.6) Γλ[v](ξ) =
∑
η∈S

|ξ−η|≤λ1/2

(v(η) − v(ξ))2
CDη,DξD

2

µDξ
, ξ ∈ S.

Now let ψ(ξ) = λ−1/2(|ξ −x| ∧ |x− y|). Then, |ψ(η)−ψ(ξ)| ≤ λ−1/2|η− ξ|, so that

(eψ(η)−ψ(ξ) − 1)2 ≤ |ψ(η) − ψ(ξ)|2e2|ψ(η)−ψ(ξ)| ≤ cλ−1|η − ξ|2

for η, ξ ∈ S with |η − ξ| ≤ λ1/2. Hence

e−2ψ(ξ)Γλ[eψ](ξ) =
∑
η∈S

|ξ−η|≤λ1/2

(eψ(η)−ψ(ξ) − 1)2
CDη,DξD

2

µDξ

≤ λ−1
∑

η′∈Zd

|ξ′−η′|≤Dλ1/2

|η′ − ξ′|2 Cη′,ξ′

µξ′
≤ C ′

for all ξ ∈ S where (2.1) is used in the last inequality. We have the same bound
when ψ is replaced by −ψ, so Λ(ψ)2 ≤ C ′2. Noting that |ψ(y)−ψ(x)| ≤ λ− 1

2 |x−y|,
we see that (3.4) follows from (3.5). �

We now prove the following exit time estimate for the process. For A ⊂ Z
d and

a process Zt on Z
d, let

τ = τA(Z) := inf{t ≥ 0 : Zt /∈ A}, TA = TA(Z) := inf{t ≥ 0 : Zt ∈ A}.

Proposition 3.4. For A > 0 and 0 < B < 1, there exist γi = γi(A, B) ∈ (0, 1),
i = 1, 2, such that for every D > 0 and x ∈ Z

d,

P
x

(
τB(x, AD)(Y ) < γ1 D2

)
≤ B,(3.7)

P
x

(
τB(x, AD)(X) < γ2 D2

)
≤ B.(3.8)

Proof. It follows from Lemma 3.3 that for t ∈ [1/4, 1] and r > 0,

(3.9) P
x

(
|Wλ

t − x| ≥ r
)

=
∑

y∈S: |y−x|>r

pD,λ(t, x, y)µD
y ≤ c1 Ir,λ,

where Ir,λ := e−
r
2 λ− 1

2 . Define σr := inf{t ≥ 0 : |Wλ
t − Wλ

0 | ≥ r}. Then by (3.9)
and the strong Markov property of Wλ at time σr,

P
x (σr ≤ 1/2) ≤ P

x
(
σr ≤ 1/2 and |Wλ

1 − x| ≤ r/2
)

+ P
x

(
|Wλ

1 − x| > r/2
)

≤ P
x

(
σr ≤ 1/2 and |Wλ

1 − Wλ
σr
| > r/2

)
+ c1 Ir/2,λ

= P
x

(
1{σr≤1/2}P

W λ
σr

(
|Wλ

1−σr
− Wλ

0 | > r/2
))

+ c1 Ir/2,λ

≤ sup
y∈B(x,r)c

sup
s≤1/2

P
y
(
|Wλ

1−s − y| > r/2
)

+ c1 Ir/2,λ.
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Here in the second and the last inequalities, we used (3.9). By the strong Markov
property of Wλ, for every r > 0,

P
x

(
sup
s≤1

|Wλ
s − Wλ

0 | > r

)
≤ P

x(σr ≤ 1/2) + P
x(1/2 < σr ≤ 1)

≤ c2 Ir/2,λ+P
x(σr/2 ≤ 1/2)+P

x(σr/2 > 1/2, σr ≤ 1)

≤ c2 Ir/2,λ+P
x(σr/2 ≤ 1/2)+E

x
[
P

W λ
1/2(σr/2 ≤ 1/2)

]
≤ c3 Ir/4,λ.(3.10)

The constants c1, c2, c3 > 0 above are independent of D ≥ 1, x ∈ S and λ ≥ M2
0 .

Now, define Bλ to be the infinitesimal generator of Vt with small jumps removed:

(3.11) Bλv(ξ) =
∑
η∈S

|η−ξ|>λ1/2

(f(η) − f(ξ))
CDη,DξD

2

µDξ
.

Recall that Aλ is the generator of Wλ. We see that Aλ +Bλ is the generator for Vt.
Hence, if QV

t and QW λ

t are the semigroups associated with Vt and Wλ
t respectively,

we have that

(3.12) QV
t v = QW λ

t v +
∞∑

k=1

Sλ
k (t)v, v ∈ L∞(S, µD),

where

(3.13) Sλ
k (t)v =

∫ t

0

Sλ
k−1(s)B

λQW λ

t−sv ds, k ≥ 1,

with Sλ
0 (t) := QW λ

t (see, for example, Theorem 2.2 in [Le]). Note that the series in
(3.12) defines a bounded linear operator on L∞(S, µD) for each t > 0; this can be
seen as follows. First, by (2.2) and a simple calculation, we have
(3.14)∑

η∈S
|η−ξ|>λ1/2

CDη,DξD
2

µDξ
≤ c4

∑
y∈Zd

|y−x|>Dλ1/2

Cx,yD2 ≤ c5

D2λ

∑
y∈Zd

|x−y|2ϕ(|x−y|)D2 ≤ c8

λ
.

Using this, we see that there exists c7 > 0 independent of λ such that

‖Bλv‖∞ ≤ c7

λ
‖v‖∞.

Noting that ‖QW λ

t v‖∞ ≤ ‖v‖∞, by induction we have from (3.13) that

(3.15) ‖Sλ
k (t)v‖∞ ≤ (c8λ

−1 t)k

k!
‖v‖∞, t > 0, k ≥ 1,

and so the series above is bounded from L∞(S, µD) to L∞(S, µD) for each t > 0.
We will apply the above with λ = M2

0 . By (3.15), for any bounded function f
on S, we have

‖QV
t f − QW λ

t f‖∞ ≤
∞∑

k=1

(c8λ
−1 t)k

k!
‖f‖∞ ≤ c9 t ec9t ‖f‖∞.
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Applying this with f equal to the indicator of (B(ξ, r))c, it follows that there is a
constant c10 > 0 that is independent of D ≥ 1 such that for every ξ ∈ S and every
t ≤ 1,

(3.16) P
ξ (|Vt − ξ| > r) ≤ P

ξ
(
|WM2

0
t − ξ| > r

)
+ c10 t.

Applying the same argument we used in deriving (3.10), we conclude there are
positive constants c11, c12 such that for ξ ∈ S,

(3.17) P
ξ

(
sup
s≤t

|Vs − ξ| > r

)
≤ c11e

−c12r + c11 t for every r > 0 and t ≤ 1.

This implies that for every x ∈ Z
d, D′ ≥ 1 and r > 0,

(3.18)

P
x

(
sup

s≤D′2 t

|Ys − x| > r D′

)
≤ c11e

−c12r + c11 t for every r > 0 and t ≤ 1.

For A > 0 and B ∈ (0, 1), we choose r0 and t0 so that c11e
−c12r0 + c11 t0 < B and

take D = r0D
′/A. Then, by (3.18),

P
x

(
sup

s≤γ1 D2
|Ys − x| ≥ A D

)
≤ B for every D ≥ r0/A,

where γ1 = (A/r0)2t0. For D < r0/A, we have

(3.19) P(U1 > γ1
r2
0

A2
) ≤ P(U1 > γ1D

2) ≤ P
x

(
sup

s≤γ1 D2
|Ys − x| < A D

)
,

where U1 is an exponential random variable with parameter 1. By (A1), the left
hand side of (3.19) is greater than 1 − B if γ1 is taken to be small. Thus, (3.7) is
proved.

Now (3.8) can be proved in the same way as Theorem 2.8 in [BL1]. �

4. Lower bounds and regularity for the heat kernel

We now introduce the space-time process Zs := (Us, Vs), where Us = U0 + s.
The filtration generated by Z satisfying the usual conditions will be denoted by
{F̃s; s ≥ 0}. The law of the space-time process s �→ Zs starting from (t, x) will be
denoted as P

(t,x). We say that a nonnegative Borel measurable function q(t, x) on
[0,∞)×S is parabolic in a relatively open subset B of [0,∞)×S if for every relatively
compact open subset B1 of B, q(t, x) = E

(t,x)
[
q(ZτB1

)
]

for every (t, x) ∈ B1, where
τB1 = inf{s > 0 : Zs /∈ B1}.

We denote by γ := γ(1/2, 1/2) < 1 the constant in (3.7) corresponding to A =
B = 1/2. For t ≥ 0 and r > 0, we define

QD(t, x, r) := [t, t + γr2] × (B(x, r) ∩ S),

where B(x, r) = {y ∈ R
d : |x − y| ≤ r}.

It is easy to see the following (see, for example, Lemma 4.5 in [CK] for the proof).

Lemma 4.1. For each t0 > 0 and x0 ∈ Z
d, qD(t, x) := pD(t0− t, x, x0) is parabolic

on [0, t0) × S.

The next proposition provides a lower bound for the heat kernel and is the key
step for the proof of the Hölder continuity of pD(t, x, y).
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Proposition 4.2. There exist c1 > 0 and θ ∈ (0, 1) such that if |x−x0|, |y−x0| ≤
t1/2, x, y, x0 ∈ Z

d and r ≥ t1/2/θ, then

P
x(Yt = y, τB(x0,r) > t) ≥ c1t

−d/2.

To prove this we first need some preliminary propositions. A version of the
following weighted Poincaré inequality can be found in Lemma 1.19 of [SZ]; we give
an alternate proof.

Lemma 4.3. For D ≥ 1 and l ∈ Z
d, let

gD(l) = c1

d∏
i=1

e−|li|/D,

where c1 is determined by the equation
∑

l∈Zd gD(l) = Dd. Then there exists c2 > 0
such that

c2

〈
(f−〈f〉gD

)2
〉

gD

|1 ≤D2−d
∑
l∈Zd

gD(l)
d∑

i=1

(f(D−1(l+ei))−f(D−1l))2, f ∈L2(S),

where

〈f〉gD
= D−d

∑
l∈Zd

f(D−1l)gD(l)

and ei is the element of Z
d whose j-th component is 1 if j = i and 0 otherwise.

Proof. A scaling argument shows that it suffices to consider only the D = 1 case.
Because of the product structure, it is enough to consider the case when d = 1.

The weighted Poincaré inequality restricted to integers in [−10, 10], i.e., where
the sums are restricted to being over {−10, . . . , 10}, follows easily from the usual
Poincaré inequality. We will prove our weighted Poincaré inequality for positive
k and the same argument works for negative k. These facts together with the
weighted Poincaré inequality on [−10, 10] and standard techniques as in [Je] give
us the weighted Poincaré inequality for all of Z. So we restrict our attention to
nonnegative k. Therefore all our sums below are over nonnegative integers.

Let c3 = (
∑

k e−k)−1, f := c3

∑
l∈N∪{0} f(l)e−l, and define

I = c2
3

∑
k,�

(f(k) − f(
))2e−ke−�,

Jk = c3

∑
�>k

�−1∑
m=k

�−1∑
n=k

[f(m + 1) − f(m)] [f(n + 1) − f(n)]e−�,

K = c3

∑
n

[f(n + 1) − f(n)]2e−n.

Note

I = 2c3

∑
k

(f(k) − f)2e−k,
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so we need to show I ≤ c4K. We have, since f(k) − f(
) = 0 when k = 
,

I/c2
3 = 2

∑
k

∑
�>k

(f(k) − f(
))2e−ke−�

= 2
∑

k

∑
�>k

( �−1∑
m=k

[f(m + 1) − f(m)]
)( �−1∑

n=k

[f(n + 1) − f(n)]
)
e−ke−�

= 2
∑

k

Jke−k/c3.

We see that

Jk/c3 =
∑
m≥k

∑
n≥k

∑
�>m∨n

e−�[f(m + 1) − f(m)] [f(n + 1) − f(n)]

≤
∑
m≥k

∑
n≥k

e−m∨n[f(m + 1) − f(m)] [f(n + 1) − f(n)]

≤ 2
∑
m≥k

∑
n≥m

e−n[f(m + 1) − f(m)] [f(n + 1) − f(n)]

= 2
∑
n≥k

n−1∑
m=k

e−n[f(m + 1) − f(m)] [f(n + 1) − f(n)]

+2
∑
n≥k

e−n[f(n + 1) − f(n)]2

≤ 2
∑
n≥k

e−n[f(n + 1) − f(n)] (f(n) − f(k)) + 2K.

Hence

I ≤ c5

( ∑
k

∑
n≥k

e−n[f(n + 1) − f(n)] (f(n) − f(k))e−k +
∑

k

2e−kK
)

≤ c6

( ∑
k

∑
n≥k

e−ne−k[f(n + 1) − f(n)]2
)1/2( ∑

k

∑
n≥k

e−n[f(n)−f(k)]2e−k
)1/2

+c6K

≤ c7K
1/2I1/2 + c6K.

This implies
I ≤ c8K

as required. �
The proof of the following lemma is similar to that of (1.16) in [SZ], but since

we need some modifications, we will give the proof.

Lemma 4.4. There is an ε > 0 such that

(4.1) pD(t, D−1k, D−1m) ≥ εt−d/2,

for all D ≥ 1, (t, k, m) ∈ (D−1,∞) × S × S with |D−1k − D−1m| ≤ 2t1/2.

Proof. First, note that it is enough to prove the following: there is an ε > 0 such
that

(4.2) D−d
∑
l∈Zd

log
(
pD( 1

2 , D−1k, D−1(l + m))
)
gD(l) ≥ 1

2 log ε,
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for all D ≥ 1 and k, m ∈ Z
d with |D−1(k − m)| ≤ 2. Indeed, by the Chapman-

Kolmogorov equation, symmetry, and the fact gD(j) ≤ 1 for all j ∈ Z
d,

pD(1, D−1k, D−1m)

≥ D−d
∑

j

pD( 1
2 , D−1k, D−1(j + k))pD( 1

2 , D−1m, D−1(j + k))gD(j).

Thus, by Jensen’s inequality, (4.2) gives

pD(1, D−1k, D−1l) ≥ ε, D ≥ 1, |D−1k − D−1l| ≤ 2.

By a simple scaling argument, this gives (4.1).
So we will prove (4.2). Set ut(l) = pD(t, D−1k, D−1(l + m)) and let

G(t) = D−d
∑
l∈Zd

log(ut(l))gD(l).

By Jensen’s inequality, we see that G(t) ≤ 0. Further,

G′(t) = D−d
∑
l∈Zd

∂u

∂t
(l)

gD(l)
ut(l)

= −ED(ut(D ·), gD(D ·)
ut(D ·) ).

Next, note that the following elementary inequality holds (see (1.23) of [SZ] for the
proof):(d

b
− c

a

)
(b − a) ≤ −c ∧ d

2
(log b − log a)2 +

(d − c)2

2(c ∧ d)
, a, b, c, d > 0.

Hence

G′(t) = −D2−d

2

∑
l∈Zd

∑
e∈Zd

(gD(l + e)
ut(l + e)

− gD(l)
ut(l)

)(
ut(l + e) − ut(l)

)
Cl,l+e

≥ D2−d

2

∑
l∈Zd

∑
e∈Zd

gD(l + e) ∧ gD(l)
2

(
log ut(l + e) − log ut(l)

)2

Cl,l+e

−D2−d

2

∑
l∈Zd

∑
e∈Zd

|gD(l + e) − gD(l)|2
2(gD(l + e) ∧ gD(l))

Cl,l+e

≥ cD2−d
∑
l∈Zd

d∑
j=1

(gD(l + ej) ∧ gD(l))
(

log ut(l + ej) − log ut(l)
)2

−D2−d
∑
l∈Zd

∑
e∈Zd

|gD(l + e) − gD(l)|2
4(gD(l + e) ∧ gD(l))

Cl,l+e,

where the last inequality is due to (A2) and the definition of gD (here recall that ei

is in the element of Z
d whose j-th component is 1 if j = i and 0 otherwise). Note

|gD(l + e) − gD(l)| ≤ c1D
−1|e|(gD(l + e) ∧ gD(l)). Thus

D2−d
∑
l∈Zd

∑
e∈Zd

|gD(l + e) − gD(l)|2
4(gD(l + e) ∧ gD(l))

Cl,l+e

≤ c2D
−d

∑
l

∑
e

Cl,l+e|e|2(gD(l + e) ∧ gD(l))

≤ c3

(
sup

l

∑
e

Cl,l+e|e|2
)
· D−d

∑
l

gD(l) = c3

(
sup

l

∑
e

Cl,l+e|e|2
)

< c4,
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where we used (A3) in the last inequality. Note also min1≤i≤d gD(l+ ei) ≥ c5gD(l).
Combining these, we have

G′(t) ≥ c6D
2−d

∑
l∈Zd

d∑
j=1

(
log ut(l + ej) − log ut(l)

)2

gD(l) − c4

≥ c7D
−d

∑
l

(log ut(l) − G(t))2gD(l) − c4,

where we used Lemma 4.3 in the last inequality.
Next, for σ > 0, set At(σ) = {l ∈ Z

d : ut(l) ≥ e−σ}. Then, writing f+ and f−

for the positive and negative parts of f , we have for each σ > 0,

D−d
∑

l

(log ut(l) − G(t))2gD(l) ≥ D−d
∑

l

(−(log ut)−(l) − G(t))2gD(l)

≥ G(t)2

2Dd

∑
l∈At(σ)

gD(l) − σ2,

where we used the elementary inequality (A+B)2 ≥ (A2/2)−B2, A, B ∈ R, in the
last inequality. Thus, we have

(4.3) G′(t) ≥ c8It,σG(t)2 − (c4 + σ2),

where we let It,σ = D−d
∑

l∈At(σ) gD(l). On the other hand, by (3.7) and scaling,
we can find r0 > 2 such that

D−d
∑

|D−1l|≤r0

pD(t, D−1k, D−1(l + m)) ≥ 1/2

for D ≥ 1, t ≤ 1, and |D−1(k − m)| ≤ 2. In particular, if β is the smallest value of
gD(·) on [−r0, r0], then for each t ∈ [1/4, 1],

1/2 ≤ D−d
∑

|D−1l|≤r0

ut(l) ≤ e−σrd
0 + (sup

k
|ut(k)|) · It,σ

β
.

Thus by taking σ = log(4rd
0) and using (3.3), we obtain It,σ ≥ cβ. Combining this

with (4.3), there exists 0 < δ < 1 such that

(4.4) G′(t) ≥ δG(t)2 − δ−1, D ≥ 1, t ∈ [1/4, 1], and |D−1(k − m)| ≤ 2.

Now, by (4.4) and the mean value theorem,

(4.5) G(1/2) − G(t) ≥ −(4δ)−1, t ∈ [1/4, 1].

We may assume G(1/2) ≤ −5/(2δ), since otherwise (4.2) is clear. Then, by (4.5)
we have G(t) ≤ −2δ−1. So δG(t)2/2 − δ−1 ≥ δ−1 > 0. So, by (4.4) again,

G′(t) ≥ δG(t)2/2, t ∈ [1/4, 1].

But this means that

G( 1
2 )−1 ≤ G( 1

2 )−1 − G( 1
4 )−1 = −

∫ 1/2

1/4

G′(s)
G2(s)

ds ≤ −δ

8
,

and therefore G(1/2) ≥ −8δ−1. Thus (4.2) holds with ε1/2 = 1
2 exp(−8δ−1). �
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Lemma 4.5. Given δ > 0 there exists κ such that if x, y ∈ Z
d and C ⊂ Z

d with
dist (x, C) and dist (y, C) both larger than κt1/2, then

P
x(Yt = y, TC ≤ t) ≤ δt−d/2.

Proof. By the strong Markov property we have

P
x(Yt = y, TC ≤ t/2) = P

x(1{TC≤t/2}P
YTC (Yt−TC

= y))

≤ c1(t/2)−d/2
P

x(TC ≤ t/2).

In Proposition 3.4 let us choose A = 1 and B = δ/(4c12d/2). If we take κ >
(2γ1)−1/2, then Proposition 3.4 tells us that

P
x(TC ≤ t/2) ≤ P

x(τB(x,κt1/2) ≤ t/2) ≤ B,

and then

(4.6) P
x(Yt = y, TC ≤ t/2) ≤ δ

2
t−d/2.

We now consider P
x(Yt = y, t/2 ≤ TC ≤ t). If the first hitting time of C occurs

between time t/2 and time t, then the last hitting time of C before time t happens
after time t/2. So if SC = sup{s ≤ t : Ys ∈ C}, then

P
x(Yt = y, t/2 ≤ TC ≤ t) ≤ P

x(Yt = y, t/2 ≤ SC ≤ t).

We claim that by time reversal,

(4.7) P
x(Yt = y, t/2 ≤ SC ≤ t) = P

y(Yt = x, TC ≤ t/2).

To see this, observe by the symmetry of the heat kernel p, we have that if ti =
(t/2) + it/(2n), then

P
x(Ytk

= zk, . . . , Ytn−1 = zn−1, Ytn
= y)

= p(tk, x, zk)p(t/(2n), zk, zk+1) · · · p(t/(2n), zn−1, y)
= P

y(Yt/(2n) = zn−1, . . . , Yt−tk
= zk, Yt = x).

If we sum over zk ∈ C and zk+1, . . . , zn−1 /∈ C, we have

P
x(Ytk

∈ C, Ytk+1 /∈ C, . . . , Ytn−1 /∈ C, Yt = y)

= P
y(Yt/(2n) /∈ C, . . . , Yt−tk+1 /∈ C, Yt−tk

∈ C, Yt = x).

If we sum over k, this yields

P
x(t/2 ≤ S′

n ≤ t, Yt = y) = P
y(0 ≤ T ′

n ≤ t/2, Yt = x),

where S′
n = sup{tk : Ytk

∈ C} and T ′
n = inf{tk : Ytk

∈ C}. Letting n → ∞ proves
(4.7).

Arguing as in the first part of the proof,

P
y(Yt = x, TC ≤ t/2) ≤ δ

2
t−d/2.

Therefore

P
x(Yt = y, t/2 ≤ TC ≤ t) ≤ δ

2
t−d/2,

and combining with (4.6) proves the proposition. �
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Proof of Proposition 4.2. We have from Lemma 4.4 that there exists ε such that

p(t, x, y) ≥ εt−d/2

if |x − y| ≤ 2t1/2. If we take δ = ε/2 in Lemma 4.5, then provided r > (κ + 1)t1/2,
we have

P
x(Yt = y, τB(x0,r) ≤ t) ≤ ε

2
t−d/2.

Subtracting,

P
x(Yt = y, τB(x0,r) > t) ≥ ε

2
t−d/2

if |x − y| ≤ t1/2, which is equivalent to what we want. �

As a corollary of Proposition 4.2 we have

Corollary 4.6. For each 0 < ε < 1, there exists θ = θ(ε) ∈ (0, 1) with the following
property: if D ≥ 1, x, y ∈ S with |x − y| < t1/2, r > cM0/D, t ∈ [0, (θr)2), and
Γ ⊂ B(y, t1/2) ∩ S satisfies µD(Γ)t−d/2 ≥ ε, then

(4.8) P
x(Vt ∈ Γ and τB(x,r) > t) ≥ c1ε.

Lemma 4.7. For each 0 < δ < 1, there exists γ = γδ ∈ (0, 1) such that for t > 0,
r > cM0/D and x ∈ S, if A ⊂ QD

γ (t, x, r) := [t, t + γδr
2] × (B(x, r) ∩ S) satisfies

m ⊗ µD(A)/m ⊗ µD(QD
γ (t, x, r)) ≥ δ, then

P
(t,x)(TA(Z) < τQD

γ (t,x,r)(Z)) ≥ c1δ.

Proof. For each δ > 0, take γ = θ(δ/4)2. Note that there exists s = sr ∈ [t +
δγr2/4, t + γr2) such that

(4.9) µD(As) ≥ δrd/4 ≥ δ

4

(s − t

γ

)d/2

≥ δ

4
(s − t)d/2,

where As = {(s, z) ∈ [0,∞) × S : (s, z) ∈ A}. Indeed, if not, then

m ⊗ µD(A) ≤ δγr2+d/4 + (γ − δγ/4) · (δ/4) · r2+d ≤ δγr2+d/2,

which contradicts m ⊗ µD(A) ≥ δm ⊗ µD(QD
γ (t, x, r)) = δγr2+d. Now, using this

fact and Corollary 4.6 (with ε = δ/4), we have

P
(t,x)(TA(Z) < τQD

γ (t,x,r)(Z)) ≥ P
(t,x)(Vs−t ◦ θt ∈ As and τB(x,r) ◦ θt > s − t)

≥ c1δ/4,

which completes the proof. �

We will also use the following Lévy system formula for Y (cf. Lemma 4.7 in
[CK]).

Lemma 4.8. Let f be a nonnegative measurable function on R+×S×S, vanishing
on the diagonal. Then for every t ≥ 0, x ∈ S and a stopping time T of {Ft}t≥0,

E
x

⎡⎣∑
s≤T

f((s, Vs−, Vs))

⎤⎦ = E
x

⎡⎣∫ T

0

∑
y∈S

f((s, Vs, y))
D2CDVs,Dy

µYD2s

ds

⎤⎦ .
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Now we prove that the heat kernel pD(t, x, y) is Hölder continuous in (t, x, y),
uniformly over D. For (t, x) ∈ [0,∞)×S and r > 0 let QD(t, x, r) := [t, t + γr2]×
(B(x, r) ∩ S), where γ := γ(1/2, 1/2) ∧ γ1/3 < 1. Here γ(1/2, 1/2) is the constant
in (3.7) corresponding to A = B = 1/2 and γ1/3 is the constant in Lemma 4.7
corresponding to δ = 1/3.

The following theorem can be proved similarly to Theorem 4.1 in [BL2] and
Theorem 4.14 in [CK]. We will write down the proof for completeness.

Theorem 4.9. There are constants c > 0 and β > 0 (independent of R, D) such
that for every 0 < R, every D ≥ 1, and every bounded parabolic function q in
QD(0, x0, 4R),

(4.10) |q(s, x) − q(t, y)| ≤ c ‖q‖∞,R R−β
(
|t − s|1/2 + |x − y|

)β

holds for (s, x), (t, y) ∈ QD(0, x0, R), where ‖q‖∞,R := sup(t,y)∈[0, γ(4R)2]×S |q(t, y)|.
In particular, for the transition density function pD(t, x, y) of V ,
(4.11)

|pD(s, x1, y1) − pD(t, x2, y2)| ≤ c t
−(d+β)/2
0

(
|t − s|1/2 + |x1 − x2| + |y1 − y2|

)β

,

for any 0 < t0 < 1, t, s ∈ [t0, ∞) and (xi, yi) ∈ S × S with i = 1, 2.

Proof. Recall that Zs = (Us, Vs) is the space-time process of V , where Us = U0 +s.
In the following, we suppress the superscript D from QD(·, ·, ·). Without loss of
generality, assume that 0 ≤ q(z) ≤ ‖q‖∞,R = 1 for z ∈ [0, γ (4R)2]×S. By Lemma
4.7, there is a constant c1 > 0 such that if x ∈ S, 0 < r < 1 and A ⊂ Q(t, x, r/2)
with m⊗µD(A)

m⊗µD(Q(t,x,r/2))
≥ 1/3, then

(4.12) P
(t,x)(TA(Z) < τr(Z)) ≥ c1,

where τr := τQ(t,x,r). By Lemma 4.8 with f(s, y, z) = 1B(x,r)(y) 1S\B(x,s)(z) and
T = τr, there is a constant c2 > 0 such that if s ≥ 2r,
(4.13)

P
(t,x)(Vτr

/∈B(x, s)) = E
(t,x)

⎡⎣∫ τr

0

∑
y∈S\B(x,s)

D2CDVv,Dy

µYD2v

dv

⎤⎦≤ c2

s2
E

(t,x)[τr]≤
c2r

2

s2
.

The first inequality of (4.13) is due to the following computation:

sup
z∈B(x,r)∩S

D2
∑

y∈S\B(x,s)

CDz,Dy

≤ sup
z′∈B(Dx,Dr)

D2
∑

|z′−y′|≥Ds/2

Cz′y′ ≤ D2
∑

i>Ds/2

ϕ(i)id−1

≤ 4
s2

∑
i

ϕ(i)id+1 ≤ c

s2
,

where (A3) is used in the last inequality. The last inequality of (4.13) is due to the
fact E

(t,x)[τr] ≤ r2; this is clearly true since the time interval for Q(t, x, r) is γr2,
which is less than r2. (E xτB(x0,r) ≤ c1r

2 is also true; see Lemma 5.2 (a).) Let

η = 1 − c1

4
and ρ = 1

2 ∧
(η

2

)1/2

∧
(

c1 η

8 c2

)1/2

.
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Note that for every (t, x) ∈ Q(0, x0, R), q is parabolic in Q(t, x, R) ⊂ Q(0, x0, 2R).
We will show that

(4.14) sup
Q(t,x,ρkR)

q − inf
Q(t,x,ρkR)

q ≤ ηk for all k.

For notational convenience, we write Qi for Q(t, x, ρiR) and τi for τQ(t,x,ρiR).
Define

ai = inf
Qi

q and bi = sup
Qi

q.

Clearly bi − ai ≤ 1 ≤ ηi for all i ≤ 0. Now suppose that bi − ai ≤ ηi for all i ≤ k
and we are going to show that bk+1 − ak+1 ≤ ηk+1. Observe that Qk+1 ⊂ Qk and
so ak ≤ q ≤ bk on Qk+1. Define

A′ := {z ∈ Qk+1 : q(z) ≤ (ak + bk)/2}.

We may suppose m⊗µD(A′)
m⊗µD(Qk+1)

≥ 1/2, for if not, we use 1 − q instead of q. Let A

be a compact subset of A′ such that m⊗µD(A)
m⊗µD(Qk+1)

≥ 1/3. For any given ε > 0, pick
z1, z2 ∈ Qk+1 so that q(z1) ≥ bk+1− ε and q(z2) ≤ ak+1 + ε. Then by (4.12)-(4.14),

bk+1 − ak+1 − 2ε ≤ q(z1) − q(z2)
= E

z1
[
q(ZTA∧τk+1) − q(z2)

]
= E

z1 [q(ZTA
) − q(z2); TA < τk+1]

+E
z1

[
q(Zτk+1) − q(z2); TA > τk+1,

Zτk+1 ∈ Qk

]
+

∞∑
i=1

E
z1

[
q(Zτk+1) − q(z2); TA > τk+1,

Zτk+1 ∈ Qk−i \ Qk+1−i

]
≤

(
ak + bk

2
− ak

)
P

z1(TA < τk+1)

+(bk − ak)Pz1(TA > τk+1)

+
∞∑

i=1

(bk−i − ak−i)Pz1(Zτk+1 /∈ Qk+1−i)

≤ (bk − ak)
(

1 − P
z1(TA < τk+1)

2

)
+

∞∑
i=1

c2 ηk(ρ2/η)i

≤ (1 − c1

2
) ηk + 2c2η

k−1ρ2

≤ (1 − c1

2
)ηk +

c1

4
ηk

= ηk+1.

Since ε is arbitrary, we have bk+1 − ak+1 ≤ ηk+1, and this proves (4.14).
For z = (s, x) and w = (t, y) in Q(0, x0, R) with s ≤ t, let k be the largest

integer such that |z −w| := (γ−1|t− s|)1/2 + |x− y| ≤ ρkR. Then log(|z −w|/R) ≥
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(k + 1) log ρ, w ∈ Q(s, x, ρkR) and

|q(z) − q(w)| ≤ ηk = ek log η ≤ c3

(
|z − w|

R

)log η/ log ρ

.

This proves (4.10) with β = log η/ log ρ.
By (3.2) and Lemma 4.1, for every 0 < t0 < 1, T0 ≥ 2 and y ∈ S, q(t, x) :=

pD(T0−t, x, y) is a parabolic function on [0, T0− t0
2 ]×S bounded above by c4 t

−d/2
0 .

For each fixed t0 ∈ (0, 1) and T0 ≥ 2, take R such that γR2 = t0/2. Let
s, t ∈ [t0, T0] with s > t and x1, x2 ∈ S. Assume first that

(4.15) |s − t|1/2 + |x1 − x2| < γ1/2 R = (t0/2)1/2

and so (T0 − t, x2) ∈ Q(T0 − s, x1, R) ⊂ [0, T0 − t0
2 ) × S. Applying (4.10) to the

parabolic function q(t, x) with (T0−s, x1), (T0− t, x2) and Q(T0−s, x1, R) in place
of (s, x), (t, y) and Q(0, x0, R) there respectively, we have

(4.16) |pD(s, x1, y) − pD(t, x2, y)| ≤ c t
−(d+β)/2
0 (|t − s|1/2 + |x1 − x2|)β .

By (3.3), the inequality (4.16) is true when (4.15) does not hold. So (4.16) holds
for every t, s ∈ [t0, T0] and x1, x2 ∈ S for all T0 ≥ 2. Inequality (4.11) now follows
from (4.16) by the symmetry of p(t, x, y) in x and y. �

5. Harnack inequality

A function h defined on Z
d is harmonic on a subset A of Z

d with respect to the
Markov chain X if ∑

z

h(z)Px(X1 = z) = h(x), x ∈ A.

Because the Markov chain may not have bounded range, h must be defined on all
of Z

d. In order to avoid h possibly being infinite in A, we will assume that h is
bounded on Z

d, but in what follows, the constants do not depend at all on the L∞

bound on h. We say h is harmonic with respect to Y if h(Yt∧τA
) is a P

x-martingale
for each x ∈ Z

d, where τA = inf{t : Yt /∈ A}. It is not hard to see that a function
is harmonic for X if and only if it is harmonic for Y , since the hitting probabilities
of X and Y are the same. Also, because the state space is discrete, it is routine
to see that a function is harmonic in a domain A if and only if E(h, f) = 0 for all
bounded f supported in A; we will not use this latter fact.

In this section we first give an example of a symmetric random walk, i.e., where
{Xn+1 − Xn} are symmetric i.i.d. random variables, for which a uniform Harnack
inequality fails. Note that the Harnack inequality does hold for each ball of radius
n, but not with a constant independent of n. Our example is similar to one in [LP].
Let ej be the unit vector in the xj direction, j = 1, . . . , d.

Let bn = nnn

(or any other quickly growing sequence), and let an be a sequence
of positive numbers tending to 0, subject only to

∑
an ≤ 1/32 and

∑
n anb2

n < ∞.
Let ε = 2

∑
an. Let ξi be an i.i.d. sequence of random vectors on Z

d with

P
0(ξ1 = ±ej) = (1 − ε)/(2d).

Let P
0(ξ1 = ±bne1) = an. Let Xn =

∑n
i=1 ξi.

Now let δ ∈ (0, 1), rn = (1 − δ)bn, zn = (bn, 0), Bn = B(0, rn), τn = min{k :
Xk /∈ Bn}, and T0 = min{k : Xk = 0}. Define

hn(x) = P
x(Xτn

= zn).
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Each hn is a harmonic function in Bn. If a uniform Harnack inequality were to
hold, there would exist C not depending on n such that

hn(0)/hn(y) ≤ C, y ∈ B(0, rn/2).

Since δbn � bn−1 for n large, the only way Xτn
can equal zn is if the random

walk jumps from 0 to zn. So for yn ∈ Bn, yn �= 0,

hn(yn) = P
yn(T0 < τn)hn(0).

But we claim that if yn ∼ rn/4, then P
yn(T0 < τn) will tend to 0 when n → ∞,

and then hn(0)/hn(yn) → ∞. So no uniform Harnack inequality exists.
The claim is true in all dimensions greater than or equal to 2, but is easier to

prove when d ≥ 3, so we concentrate on this case. We have

P
yn(T0 < τn) ≤ P

yn(T0 < ∞) = P
yn(T0 < r1/4

n ) + P
yn(T0 ≥ r1/4

n )

≤ P
yn( max

i≤r
1/4
n

|Xi − X0| ≥ |yn|) +
∞∑

i=[r
1/4
n ]

P
yn(Xi = 0).

The first term on the last line goes to 0 by Doob’s inequality (applied to each
(Xi, e

j), j = 1, . . . , d). By Spitzer [Sp], p. 75, the sum above is bounded by

c
∞∑

i=[r
1/4
n ]

1
id/2

≤ c′(r1/4
n )1−(d/2),

which goes to 0 as n → ∞.
Note that by taking an tending to 0 fast enough, ξ1 can be made to be sub-

Gaussian, or have even better tails.
As this example shows, a uniform Harnack inequality need not hold when the

range is unbounded, so an additional assumption is needed to handle this case. The
assumption is modeled after [BK] and the proof is similar to the one in [BL2]. We
assume

(A4) There exists a constant c1 such that Cxy ≤ c1Cxy′ whenever |y − y′| ≤
|x − y|/3.

Lawler [Law] proved that the Harnack inequality holds for a class of symmet-
ric random walks with bounded range and also for a class of Markov chains with
bounded range which are in general not reversible. See also [LP] for some results
concerning random walks with unbounded range. Theorem 5.1 says that the Har-
nack inequality continues to be true for symmetric Markov chains with bounded
range and for symmetric Markov chains satisfying (A4).

Theorem 5.1. Suppose (A1)–(A3) hold. Suppose either (A4) holds or else the
Markov chain has bounded range. Suppose x0 ∈ Z

d and R > M0, where M0 is
defined in (A2). There exists a constant c1 such that if h is nonnegative and bounded
on Z

d and harmonic on B(x0, 2R), then

(5.1) h(x) ≤ c1h(y), x, y ∈ B(x0, R).

Before proving Theorem 5.1 we prove a lemma. Note that (A4) is not needed
for this lemma.

Lemma 5.2. (a) E
xτB(x0,r) ≤ c1r

2.
(b) There exist θ ∈ (0, 1/2) and c2, c3 > 0 such that if r > M0/θ, then

P
x(τB(x0,r) ≥ r2) ≥ c2 and E

xτB(x0,r) ≥ c3r
2 if x ∈ B(x0, θr).
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Proof. If p(t, x, y) denotes the transition densities for Yt, we know

p(t, x, y) ≤ c4t
−d/2.

So if we take t = c5r
2 for large enough c5, then

P
x(Yt ∈ B(x0, r)) =

∑
z∈B(x0,r)

p(t, x, z) ≤ c6t
−d/2|B(x0, r)| ≤ 1

2 .

This implies
P

x(τB(x0,r) > t) ≤ 1
2 .

By the Markov property, for m a positive integer

P
x(τB(x0,r) > (m + 1)t) ≤ E

x[PYmt(τB(x0,r) > t); τB(x0,r) > mt]

≤ 1
2P

x(τB(x0,r) > mt).

By induction,
P

x(τB(x0,r) > mt) ≤ 2−m,

and (a) follows.
We also know by Proposition 4.2 that there exists κ > 1 such that

P
x(Yt = y, τB(x0,r) > t) ≥ c7t

−d/2

if |x − x0|, |y − x0| ≤ t1/2 and r ≥ κt1/2. Therefore taking t = r2/κ2,

P
x(τB(x0,r) > t) ≥ P

x(Yt ∈ B(x0, t
1/2), τB(x0,r) > t) ≥ c7t

−d/2|B(x0, t
1/2)| ≥ c8

if x ∈ B(x0, r/κ). Let θ = 1/κ. So E
xτB(x0,r) ≥ tPx(τB(x0,r) > t) ≥ c8r

2, which
proves (b). �

Proof of Theorem 5.1. Let κ and θ be as in Lemma 5.2. Since we have (A1) and
(A2), it is easy to check that a Harnack inequality holds for each finite R, provided
R ≤ 32M0/θ. So it suffices to assume R > 32M0/θ. If the Markov chain has
bounded range, choose L so that Cxy = 0 whenever |x − y| ≥ L and assume
R > (32M0/θ) ∨ (2L).

First of all, if z1 ∈ Z
d and w /∈ B(z1, 2r), by the Lévy system formula,

E
x

∑
s≤τB(z1,r)∧t

1(Ys−∈B(z1,r),Ys=w) = E
x

∫ τB(z1,r)∧t

0

CYs,w ds.

Letting t → ∞, we have

P
x(YτB(z1,r) = w) = E

x

∫ τB(z1,r)

0

CYs,w ds.

If (A4) holds, c2Cz1,w ≤ CYs,w ≤ c3Cz1,w when Ys ∈ B(z1, r). So the right
hand side is bounded above by the quantity c3Cz1wE

xτB(z1,r) and below by the
quantity c2Cz1wE

xτB(z1,r). By Lemma 5.2, if x, y ∈ B(z1, θr), then E
xτB(z1,r) ≤

c4E
yτB(z1,r). We conclude

P
x(YτB(z1,r) = w) ≤ c5P

y(YτB(z1,r) = w).

Taking linear combinations, if H is a bounded function supported in B(z1, 2r)c,
then

(5.2) E
xH(YτB(z1,r)) ≤ c5E

yH(YτB(z1,r)), x, y ∈ B(z1, θr).

Choose r0 = 16M0/θ.



2060 RICHARD F. BASS AND TAKASHI KUMAGAI

If, on the other hand, the Markov chain has bounded range and r ≥ L, then
(5.2) again holds because both sides are zero. In the bounded range case set r0 =
(16M0/θ) ∨ L.

If r ≥ r0, then setting t = r2/κ2,

P
x(Yt = y, τB(z1,r) > t) ≥ c6t

−d/2, x, y ∈ B(z1, θr).

Summing over A ⊂ B(z1, θr), we see that

(5.3)
P

x(TA < τB(z1,r)) ≥ P
x(Yt ∈ A, τB(z1,r) > t)

≥ c6|A|t−d/2 = c6|A|r−d, x ∈ B(z1, θr).

In particular, note that if C ⊂ B(z1, θr) and |C|/|B(z1, θr)| ≥ 1/3, then

(5.4) P
x(TC < τB(z1,r)) ≥ c7, x ∈ B(z1, θr).

Next suppose x, y ∈ B(z1, θr0). In view of (A2)

P
x(T{y} < τB(z1,r0)) ≥ c8.

By optional stopping,

h(x) ≥ E
x[h(YT{y}); T{y} < τB(z1,r0)]

= h(y)Px(T{y} < τB(z1,r0))

≥ c8h(y).

By looking at a constant multiple of h, we may assume infB(x0,θR/2) h = 1.
Choose z0 ∈ B(x0, θR/2) such that h(z0) = 1. We want to show that h is bounded
above in B(x0, θR/2) by a constant not depending on h. This will show

(5.5) h(y) ≤ c9h(x), x, y ∈ B(x0, θR/2).

Once we have (5.5) a standard chain of balls argument yields our theorem.
Let

(5.6) η =
c7

3
, ζ =

1
3
∧ (c−1

5 η) ∧ c8.

Now suppose there exists x ∈ B(x0, θR/2) with h(x) = K for some K large. Let
r be chosen so that

(5.7) 2Rd/(c6ζK) ≤ |B(x0, θr)| ≤ 4Rd/(c6ζK).

Note this implies

(5.8) r ≤ c10K
−1/dR.

Without loss of generality we may assume K is large enough that r ≤ θR/4. Let

(5.9) A = {w ∈ B(x, θr) : h(w) ≥ ζK}.
By (5.3) and optional stopping,

1 ≥ h(z0) ≥ E
z0 [h(YTA∧τB(x0,2R)); TA < τB(x0,2R)]

≥ ζKP
z0(TA < τB(x0,2R))

≥ c6ζK|A|R−d,

hence

(5.10)
|A|

|B(x, θr)| ≤
Rd

c6ζK|B(x, θr)| ≤
1
2
.
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Let C be a set contained in B(x, θr) \ A such that

(5.11)
|C|

|B(x, θr)| ≥
1
3
.

Let H = h1B(x,2r)c . We claim

E
x[h(YτB(x,r)); YτB(x,r) /∈ B(x, 2r)] ≤ ηK.

If not
E

xH(YτB(x,r)) > ηK,

and by (5.2), for all y ∈ B(x, θr),

h(y) ≥ E
yh(YτB(x,r)) ≥ E

y[h(YτB(x,r)); YτB(x,r) /∈ B(x, 2r)]

≥ c−1
5 E

xH(YτB(x,r)) ≥ c−1
5 ηK

≥ ζK,

contradicting (5.11) and the definition of A.
Let N = supB(x,2r) h(z). We then have

K = h(x) = E
x[h(YTC

); TC < τB(x,r)]

+ E
x[h(YτB(x,r)); τB(x,r) < TC , YτB(x,r) ∈ B(x, 2r)]

+ E
x[h(YτB(x,r)); τB(x,r) < TC , YτB(x,r) /∈ B(x, 2r)]

≤ ζKP
x(TC < τB(x,r)) + NP

x(τB(x,r) < TC) + ηK

= ζKP
x(TC < τB(x,r)) + N(1 − P

x(TC < τB(x,r))) + ηK,

or
N

K
≥

1 − η − ζP
x(TC < τB(x,r))

1 − Px(TC < τB(x,r))
.

Using (5.4) there exists β > 0 such that N ≥ K(1 + β). Therefore there exists
x′ ∈ B(x, 2r) with h(x′) ≥ K(1 + β).

Now suppose there exists x1 ∈ B(x0, θR/2) with h(x1) = K1. Define r1 and A1

in terms of K1 analogously to (5.7) and (5.9). Using the above argument (with
x1 replacing x and x2 replacing x′), there exists x2 ∈ B(x1, 2r1) with h(x2) =
K2 ≥ (1 + β)K1. We continue and obtain r2 and A2 and then x3, K3, r3, A3,
etc. Note xi+1 ∈ B(xi, 2ri) and Ki ≥ (1 + β)i−1K1. In view of (5.8),

∑
i |xi+1 −

xi| ≤ c11K
−1/d
1 R. If K1 is big enough, we have a sequence x1, x2, . . . contained in

B(x0, 3θR/4). Since Ki ≥ (1 + β)i−1K1 and ri ≤ c12K
−1/d
i R, there will be a first

integer i for which ri < 2r0. But for all y ∈ B(xi, θri) we have h(y) ≥ c8h(xi), so
then Ai = B(xi, θri), a contradiction to (5.10). �

Corollary 5.3. Let ξi be an i.i.d. sequence of symmetric random vectors taking
values in Z

d with finite second moments. Let Xn =
∑n

i=1 ξi and suppose Xn is
aperiodic. Suppose there exists c1 such that

P(ξ1 = y) ≤ c1P(ξ1 = y′)

whenever |y − y′| ≤ |y|/3. Then there exists c2 and R0 such that for all R larger
than R0 and any w /∈ B(x0, R),

P
x(XτB(x0,R) = w) ≤ c2P

y(XτB(x0,R) = w), x, y ∈ B(x0, R/2).
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Proof. We let Cxy = P(ξ1 = y − x). Since the ξi are symmetric, then the Xn form
a symmetric Markov chain, and it is easy to see that (A1)–(A4) are satisfied. We
then apply Theorem 5.1 to h(x) = P

x(YτB(x0,R) = w). �

6. Central limit theorem

Suppose we have a sequence Cn
xy of conductances satisfying (A1), (A2), and (A3)

with constants and ϕ independent of n. Let Y
(n)
t be the corresponding continuous

time Markov chains on Z
d and set

Z
(n)
t = Y

(n)
n2t /n.

As noted previously, the Dirichlet form corresponding to the process Z(n) is

(6.1) En(f, f) = n2−d
∑

x,y∈n−1Zd

(f(y) − f(x))2Cn
nx,ny.

We will also need to discuss the form

(6.2) ER
n (f, f) = n2−d

∑
x,y∈n−1Zd

(f(y) − f(x))2Cn,R
nx,ny,

where Cn,R
k,l , k, l ∈ Z

d is equal to Cn
k,l if |k − l| ≤ nR and 0 otherwise.

Since the state space of Z(n) is n−1
Z

d while the limit process will have R
d as

its state space, we need to exercise some care with the domains of the functions we
deal with. First, if g is defined on R

d, we define Rn(g) to be the restriction of g to
n−1

Z
d:

Rn(g)(x) = g(x), x ∈ n−1
Z

d.

If g is defined on n−1
Z

d, we next define an extension of g to R
d. The one we use is

defined as follows. For k ∈ Z
d, let

Qn(k) =
d∏

j=1

[n−1kj , n
−1(kj + 1)].

When d = 1, we define the extension, En(g), to be linear in each Qn(k) and to
agree with g on the endpoints of each interval Qn(k). For d > 1 we define En(g)
inductively. We use the definition in the (d − 1)-dimensional case to define En(g)
on each face of each Qn(k). We define En(g) in the interior of a Qn(k) so that if L
is any line segment contained in the Qn(k) that is parallel to one of the coordinate
axes, then En(g) is linear on L. For example, when d = 2, n = 1, and k = (0, 0),
then

En(g)(s, t) = g(0, 0)(1 − s)(1 − t) + g(0, 1)(1 − s)t + g(1, 0)s(1 − t)

+ g(1, 1)st, 0 ≤ s, t ≤ 1.

Recall that ej is the unit vector in the xj direction and let (x, y) denote the inner
product in R

d. If k = (k1, . . . , kd) ∈ Z
d, let P(k) be the union of the line segment

from 0 to (k1, 0, . . . , 0), the line segment from (k1, 0, . . . , 0) to (k1, k2, 0, . . . , 0), ...,
and the line segment from (k1, . . . , kd−1, 0) to k. For z ∈ n−1

Z
d and 1 ≤ i ≤ d, let

Li
z = {(y, k) ∈ (n−1

Z
d)2 : y + n−1P(nk)

contains the line segment from z to z + n−1ei}.
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We note that (x, k) ∈ Li
z for z ∈ n−1

Z
d if and only if (x+k)l = zl for l = 1, ..., i−1,

xl = zl for l = i + 1, ..., d and zi ∈ [xi ∧ (x + k)i, xi ∨ (x + k)i). So, for each k, the
number of x that satisfies (x, k) ∈ Li

z is at most n|ki|.
Recall that sgn r is equal to 1 if r > 0, equal to 0 if r = 0, and equal to −1 if

r < 0. We define a map an from R
d into M, the collection of d × d matrices as

follows: Fix R. If x ∈ n−1
Z

d, let the (i, j)-th element of an be given by

(6.3)
(
an(x)

)
ij

=
∑

(y,k)∈Li
x

Cn,R
ny,n(y+k)nkj sgn ki.

For general x = (xi)d
i=1 ∈ R

d, we define an(x) := an([x]n), where we set [x]n =
(n−1[nxi])d

i=1. an(x) is not symmetric in general, but under (A5), we see that
(an(x))ij is bounded for all i, j (which can be proved similarly to (6.21) below),
and when n is large, we can use Cauchy-Schwarz, etc., as in the symmetric case.
Note that if Cn

xy = 0 for |x − y| > 1 (i.e., the nearest neighbor case), then the
expression in (6.3) is equal to 2Cn

nx,nx+ei if i = j and equal to 0 if i �= j. (In
particular, an(x) is symmetric in this case.)

We make the following assumption.
(A5) There exist R > 0 and a Borel measurable a : R

d → M such that a is
symmetric and uniformly elliptic, the map x → a(x) is continuous, and an converges
to a uniformly on compacts sets.

We will see from the proofs below that if (A5) holds for one R, then it holds for
every R > 1 and the limit a is independent of R.

Since a is uniformly elliptic, if we define

Ea(f, f) =
∫

Rd

(∇f(x), a(x)∇f(x))dx,

then (Ea, H1(Rd)) is a regular Dirichlet form on L2(Rd, dx) where H1(Rd) is the
Sobolev space of square integrable functions with one square integrable derivative.
Further, it is well-known that the corresponding heat kernel pa(t, x, y) satisfies the
following estimate:

(6.4) c1t
−d/2 exp

(
− c2

|x − y|2
t

)
≤ pa(t, x, y) ≤ c3t

−d/2 exp
(
− c4

|x − y|2
t

)
,

for all t > 0 and all x, y ∈ R
d. As a consequence, the corresponding diffusion (which

we denote by {Zt}) can be defined without ambiguity from any starting point.
In this section we prove the following central limit theorem. Let C([0, t0]; Rd) be

the collection of continuous paths from [0, t0] to R
d.

Theorem 6.1. Suppose (A1)-(A3) and (A5) hold.
(a) Then for each x and each t0 the P

[x]n-law of {Z(n)
t ; 0 ≤ t ≤ t0} converges

weakly with respect to the topology of the space D([0, t0], Rd). The limit probability
gives full measure to C([0, t0], Rd).

(b) If Zt is the canonical process on C([0,∞), Rd) and P
x is the weak limit of

the P
[x]n-laws of Z(n), then the process {Zt, P

x} has continuous paths and is the
symmetric process corresponding to the Dirichlet form Ea.

Before giving the proof, we discuss three examples. First, suppose each X(n) is
the sum of i.i.d. random vectors. Then the Cn

xy will depend only on y − x, and so
the an(x) will be constant in the variable x. Therefore, if convergence holds, the
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limit a(x) will be constant in x. This means that the limit is a linear transformation
of d-dimensional Brownian motion, as one would expect.

For another example, suppose the X(n) are nearest neighbor Markov chains, i.e.,
Cn

xy = 0 if |x − y| �= 1. Then in this case the result of [SZ] is included in our
Corollary 6.5 and 6.7.

Third, suppose Cn
xy = Cxy does not depend on n. Unless Cxy is a function only

of y − x, then (2.6) of [SZ] (which is (6.29) below) will not be satisfied, and this
situation is covered by Theorem 6.1 but not by the results of [SZ]. To be fair,
the goal of [SZ] was not to obtain a general central limit theorem, but instead
to come up with a way of approximating diffusions by Markov chains. Condition
(A5) is restrictive. For this Cn

xy = Cxy case, if we further assume that Cxy = 0
for |x − y| > 1, then a(x) is always a constant matrix. Indeed, in this case the
expression in (6.3) is equal to 2Cnx,nx+eiδij , which converges to (a(x))ij uniformly
on compacts as n → ∞ by (A5). So, for any m ∈ N, the limit of an(x/m) is equal
to a(x), i.e., a(x/m) = a(x). Since a is continuous, we conclude a(x) = a(0) for all
x ∈ R

d.
Before we prove Theorem 6.1, we prove a proposition showing tightness of the

laws of Z(n).

Proposition 6.2. Suppose {nj} is a subsequence. Then there exists a further
subsequence {njk

} such that
(a) For each f that is C∞ on R

d with compact support, Enjk
(P

njk
t Rnjk

(f))
converges uniformly on compact subsets; if we denote the limit by Ptf , then the
operator Pt is linear and extends to all continuous functions on R

d with compact
support and is the semigroup of a symmetric strong Markov process on R

d with
continuous paths.

(b) For each x and each t0 the P
[x]njk law of {Z(njk

)
t ; 0 ≤ t ≤ t0} converges

weakly to a probability P
x giving full measure to C([0, t0]; Rd).

Proof. Let t0 > 0 and η > 0. Let τn be stopping times bounded by t0 and let
δn → 0. Then by Proposition 3.4 and the strong Markov property,

lim sup
n→∞

P(|Z(n)
τn+δn

− Z(n)
τn

| > η) = 0.

This, Proposition 3.4, and [A] imply that the laws of the {Z(n)} are tight in D[0, t0]
for each t0.

Fix t0 and η > 0. Z(n) will have a jump of size larger than η before time t0
only if |Y (n)

t − Y
(n)
t− | ≥ ηn for some t ≤ n2t0. By the Lévy system formula, the

probability of this is bounded by

E
x

∑
s≤n2t0

1
(|Y (n)

s −Y
(n)

s− |≥ηn)
= E

x

∫ n2t0

0

∑
|x−Y

(n)
s |≥ηn

Cn

Y
(n)

s x
ds

≤ c1(n2t0)
∑
i≥ηn

ϕ(i)id−1

≤ c1t0η
−2

∑
i≥ηn

ϕ(i)id+1,

which tends to 0 by dominated convergence as n → ∞. Since this is true for each
t0 and η > 0 we conclude that any subsequential limit point of the sequence Z(n)

will have continuous paths.
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From this point on the argument is fairly standard. We give a sketch, leav-
ing the details to the reader. Take a countable dense subset {ti} of [0,∞) and a
countable dense subset {fm} of the C∞ functions on R

d with compact support.
Let Pn

t be the semigroup for Z(n). In view of Theorem 4.9, Enj
(Pnj

ti
(Rnj

(fm)))
will be equicontinuous. By a diagonalization argument, we can find a subsequence
{njk

} of {nj} such that for each i and m, as njk
→ ∞, these functions converge

uniformly on compact sets. Call the limit Pti
fm. Using the equicontinuity, we can

define Ptfm by continuity for all t, and because the norm of each Pt is bounded
by 1, we can also define Ptf by continuity for f continuous with compact support.
Using the equicontinuity yet again, it is easy to see that the Pt satisfy the semi-
group property and that Pt maps continuous functions with compact support into
continuous functions. One can thus construct a strong Markov process that has Pt

as its semigroup. The symmetry of P
(n)
t leads to the symmetry of Pt.

For each x, the P
[x]nj laws of {Z(nj)

t ; 0 ≤ t ≤ t0} are tight. Fix x, let {n′}
be any subsequence of {njk

} along which the P
[x]n′ converge weakly, and let P be

the weak limit of the subsequence P
[x]n′ . Suppose F is a continuous functional on

C([0, t0]; Rd) of the form F (ω) =
∏L

�=1 gi(ω(s�)), where the gi are continuous with
compact support and 0 ≤ s1 < · · · < sL ≤ t0. When L = 1, then

E g1(Zs1) = lim E
[x]n′ Rn′(g1)(Z(n′)

s1
)

= limPn′

s1
Rn′(g1)([x]n′)

= Ps1g1(x).

Thus the one-dimensional distributions of a subsequential limit point of the P
[x]njk

do not depend on the subsequence {n′}. Using the Markov property of Z(n) and the
equicontinuity, a similar argument shows that the same is true of the L-dimensional
distributions. Therefore there must be weak convergence along the subsequence
{njk

}. As proved above, the weak limit is concentrated on the set of continuous
paths. �

Proof of Theorem 6.1. We denote the Dirichlet form for the process Z(n) by En.
Suppose f, g are C∞ on R

d with compact support. Let Un
λ be the λ-resolvent for

Z(n); this means that

Un
λ h(x) = E

x

∫ ∞

0

e−λth(Z(n)
t ) dt

for x ∈ n−1
Z

d and h having domain n−1
Z

d. We write Pn
t for the semigroup for

Z(n).
Using Proposition 6.2, we need to show that if we have a subsequential limit point

of the Pn
t in the sense of that proposition, then the limiting process corresponds to

the Dirichlet form Ea. Let {n′} be a subsequence of {n} for which the subsequence
converges in the sense of Proposition 6.2, and let Uλ be the λ-resolvent of the
limiting process.

Let Fn′ = Un′

λ (Rn′(f)). Then

(6.5) En′(Fn′ , Rn′(g)) = (Rn′(f), Rn′(g)) − λ(Fn′ , Rn′(g)),

where we let (h1, h2) =
∑

x∈n−1Zd h1(x)h2(x)µD
x for functions defined on n−1

Z
d.

(Recall that our base measure is µD.) Let Hn = En(Fn) and H = Uλf . The
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equicontinuity result of Theorem 4.9 and Proposition 6.2 shows that the Hn′ con-
verges uniformly on compacts to H. If we can show

(6.6) Ea(H, g) = (f, g) − λ(H, g),

this will show that the λ-resolvent for the limiting process is the same as the λ-
resolvent for the process corresponding to Ea, and the proof will be complete; we
also use (h1, h2) to denote

∫
h1(x)h2(x) dx when h1, h2 are functions defined on R

d.
Next, since f ∈ L2(Rd) and f is C∞, then Rn(f) ∈ L2(dµn). Standard Dirichlet

form theory shows that

‖Un
λ (Rn(f))‖2 ≤ 1

λ
‖Rn(f)‖2,

that is, the L2 norm of Fn is bounded in n. We see that

(6.7)
∫

|∇Hn(x)|2 dx ≤ c1En(Fn, Fn) = c1((Rn(f), Fn) − λ(Fn, Fn))

is bounded in n. Using the imbedding of W 1,2 into L2, we conclude that {Hn} is a
compact sequence in L2(Rd); here W 1,2 is the space of L2 functions whose gradient
is square integrable. Since Hn′ converges on compacts to H, it follows that Hn′

converges in L2 to H. We also note that by (6.5)

(6.8) En(Fn, Fn) = (Rn(f), Fn) − λ(Fn, Fn)

is uniformly bounded in n.
We need to know that

(6.9) |ER
n (Fn, Rn(g)) − Ean(Hn, g)| → 0

as n → ∞. The proof of this is a bit lengthy and we defer it to Lemma 6.3 below.
We also need to show that

(6.10) |En(Fn, Rn(g)) − ER
n (Fn, Rn(g))| → 0

as n → ∞. This follows because by Cauchy-Schwarz, we have∣∣∣ ∑
x,y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn
nx,ny(Rn(g)(y) − Rn(g)(x))

−
∑

x,y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))

∣∣∣
≤ cEn(Fn, Fn)1/2

[ ∑
x,y∈n−1Zd

n2−d(Cn
nx,ny − Cn,R

nx,ny)(Rn(g)(y) − Rn(g)(x))2
]1/2

.

The term within the brackets on the last line is bounded by

c(‖∇g‖2
∞ + ‖g‖2

∞) sup
x∈n−1Zd

∑
y∈Zd,|x−y|>nR

|x − y|2Cn
xy ≤ c′

∑
i>nR

id−1i2ϕ(i),

which will be less than ε2 if n is large.
Using (6.5), (6.6), (6.9), and (6.10), we see that it suffices to show

(6.11) Ean′ (Hn′ , g) → Ea(H, g).

Now

(6.12) |Ean′ (Hn′ , g) − Ea(Hn′ , g)| =
∣∣∣∫ ∇Hn′ · (an′

− a)∇g
∣∣∣.
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Since ∇g is bounded with compact support and |∇Hn′ | is bounded in L2, then (A5)
and the Cauchy-Schwarz inequality tell us that the right hand side of (6.12) tends
to 0 as n → ∞. Therefore we need to show

(6.13) Ea(Hn′ , g) → Ea(H, g).

But if ∇h is bounded with compact support, then

(6.14)
∫

(∇Hn′) h = −
∫

Hn′∇h → −
∫

H ∇h =
∫

(∇H) h.

If we take the supremum over such h that also have L2 norm bounded by 1, then
Fatou’s lemma and the Cauchy-Schwarz inequality show that ∇H is in L2. If h is
bounded with compact support, let ε > 0 and approximate h by a C1 function h̃
with compact support such that ‖h− h̃‖2 ≤ ε. Since |∇Hn| is bounded in L2, then
|
∫
∇Hn′(h − h̃)| ≤ c1ε and |

∫
∇H(h − h̃)| ≤ c1ε. So by (6.14)

lim sup
n′→∞

∣∣∣∫ ∇Hn′h −
∫

∇H h
∣∣∣ ≤ 2c1ε.

Because ε is arbitrary, we have

(6.15)
∫

∇Hn′ h →
∫

∇H h.

If we apply (6.15) with h = a∇g, we obtain (6.13). �

To complete the proof we have

Lemma 6.3. With the notation of the above proof,

|ER
n (Fn, Rn(g)) − Ean(Hn, g)| → 0

as n → ∞.

Proof. Step 1. Let ε, η1, η2, δ > 0 and let {Sm} be a collection of cubes with disjoint
interiors whose union contains the support of g and such that the oscillation of a
on each Sm is less than η1 and the oscillation of ∇g on each Sm is less than η2.
One way to construct such a collection is to take a cube large enough to contain the
support of g, divide it into 2d equal subcubes, and then divide each of the subcubes
and so on until the oscillation restrictions are satisfied.

Step 2. Let S ′
m be the cube with the same center as Sm but side length (1− 2δ)

times as long. Let A =
⋃

m(Sm − S ′
m). We claim it suffices to show that∣∣∣∫

Ac

∇Hn(x) · an(x)∇g(x) dx

−
∑

x/∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))

∣∣∣
→ 0(6.16)

as n → ∞. To see this, note first that by Cauchy-Schwarz and (6.7)∣∣∣∣∫
A

∇Hn(x) · an(x)∇g(x) dx

∣∣∣∣ ≤ Ean(Hn, Hn)1/2
(∫

A

∇g(x) · an(x)∇g(x) dx
)1/2

≤ cEan(Hn, Hn)1/2‖∇g‖∞|A|1/2
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will be less than ε if δ is taken sufficiently small. Next note that for any x ∈ n−1
Z

d,∑
y∈n−1Zd

n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))2 ≤ n−d‖∇g‖2

∞
∑

y∈n−1Zd

Cn,R
nx,ny|ny − nx|2

≤ cn−d.

So by Cauchy-Schwarz and (6.8)∣∣∣∣∣∣
∑

x∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))

∣∣∣∣∣∣
≤ En(Fn, Fn)1/2

( ∑
x∈A,x∈n−1Zd

∑
y∈n−1Zd

n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))2

)1/2

≤ cEn(Fn, Fn)1/2
(
n−d card (A ∩ n−1

Z
d)

)1/2

,

(6.17)

which will be less than ε if δ is taken small enough and n is large.
Step 3. Let xm be the center of Sm. Define g by requiring g to be linear on each

Sm and satisfying g(xm) = g(xm), ∇g(xm) = ∇g(xm). We claim it suffices to show
that∣∣∣∫

Ac

∇Hn(x) · an(x)∇g(x) dx

−
∑

x/∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))

∣∣∣
→ 0.(6.18)

To see this, note that∣∣∣∫
Ac

∇Hn(x) · an(x)∇g(x) dx −
∫

Ac

∇Hn(x) · an(x)∇g(x) dx
∣∣∣

≤ Ean(Hn, Hn)1/2
( ∫

Ac

∇(g − g)(x) · an(x)∇(g − g)(x) dx
)1/2

≤ cEan(Hn, Hn)1/2η2,

which will be less than ε if η2 is chosen small enough. A similar argument shows
that the difference between the second term in (6.18) and the corresponding term
with g replaced by g is small; cf. Step 2.

Step 4. Let C
n

xy = C
n,δ/2
xy and define

an(x) by (an(x))ij =
∑

(y,k)∈Li
x

C
n

ny,n(y+k)nkjsgn ki.

We claim it suffices to show that∣∣∣∫
Ac

∇Hn(x) · an(x)∇g(x) dx

−
∑

x/∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dC
n

nx,ny(Rn(g)(y) − Rn(g)(x))
∣∣∣

→ 0.(6.19)
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To prove this, we first note that the following can be proved in the same way as
(6.10):∣∣∣ ∑

x/∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dC
n

nx,ny(Rn(g)(y) − Rn(g)(x))

−
∑

x/∈A,x∈n−1Zd

∑
y∈n−1Zd

(Fn(y) − Fn(x))n2−dCn,R
nx,ny(Rn(g)(y) − Rn(g)(x))

∣∣∣ → 0,

as n → ∞. Next,∣∣∣∫
Ac

∇Hn(x) · an(x)∇g(x) dx −
∫

Ac

∇Hn(x) · an(x)∇g(x) dx
∣∣∣

≤ c
(∫

Ac

(∇Hn(x))2dx
)1/2(∫

Ac

(an(x) − an(x))(∇g(x))2
)1/2

.(6.20)

We can estimate∣∣∣(an(x) − an(x))ij

∣∣∣ ≤ ∑
(y,k)∈Li

x

|Cn

ny,n(y+k) − Cn
ny,n(y+k)|n|kj |

≤ c1 sup
x∈Zd

∑
y∈Zd,|x−y|>nδ/2

|x − y|2Cn
xy ≤ c2

∑
i>nδ/2

id−1i2ϕ(i),(6.21)

where in the second inequality, we used the fact that for each k, the number of y
that satisfies (y, k) ∈ Li

z is at most n|ki| (as mentioned when we defined Li
z). So

the right hand side of (6.20) will be less than ε if n is large.
Step 5. We have chosen the Sm so that the oscillation of a on each Sm is at most

η1. Since we have that the an converge to the a uniformly on compacts and there
are only finitely many Sm’s, then for n large the oscillation of an on any Sm will
be at most 2η1.

Step 6. We will now prove (6.19). By Step 3, g is linear on each Sm, so it is
enough to discuss the case where g(x) = xj0 on S ′

m for some j0 and then use a
linearity argument. Noting that Hn = Fn on n−1

Z
d, define

ES′
m

n (Hn, g)

:=
∑

x∈S′
m∩n−1Zd

∑
y∈n−1Zd

(Hn(y) − Hn(x))n2−dC
n

nx,ny(Rn(g)(y) − Rn(g)(x)).

Since there is no term involving different S ′
m’s, we will consider each S ′

m separately.
We will fix an x0 ∈ S ′

m and look at the terms involving Hn(x0 + n−1ei) − Hn(x0).
First, by an elementary computation using the definition of the linear extension
map En, we have

(6.22)
∫

Qn(x0)

∂Hn

∂xi
dx =

1
2d−1nd−1

∑
z∈Vi(x0)

(Hn(z + n−1ei) − Hn(z))

where Vi(x0) is the collection of vertices of the face of Qn(x0) perpendicular to ei

and with the smaller ei component. (E.g., for a square, V1(x0) is the two leftmost
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corners, and V2(x0) is the two lower corners.) So∫
Qn(x0)

(∇Hn, an∇g)dx

=
d∑

i,j=1

∫
Qn(x0)

∂

∂xi
Hnan

ij

∂

∂xj
g dx =

∑
i

an
ij0(x0)

∫
Qn(x0)

∂

∂xi
Hndx

=
d∑

i=1

an
ij0(x0)

1
2d−1nd−1

∑
z∈Vi(x0)

(Hn(z + n−1ei) − Hn(z)).

Summing over all cubes that contain Hn(x0 + n−1ei) − Hn(x0), the coefficient in
front of Hn(x0 + n−1ei) − Hn(x0) will be

(6.23)
n1−d

2d−1

∑
z∈Vi(x0+n−1ei−e∗)

an
ij0(z),

where e∗ = (1/n, ..., 1/n).
We next look at ES′

m
n (Hn, g). Since g(x + k) − g(x) = kj0 where k = (k1, ..., kd),

we have

ES′
m

n (Hn, g) = n2−d
∑

x∈S′
m∩n−1Zd,

k∈n−1Zd

(Hn(x + k) − Hn(x))C
n

nx,n(x+k)kj0 .

Let us fix x and k and replace (Hn(x+k)−Hn(x)) by
∑|k|

m=1(Hn(zm+1)−Hn(zm))
(here |k| := |k1| + ... + |kd| and |zm+1 − zm| = 1/n) so that the union of the line
segments belongs to x+n−1P(k). We will get a term of the form Hn(x0 +n−1ei)−
Hn(x0) if zm = x0 and zm+1 = x0 + n−1ei (we get Hn(x0) − Hn(x0 + n−1ei) if
zm+1 = x0 and zm = x0 + n−1ei), so the contribution will be

n2−dC
n

nx,n(x+k)kj0(sgn ki).

Summing over x ∈ S ′
m ∩ n−1Zd, k ∈ n−1

Z
d, we have that the coefficient in front of

Hn(x0 + n−1ei) − Hn(x0) for ES′
m

n (Hn, g) is

(6.24) n2−d
∑

x∈S′
m∩n−1Zd,

(x,k)∈Li
x0

C
n

nx,n(x+k)kj0(sgn ki).

On the other hand, by the definition of an, we have

(6.25) n2−d
∑

(x,k)∈Li
x0

C
n

nx,n(x+k)kj0(sgn ki) = n1−dan
ij0(x0).

Let S ′′
m be the cube with the same center as S ′

m but side length (1 − 2δ) times
as long. If x0 ∈ S ′′

m ∩ n−1
Z

d, then the expressions in (6.24) and (6.25) are equal,
because C

n

nx,n(x+k) = 0 for x /∈ S ′
m ∩ n−1

Z
d, (x, k) ∈ Li

x0
. Since the oscillation

of an on each S ′
m is less than 2η1 as in Step 5, by (6.21) the oscillation of an on

each S ′
m is less that 3η1. Thus, when x0 ∈ S ′′

m ∩ n−1
Z

d, we see that the absolute
value of the difference between (6.23) and (6.24) is bounded by 3η1n

1−d. (Note that
cardVi(x0+n−1ei−e∗) = 2d−1 is used here.) Now, if x0 ∈ (S ′

m−S ′′
m)∩n−1

Z
d, then
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the difference between (6.23) and (6.24) is bounded by c3n
1−d, because similar to

(6.21) we have∑
(x,k)∈Li

x0

C
n

nx,n(x+k)nkj0(sgn ki) ≤ c1 sup
x∈Zd

∑
y∈Zd

|x−y|2Cn
xy ≤ c2

∑
i

id−1i2ϕ(i) =: c3.

Set Hx0,i := Hn(x0 + n−1ei) − Hn(x0), A′ := (
⋃

m(S ′
m − S ′′

m)) ∩ n−1
Z

d and B :=
(
⋃

m S ′′
m)∩n−1

Z
d. Using the Cauchy-Schwarz inequality, we have∣∣∣ ∫

∪mS′
m

(∇Hn, an∇g)dx −
∑

m ES′
m

n (Hn, g)
∣∣∣(6.26)

≤ η1n
1−d

∑
x0∈B,i=1,··· ,d |Hx0,i| + c3n

1−d
∑

x0∈A′,i=1,··· ,d |Hx0,i|

≤ η1

(
dn−dcard B

)1/2(
n2−d

∑
x0∈n−1Zd,i(Hx0,i)2

)1/2

(6.27)

+c3

(
dn−dcard A′

)1/2(
n2−d

∑
x0∈n−1Zd,i(Hx0,i)2

)1/2

≤ c4(η1 + ε)
(
n2−d

∑
x0∈n−1Zd,i(Hx0,i)2

)1/2

≤ c5(η1 + ε),

if δ is taken small enough and n is large. We thus complete the proof of (6.19). �

When d = 1, Lemma 6.3 can be proved under much milder conditions.
(A6) There exists R > 0 and a Borel measurable a : R

d → M such that for each
r > 0

(6.28) lim
n→∞

∫
|x|≤r

|an(x) − a(x)|dx = 0.

Corollary 6.4. Let d = 1 and suppose (A1)-(A3) and (A6) hold. Then the con-
clusions of Theorem 6.1 hold.

Proof. The proof is similar to the proof of Theorem 6.1. Let us point out the places
where we need modifications. First, we can prove that there exist c1, c2 > 0 such
that c1 ≤ an(x) ≤ c2 for all x ∈ R

d and n ∈ N. Indeed, by (A2) the lower bound
is guaranteed and the upper bound can be proved similarly to (6.21). So, we know
Ean(f, f) is bounded whenever f,∇f ∈ L2. For the proof that the right hand side
of (6.12) goes to 0 as n → ∞, we use (6.28). (To be more precise, the convergence
of an to a locally in L2 is used there, which is guaranteed by (6.28) and the fact
that the an are uniformly bounded.) Noting these facts, the proofs of Theorem 6.1
and Proposition 6.2 go the same way as above. For the proof of Lemma 6.3, in
Step 1, we do not need to control the oscillation of a on each Sm. Step 5 is not
needed. We have that the expression (6.23) is equal to an(x0), and this is equal to
the expression in (6.25). (This is a key point; because of this we do not have to
worry about the oscillation of a and an.) Finally, in the computation of (6.26), the
difference on the set B is 0 due to the fact just mentioned, and we can prove that
(6.26) is small directly. �

We now give an extension of the result in [SZ] to the case of unbounded range.
Assume

(A7) There exists R > 0 such that for each r > 1

(6.29) lim
n→∞

∑
k∈Zd

sup
|y|≤nr

sup
|x−y|≤nR

∣∣∣Cn,R
x,x+k − Cn,R

y,y+k

∣∣∣ = 0.
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Let the (i, j)-th element of bn be given by

(6.30)
(
bn(x)

)
ij

=
∑

k∈n−1Zd

Cn,R
nx,n(x+k)n

2kikj , x ∈ n−1
Z

d.

For general x = (xi)d
i=1 ∈ R

d, define bn(x) := bn([x]n). Assume the bn version of
(A6);

(A8) There exists R > 0 and a Borel measurable a : R
d → M such that for each

r > 0

(6.31) lim
n→∞

∫
|x|≤r

|bn(x) − a(x)|dx = 0.

We can recover and generalize the convergence theorem given in [SZ] as follows.

Corollary 6.5. Suppose that (A1)-(A3), (A7), and (A8) hold. Then the conclu-
sions of Theorem 6.1 hold.

Proof. For each ε > 0, let R′ = R′(ε)>0 be an integer that satisfies
∑

s≥R′ ϕ(s)sd+1

< ε. Note that Cn,R
x,y = C

n,R′/n
x,y + 1{|x−y|>R′}C

n,R
x,y . Then, for any r ≥ 1, any

x ∈ n−1
Z

d such that |x| ≤ r, and any n ≥ R′/R, we have∣∣∣(an(x)
)
ij
−

(
bn(x)

)
ij

∣∣∣
≤

∑
k′∈Zd

∣∣∣ ∑
y:(y,k′)∈Li,∗

x

Cn,R
ny,ny+k′sgn k′

i − Cn,R
nx,nx+k′k

′
i

∣∣∣ |k′
j |

≤ R′2
( ∑

k′∈Zd

sup
|y′|≤nr

sup
|x′−y′|≤R′

∣∣∣Cn,R′/n
x′,x′+k′ − C

n,R′/n
y′,y′+k′

∣∣∣) + 2
∑
s≥R′

ϕ(s)sd+1

≤ R′2
( ∑

k′∈Zd

sup
|y′|≤nr

sup
|x′−y′|≤nR

∣∣∣Cn,R
x′,x′+k′ − Cn,R

y′,y′+k′

∣∣∣) + 2ε,

where Li,∗
z = {(y, k′) ∈ (n−1

Z
d)× Z

d : y + n−1P(k′ contains the line segment from
z to z + n−1ei}. In the second inequality, we used the fact that if |k′| ≤ n · R′/n,
(y, k′) ∈ Li,∗

x and x′ = nx, y′ = ny, then |x′ − y′| = n|x − y| ≤ n|k′/n| = k′ ≤
n · R′/n = R′. Using (6.29) in (A7), the right hand side converges to 0 as n → ∞.
In other words,

(6.32) |(an(x))ij − (bn(x))ij| → 0 uniformly on compacts as n → ∞.

Similarly, for any r ≥ 1, we can prove

(6.33) |(bn(x))ij − (bn(y))ij | → 0 as n → ∞, |x − y| ≤ n−1R, |x| ≤ r.

Now the proof of this corollary goes similarly to the proofs above. As before we
point out places where we need modifications. First, as in Corollary 6.4, we can
prove that there exist c1, c2 > 0 such that c1I ≤ bn(x) ≤ c2I for all x ∈ R

d and
n ∈ N. So we know Ebn(f, f) is bounded whenever f,∇f ∈ L2. As in Corollary
6.4, we use (6.31) to show that the right hand side of (6.12) goes to 0 as n → ∞.
Noting these facts, the proofs of Theorem 6.1 and Proposition 6.2 go in the same
way as before. For the proof of Lemma 6.3, in Step 1, we do not need to control
the oscillation of a on each Sm. Step 4 with respect to bn works due to (6.32). Step
5 is not needed. Thanks to (6.32) and (6.33), the difference between the expression
in (6.23) (with a replaced by b) and the expression in (6.25) is small. (This is again
the key point; because of this we do not have to worry about the oscillation of a
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and bn.) Finally, in the computation of (6.26), the difference on the set B is small
due to the fact just mentioned. �
Remark 6.6. If (A7) does not hold, bn need not be the right approximation in
general. Indeed, here is an example where an converges to a, but bn does not as
n → ∞. Suppose d = 1 and let Cn

k,k+i equal ri if k is odd, si if k is even, i = 1, 2.
Then, we have

bn(k/n) =
{

r1 + s1 + 8r2, if k is odd,
r1 + s1 + 8s2, if k is even,

an(k/n) =
{

2r1 + 4(r2 + s2), if k is odd,
2s1 + 4(r2 + s2), if k is even.

Suppose r1 = s1 and r2 �= s2. Then, the value of bn(k/n) depends on whether k is
odd or even, so bn does not converge locally in L2 as n → ∞, whereas an(k/n) =
2r1 + 4(r2 + s2) is constant. In this case, the assumption of Theorem 6.1 (and
Corollary 6.4) holds and a(x) = 2r1 + 4(r2 + s2).

Theorem 6.1 gives a central limit theorem for the processes Y (n). Note that
the base measure for Y (n) is the uniform measure, which converges with respect to
Lebesgue measure on R

d. We finally discuss the convergence of the discrete time
Markov chains X(n). Let Y ν

t be the continuous time ν-symmetric Markov chain
on Z

d which corresponds to (E ,F). It is a time change of Yt and it can be defined
from Xn as follows. Let {Ui : i ∈ N, x ∈ Z

d} be an independent collection of
exponential random variables with parameter 1 that are independent of Xn. Define
T0 = 0, Tn =

∑n
k=1 Uk. Set Ỹ ν = Xn if Tn ≤ t < Tn+1; then the laws of Ỹ ν and

Y ν are the same. Let νD be a measure on S defined by νD(A) = D−dν(DA) for
A ⊂ S. Since S ⊂ R

d, we will regard νD as a measure on R
d from time to time. By

(A1), we see that c1µ
D(A) ≤ νD(A) ≤ c2µ

D(A) for all A ⊂ S and all d. So {νD}D

is tight and there is a convergent subsequence. We assume the following.
(A9) There exists a Borel measure ν̄ on R

d such that νD converges weakly to ν̄
as D → ∞.

Let Z ν̄
t be the diffusion process corresponding to the Dirichlet form Ea considered

on L2(Rd, ν̄). It is a time changed process of Zt in Theorem 6.1. Note that by (A1),
ν̄ is mutually absolutely continuous with respect to Lebesgue measure on R

d, so
it charges no set of zero capacity. Further, the heat kernel for Z ν̄

t still enjoys the
estimates (6.4).

Now we have a corresponding theorem for the discrete time Markov chains X(n).
Define

W
(n)
t = X

(n)
[n2t]/n.

Corollary 6.7. Suppose (A1)-(A3), (A5), and (A9) hold.
(a) Then for each x and each t0 the P

[x]n-law of {W (n)
t ; 0 ≤ t ≤ t0} converges

weakly with respect to the topology of the space D([0, t0], Rd). The limit probability
gives full measure to C([0, t0], Rd).

(b) If Z ν̄
t is the canonical process on C([0,∞), Rd) and P

x is the weak limit of
the P

[x]n-laws of W (n), then the process {Z ν̄
t , Px} has continuous paths and is the

symmetric process corresponding to the Dirichlet form Ea considered on L2(Rd, ν̄).

Proof. Let Y
(n),ν
t be the continuous time Markov chains on Z

d corresponding to En

considered on L2(Zd, ν), and set Z
(n),ν
t = Y

(n),ν
n2t /n. Then, by changing the measure
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µD to νD in the proof, we have the results corresponding to Theorem 6.1 for Z
(n),ν
t

and Z ν̄
t . So it suffices to show that there is a metric for D([0, t0], Rd) with respect

to which the distance between W (n) and Z(n),ν goes to 0 in probability, where in
the definition of Z(n),ν we use the realization of Y (n),ν given in terms of the X(n)

by means of independent exponential random variables of parameter 1.
We use the J1 topology of Skorokhod; see [Bi]. The paths of Y (n),ν agree with

those of X(n) except that the times of the jumps do not agree. Note that X(n)

jumps at times k/n2, while Y (n),ν jumps at times Tk/n2. So it suffices to show that
if Tk is the sum of i.i.d. exponentials with parameter 1, then for each η > 0 and
each t0

P( sup
k≤[n2t0]

|Tk − k| ≥ n2η) → 0

as n → ∞. But by Doob’s inequality, the above probability is bounded by
4 Var T[n2t0]

(n2η)2
=

4[n2t0]
(n2η)2

→ 0

as desired. �

Remark 6.8. We remark that the definition of an, and hence the statement of (A5),
depends on the definition of P(k) and of the extension operator En. It would be
nice to have a central limit theorem with a more robust statement.

Remark 6.9. We make a few comments comparing the central limit theorem in
our paper and the convergence theorem in [SZ] in the case of bounded range. The
result in [SZ] requires a smoothness condition on the conductances Cn

xy, while we
require smoothness instead on the an. Thus our theorem has weaker hypotheses,
and as Remark 6.6 shows, there are examples where one set of hypotheses holds
and the other set does not. On the other hand, if (A1)-(A3) hold, then the {bn}
will automatically be symmetric, equi-bounded and equi-uniformly elliptic; if in
addition bn → a, then a will be bounded and uniformly elliptic and this does not
need to be assumed.
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