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NON-CROSSING PARTITION LATTICES
IN FINITE REAL REFLECTION GROUPS

THOMAS BRADY AND COLUM WATT

Abstract. For a finite real reflection group W with Coxeter element γ we give
a case-free proof that the closed interval, [I, γ], forms a lattice in the partial
order on W induced by reflection length. Key to this is the construction of
an isomorphic lattice of spherical simplicial complexes. We also prove that
the greatest element in this latter lattice embeds in the type W simplicial
generalised associahedron, and we use this fact to give a new proof that the
geometric realisation of this associahedron is a sphere.

1. Introduction

Let W be a finite real reflection group. Associated to W is a finite type Artin
group or generalised braid group, A(W ). Much of the work on finite type Artin
groups takes Garside’s paper, [14], as its starting point, using the set of fundamental
reflections as a generating set for W and a corresponding standard generating set
for A(W ). Recently it has been shown that when the set of all reflections is used
as a generating set for W and a corresponding generating set is used for A(W ), a
parallel theory can be constructed. In particular, the new positive monoid embeds
in A(W ) and new K(π, 1)’s for A(W ) have been constructed. The larger generating
set gives A(W ) a second structure as a Garside group. The larger generating set
is proposed in [7], but Daan Krammer has used it independently in unpublished
work. In the case of the braid group Bn, where W is the symmetric group Σn,
the larger generating set coincides with the band generators from [5]. The second
Garside structure for Bn is described in [2] and the structure for general finite W
in [3]. The general construction of K(A(W ), 1)’s is described in [11], using ideas
from [4].

A central result needed in the development of this parallel theory is that the
closed interval, [I, γ], bounded by the identity I and a Coxeter element γ, forms a
lattice in the partial order on W induced by reflection length. The lattice property
is used to prove the embedding of the positive monoid and the asphericity of the
new K(π, 1)’s. Existing proofs of the lattice property use the classification of finite
real reflection groups with different methods applied to the different groups. The
symmetric group is handled in [8], and the Cn and Dn groups in [10]. Bessis treats
all cases in [3].

Since the lattice in the symmetric group case coincides with the lattice of non-
crossing partitions introduced by Kreweras in [16], it has become customary to call
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this lattice, in the case of general W , the type W non-crossing partition lattice.
The type Cn and type Dn lattices are studied in [17] and [1], respectively.

In this paper we give a new proof of the lattice property that is independent
of the classification of finite real reflection groups. For this purpose we introduce
a new simplicial complex which is a geometric model for the partially ordered set
[I, γ]. If n is the rank of W , this simplicial complex will lie in the (n − 1)-sphere,
Sn−1, in Rn, and its vertex set will consist of a set of positive roots for W .

The layout of the paper is as follows. In Section 2 we motivate the construction
we use. In Section 3, we recall definitions and results about the order on the set of
roots. We define the simplicial complex X(γ) and give an example. We also collect
results about the partial order on the orthogonal group. In Section 4 we extend
some of the material from [18] and analyse the dot products of roots of W with
elements in the γ orbits of vectors in the dual basis. In Section 5 we find simple
systems for certain subgroups and describe X(σ) when σ has length two. After some
preparatory work in Section 6, we characterise the geometric realisation of X(σ) and
we prove the lattice property in Section 7. We conclude in Section 8 by explaining
the connection between our construction and the generalised associahedra of [13].
In the process, we give a new proof that the latter is a spherical simplicial complex.

2. Motivation

The idea behind the proof of the lattice property can be described without many
of the technicalities that appear later. Let W be a finite, irreducible, real reflection
group with reflection set R. We recall from [10] the partial order on W given by
the reflection length function l. For u, w ∈ W we say

u ≤ w ⇔ l(w) = l(u) + l(u−1w),

where l(v) is the smallest positive integer k such that v can be written as a product
of k reflections from R. Thus u ≤ w if and only if there is a shortest factorisation
of u as a product of reflections which is a prefix of a shortest factorisation of w.
Note that l is not the usual length function associated to a simple system for W .

We note that the partial order on W is the restriction to W of a partial order
on the orthogonal group O(n) which is introduced in [9] and investigated further
in [10]. Some of the notation and results from those papers will be used here. In
particular, if A ∈ O(n), we associate to A two subspaces of Rn, namely

M(A) = im(A − I) and F (A) = ker(A − I),

which we call the moved space of A and the fixed space of A, respectively. We
recall that M(A) = F (A)⊥ and note that F (A) = F (A−1). The main result of
[9] implies that if V is a subspace of M(A), then there is a unique B ∈ O(n)
satisfying M(B) = V and B ≤ A. It follows that the map M , which associates
to an orthogonal transformation α its moved space M(α), restricts to give a poset
isomorphism of the interval [I, γ] in W onto its image (in the set of subspaces of
Rn). Here the set of subspaces of Rn is partially ordered by inclusion and is, in fact,
a lattice whose meet operation is given by subspace intersection. Unfortunately,
the set of subspaces of the form M(σ) for σ ≤ γ is not closed under intersection.
There are many examples of group elements α, β ≤ γ for which there is no element
δ ≤ γ in W satisfying M(δ) = M(α)∩M(β). (For example, if W = A3 = Σ4, then
the reflections are transpositions and every 4-cycle is a Coxeter element. Consider
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γ = (1, 2, 3, 4) and the elements α and β given by

α = (1, 3)γ = (1, 2)(3, 4) and β = (2, 4)γ = (1, 4)(2, 3).

Each of α and β has a two-dimensional moved space, these moved spaces intersect
inside the three-dimensional space M(γ) in a one-dimensional subspace, but no
transposition precedes both α and β.)

It was noted in [10] that a group element α ≤ γ is characterised by its reflection
set Sα, where

Sα = {R ∈ R | R ≤ α}.
It was also noted there that whenever α, β and δ are elements of the interval [I, γ] in
W with the properties that δ ≤ α, β and Sδ = Sα ∩Sβ, then δ must be the greatest
lower bound of α and β in W ; that is, if τ ∈ W satisfies τ ≤ α, β, then τ ≤ δ. This
suggests that reflection sets might have the correct intersection properties. We will
see later (Theorem 7.8) that this is in fact the case. To prove this we fix a set of
simple roots for W and replace M(α) by the positive cone on the positive roots
associated to those reflections which precede α. Two surprising things happen: (i)
the intersection of the positive cones associated to two elements α and β of [I, γ]
is equal to the positive cone associated to some other element δ of [I, γ], and (ii)
this collection of positive cones intersects the unit sphere in a spherical simplicial
complex which we denote X(γ).

3. Notation and main definitions

Several of the (now standard) case-free proofs of results about irreducible, fi-
nite real reflection groups are due to Steinberg [18]. We will use his numbering of
the roots of W in the construction of our simplicial complex. Fix a fundamental
chamber C with inward unit normals α1, . . . , αn and let R1, . . . , Rn be the corre-
sponding reflections. Assume that S1 = {α1, . . . , αs} and S2 = {αs+1, . . . , αn} are
orthonormal sets (from Lemma 2.2 of [18]). Let γ denote the Coxeter element given
by γ = R1R2 . . . Rn and let h denote the order of γ in W . We note that M(γ) is
all of Rn. As in [18], we set ρi = R1R2 . . . Ri−1αi, where the α’s and the R’s are
indexed cyclically modulo n. We will use the following explicit formulae which are
easily verified:

ρi =

⎧⎨
⎩

αi for i = 1, . . . , s,
−γ(αi) for i = s + 1, . . . , n,
γ(ρi−n) for i > n.

It is proved in [18] that the positive roots relative to C are ρ1, . . . , ρnh/2 while the
negative roots are ρ(nh/2)+1, . . . , ρnh. Furthermore the last n− s positive roots are
a permutation (possibly trivial) of S2. We use � to denote the total order on the
set of positive roots {ρ1, . . . , ρnh/2} determined by the subscripts. For each i, let
R(ρi) denote the reflection in W with fixed subspace ρ⊥i which is given by

R(ρi)(x) = x − 2(ρi · x)ρi.

Note 3.1. If ρi, ρi+1, . . . , ρi+n−1 are n consecutive roots in this ordering, then
R(ρi)R(ρi+1) . . . R(ρi+n−1) = γ−1.

In what follows, we often consider group elements which precede γ. For such an
element σ (i.e. σ ≤ γ) we let Pσ = {τ1, τ2, . . . , τt} be the set of positive roots whose
reflections precede σ, and we assume that the subscripts are chosen so that τi � τj

whenever i ≤ j.
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We will use (often without mention) the following facts about spherical simplices.
Any linearly independent set of vectors in Rn determines a spherical simplex pro-
vided the angle between each pair of vectors is less than π. For such a set the
spherical simplex is obtained by intersecting the unit sphere with the positive cone
on those vectors. The spherical simplex determined by the linearly independent set
{v1, v2, . . . , vk} will be denoted by 〈v1, v2, . . . , vk〉. Since any fixed set of positive
roots for W lies in a single open halfspace, each linearly independent subset of such
a set of positive roots determines a spherical simplex.

Definition 3.2. We define a set, X = X(γ), of spherical simplices by declaring
that

• the vertex set is {ρ1, ρ2, . . . , ρnh/2},
• an edge joins ρi to ρj whenever i < j and R(ρi)R(ρj) ≤ γ−1 and
• 〈ρi1 , ρi2 , . . . , ρik

〉 forms a (k − 1)-simplex if and only if the vertices are
distinct and pairwise joined by edges.

For σ ≤ γ, let X(σ) be the collection of simplices of X(γ) whose vertices lie in Pσ.

Note 3.3. It will follow from Lemma 4.8 that a set of k ≤ n distinct vertices,
{ρi1 , ρi2 , . . . , ρik

}, with 1 ≤ i1 < i2 < · · · < ik ≤ nh/2, determines a k − 1 simplex
of X if and only if

l[R(ρi1)R(ρi2) . . . R(ρik
)γ] = n − k.

The largest possible dimension for a simplex of X is n−1, and at least nh/2−n+1
of these occur by part (c) of Proposition 4.6 and by Lemma 4.8.

A large part of this paper is devoted to proving that X(σ) is a spherical simplicial
complex for each σ ≤ γ and to characterising its geometric realisation. The case
of H3 is illustrated in Figure 1 and Figure 2. Figure 1 shows the moved spaces of
the elements in [I, γ] intersected with the 2-sphere and projected stereographically
onto R2, while the second figure shows the simplicial complex X(γ). Note that
the arrangement of the two-dimensional moved spaces in the first figure is the
image of the Coxeter arrangement under the (non-orthogonal) linear transformation
(γ − I)−1. This follows because, whenever γ = R(σ1)R(σ2)R(σ3), then

M(R(σ2)R(σ3)) = M(R(σ1)γ)

= [F (R(σ1)γ)]⊥

= [(γ − I)−1M(R(σ1))]⊥

= [(γ − I)−1(σ1)]⊥.

The third equality follows from Lemma 3 of [9], since γ has a trivial fixed space.
Note 3.1 implies that each pair of consecutive positive roots lies in the moved space
of some length two element of [I, γ]. The second figure shows the restriction of the
moved spaces to the span of the positive roots within them, producing the spherical
simplicial complex X(γ) with vertex set coinciding with the set of positive roots.

Let {β1, . . . , βn} be the dual basis to {α1, . . . , αn}. Thus

βi · αj = δij , for 1 ≤ i, j ≤ n, where δij is the Kronecker delta.

With a slight change of notation from [18] we define the vectors µi for 1 ≤ i ≤ nh
by µi = R1R2 . . . Ri−1βi, where the β’s and the R’s are again indexed cyclically
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Figure 1

Figure 2
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modulo n. As with the ρ’s the following explicit formulae are readily verified:

µi =
{

βi for i = 1, . . . , n,
γ(µi−n) for i > n.

If σ is an arbitrary root, then we define

µ(σ) = −2(γ − I)−1σ.

We will see in part (a) of Corollary 4.2 that if σ = ρi for some i, then µ(ρi) = µi.
For convenience, we record some results which will be used in later calculations.

(3.1) If α ≤ β, then M(α) ⊂ M(β) and F (β) ⊂ F (α).

This equation follows from Corollary 1 of [9].
If R(	v) denotes the reflection in 	v⊥, then

(3.2) 	v ∈ M(α) ⇒ R(	v)α = αR[α−1(	v)].

This equation follows from Property (A-4) of Chapter 1 of [15].

(3.3) If α ≤ β ≤ δ, then α−1β ≤ α−1δ and βα−1 ≤ δα−1.

The first part of this equation follows from Proposition 3 of [9] while the second
part follows from the fact that conjugation in W preserves reflection length.

(3.4) If α, β ≤ δ and M(α) ⊂ M(β), then α ≤ β.

This equation is a consequence of Theorem 1 of [9].
If l(α) = k and Ri are reflections, then

(3.5) α = R1 . . . Rk ⇒ M(Rj) ⊂ M(R1α) for j = 2, . . . , k.

The preceding equation follows since R1α has length k − 1 and R1α = R2 . . . Rk is
a shortest expression for R1α as a product of reflections.

(3.6) If α ≤ β ≤ δ, then β−1δ ≤ α−1δ and δβ−1 ≤ δα−1.

The first inequality follows from

l(α−1δ) = l(δ) − l(α)
= l(δ) − l(β) + l(β) − l(α)
= l(β−1δ) + l(α−1β)
= l(β−1δ) + l(δ−1α[α−1β]α−1δ)
= l(β−1δ) + l(δ−1βα−1δ)
= l(β−1δ) + l([β−1δ]−1α−1δ),

and the second is similar.
If R1 and R2 are distinct reflections with R1 ≤ α and R2 ≤ α, then

(3.7) R1R2 ≤ α ⇔ R2 ≤ R1α ⇔ R1 ≤ αR2.

To show (3.7) we note that R1R2 ≤ α is equivalent to α = R1R2R3 . . . Rk for
some reflections R3, . . . , Rk, where k = l(α). This, in turn, is equivalent to α =
R1(R3 . . . Rk)R2R2.
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4. Some geometry of the root system

Our later work relies heavily on a detailed analysis of the geometry of the vectors
ρi and µi. We present the necessary results in this section.

Proposition 4.1. γ(µi) = µi − 2ρi for 1 ≤ i ≤ nh.

Proof. Because of the recursions satisfied by both ρi and µi it is sufficient to estab-
lish this result for 1 ≤ i ≤ n. In this case µi = βi and, since Rj(βi) = βi if j 
= i,
we have

γ(βi) = (R1 . . . Rn)βi

= (R1 . . . Ri)βi

= (R1 . . . Ri−1)(βi − 2αi)
= βi − 2(R1 . . . Ri−1)αi

= βi − 2ρi as required. �

Corollary 4.2. With ρi and µi defined as above we have
(a) (γ − I)µi = −2ρi,
(b) µi · ρi = 1,
(c) µi ∈ F (R(ρi)γ).

Proof. Part (a) is immediate from Proposition 4.1. Part (b) follows from Proposi-
tion 4.1 and the fact that µi ·µi = γ(µi) · γ(µi). From Proposition 4.1 and part (b)
we see that γ(µi) = R(ρi)(µi), which is equivalent to statement (c). �

Note 4.3. We observe that parts (b) and (c) of Corollary 4.2 characterise µi as
the unique vector in the one-dimensional subspace F (R(ρi)γ) satisfying µi · ρi = 1.

In what follows we make extensive use of the properties of the matrix of dot
products [µi · ρj ]. Before establishing the general result we present some examples.

Example 4.4. Consider the symmetry group A2 of the equilateral triangle. A
simple system for A2 is

α1 = a(1,−1, 0), α2 = a(0, 1,−1),

where a =
√

2/2. The dual basis to {α1, α2} is

β1 = b(2,−1,−1), β2 = b(1, 1,−2),

where b =
√

2/3 and the dual basis is computed in the 2-dimensional subspace of
R3 given by x + y + z = 0. Using the formula for a reflection we can generate the
following table:

i ρi µi

1 a(1,−1, 0) b(2,−1,−1)
2 a(1, 0,−1) b(1, 1,−2)
3 a(0, 1,−1) b(−1, 2,−1)

The entry in the ith row and jth column of the following table is µi · ρj :
ρ1 ρ2 ρ3

µ1 1 1 0
µ2 0 1 1
µ3 −1 0 1
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Example 4.5. Consider the symmetry group C3 of the cube. A simple system for
C3 is

α1 = (1, 0, 0), α2 = (
√

2/2)(0, 1,−1), α3 = (
√

2/2)(−1, 0, 1).
The dual basis to {α1, α2, α3} is

β1 = (1, 1, 1), β2 = (0,
√

2, 0), β3 = (0,
√

2,
√

2).

As in the preceding example we can generate the following table:

i ρi µi

1 (1, 0, 0) (1, 1, 1)
2 (

√
2/2)(0, 1,−1)

√
2(0, 1, 0)

3 (
√

2/2)(1, 1, 0)
√

2(0, 1, 1)
4 (0, 1, 0) (−1, 1, 1)
5 (

√
2/2)(1, 0, 1)

√
2(0, 0, 1)

6 (
√

2/2)(0, 1, 1)
√

2(−1, 0, 1)
7 (0, 0, 1) (−1,−1, 1)
8 (

√
2/2)(−1, 1, 0)

√
2(−1, 0, 0)

9 (
√

2/2)(−1, 0, 1)
√

2(−1,−1, 0)

The entry in the ith row and jth column of the following table is µi · ρj :

1 0
√

2 1
√

2
√

2 1 0 0
0 1 1

√
2 0 1 0 1 0

0 0 1
√

2 1 2
√

2 1 1
−1 0 0 1 0

√
2 1

√
2

√
2

0 −1 0 0 1 1
√

2 0 1
−
√

2 −1 −1 0 0 1
√

2 1 2
−1 −

√
2 −

√
2 −1 0 0 1 0

√
2

−
√

2 0 −1 0 −1 0 0 1 1
−
√

2 −1 −
√

2 −
√

2 −1 −1 0 0 1

The second table in each of these examples exhibits certain symmetry properties
which are valid in the general case and which we now address.

Proposition 4.6. The quantities µi · ρj have the following properties:
(a) µi · ρj = −µj+n · ρi for all i and j.
(b) µi · ρj ≥ 0, for 1 ≤ i ≤ j ≤ nh/2.
(c) µi+t · ρi = 0, for 1 ≤ t ≤ n − 1 and for all i.
(d) µj · ρi ≤ 0 for 1 ≤ i < j ≤ nh/2.

Proof. (a) Since γ(µi) = µi − 2ρi by Proposition 4.1, we compute

−µj+n · ρi = −γ(µj) · (−1/2)(γ(µi) − µi)
= 1/2(γ(µj) · γ(µi) − γ(µj) · µi)
= 1/2(µj · µi − γ(µj) · µi)
= 1/2(µj − γ(µj)) · µi

= ρj · µi.
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(b) Since ρp ·µq = γ(ρp)·γ(µq) we can assume that 1 ≤ i ≤ n and i < j ≤ nh/2.
The result follows from the fact that ρj is a positive root and µi is part of the dual
basis to {α1, . . . , αn}.

(c) Since γ = R(ρi+t)R(ρi+t−1) . . . R(ρi) . . . R(ρi+t−n+1) (by Note 3.1) equa-
tion (3.5) implies that ρi · µi+t = 0.

(d) If j < i + n, this follows from part (c). If j ≥ i + n, this property follows
from parts (a) and (b). �
Corollary 4.7. If 1 ≤ i1 < i2 < · · · < im < k ≤ nh/2, then ρk does not lie in the
positive cone on {ρi1 , . . . , ρim

}.
Proof. If the vector 	x is expressible as a non-negative linear combination of the
roots ρi1 , . . . , ρim

, then µk ·	x ≤ 0, since µk ·ρij
≤ 0 for j = 1, . . . , m. As µk ·ρk = 1,

the vector ρk is not expressible in this manner. �
The following result provides information about the simplices in X(γ).

Lemma 4.8. Suppose σ1 ≺ σ2 ≺ · · · ≺ σk are chosen from the set {ρ1, . . . , ρnh/2}.
Then the following are equivalent:

(a) l(R(σ1)R(σ2) . . . R(σk)γ) = n − k.
(b) µ(σi) · σj = 0 whenever i > j.

Proof. (a) ⇒ (b): Let δ = R(σ1)R(σ2) . . . R(σk)γ and assume that (a) is true. If
i > j, then repeated application of equation (3.2) gives

γ = R(σk) . . . R(σi) . . . R(σj) . . . R(σ1)δ

= R(σi) . . . R(σj) . . . R(σ1)δR(γ−1(σk)) . . . R(γ−1(σi+1)).

Since l(δ) = n − k, it follows from equation (3.5) that R(σj) ≤ R(σi)γ. Thus
σj ∈ M(R(σi)γ) and hence µ(σi) · σj = 0 (since µ(σi) ∈ F (R(σi)γ)).

(b) ⇒ (a): Assume that (b) is true. Then the k × k matrix [µ(σi) · σj ] is
upper triangular with ones on the diagonal (Corollary 4.2 and part (c) of Proposi-
tion 4.6). Thus this matrix is non-singular and it follows that each of {σ1, . . . , σk}
and {µ(σ1), . . . , µ(σk)} is a linearly independent set.

Next we show that R(σk)R(σk−1) . . . R(σi) ≤ γ by reverse induction on i. The
case i = k is immediate since M(γ) = Rn. Now suppose that i < k and that
R(σk)R(σk−1) . . . R(σi+1) ≤ γ. If i + 1 ≤ j ≤ k, then using equation (3.6) and
equation (3.1) we get

R(σj) ≤ R(σk)R(σk−1) . . . R(σi+1) ≤ γ

⇒ R(σj)γ ≥ R(σi+1) . . . R(σk−1)R(σk)γ
⇒ F [R(σj)γ] ⊆ F [R(σi+1) . . . R(σk−1)R(σk)γ]

⇒ µ(σj) ∈ F [R(σi+1) . . . R(σk−1)R(σk)γ],

because µ(σj) ∈ F [R(σj)γ] by part (c) of Corollary 4.2. Thus {µ(σi+1), . . . , µ(σk)}
is a basis for F [R(σi+1) . . . R(σk−1)R(σk)γ] (since this subspace has dimension k−i
by the inductive hypothesis). As σi is orthogonal to each vector in this basis it
follows that

σi ∈ M [R(σi+1) . . . R(σk−1)R(σk)γ]
and hence R(σk) . . . R(σi+1)R(σi) ≤ γ, which completes the inductive step.

Finally, since l(R(σk) . . . R(σ2)R(σ1)) = k (by linear independence of σ1, . . . , σk)
and R(σk) . . . R(σ2)R(σ1) ≤ γ, we can conclude that R(σ1)R(σ2) . . . R(σk)γ has
length n − k. �
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5. The simple system for σ ≤ γ

In this and the following sections we will consider a fixed element σ ≤ γ. As
before, we let Pσ = {τ1, τ2, . . . , τt} be the set of positive roots whose reflections
precede σ and we assume that τ1 ≺ τ2 ≺ · · · ≺ τt. In this section we will characterise
the simple system associated to σ and we will analyse the case where l(σ) = 2.

Let k = l(σ). Then Pσ is the set of positive roots for a (possibly reducible) rank-
k, reflection group Wσ = {α ∈ W | M(α) ⊆ M(σ)}. (Note that the elements of
Wσ need not necessarily precede σ.) Let ∆ = {δ1, δ2, . . . , δk} be the simple system
contained in Pσ and choose the subscripts so that δ1 ≺ δ2 ≺ · · · ≺ δk.

Proposition 5.1. The ordered elements δ1, δ2, . . . , δk of ∆ are determined recur-
sively by the fact that δi is the last positive root in M(σR(δk)R(δk−1) . . . R(δi+1)).
In particular, δk = τt.

Proof. Since τt is the last root in Pσ we can apply Corollary 4.7 to τt and the set
Pσ −{τt} to deduce that τt cannot be a positive linear combination of the elements
of Pσ − {τt}. Thus Pσ − {τt} cannot contain a simple system and δk = τt.

Next we show that Uk = M(σR(δk)) contains {δ1, . . . , δk−1}. To begin, we show
that Uk = M(σ) ∩ ϕ⊥, where ϕ = γ(µ(δk)). Note that Uk = M(σR(δk)) has
dimension k − 1. By parts (a) and (b) of Proposition 4.6, if 1 ≤ i ≤ t, then

ϕ · τi = γ(µ(τt)) · τi = −τt · µ(τi) ≤ 0.

For i = t, we obtain ϕ · τt = −1. Thus τt is not an element of M(σ)∩ϕ⊥, and this
subspace must also have dimension k − 1. Since M(σR(δk)) is contained in M(σ)
and

M(σR(δk)) ⊆ M(γR(δk)) = M(R[γ(δk)]γ) = µ(γ(δk))⊥ = γ(µ(δk))⊥

(by equation (3.3) and equation (3.2)), it follows that Uk ⊆ M(σ)∩ϕ⊥, and hence
these subspaces are equal.

Now suppose τ is an arbitrary element of Pσ ∩ Uk and write

τ = a1δ1 + · · · + akδk, with each ai ≥ 0.

Since τ ∈ ϕ⊥ and δi · ϕ ≤ 0 for i = 1, . . . , k, we must have ai = 0 or δi · ϕ = 0 for
each i. Thus τ is a linear combination of those δ’s in M(σ) ∩ ϕ⊥ = Uk. However,
the span of Pσ ∩ Uk is all of Uk since l(σR(τt)) = k − 1. Hence the k − 1 simple
roots δ1, . . . , δk−1 must lie in Uk.

The theorem follows since we can now apply the same arguments as above to
the shorter element σ′ = σR(δk). �
Note 5.2. One can show that δi is the first root in M(R(δi−1) . . . R(δ2)R(δ1)σ) in
an analogous way and, in particular, that δ1 = τ1.

Definition 5.3. We will refer to the intersection with Sn−1 of the positive cone
on {δ1, δ2, . . . , δk} as the fat simplex associated to σ.

Theorem 5.4. If σ ≤ γ has length 2, then X(σ) consists of the t roots from Pσ

and the (t − 1) 1-cells given by 〈τi, τi+1〉 for i = 1, 2, . . . , t − 1.

Proof. Suppose σ ≤ γ has length two. Since both R(τi)σ and σR(τi) have length
one for each i, each subspace M(σ)∩µ(τi)⊥ contains precisely one positive root τj ,
and each τj lies in precisely one subspace of the form M(σ)∩µ(τi)⊥. It follows that
the t× t matrix A = [µ(τi) ·τj ] has precisely one zero in each row and column. Note
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that the diagonal entries are all 1, the entries below the diagonal are non-positive,
while the entries above the diagonal are non-negative (by Proposition 4.6). By
Proposition 5.1 and Note 5.2, σ = R(τ1)R(τt) and hence τt · µ(τ1) = 0. Let i1 > 1
be the value for which σ = R(τi1)R(τ1). Thus µ(τi1) · τ1 = 0 and X(σ) contains
the edge 〈τ1, τi1〉. As row i1 contains only one zero and i1 ≤ t, we must have
µ(τi1) · τt > 0 (by Proposition 4.6). Now, since {τ1, τt} is a simple system, we can
write each τj as a non-negative linear combination of τ1 and τt. Thus we obtain
τj ·µ(τi1) ≥ 0. It follows that each entry in row i1 of A is non-negative. Since every
row after the second has at least two entries below the diagonal and no more than
one of these can be zero, we get i1 ≤ 2. Since we know that i1 
= 1 we deduce that
i1 must be equal to 2. If t = 2 the proof is complete.

The rest of the proof uses induction. Assume that r < t and that

σ = R(τ1)R(τt) = R(τ2)R(τ1) = · · · = R(τr)R(τr−1).

We know that σ = R(τir
)R(τr) for some ir > r. Thus

µ(τir
) · τr = 0 while µ(τir

) · τt > 0.

If j ≥ r, then Corollary 4.7 and the fact that M(σ) is two-dimensional imply that
τj can be expressed as a non-negative linear combination of τr and τt. As in the
case r = 1, we obtain τj · µ(τir

) ≥ 0 for r ≤ j ≤ t. It follows that each of the last
t− r + 1 entries in row ir of A is non-negative. Since row j has j − 1 entries below
the diagonal and no more than one of these can be zero, we get ir ≤ r + 1. Since
we know that ir > r we deduce that ir must be equal to r + 1. �

In the case l(σ) = 2, the action of the simple reflections on Pσ can now be
deduced.

Lemma 5.5. If l(σ) = 2 and Pσ = {τ1, . . . , τt} is the ordered set of positive roots
for reflections preceding σ, then

R(τ1)(τi) =
{

τt−i+2 for 2 ≤ i ≤ t,
−τ1 for i = 1,

R(τt)(τi) =
{

τt−i for 1 ≤ i ≤ t − 1,
−τt for i = t.

Proof. We will consider the case of τ1. The case of τt is similar. From the proof of
Theorem 5.4 it follows that the only expressions for σ as a product of two reflections
are

σ = R(τ1)R(τt) = R(τ2)R(τ1) = R(τ3)R(τ2) = · · · = R(τt)R(τt−1).

Since R(τ1) permutes Pσ − {τ1} (Lemma A in I.4.3 of [15]) and

σ = R(τ1)R(τt) = (R(τ1)R(τt)R(τ1))R(τ1) = R(R(τ1)τt)R(τ1)

we deduce that R(τ1)τt = τ2. In general, suppose that 1 < i + 1 ≤ t and that
R(τ1)τi+1 = τt−(i+1)+2. Conjugate R(τt)R(τ1) = σ−1 = R(τi)R(τi+1) by R(τ1) to
obtain

R(τ1)R(τt) = σ = R(R(τ1)τi)R(R(τ1)τi+1) = R(R(τ1)τi)R(τt−i+1).

We deduce that R(τ1)τi = τ(t−i+1)+1 = τt−i+2 (by comparing with the list of
factorisations for σ). Now use reverse induction on i, starting at i = t. �
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Note 5.6. The proofs of Lemma 5.5 and Theorem 5.4 can be shortened consider-
ably by using the notion of a reflection ordering as introduced in [6] and developed
in [12]. It follows from the definition of ρi together with Exercise 6.2 of Chapter 5
of [6] and Proposition 2.13 of [12] that

R(ρ1), R(ρ2), . . . , R(ρnh/2)

is a reflection ordering on W , in the sense that the induced order on the set of
reflections in any dihedral subgroup is

a < aba < ababa < · · · < bab < b,

where a, b is a set of simple reflections for the dihedral group. From this it follows
that when l(σ) = 2,

τ2k+1 = [R(τ1)R(τt)]kτ1 and τ2k+2 = [R(τ1)R(τt)]kR(τ1)τt.

Lemma 5.5 follows immediately from this. The identities

σ = R(τ1)R(τt) = R(τ2)R(τ1) = R(τ3)R(τ2) = · · · = R(τt)R(τt−1)

also follow from the expressions of τi in terms τ1 and τt, and Theorem 5.4 can be
reduced to the argument that the subspaces M(R(τi)σ) and M(σR(τi)) are one-
dimensional. However, we prefer to use the current proofs which, although longer,
do not require the rather technical facts about reflection orderings.

Lemma 5.7. Assume that R(ρi)R(ρj) ≤ γ, where ρi and ρj are distinct positive
roots. Then

(a) ρi · ρj ≤ 0 if i < j.
(b) ρi · ρj ≥ 0 if i > j.

Proof. Let Pσ = {τ1, . . . , τt} be the ordered set of positive roots whose reflections
precede σ = R(ρi)R(ρj). By Theorem 5.4, {τ1, τt} is the corresponding simple
system and the only expressions for σ as a product of two reflections are

σ = R(τ1)R(τt) = R(τ2)R(τ1) = R(τ3)R(τ2) = · · · = R(τt)R(τt−1).

Since σ = R(τ1)R(τt) is the only case in which the roots appear in increasing order,
if i < j, then we must have ρi = τ1 and ρj = τt. Part (a) now follows from
ρi · ρj = τ1 · τt ≤ 0 (since {τ1, τt} is a simple system).

If i > j, then ρi = τr+1 and ρj = τr for some r ≥ 1. Thus we need to verify that
τi · τi+1 ≥ 0 for i = 1, . . . , t − 1. Using Lemma 5.5 and the facts that reflection is
an isometry and {τ1, τt} is a simple system, we obtain

τ1 · τ2 = R(τ1)τ1 · R(τ1)τ2 = −τ1 · τt ≥ 0.

For the same reasons,

τ2 · τ3 = R(τ1)R(τt)(−τt) · R(τ1)R(τt)τ1 = −τt · τ1 ≥ 0.

Finally, if i ≥ 2, then

τi · τi+1 = R(τt)R(τ1)τi · R(τt)R(τ1)τi+1

= R(τt)τt−i+2 · R(τt)τt−i+1 = τi−2 · τi−1,

and the result follows by induction on i. �
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Note 5.8. It is immediate from Lemma 5.7 that the edges of X can now be char-
acterised by the following geometric criterion. There is an edge joining the distinct
vertices ρi and ρj if and only if the vectors subtend a non-obtuse angle and one of
R(ρi)R(ρj) or R(ρj)R(ρi) precedes γ.

6. Walls of fat simplices

In this section we continue to investigate a fixed element σ of length k which
precedes γ in W . Using the same notation as in the preceding section, we find a dual
basis to {δ1, . . . , δk} (Corollary 6.8). We also determine the first top-dimensional
simplex of X(σ) in the lexicographic order.

Definition 6.1. For each i = 1, . . . , k, we define εi to be the root given by

εi = [R(δ1) . . . R(δi−1)](δi).

Proposition 6.2. For each i = 1, . . . , k, the vector εi is a positive root. Moreover

σ = R(εk)R(εk−1) . . . R(ε1)

and for each i = 1, . . . , k

σ = R(εi)R(δ1) . . . R(δi−1)R(δi+1) . . . R(δk).

Proof. The first statement is a special case of Lemma D in Section I.4.3 of [15].
The remaining statements follow from

R(εi) = R([R(δ1) . . . R(δi−1)](δi))
= [R(δ1)R(δ2) . . . R(δi−1)]R(δi)[R(δi−1) . . . R(δ2)R(δ1)]

since each reflection has order 2. �

Corollary 6.3. The walls of the spherical simplex on the vertices {δ1, . . . , δk} in
the subspace M(σ) are given by intersecting the planes µ⊥(εi) with the unit sphere
in M(σ).

Proof. The second identity in Proposition 6.2 implies that the subspace µ⊥(εi)
contains the set {δ1, . . . , δi−1, δi+1, . . . , δk}, for i = 1, . . . , k. �

Note 6.4. We will see in the next section that this simplex is the geometric reali-
sation of X(σ).

Definition 6.5. For each i = 1, . . . , t, let µ′(τi) be the orthogonal projection of
µ(τi) into M(σ).

Proposition 6.6. For each i, j ∈ {1, . . . , t}, we have µ′(τi) · τj = µ(τi) · τj and
µ′(τi) ∈ F (R(τi)σ). In particular,

σ(µ′(τi)) = [R(τi)](µ′(τi)) = µ′(τi) − 2τi.

Proof. Write µ(τi) = µ′(τi) + 	y, where µ′(τi) ∈ M(σ) and 	y ∈ [M(σ)]⊥ = F (σ).
Then µ(τi) · τj = µ′(τi) · τj for any 1 ≤ j ≤ t. Now µ(τi) ∈ F (R(τi)γ) ⊂ F (R(τi)σ),
because R(τi)σ ≤ R(τi)γ by equation (3.3). But 	y is also an element of F (R(τi)σ),
since F (R(τi)σ) contains F (σ) by equation (3.1). It follows that µ′(τi) is an element
of F (R(τi)σ). The final claim of the proposition follows from this. �

Proposition 6.7. For 1 ≤ i ≤ k, we have µ(εi) · δi = 1.
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Proof. Fix i and let σ′ = R(δ1) . . . R(δi) (which precedes σ and hence γ). Write
µ(εi) = µ′′(εi) + 	z, where µ′′(εi) ∈ M(σ′) and 	z ∈ M(σ′)⊥ = F (σ′). Applying
Proposition 6.6 to σ′ yields

µ(εi) · δi = σ′[µ(εi)] · σ′[δi]
= σ′[µ′′(εi) + 	z] · σ′[δi]
= [µ′′(εi) − 2εi + 	z] · R(δ1) . . . R(δi−1)R(δi)[δi]
= [µ(εi) − 2εi] · R(δ1) . . . R(δi−1)[−δi]
= [µ(εi) − 2εi] · [−εi]
= 1 as required. �

The following corollary is immediate from Corollary 6.3 and Proposition 6.7

Corollary 6.8. The dual basis to {δ1, . . . , δk} is {µ′(ε1), . . . , µ′(εk)}.

It need not be the case that ε1 ≺ . . . ≺ εk . However the induced order on this
set still determines a factorisation of σ (Proposition 6.11 below). First we make a
definition.

Definition 6.9. Let θ1, . . . , θk be the reordering of ε1, . . . , εk for which θi ≺ θj

whenever i < j.

Lemma 6.10. If i < j but εi > εj, then R(εj)R(εi) = R(εi)R(εj).

Proof. Assume that i < j and that εi > εj . We need to show that εi · εj = 0. Since
{δ1, . . . , δk} is a simple system, each of the dot products δi · δj is non-positive for
i 
= j. It follows that [R(δj−1)](δj) is a non-negative linear combination of δj−1

and δj and, by induction, that [R(δi+1) . . . R(δj−1)](δj) is a non-negative linear
combination of δi+1, δi+2, . . . , δj . Hence, δi · [R(δi+1) . . . R(δj−1)](δj) ≤ 0. Now,
since i < j, we can compute that

εi · εj = [R(δ1) . . . R(δi−1)](δi) · [R(δ1) . . . R(δj−1)](δj)
= δi · [R(δi) . . . R(δj−1)](δj)
= [R(δi)](δi) · [R(δi+1) . . . R(δj−1)](δj)
= −δi · [R(δi+1) . . . R(δj−1)](δj)
≥ 0.

However, since i < j, the identity σ = R(εk) . . . R(εj) . . . R(εi) . . . R(ε1) implies
that R(εj)R(εi) precedes σ and hence γ. Now part (a) of Lemma 5.7 implies that
εi · εj ≤ 0 (because εi > εj). We conclude that εi · εj = 0, as required. �

Proposition 6.11. The elements θ1, . . . , θk satisfy the identity

σ = R(θk) . . . R(θ1).

Proof. We know that σ = R(εk) . . . R(ε1). If εi = θi for each i, there is nothing to
prove. Otherwise, repeated application of Lemma 6.10 yields the required result.

�

Corollary 6.12. The simplex 〈θ1, . . . , θk〉 is the first top dimensional simplex of
X(σ) in the lexicographic order.
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Proof. Since θ1 < θ2 < · · · < θk and σ = R(θk) . . . R(θ1), the (k − 1)-simplex
〈θ1, . . . , θk〉 is in X(σ). As {δ1, . . . , δk} is the simple system corresponding to Pσ,
{θ1, . . . , θk} is a rearrangement of {ε1, . . . , εk} and

µ(εa) · δb =
{

0 for a 
= b,
1 for a = b,

it follows that µ(θi) · τj ≥ 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ t. However, Proposition 4.6
implies that whenever τj < θi, the dot product µ(θi) · τj is non-positive, and hence
it must be zero. Therefore

{τj | τj < θi} ⊆ M(σ) ∩ µ(θi)⊥ ∩ µ(θi+1)⊥ ∩ · · · ∩ µ(θk)⊥

which is an (i−1)-dimensional subspace of Rn since the θ’s are linearly independent.
Now if 〈τi1 , . . . , τik

〉 is a (k − 1)-simplex of X(σ) with τi1 < τi2 < · · · < τik
, then

〈τi1 , . . . , τij
〉 is a (j − 1)-simplex for each j ≤ k, and this forces τij

≥ θj . �

We finish this section with two examples. The first shows that the first k roots
of Pσ may fail to span a top dimensional simplex. The second example illustrates
that even in the case σ = γ, it is possible that there is some i < j for which εj ≺ εi.

Example 6.13. Consider the symmetry group of the 4-dimensional cube. One
simple system of unit vectors for this group is

α1 = (1, 0, 0, 0), α2 = (
√

2/2)(0, 1, 0,−1),

α3 = (
√

2/2)(−1, 0, 0, 1), α4 = (
√

2/2)(0,−1, 1, 0).

The element γ = [1, 2, 3, 4] (in the notation of [10]) is one of the Coxeter elements
determined by this simple system, where

[1, 2, 3, 4](x, y, z, w) = (−w, x, y, z).

The element σ = [1, 2, 3] precedes γ, has length three and its first three positive
roots are

(1, 0, 0, 0), (
√

2/2)(1, 1, 0, 0), (0, 1, 0, 0).

These cannot span a 2-simplex since they are linearly dependent.

Example 6.14. Consider the group A3 = Σ4. We have seen that the four-cycle
γ = (1, 2, 3, 4) is a Coxeter element. The simple system corresponding to the
factorisation γ = (1, 3)(1, 2)(3, 4) is given by normalising

(1, 0,−1, 0), (−1, 1, 0, 0), (0, 0, 1,−1).

For notational convenience we will identify roots with the transpositions they de-
termine. The global order is the following:

(1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 2).

We use Proposition 5.1 to find the simple system. First δ3 = (1, 2) since this is the
last root. Since (1, 2, 3, 4)(1, 2) = (1, 3, 4), δ2 = (3, 4). Finally, δ1 = (1, 3). Thus
ε1 = (1, 3) = τ1, ε2 = (1, 4) = τ3 and ε3 = (2, 3) = τ2 so that ε1 ≺ ε3 ≺ ε2.
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7. Characterisation of |X(σ)| and proof of the lattice property

In this section we show that if σ ≤ γ, then X(σ) is a simplicial complex. We
characterise the geometric realisation |X(σ)| of the subcomplex X(σ) and use this
characterisation to prove that the interval [I, γ] in W is a lattice. Throughout this
section we continue to use the notation of the earlier sections.

We begin with a technical result (Proposition 7.2) about the separation prop-
erties of the hyperplanes {µ(τi)⊥} which is used in the proof of Proposition 7.6.
It depends on Proposition 7.1 which is stated for convenient reference and which
concerns the action of σ−1 on Pσ. Using the factorisation σ−1 = R(δk) . . . R(δ1),
this is a special case of Theorem B in Section I.4.3 of [15].

Proposition 7.1. If τs ∈ Pσ, then σ−1(τs) ∈ −Pσ if and only if τs = εi for some
i with 1 ≤ i ≤ k.

Proposition 7.2. Let τa and τs be elements of Pσ such that τa � θk, τs ≺ τa,
τs /∈ {θ1, θ2, . . . , θk−1, θk} and τa ∈ µ(τs)⊥. Then we can find two roots τb and
τc in Pσ with τb, τc ≺ τa, which both lie on the hyperplane µ(τa)⊥, but which are
separated by the hyperplane µ(τs)⊥.

Proof. Since τa · µ(τs) = 0, τa ∈ M(R(τs)γ) and the element R(τs)R(τa) precedes
γ by equation (3.7).

Construction of τb: Let Q = {τi ∈ Pσ | R(τi) ≤ R(τs)R(τa)}. Since τs ≺ τa,
the proof of Lemma 5.7 implies that (i) the set {τs, τa} is a simple system which
spans Q and (ii) τs is the first root and τa the last root of Q. By Lemma 5.5, the
element τb given by τb = [R(τa)](τs) is in Q and s < b < a. Since

R(τa)R(τb) = R(τa)(R(τa)R(τs)R(τa)) = R(τs)R(τa) ≤ γ,

we deduce that τb · µ(τa) = 0. Finally τb · µ(τs) > 0 because

µ(τs) · τb = µ(τs) · [R(τa)](τs) = µ(τs) · {τs − 2(τa · τs)τa} = 1

since µ(τs) · τs = 1 and µ(τs) · τa = 0.
Construction of τc: As τs is not an element of {θ1, . . . , θk} = {ε1, . . . , εk},

the root τc defined by τc = σ−1(τs) is an element of Pσ (by Proposition 7.1).
Since R(τs)R(τa) ≤ γ and M [R(τs)R(τa)] ⊂ M(σ) we deduce by equation (3.4)
that R(τs)R(τa) ≤ σ. This gives R(τa) ≤ R(τs)σ = σR(τc) by equation (3.2) and
hence R(τa)R(τc) ≤ σ ≤ γ by equation (3.7). It follows that τc · µ(τa) = 0. Now
τc · µ(τs) < 0 since

µ(τs) · τc = µ′(τs) · τc

= µ′(τs) · σ−1(τs)
= σ(µ′(τs)) · τs

= {µ′(τs) − 2τs} · τs by Proposition 6.6
= 1 − 2 = −1.

As µ(τs) · τc < 0, Proposition 4.6 implies that τc ≺ τs and hence τc ≺ τa. �

Definition 7.3. If τi is a root in Pσ and ρ is any positive root, we define

• µ(τi)+ = {x ∈ Rn | x · µ(τi) ≥ 0} (a positive halfspace),
• µ(τi)− = {x ∈ Rn | x · µ(τi) ≤ 0} (a negative halfspace),
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• X(σ, ρ) = the set of simplices of X whose vertices both lie in M(σ) and
precede ρ in the total order,

• c [X(σ, ρ)] = the positive cone on the set |X(σ, ρ)|,
• Y (σ, ρ) = the positive cone on those roots which both lie in M(σ) and

precede ρ in the total order,
• Z(σ, τi) = M(σ)∩µ(θ1)+∩· · ·∩µ(θk)+∩µ(τi+1)−∩· · ·∩µ(τt)−, for τi ≥ θk.

Proposition 7.4. For each i = 1, . . . , t, the set X(σ, τi) is a simplicial complex.

Proof. We use induction on i. First note that X(σ, τ1) = {〈τ1〉}, a zero-dimensional
simplicial complex.

Assume now that i ≥ 1 and that X(σ, τi) is a simplicial complex. By definition,
if τj ∈ X(σ, τi), then 〈τj , τi+1〉 ∈ X(σ, τi+1) if and only if R(τi+1)R(τj) ≤ γ since
τj ≺ τi+1. However, R(τi+1)R(τj) ≤ γ if and only if τj · µ(τi+1) = 0, because
µ(τi+1) ∈ F (R(τj)γ). It follows from Proposition 4.6 that the only vertices of
X(σ, τi) that are not joined to τi+1 by an edge in X(σ, τi+1), lie in the interior
of the halfspace µ(τi+1)+. Hence, µ(τi+1)⊥ ∩ |X(σ, τi)| is a simplicial complex.
Now each simplex in X(σ, τi+1) \ X(σ, τi) is of the form 〈τa1 , . . . , τab

, τi+1〉 where
τa1 ≺ · · · ≺ τab

≺ τi+1 and where τac
∈ µ(τi+1)⊥ for c = 1, . . . , b. Thus the simplex

〈τa1 , . . . , τab
〉 of X(σ, τi) is contained in µ(τi+1)⊥. Using this, it is straightforward

to verify that the intersection of any two simplices in X(σ, τi+1) is itself a simplex
in X(σ, τi+1). �

Corollary 7.5. For each σ ≤ γ, X(σ) is a simplicial complex of dimension l(σ)−1.
In particular, X(γ) is a simplicial complex of dimension n − 1.

Proposition 7.6. For θk � τi � τt, we have c [X(σ, τi)] = Y (σ, τi) = Z(σ, τi).

Proof. It suffices to show that Z(σ, τi) is contained in c [X(σ, τi)] because c [X(σ, ρ)]
is contained in Y (σ, ρ) (by definition) and Y (σ, τi) is contained in Z(σ, τi) when
τi � θk (by Proposition 4.6). The proof is by induction on i, starting at the value
i0 for which τi0 = θk.

Base step: Let F0 = X(σ, τi0−1) be the subcomplex of X(γ) whose ver-
tex set is {τ1, τ2, . . . , τi0−1}. Since 〈θ1, θ2, . . . , θk〉 ∈ X(σ) (by Corollary 6.12) and
θ1, θ2, . . . , θk−1 ∈ F0, it follows that the simplex 〈θ1, θ2, . . . , θk−1〉 is in F0. Further-
more, if σ0 = [R(θk)](σ), then F0 = X(σ0, τi0−1). By induction on k = l(σ), we
can assume that the assertion of the theorem is valid if σ is replaced by the length
k − 1 element σ0 and hence c [X(σ0, τi0−1)] = Z(σ0, τi0−1). (The base case of this
inner induction is trivial since k = 1 corresponds to a rank 1 group.) Thus |F0| is
convex and (k − 2)-dimensional.

Now let V0 = X(σ, τi0), which has vertex set {τ1, τ2, . . . , τi0}. Since µ(θk) ·τj = 0
whenever τj ≺ θk (as in the proof of Corollary 6.12), it follows that |V0| is the cone
with base |F0| and apex τi0 . Thus |V0| is convex and (k − 1)-dimensional.

The containment of Z(σ, τi0) in c [X(σ, τi0)] is demonstrated by examining the
supports of the facets of the positive cone, c [V0], on |V0|. Each support is of the
form M(σ) ∩ µ(τj)⊥ for some τj .

One of the facets of c [V0] contains |F0| and hence it has support M(σ)∩µ(τi0)
⊥.

Each of the other facets of c [V0] contains the vertex τi0 = θk and hence its support
is of the form M(σ) ∩ µ(τj)⊥ for some j 
= i0. In fact, τj must belong to either
{θ1, . . . , θk−1} or {τj | τj � θk} in this case. For µ(τj)⊥ cannot separate |F0|
(because |F0| ⊂ |V0| which is contained in one of the half-spaces bounded by µ(τj)⊥)
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and hence if τj /∈ {θ1, . . . , θk−1}, then Proposition 7.2 implies that we must have
τj � θk. Thus the set of facets of c [V0] is of the form

{M(σ) ∩ µ(τj)⊥ | τj ∈ {θi1 , . . . , θia
, θk} ∪ {τj1 , . . . , τjb

} }

where jl > i0 for l = 1, 2, . . . , b. It follows that

Z(σ, τi0) = M(σ) ∩ µ(θ1)+ ∩ · · · ∩ µ(θk)+ ∩ µ(τi0+1)− ∩ · · · ∩ µ(τt)−

⊆ M(σ) ∩ µ(θi1)
+ ∩ · · · ∩ µ(θia

)+ ∩ µ(θk)+

∩µ(τj1)
− ∩ · · · ∩ µ(τjb

)−

= c [X(σ, τi0)] .

Inductive step: Assume now that i ≥ i0 and that c [X(σ, τi)] = Z(σ, τi). Let
F and V be the subcomplexes of X(γ) whose sets of vertices are

{τj | 1 ≤ j ≤ i and µ(τi+1) · τj = 0}

and

{τi+1} ∪ {τj | 1 ≤ j ≤ i and µ(τi+1) · τj = 0},
respectively. Then |V | is a cone with base |F | and apex τi+1. We prove that the
closure, Z, of Z(σ, τi+1) \ Z(σ, τi) is contained in the positive cone, c [V ], on |V |.
Since |V | is contained in |X(σ, τi+1)| and Z(σ, τi+1) = Z ∪ Z(σ, τi), it will then
follow that Z(σ, τi+1) is contained in c [X(σ, τi+1)], as required.

First we show that F is (k − 2)-dimensional. Denote the length (k − 1) ele-
ment [R(τi+1)](σ) by σ′. Note that σ′ ≤ R(τi+1)γ so that M(σ′) ⊂ µ(τi+1)⊥.
Apply the procedures of Sections 5 and 6 to σ′ (i) to obtain a simple system
{δ′1, δ′2, . . . , δ′k−1} for the set Pσ′ of positive roots in M(σ′) and (ii) to calculate the
reordering {θ′1, θ′2, . . . , θ′k−1} of the set {ε′1, ε′2, . . . , ε′k−1} for which

σ′ = R(θ′k−1) . . . R(θ′2)R(θ′1)

where θ′1 ≺ θ′2 ≺ . . . ≺ θ′k−1 and where ε′j is given by

ε′j = [R(δ′1)R(δ′2) . . . R(δ′j−1)](δ
′
j) for j = 1, . . . , k − 1.

Since {θ′1, θ′2, . . . , θ′k−1} ⊂ µ(τi+1)⊥, if we show that τi+1 > θ′j for j = 1, . . . , k − 1,
then it will follow that 〈θ′1, θ′2, . . . , θ′k−1〉 ∈ F and hence F is (k − 2)-dimensional.

Fix j ∈ {1, . . . , k − 1}. From ε′j · µ(τi+1) = 0 we deduce that ε′j 
= τi+1 and that
R(ε′j) ≤ R(τi+1)γ. Therefore the length two element σ′′ = R(τi+1)R(ε′j) precedes
γ and hence σ by equation (3.4).

Assume now that ε′j � τi+1 and let Q = Pσ ∩ M(σ′′). Then, as in the proof of
Lemma 5.5, {τi+1, ε

′
j} is the simple system for Q, with τi+1 the first root and ε′j the

last root. Thus R(τi+1)ε′j is a positive root and R(τi+1)ε′j � τi+1 (by Lemma 5.5).
Now consider (σ′)−1(ε′j), which is negative, by Proposition 7.1. However

(σ′)−1ε′j = (R(τi+1)σ)−1ε′j = σ−1([R(τi+1)](ε′j)).

Since [R(τi+1)](ε′j) is positive, Proposition 7.1 implies that R(τi+1)ε′j = εa for some
a. Thus [R(τi+1)](ε′j) precedes τi+1 (since each εb does), which contradicts the
earlier conclusion that [R(τi+1)](ε′j) � τi+1. Thus the assumption that ε′j � τi+1

must have been false.
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Next we show that |F | is spherically convex. Since c [X(σ, τi)] = Z(σ, τi) by the
inductive hypothesis, we obtain

|F | = M(R(τi+1)σ) ∩ c [X(σ, τi)] ∩ Sn−1

= M(R(τi+1)σ) ∩ Z(σ, τi) ∩ Sn−1

which is convex.
Now |V |, being a cone with a convex (k − 2)-dimensional base, must itself be

convex and (k − 1)-dimensional. The proof that Z is contained in c [V ] involves a
close examination of the facets of c [V ]. First one argues that each facet of c [V ] is
of the form M(σ) ∩ µ(τj)⊥ for some

τj ∈ {θi1 , . . . , θia
} ∪ {τi+1, τj1 , . . . , τjb

},
where jl > i+1 for l = 1, . . . , b. (This step is similar to the corresponding argument
for c [V0], with τi+1 taking the place of θk.) It then follows that

Z = M(σ) ∩ µ(θ1)+ ∩ · · · ∩ µ(θk)+ ∩ µ(τi+1)+ ∩ µ(τi+2)− ∩ · · · ∩ µ(τt)−

⊆ M(σ) ∩ µ(θi1)
+ ∩ · · · ∩ µ(θia

)+ ∩ µ(τi+1)+ ∩ µ(τji
)− ∩ · · · ∩ µ(τjb

)−

= c [V ] as required. �

Corollary 7.7. For each σ ≤ γ the set |X(σ)| is spherically convex. Furthermore,
|X(σ)| is the intersection with Sn−1 of the positive cone on the set Pσ and we have

|X(σ)| = Sn−1 ∩ M(σ) ∩ µ(θ1)+ ∩ · · · ∩ µ(θk)+.

Proof. Apply Proposition 7.6 with i = t. �

We are now in a position to prove that [I, γ] is a lattice.

Theorem 7.8. If W is a finite real reflection group equipped with the partial order
≤ defined by reflection length and γ is a Coxeter element for W , then the interval
[I, γ] is a lattice.

Proof. Choose a simple system and Coxeter element γ for W as in Section 3. For
σ ≤ γ and σ 
= I, construct the simplicial complex X(σ) and define X(I) to be the
empty set ∅. We have seen that X(σ) has dimension l(σ) − 1 and its vertex set is

Pσ = {ρi | 1 ≤ i ≤ nh/2 and R(ρi) ≤ σ}.
Furthermore, X(σ) is a subcomplex of X(γ) and, by Corollary 7.7, |X(σ)| is spher-
ically convex.

Assume now that α and β both precede γ. Then X(α)∩X(β) is a sub-complex
of X(γ) and, since |X(α)∩X(β)| = |X(α)|∩|X(β)|, the set |X(α)∩X(β)| is convex
by Corollary 7.7. If d denotes the dimension of X(α)∩X(β), then |X(α)∩X(β)| is a
union of d-dimensional simplices and, for each d-simplex 〈v0, . . . , vd〉 in X(α)∩X(β),
the linear subspaces span({v0, . . . , vd}) and span(X) coincide. We associate an
element σ ≤ γ to X(α)∩X(β) as follows. Choose a d-simplex 〈v0, . . . , vd〉 ∈ X and
assume (without loss of generality) that v0 ≺ v1 ≺ · · · ≺ vd. Then

R(v0)R(v1) . . . R(vd) ≤ γ−1 by definition of X(γ),

and we define σ to be R(vd) . . . R(v1)R(v0). Since span(v0, . . . , vd) = M(σ) =
span(X(α)∩X(β)), it follows that M(σ) contains and is spanned by the vertex set
of X(α) ∩ X(β). However this vertex set is Pα ∩ Pβ, and the theorem now follows
by our remarks in Section 2. �
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8. Relationship with generalised associahedra

In this section we embed the complex X(γ) in a larger simplicial complex EX(γ)
whose vertex set consists of all positive roots and the negatives of the simple roots,
and we show that the geometric realisation of EX(γ) is a sphere. If W is crys-
tallographic, then we show that EX(γ) coincides with the simplicial generalised
associahedron for W (defined in [13]).

Recall that S1 = {α1, . . . , αs} and S2 = {αs+1, . . . , αn} is a partition of the set
of simple roots into two orthonormal sets. We will use the notation

−S1 = {−α1, . . . ,−αs} and − S2 = {−αs+1, . . . ,−αn}.
We note that the subscripting on the ρ’s can be applied to negative indices with
the convention that ρ−k = ρnh−k.

Definition 8.1. We define a set, EX = EX(γ), of simplices by declaring that
• the vertex set is the ordered set {ρi | −n + s + 1 ≤ i ≤ nh/2 + s},
• an edge joins ρi to ρj whenever R(ρi)R(ρj) ≤ γ−1, i < j and ρi 
= −ρj ,

and
• 〈ρi1 , ρi2 , . . . , ρik

〉 forms a (k − 1)-simplex if the vertices are distinct and
pairwise joined by edges.

We note that it follows from the definitions that the simplices of X(γ) are
simplices of EX(γ). The extra vertices are precisely the negatives of the sim-
ple roots {α1, . . . , αn}. First, for k = 1, . . . , n − s, ρs+k = −γ(αs+k) implies that
ρ−n+s+k = −αs+k. Secondly the set {ρnh/2+1, . . . , ρnh/2+s} is a permutation of
{−α1, . . . ,−αs}.
Theorem 8.2. EX(γ) is a simplicial complex and |EX(γ)| is a sphere of dimen-
sion n − 1.

Proof. Let C be the spherical cross-polytope whose set of vertices is {±α1,. . .,±αn}.
Then C is a simplicial complex whose geometric realisation |C| is the unit sphere
in Rn. We will show that EX(γ) is a simplicial subdivision of C.

Consider the simplicial subdivision C ′ of C which is defined as follows. Let K
be the sub-complex of C which consists of the simplex A = 〈α1, . . . , αn〉 and all its
faces. We proved earlier that |X(γ)| = |K|. Thus X(γ) is a simplicial subdivision
of K.

Extend this subdivision to the rest of C as follows. Any simplex of C whose
vertices are contained in {−α1, . . . ,−αn} is not subdivided. If B is a simplex of C
which contains both positive and negative roots, then we can write

B = 〈αi1 , . . . , αip
〉 ∗ 〈−αj1 , . . . ,−αjq

〉
where i1 < · · · < ip, j1 < · · · < jq, ∗ denotes the spherical join, and {i1, . . . , ip} and
{j1, . . . , jp} are disjoint. We extend the subdivision of the simplex 〈αi1 , . . . , αip

〉
(in X(γ)) by taking the join of this subdivision with the simplex 〈−αj1 , . . . ,−αjq

〉.
Suppose J ⊂ {1, . . . , s}, K ⊂ {s+1, . . . , n} and that {ρi1 , . . . , ρia

} is an ordered
set of positive roots. Then {−αj | j ∈ J ∪ K} ∪ {ρi1 , . . . , ρia

} is the vertex set for
a simplex in C ′ or in EX(γ) if and only if

R(ρi1) . . . R(ρia
) ≤

(∏
l∈K

R(ρl)

)
γ−1

( ∏
m∈J

R(ρm)

)
.

It now follows that C ′ = EX(γ) as required. �
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For convenience we recall some facts from [13] and express them in a manner
consistent with our earlier notation. If W is a crystallographic finite reflection
group, then the simplicial generalised associahedron, GA(W ), for the simple sys-
tem S1 ∪ S2 is a simplicial complex whose set of vertices, denoted Ω≥−1, consists
of all the positive roots and the negative simple roots. Two piecewise-linear invo-
lutions τ+ and τ− are introduced in [13]. It can be shown that they are determined
by

τ+(β) =
{

[R1R2 . . . Rs](β) if β 
∈ −S2,
β if β ∈ −S2,

τ−(β) =
{

[Rs+1Rs+2 . . . Rn](β) if β 
∈ −S1,
β if β ∈ −S1.

From this we deduce that the action of τ+τ− on Ω≥−1 is given by

τ+τ−(β) =
{

γ(β) if β 
∈ (−S1) ∪ S2,
−β if β ∈ (−S1) ∪ S2,

and the action of the inverse τ−τ+ is given by

τ−τ+(β) =
{

γ−1(β) if β 
∈ (−S2) ∪ S1,
−β if β ∈ (−S2) ∪ S1.

The compatibility degree (α ‖ β) of any two elements α, β ∈ Ω≥−1 is charac-
terised in [13] by the conditions

(i) (−αi ‖ α) = max{[α : αi], 0}, where [α : αi] = α · µi for i = 1, . . . , n, and
(ii) (α ‖ β) = (τ±α ‖ τ±β) for all α and β.

We recall that two vertices α and β in GA(W ) are connected by an edge if and
only if (α ‖ β) = 0. Finally, we note that GA(W ) is completely determined by its
one-skeleton.

Theorem 8.3. If W is crystallographic, then EX(γ) coincides with the simplicial
generalised associahedron GA(W ).

Proof. We continue to use the earlier notation. First note that the vertex set Ω≥−1

of the associahedron is the same as that of EX(γ). Since each of EX(γ) and
GA(W ) is determined by its one-skeleton, it suffices to show that two vertices α
and β are joined by an edge in EX(γ) if and only if they are joined by an edge
in GA(W ). To simplify notation we will write ρi

GA→ ρj or ρi
EX→ ρj if ρi and ρj

are connected by an edge in the simplicial complex GA(W ) or EX(γ) respectively.
Note that the ordering on the vertices of EX(γ) is such that they are arranged into
the following sets in the given order:

−S2, S1, γ(−S2), γ(S1), γ2(−S2), . . . , γ−1(−S1), S2,−S1.

Suppose ρi ≺ ρj . Then ρi
EX→ ρj is equivalent to R(ρi)R(ρj) ≤ γ−1. First we can

assume ρj 
= −ρi since neither complex contains an edge from ρi to −ρi.
Case 1. If ρi ∈ −S2, then ρi = −αp for some p satisfying s + 1 ≤ p ≤ n.

Then ρi
GA→ ρj if and only if (−αp ‖ ρj) = 0. However, by equation (3.4), this is

equivalent to R(ρj) ≤ R(α1) . . . R(αp−1)R(αp+1) . . . R(αn). But, since p > s, we

have R(α1) . . . R(αp−1)R(αp+1) . . . R(αn) = γR(αp). Thus ρi
GA→ ρj is equivalent

by equation (3.7) to R(ρj)R(ρi) ≤ γ which in turn is the criterion for ρi
EX→ ρj .
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Case 2. If ρi ∈ S1, then ρi = αp, for some p satisfying 1 ≤ p ≤ s and
τ−τ+(ρi) = −ρi = −αp ∈ −S1.

Case 2(a). If ρj is also in ∈ S1, then τ−τ+(ρj) = −ρj ∈ −S1, and applying
τ−τ+ to both roots gives

(ρi ‖ ρj) = (−ρi ‖ −ρj) = 0

since ρj and ρi are distinct simple roots. By definition of edges in the generalised

associahedron we must have ρi
GA→ ρj . However, in this subcase, ρj = αq with

1 ≤ p < q ≤ s, so that

R(ρj)R(ρi) = R(ρi)R(ρj) ≤ γ

which is again equivalent to the criterion for ρi
EX→ ρj .

Case 2(b). If ρj /∈ S1, then j > s, and we know that τ−τ+(ρj) = γ−1(ρj).

Now ρi
GA→ ρj if and only if (−αp ‖ γ−1(ρj)) = 0. However this is equivalent by

equation (3.4) to

R[γ−1(ρj)] ≤ R(α1) . . . R(αp−1)R(αp+1) . . . R(αn).

Since 1 ≤ p ≤ s, we have R(α1) . . . R(αp−1)R(αp+1) . . . R(αn) = R(αp)γ. Thus

ρi
GA→ ρj is equivalent to R(ρi)R[γ−1(ρj)] ≤ γ by equation (3.7). But

R(ρi)R[γ−1(ρj)] ≤ γ ⇔ R(ρi) ≤ γR[γ−1(ρj)] = R(ρj)γ,

using equations (3.7) and (3.2). The last condition in turn is the criterion for
ρi

EX→ ρj .
Case 3. If i > s let m be the smallest positive integer with the property that

(τ−τ+)m(ρi) ∈ (−S2) ∪ S1.

Now ρi
GA→ ρj if and only if (τ−τ+)m(ρi)

GA→ (τ−τ+)m(ρj). However, Case 1 or Case
2 now applies to this new pair of roots and (τ−τ+)m = γ−m when applied to ρi and
ρj . Thus ρi

GA→ ρj if and only if

R(γ−m(ρj))R(γ−m(ρi)) ≤ γ,

by the proof in cases 1 and 2. But this is equivalent to R(γ−m(ρi)) ≤ R(γ−m(ρj))γ
or ρi−mn · µj−mn = 0. Since γ is an isometry this is equivalent to ρi · µj = 0 and

hence to ρi
EX→ ρj . �

Note 8.4. We observe that Theorem 8.3 provides a new proof that the simpli-
cial generalised associahedron is a simplicial complex whose geometric realisation
is a sphere. This proof is independent of the classification of finite real reflec-
tion groups and extends the work of Fomin and Zelevinsky [13] to include the
non-crystallographic finite reflection groups. Furthermore Definition 8.1 and Theo-
rem 8.3 characterise the notion of compatibility (in the sense of Section 3.2 of [13])
in terms of non-crossing partitions.
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