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QUANTUM COHOMOLOGY AND THE k-SCHUR BASIS

LUC LAPOINTE AND JENNIFER MORSE

Abstract. We prove that structure constants related to Hecke algebras at
roots of unity are special cases of k-Littlewood-Richardson coefficients as-
sociated to a product of k-Schur functions. As a consequence, both the 3-
point Gromov-Witten invariants appearing in the quantum cohomology of the
Grassmannian, and the fusion coefficients for the WZW conformal field theo-
ries associated to ŝu(�) are shown to be k-Littlewood-Richardson coefficients.
From this, Mark Shimozono conjectured that the k-Schur functions form the
Schubert basis for the homology of the loop Grassmannian, whereas k-Schur
coproducts correspond to the integral cohomology of the loop Grassmannian.
We introduce dual k-Schur functions defined on weights of k-tableaux that,

given Shimozono’s conjecture, form the Schubert basis for the cohomology of
the loop Grassmannian. We derive several properties of these functions that
extend those of skew Schur functions.

1. Introduction

The study of Macdonald polynomials led to the discovery of symmetric functions,
s
(k)
λ , indexed by partitions whose first part is no larger than a fixed integer k ≥ 1.

Experimentation suggested that these functions play the fundamental combinatorial
role of the Schur basis in the symmetric function subspace Λk = Z[h1, . . . , hk]; that
is, they satisfy properties generalizing classical properties of Schur functions such as
Pieri and Littlewood-Richardson rules. The study of the s

(k)
λ led to several different

characterizations [19], [20], [23] (conjecturally equivalent) and to the proof of many
of these combinatorial conjectures. We thus generically call the functions k-Schur
functions, but in this article consider only the definition presented in [23].

Although prior work with k-Schur functions concentrated on proving that they
act as the “Schur basis” for Λk, the analogy was so striking that it seemed likely
to extend beyond combinatorics to fields such as algebraic geometry and represen-
tation theory. Our main finding in this direction is that the k-Schur functions are
connected to representations of Hecke algebras H∞(q), where q is a root of unity,
and they provide the natural basis for work in the quantum cohomology of the
Grassmannian just as the Schur functions do for the usual cohomology. In partic-
ular, the 3-point Gromov-Witten invariants are none other than relevant cases of
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“k-Littlewood-Richardson coefficients”, the expansion coefficients in

(1.1) s
(k)
λ s(k)

µ =
∑

ν:ν1≤k

cν,k
λµ s(k)

ν .

To be precise, in Schubert calculus, the cohomology ring of the Grassmannian
Gr�n (the manifold of �-dimensional subspaces of Cn) has a basis given by Schubert
classes σλ that are indexed by partitions λ ∈ P�n that fit inside an � × (n − �)
rectangle. There is an isomorphism,

H∗(Gr�n) ∼= Λ�/〈en−�+1, . . . , en〉 ,

where the Schur function sλ maps to the Schubert class σλ when λ ∈ P�n. Since
sλ is zero modulo the ideal when λ �∈ P�n, the structure constants of H∗(Gr�n) in
the basis of Schubert classes:

σλσµ =
∑

ν∈P�n

cν
λµσν ,

can be obtained from the Littlewood-Richardson coefficients for Schur functions,

sλsµ =
∑

ν∈P�n

cν
λµsν +

∑
ν �∈P�n

cν
λµsν ,

which have well known combinatorial interpretations.
The small quantum cohomology ring of the Grassmannian QH∗(Gr�n) is a defor-

mation of the usual cohomology that has become the object of much recent attention
(e.g. [1], [33]). As a linear space, this is the tensor product H∗(Gr�n) ⊗ Z[q] and
the σλ with λ ∈ P�n form a Z[q]-linear basis of QH∗(Gr�n). Multiplication is a
q-deformation of the product in H∗(Gr�n), defined by

σλ ∗ σµ =
∑

ν∈P�n

|ν|=|λ|+|µ|−dn

qdCν,d
λµ σν .

The Cν,d
λµ are the 3-point Gromov-Witten invariants, which count the number

of rational curves of degree d in Gr�n that meet generic translates of the Schu-
bert varieties associated to λ, µ, and ν. Finding a combinatorial interpretation
for these constants is an interesting open problem that would have applications to
many areas, including the study of the Verlinde fusion algebra [29] as well as the
computation of certain knot invariants [31].

As with the usual cohomology, quantum cohomology can be connected to sym-
metric functions by:

QH∗(Gr�n) ∼=
(
Λ� ⊗ Z[q]

)
/J�n

q ,

where J�n
q = 〈en−�+1, . . . , en−1, en +(−1)�q〉. When λ ∈ P�n, the Schubert class σλ

still maps to the Schur function sλ, but unfortunately when λ �∈ P�n, some sλ are
not zero modulo the ideal. Thus, the Schur functions cannot be used to directly
obtain the quantum structure constants. Instead, these Gromov-Witten invariants
arise as the expansion coefficients in

sλ sµ =
∑

ν∈P�n

|ν|=|λ|+|µ|−dn

qdCν,d
λµ sν mod J�n

q ,

and to compute the coefficients, an algorithm involving negatives [9], [12], [32] must
be used to reduce a Schur function modulo the ideal J�n

q .
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Remarkably, by first working with an ideal that arises in the context of Hecke
algebras at roots of unity, we find that the k-Schur functions circumvent this prob-
lem: a k-Schur function maps to a single Schur function times a q power (with no
negatives) or to zero, modulo the ideal. To be more precise, let I�n denote the ideal

I�n =
〈
sλ

∣∣∣ #{j |λj < �} = n − � + 1
〉

.

A basis for Λ�/I�n is given by the Schur functions indexed by partitions in Π�n, the
set of partitions with no part larger than � and no more than n − � rows of length
smaller than �. In [10], certain structure constants associated to representations of
Hecke algebras at roots of unity are shown to be the expansion coefficients in

sλ sµ =
∑

ν∈Π�n

aν
λµsν mod I�n .

We prove that the aν
λµ are just special cases of k-Littlewood-Richardson coefficients

by showing that when ν ∈ Π�n, the k-Schur function s
(k=n−1)
ν modulo the ideal I�n

is simply sν , and is zero otherwise. Thus it is revealed that the aν
λµ are coefficients

in the expansion:

s
(k)
λ s(k)

µ =
∑

ν∈Π�n

aν
λµ s(k)

ν +
∑

ν �∈Π�n

cν,k
λµ s(k)

ν .

We can then obtain the 3-point Gromov-Witten invariants from this result by
simply computing sν modulo Jq

�n for ν ∈ Π�n, since I�n is a subideal of Jq
�n. In

this case, sν beautifully reduces to positive sr(ν) times a q power, where r(ν) is the
n-core of ν. Consequently, we prove that the 3-point Gromov-Witten invariants are
none other than certain k-Schur function Littlewood-Richardson coefficients. To be
more specific,

Cν,d
λµ = cν̂,n−1

λµ ,

where the value of d associates a unique element ν̂ ∈ Π�n (given explicitly in
Theorem 5.6) to each ν ∈ P�n.

It also follows from our results that the k-Littlewood-Richardson coefficients,
when k = n − 1, include the fusion rules for the Wess-Zumino-Witten conformal
field theories associated to ŝu(�) at level n − �, since the algorithm given by Kac
[12] and Walton [32] for computing in the fusion algebra reduces to the one given
by Goodman and Wenzl [10] for computing the Hecke algebra structure constants.

It is important to note that since the Gromov-Witten invariants under considera-
tion are indexed by partitions fitting inside a rectangle, they are given by only a sub-
set of the k-Littlewood-Richardson coefficients. We thus naturally sought the larger
picture that would be explained by the complete set of k-Littlewood-Richardson co-
efficients. In discussion with Mark Shimozono about this problem, he conjectured
that the k-Schur functions form the Schubert basis for the homology of the affine
(loop) Grassmannian of GLk+1, and that the k-Schur expansion coefficients of the
k-Schur coproduct give the integral cohomology of the loop Grassmannian.1 We
introduce in the final section of this article, a family of symmetric functions dual
to the k-Schur functions, defined by the weight of certain “k-tableaux” related to
the affine symmetric group [22]. Following the theory of skew Schur functions, we

1 Since the submission of this article, Thomas Lam proved these two conjectures [18].
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prove a number of results about these dual k-Schur functions. In particular, we
show that the coefficients in a product of dual k-Schur functions are the structure
constants in the k-Schur coproduct, implying from Shimozono’s conjecture that
the dual k-Schur functions form the Schubert basis for the cohomology of the loop
Grassmannian.

In addition to using the k-Schur functions to study the Gromov-Witten invariants
and the loop Grassmannian, they are a natural tool to seek “affine Schubert poly-
nomials”. Our results strongly support the idea of Michelle Wachs that the (dual)
k-Schur functions provide the symmetric Grassmannian component of a larger fam-
ily of polynomials that are analogous to Schubert polynomials, but indexed instead
by affine permutations. After discussion with Thomas Lam of the work presented
here, he made a beautiful step in this direction by introducing a family of “affine
Stanley symmetric functions” that reduce in special cases to the dual k-Schur func-
tions (called “affine Schur functions” in [17]). Details of a connection between the
dual k-Schur functions and the cylindric Schur functions of [25] is also carried out
in [17].

2. Definitions

Let Λ denote the ring of symmetric functions over Z, generated by the elementary
symmetric functions er =

∑
i1<...<ir

xi1 · · ·xir
, or equivalently by the complete

symmetric functions hr =
∑

i1≤...≤ir
xi1 · · ·xir

, and let Λk = Z[h1, . . . , hk]. Bases
for Λ are indexed by partitions λ = (λ1 ≥ · · · ≥ λm > 0) whose degree λ is
|λ| = λ1 + · · ·+λm and whose length �(λ) is the number of parts m. Each partition
λ has an associated Ferrers diagram with λi lattice squares in the ith row, from the
bottom to top. Any lattice square in the Ferrers diagram is called a cell, where the
cell (i, j) is in the ith row and jth column of the diagram. Given a partition λ, its
conjugate λ′ is the diagram obtained by reflecting λ about the main diagonal. A
partition λ is “k-bounded” if λ1 ≤ k, and the set of all such partitions is denoted
Pk. The set P�n is the partition fitting inside an � × (n − �) rectangle (with n − �
rows of size �). We say that λ ⊆ µ when λi ≤ µi for all i. Dominance order �
on partitions is defined by λ � µ when λ1 + · · · + λi ≥ µ1 + · · · + µi for all i, and
|λ| = |µ|.

More generally, for ρ ⊆ γ, the skew shape γ/ρ is identified with its diagram
{(i, j) : ρi < j ≤ γi}. We say that any c ∈ ρ lies “below ” γ/ρ. The “hook ” of any
lattice square s ∈ γ is defined as the collection of cells of γ/ρ that lie inside the L
with s as its corner. This is intended to apply to all s ∈ γ including those below
γ/ρ. For example, the hook of s = (1, 3) is depicted by the framed cells:

(2.1)
γ/ρ = (5, 5, 4, 1)/(4, 2) =

s

.

The “hook-length” of s, denoted hs(γ/ρ), is the number of cells in the hook of s. In
the preceding example, h(1,3)

(
(5, 5, 4, 1)/(4, 2)

)
= 3 and h(3,1)

(
(5, 5, 4, 1)/(4, 2)

)
=

5. A cell or lattice square has a k-bounded hook if its hook-length is no larger than
k.

A “p-core” is a partition that does not contain any hooks of length p, and Cp

will denote the set of all p-cores. The “p-residue” of lattice square (i, j) is j − i
mod p; that is, the label of this square when squares are periodically labeled with
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0, 1, . . . , p− 1, where zeros lie on the main diagonal (see [16] for more on cores and
residues). The 5-residues associated to the 5-core (6, 4, 3, 1, 1, 1) are

4
0
1
2 3
3 4 0 1
4 0 1 2 3
0 1 2 3 4 0 1

A “tableau” is a filling of a Ferrers diagram with integers that strictly increase
in columns and weakly increase in rows. The “weight” of a given tableau is the
composition α where αi is the multiplicity of i in the tableau. A “Schur function”
can be defined by

(2.2) sλ =
∑
T

xT ,

where the sum is over all tableaux of shape λ, and where xT = xweight(T ).

3. k-Schur functions

There are several conjecturally equivalent characterizations for the k-Schur func-
tions. Here we use the definition explored in [23] that relies on a family of tableaux
related to the affine symmetric group.

Definition 3.1 ([22]). Let γ be a k+1-core, m be the number of k-bounded hooks
of γ, and α = (α1, . . . , αr) be a composition of m. A “k-tableau” of shape γ and
“k-weight” α is a filling of γ with integers 1, 2, . . . , r such that

(i) rows are weakly increasing and columns are strictly increasing,
(ii) the collection of cells filled with the letter i are labeled with exactly αi

distinct k + 1-residues.

Example 3.2. The 3-tableaux of 3-weight (1, 3, 1, 2, 1, 1) and shape (8, 5, 2, 1) are:

(3.1)
5
4 6
2 3 4 4 6
1 2 2 2 3 4 4 6

6
4 5
2 3 4 4 5
1 2 2 2 3 4 4 5

4
3 6
2 4 4 5 6
1 2 2 2 4 4 5 6

The definition of k-tableaux easily extends.

Definition 3.3. Let δ ⊆ γ be k + 1-cores with m1 and m2 k-bounded hooks
respectively, and let α = (α1, . . . , αr) be a composition of m1 − m2. A “skew k-
tableau” of shape γ/δ and “k-weight” α is a filling of γ/δ with integers 1, 2, . . . , r
such that

(i) rows are weakly increasing and columns are strictly increasing,
(ii) the collection of cells filled with letter i are labeled by exactly αi distinct

k + 1-residues.

Although a k-tableau is associated to a shape γ and weight α, in contrast to
usual tableaux, |α| does not equal |γ|. Instead, |α| is the number of k-bounded
hooks in γ. This distinction becomes natural through a correspondence between
k + 1-cores and k-bounded diagrams. This bijection c between Ck+1 and Pk was
defined in [22] by its inverse map

c
−1 (γ) = (λ1, . . . , λ�)
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where λi is the number of cells with a k-bounded hook in row i of γ. Note that the
number of k-bounded hooks in γ is |λ|. The inverse map relies on constructing a
certain “k-skew diagram” λ/k = γ/ρ from λ, and setting c(λ) = γ. These special
skew diagrams are defined:

Definition 3.4. For λ ∈ Pk, the “k-skew diagram of λ” is the diagram λ/k where
(i) row i has length λi for i = 1, . . . , �(λ)
(ii) no cell of λ/k has hook-length exceeding k
(iii) all lattice squares below λ/k have hook-length exceeding k.

A convenient algorithm for constructing the diagram of λ/k is given by succes-
sively attaching a row of length λi to the bottom of (λ1, . . . , λi−1)/k in the leftmost
position so that no hook-lengths exceeding k are created.

Example 3.5. Given λ = (4, 3, 2, 2, 1, 1) and k = 4,

λ = =⇒ λ/4 = =⇒ c(λ) =

The analogy with usual tableaux is now more apparent, and we let T k
α (µ) denote

the set of all k-tableaux of shape c(µ) and k-weight α. When the k-weight is (1n),
a k-tableau is called “standard”. The “k-Kostka numbers” K

(k)
µα = |T k

α(µ)| satisfy
a triangularity property [22] similar to that of the Kostka numbers: for k-bounded
partitions λ and µ,

(3.2) K
(k)
µλ = 0 when µ � λ and K(k)

µµ = 1 .

Given this triangularity, the inverse of ||K(k)
µλ ||λ,µ∈Pk exists. Our main object of

study can now be defined by ||K(k)||−1, denoted ||K̄(k)||.

Definition 3.6. For any λ ∈ Pk, the “k-Schur function” is defined

(3.3) s
(k)
λ =

∑
µ�λ

K̄
(k)
µλ hµ .

A number of properties held by k-Schur functions suggest that these elements
play the role of the Schur functions in the subspace Λk. First, the definition implies
that the set

{
s
(k)
λ

}
λ1≤k

forms a basis of Λk, and that for any λ ∈ Pk,

(3.4) hλ =
∑
µ�λ

K
(k)
µλ s(k)

µ .

More generally, it was shown in [23] that if K
(k)
ν/µ,λ is the number of skew tableaux

of shape c(µ)/c(ν) and k-weight λ, then

(3.5) hλs(k)
ν =

∑
µ

K
(k)
µ/ν,λ s(k)

µ .

Another example of a Schur property held by k-Schur functions is drawn from
the ω-involution, defined as the homomorphism ω(hi) = ei. In particular, ω maps a
Schur function sλ to its conjugate sλ′ . Using a refinement of partition conjugation
that arose in [19], [20], it was shown in [23] that

(3.6) ωs
(k)
λ = s

(k)
λωk ,
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where λωk = c−1
(
c(λ)′

)
is the “k-conjugate” of λ. This result led to the property:

(3.7) s
(k)
λ = sλ when h(1,1)(λ) ≤ k ,

that is, when the hook-length of the cell (1,1) is not larger than k.
In (3.5), the case where λ = (�) is a one-row partition of size not larger than

k is called the “k-Pieri formula”. Results of [22] laid the groundwork for another
characterization of the k-Pieri formula that mimics that of the Pieri formula. In
particular,

Theorem 3.7 ([23]). For ν ∈ Pk and � ≤ k,

(3.8) h� s(k)
ν =

∑
µ∈H

(k)
ν,�

s(k)
µ

where the sum is over partitions of the form:

H
(k)
ν,� =

{
µ ∈ Pk

∣∣∣ µ/ν = horizontal �-strip and µωk/νωk = vertical �-strip
}

.

When µ ∈ H
(k)
ν,� , we say that “µ/ν is a k-horizontal strip of size �”.

In the spirit of Schur function theory, it is conjectured that the “k-Littlewood-
Richardson coefficients” in

(3.9) s
(k)
λ s(k)

µ =
∑

ν:ν1≤k

cν,k
λµ s(k)

ν

are positive numbers. Our development here will prove that in certain cases
these coefficients are Gromov-Witten invariants thus proving positivity in these
cases. Note that given the action of the ω involution on k-Schur functions, the
k-Littlewood-Richardson coefficients satisfy

(3.10) cν,k
λµ = cνωk ,k

λωk µωk .

4. Hecke algebras, fusion rules, and the k-Schur functions

Presented in [10] are generalized Littlewood-Richardson coefficients for (�, n)-
representations of the Hecke algebras H∞(q), when q is an nth root of unity. These
coefficients are equal to the structure constants for the Verlinde (fusion) algebra
associated to the ŝu(�)-Wess-Zumino-Witten conformal field theories at level n− �.
In this section, we will use the k-Pieri rule to establish that for k = n − 1, the
k-Littlewood-Richardson coefficients contain these constants as special cases.

4.1. The connection. From [10], we recall a simple interpretation for these “(�, n)-
Littlewood-Richardson coefficients” given in the language of symmetric functions.
For n > � ≥ 1, consider the quotient R�n = Λ�/I�n where I�n is the ideal generated
by Schur functions that have exactly n − � + 1 rows of length smaller than �:

I�n =
〈
sλ

∣∣ #{j |λj < �} = n − � + 1
〉

.

A basis for R�n is given by the set {sλ}λ∈Π�n where the indices are partitions in:

Π�n = {λ ∈ P : λ1 ≤ � and #{j |λj < �} ≤ n − �} .
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Theorem 4.1 ([10]). The (�, n)-Littlewood-Richardson coefficients are the coeffi-
cients aν

λµ in the expansion

(4.1) sλsµ =
∑

ν

aν
λµ sν mod I�n , where λ, µ, ν ∈ Π�n.

It is in this context that we prove the coefficients aν
λµ are none other than k-

Littlewood-Richardson coefficients when k = n − 1.

Remark 4.2. The results of [10] are presented in a transposed form, where they
instead work with the ideal 〈sλ |λ1 − λ� = n − � + 1〉 in Z[e1, . . . , e�]. Their (�, n)-
Littlewood-Richardson coefficients dν

λµ are thus our aν′

λ′µ′ , for λ′, µ′, ν′ ∈ Π�n.

To provide some insight into how this connection arose, consider the special case
of Eq. (4.1) with λ = (1):

(4.2) s1sµ =
∑

ν : µ⊂ν∈Π�n

|ν|=|µ|+1

sν mod I�n ,

and define a poset by letting µ�ν for all ν in the summand. Frank Sottile brought
this poset to our attention and asked if it was related to our study [22] of the k-
Young lattice Y k. Y k is defined by the k-Pieri rule, where µ � ν when ν ∈ H

(k)
µ,1.

Investigating his question, we discovered the posets can be connected through the
principal order ideal Lk(�, m) generated by an � × m rectangle in Y k. In [21], we
found that the vertices of Lk(�, m) are the partitions contained in an �×m rectangle
with no more than k − � + 1 rows shorter than k, and that µ covers λ in this poset
if and only if λ ⊆ µ and |λ| + 1 = |µ|. Therefore, the elements of Lk(�,∞) are
precisely those of Π�n (given k = n − 1). Since the k-Young lattice was defined by
multiplication by s1, we have

(4.3) s1s
(k)
λ =

∑
µ : λ⊂µ∈Π�n

|µ|=|λ|+1

s(k)
µ + other terms ,

where “other terms” are k-Schur functions indexed by µ �∈ Π�n. The likeness of
(4.2) and (4.3) led us to surmise the following result:

Theorem 4.3. For any partition λ ∈ Pn−1,

(4.4) s
(n−1)
λ mod I�n =

{
sλ if λ ∈ Π�n,

0 otherwise .

Before proving this theorem, we mention several implications. Since all partitions
in Π�n are (n−1)-bounded (λ1 ≤ � ≤ n−1), the set of k-Schur functions indexed by
partitions in Π�n forms a natural basis for the quotient R�n. Computation modulo
the ideal I�n is trivial in this basis. In particular, the structure constants under
consideration are simply certain k-Littlewood Richardson coefficients in (3.9).

Corollary 4.4. For all λ, µ, ν ∈ Π�n,

a ν
λµ = cν,n−1

λµ .

Another consequence of our theorem produces a tableau interpretation for the
dimension of the representations π

(�,n)
λ , for λ′ ∈ Π�n, of the Hecke algebras H∞(q),

when q is an nth root of unity (see [10] for details on these representations).
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Corollary 4.5. For λ′ ∈ Π�n, the dimension of the representation π
(�,n)
λ is the

number of standard (n − 1)-tableaux of shape c(λ′).2

Proof. Let m = |λ|, and k = n−1. In [10], it is shown that the dimension of π
(�,n)
λ is

the coefficient of sλ′ in sm
1 mod I�n. By Theorem 4.3, this is the coefficient of s

(k)
λ′

in the k-Schur expansion of sm
1 = h1m . Using Definition 3.6 for k-Schur functions,

this coefficient is K
(k)
λ′1m or the number of standard k-tableaux of shape c(λ′). �

The Verlinde (fusion) algebra of the Wess-Zumino-Witten model associated to
ŝu(�) at level n− � is isomorphic to the quotient of R�n modulo the single relation
s� ≡ 1 [12], [32], [10]. The fusion coefficient N ν

λµ is defined for λ′, µ′, ν′ ∈ P�−1 ,n−1

by
L(λ) ⊗n−� L(µ) =

⊕
N ν

λµL(ν) ,

where the fusion product ⊗n−� is the reduction of the tensor product of integrable
representations with highest weight λ and µ via the representation at level n− � of
ŝu(�). Thus, our results imply that

Corollary 4.6. For all λ, µ, ν inside an (n − �) × (� − 1) rectangle,

N ν
λµ = cν̂,n−1

λ′µ′ ,

where ν̂ = (�(|λ|+|µ|−|ν|)/�, ν′).

4.2. Proof of connection. Throughout this section, k stands for n − 1. Rather
than working with Λ�/I�n, it is more convenient to work with Λ/I, where the ideal
I in Λ is generated by the Schur functions that have exactly n− �+1 parts smaller
than � and by the hi with i > �. That is,

I = 〈A ∪ B〉 ,

where
A =

{
sλ

∣∣ #{j |λj < �} = n − � + 1
}

and B = {hi

∣∣ i > �} .

Note that Λ�/I�n � Λ/I since the Schur functions in I�n can be considered as
expressions in Λ� (using the Jacobi-Trudi determinant for instance to express them
in the homogeneous basis and then sending hi → 0 if i > �). Also, observe that a
k-Schur function can be considered as an element of Λ under the natural inclusion
Λ� → Λ.

The proof of Theorem 4.3 relies on two preliminary properties.

Property 4.7. For any k-bounded partition λ and � ≤ k, s
(k)
λ ≡I 0 when λ1 > �.

Proof. Since µ ≥ λ implies that µ1 ≥ λ1, the unitriangular relation between {s(k)
λ }

and {hλ} implies
s
(k)
λ =

∑
µ:µ1>�

∗hµ .

The claim thus follows since hµ ∈ I when µ1 > �. �

Property 4.8. For any k-bounded partition λ with λ1 ≤ �,

(4.5) s
(k)
λ ≡I 0 =⇒ s

(k)
(�m,λ) ≡I 0 for all m ≥ 0 .

2Equivalently, this is the number of reduced words for a certain affine permutation σλ′ ∈
Ŝn/Sn. See [22] for the precise correspondence.
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Proof. The k-Pieri rule (3.8) implies, in particular, that any k-Schur occurring in
the expansion of h�s

(k)
ν is indexed by a partition obtained by adding a horizontal

�-strip to ν. Thus, when � ≥ ν1, we have

(4.6) h�s
(k)
ν = s

(k)
(�,ν) +

∑
µ:µ1>�

µ∈Hk
ν,�

s(k)
µ .

Starting from s
(k)
λ ≡I 0, and assuming by induction that s

(k)
(�m−1,λ) ≡I 0, the claim

follows from Property 4.7 and the previous expression (4.6),

0 ≡I h� s
(k)
(�m−1,λ) = s

(k)
(�m,λ) +

∑
γ : γ1>�

∗ s(k)
γ ≡I s

(k)
(�m,λ) .

�
4.3. Proof of Theorem 4.3. Recall n = k + 1, and that λ ∈ Π�,k+1 has the form
λ = (�m, µ) for some µ ∈ P�−1 k. First, by induction on m we prove that s

(k)
λ ≡I sλ

for each such λ. Since h(1,1)(λ) ≤ k when m = 0, s
(k)
λ = sλ by (3.7). By induction,

assuming s
(k)
(�m,µ) ≡I s(�m,µ), we have h� s

(k)
(�m,µ) ≡I h� s(�m,µ). On the other hand,

since sγ ≡I 0 when γ1 > �, identity (4.6) implies h� s
(k)
(�m,µ) ≡I s

(k)
(�m+1,µ). Therefore,

h� s(�m,µ) ≡I s
(k)
(�m+1,µ) .

The claim then follows by noting that the Pieri rule gives an expansion similar to
(4.6) for h� s�m,µ, implying that h� s(�m,µ) ≡I s(�m+1,µ).

It remains to prove that s
(k)
η ≡I 0 when η �∈ Π�,k+1. Since Property 4.7 proves

the case when η1 > �, we must show s
(k)
η ≡I 0 for any η in the set:

Q =
{
(�m, β) ∈ P : β1 < � and �(β) ≥ k − � + 2

}
.

Our proof is inductive, using an order defined on Q as follows: η = (�a, β) �
(�b, α) = µ if �(β) < �(α) or if �(β) = �(α) and η � µ (this is a well-ordering if we
restrict ourselves to |µ| = |η|). Our base case includes partitions η = (�a, β) with
β1 < � and �(β) = k − � + 2. In this case, h(β) ≤ k implies s

(k)
β = sβ from (3.7),

and since sβ ∈ I when β has k − � + 2 parts smaller than �, we have s
(k)
β ≡I 0.

Property 4.8 then proves s
(k)
η ≡I 0 in this case.

Now assume by induction that s
(k)
η ≡I 0 for all η ∈ Q such that η ≺ µ, where

µ = (�b, α) with α1 < � and �(α) > k − � + 2. With r < � denoting the last part of
µ (and thus also the last part of α), let µ = (µ̂, r) = (�b, α̂, r) and note that µ̂ ≺ µ.
Thus, using the induction hypothesis and the k-Pieri rule, we have

0 ≡I srs
(k)
µ̂ = s(k)

µ +
∑

ν∈H
(k)
µ̂,r\{µ}

s(k)
ν ,

and it suffices to show that s
(k)
ν ≡I 0 for all ν ∈ H

(k)
µ̂,r \{µ}. Property 4.7 proves this

immediately for any ν with ν1 > �, and thus we shall consider only �-bounded ν.
Two properties of such ν follow since ν is obtained by adding a horizontal r-strip to
µ̂ = (�b, α̂): ν�µ, and ν = (�b, β), where �(β) ≤ �(α̂)+1 = �(α). Thus, if these ν lie
in Q, then ν ≺ µ and our claim follows from the induction hypothesis. Since each
such ν is obtained by adding a horizontal strip to µ̂ = (�b, α̂), and �(α) > k− �+2,
we have �(β) ≥ �(α̂) ≥ k − � + 2. Thus, these ν = (�b, β) all lie in Q except in the
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case that �(β) = �(α̂) = k − � + 2 and β1 = �. The following paragraph explains
why, in this case, ν �∈ H

(k)
µ̂,r , and thus never arises.

Given �(β) = k − � + 2 and β1 = �, h(β) > k implies there is no cell in position
X = (1, �(ν) − �(β)) of ν/k. Assume by contradiction that ν ∈ H

(k)
µ̂,r – hence, in

particular, that νωk/µ̂ωk is a vertical strip. Since �(α̂) = �(β) = k − � + 2 and
α̂1 < � imply h(α̂) ≤ k, there is a cell in µ̂/k in position (1, �(µ)− �(α̂)) = X. Since
the height of ν/k and µ̂/k are equal, but position X is empty in ν/k and filled in
µ̂/k, the first column of ν/k is shorter than that of µ̂/k, implying νωk/µ̂ωk is not
a vertical strip. By contradiction, ν �∈ H

(k)
µ̂,r as claimed. Here is an example with

µ̂ = (4, 4, 2, 2, 1, 1), ν = (4, 4, 4, 2, 1, 1), n = 4 and k = 6:

µ̂/k =
X

ν/k =
X

�

5. Quantum cohomology

Witten [33] proved that the Verlinde algebra of û(�) at level n−� and the quantum
cohomology of the Grassmannian Gr�n are isomorphic (see also [1]). Since u(�) =
su(�) × u(1), the connection between k-Schur functions and the fusion coefficients
of ŝu(�) at level n−� given in the last section implies that there is also a connection
between k-Schur functions and the quantum cohomology of the Grassmannian. We
now set out to make this connection explicit.

Recall from the Introduction that the quantum structure constants, or 3-point
Gromov-Witten invariants Cν,d

λµ , arise in the expansion, for λ, µ ∈ P�n,

(5.1) sλ sµ =
∑

d≥0, ν∈P�n

|ν|=|λ|+|µ|−dn

qd Cν,d
λµ sν mod J�n

q ,

where
J�n

q = 〈en−�+1, . . . , en−1, en + (−1)�q〉 .

Our main goal is to prove that the k-Schur function basis gives a direct route
to these constants. In particular, by determining the value of a k-Schur function
modulo this ideal, we will see that the Gromov-Witten invariants arise as special
cases of the k-Littlewood-Richardson coefficients.

Instead of working in
(
Λ� ⊗ Z[q]

)
/J�n

q , we can instead (by reasoning similar to
that in Section 4.2) work in (Λ ⊗ Z[q])/Jq, where Jq is the ideal generated by

Jq = 〈en−�+1, . . . , en−1, en + (−1)�q , h�+1, h�+2, . . . 〉 .

Theorem 4.3 reveals that a k-Schur function modulo the ideal I is a Schur
function when λ ∈ Π�n and is otherwise zero. By showing that I is a subideal of
Jq, our task to determine a k-Schur function mod Jq is thus reduced to examining
what happens to a usual Schur function sλ mod Jq in the special case that λ ∈ Π�n.

Proposition 5.1. If f ∈ I, then f ∈ Jq.
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Proof. It suffices to prove that sλ ∈ Jq when λ = (�m, α), for some m and par-
tition α such that α1 < � and �(α) = n − � + 1. When m = 0, the result fol-
lows from the Jacobi-Trudi determinantal formula since the first row of the de-
terminant of sα has entries en−�+1, . . . , en+α1−� ∈ Jq given α1 < �. Assuming
by induction that s(�m,α) ∈ Jq, since the Pieri rule implies h�s(�m,α) = s(�m+1,α)

mod 〈h�+1, h�+2, . . . 〉, the result follows by induction. �

Now to determine the value of a usual Schur function sλ mod Jq for partitions
in Π�n, we shall use an important result from [5], where the theory of rim-hooks
was used to study the Schur functions modulo Jq. To state their result, we first
recall the necessary definitions. An “n-rim hook” is a connected skew diagram of
size n that contains no 2 × 2 rectangle. “r(λ)” denotes the n-core of λ, obtained
by removing as many n-rim hooks as possible from the diagram of λ (this is well-
defined since the order in which rims are removed is known to be irrelevant [16]).
The width of a rim hook is the number of columns it occupies minus one. Given
a partition λ, let “dλ” be the number of n-rim hooks that are removed to obtain
r(λ). Also, let “ελ” equal dλ(�−1) minus the sum of the widths of these rim hooks.

Theorem 5.2 ([5]). For λ ∈ P�,

(5.2) sλ mod J�n
q =

{
(−1)ελqdλsr(λ) if r(λ) ∈ P�n,

0 otherwise.

This result helps us prove that in the special case that λ ∈ Π�n, sλ ≡Jq
qdλsν

for a partition ν obtained using the following operators:

Definition 5.3. For λ ∈ Π�n, �(λ) is the partition obtained by adding an n-rim
hook to λ starting in column � and ending in the first column. For λ ∈ Π�n that
is not an n-core, �(λ) is the partition obtained by removing an n-rim hook from λ
starting in the first column of λ.

Note that � is well-defined since when λ ∈ Π�n is not an n-core, �(λ) > n − �.
Thus for r = �(λ)−(n−�), λr = � and h(r,1)(λ) = n implying an n-rim hook can be
removed starting in the first column of λ and ending in the last column �. Since the
difference between the heights of the starting point and the ending point is n − �,

(5.3) � :
{
λ |λ ∈ Π�n & λ �= n-core

}
→ Π�n .

Similarly, for any λ ∈ Π�n, the difference between the heights of the first column
and column � is at most n − �. Thus, an n-rim hook can be added to λ starting
from column � and ending in the first column. Since the difference in heights of the
starting point and ending point of the added n-rim hook is n − �, we have that

(5.4) � : Π�n → Π�n .

By construction, as long as �(λ) is defined, we have

(5.5) �(�(λ)) = λ and �(�(λ)) = λ .

Proposition 5.4. For λ ∈ Π�n,

(5.6) sλ ≡ qdλ sν mod Jq ,

where ν = �dλ(λ) ∈ P�n.
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Proof. We have sλ ≡Jq
(−1)ελqdλ sr(λ) by (5.2). When λ is an n-core, then λ ∈ Π�n

implies λ ∈ P�n. Thus r(λ) = λ and (5.6) holds with dλ = 0. Otherwise, r(λ) is
obtained by removing dλ n-rim hooks in any order. Thus, by successively applying
�, we obtain r(λ) = �dλ(λ). Since � preserves Π�n by (5.3), r(λ) ∈ P�n. Further,
ελ = dλ(�− 1)− dλ(�− 1) = 0 since each removed n-rim hook has width �− 1. �

In this notation, we can now determine the value of a k-Schur function mod Jq.

Theorem 5.5. For any k-bounded partition λ,

s
(n−1)
λ mod Jq =

{
qdλsν if λ ∈ Π�n

0 otherwise
,

where ν = r(λ) = �dλ(λ) ∈ P�n.

Proof. Proposition 5.1 gives that I is a subideal of Jq, implying

s
(n−1)
λ mod Jq =

(
s
(n−1)
λ mod I

)
mod Jq .

For λ �∈ Π�n, s
(n−1)
λ mod I = 0 by Theorem 4.3. For λ ∈ Π�n, Theorem 4.3 implies

that s
(n−1)
λ mod I = sλ, and the claim then follows by further moding out by Jq

according to Proposition 5.4. �

This theorem enables us to connect the quantum product to the product of
k-Schur functions.

Theorem 5.6. For λ, µ, ν ∈ P�n, the 3-point Gromov-Witten invariants Cν,d
λµ are

(5.7) Cν,d
λµ = cν̂,n−1

λµ ,

where ν̂ = �d(ν), and where cν̂,n−1
λµ is a k-Littlewood-Richardson coefficient.

Proof. For λ, µ ∈ P�n, (5.1) shows that Cν,d
λµ arise in the expansion

(5.8) sλ sµ ≡
∑

d≥0, ν∈P�n

|ν|=|λ|+|µ|−dn

Cν,d
λµ qd sν mod Jq .

On the other hand, since λ, µ ∈ P�n have hook-length smaller than n, (3.7) im-
plies that s

(n−1)
λ s

(n−1)
µ = sλsµ. Therefore, applying Proposition 5.4 to the k-Schur

expansion of this product gives

(5.9) sλ sµ =
∑

γ:|γ|=|λ|+|µ|
cγ,n−1
λµ s(n−1)

γ ≡
∑

γ∈Π�n

cγ,n−1
λµ qdγ sβ mod Jq ,

where β = �dγ (γ). Taking the coefficient of qdsν in (5.8) and (5.9) implies

Cν,d
λµ =

∑
γ∈Π�n

γ : ν=�d(γ)

cγ,n−1
λµ .

Since ν = �d(γ) ∈ P�n ⊆ Π�n, we can apply � to find there is a unique γ in the
right summand. That is, �d(ν) = γ by (5.5). �
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6. Dual k-schur functions

The quantum structure constants Cν,d
λµ are indexed by λ, µ, ν ∈ P�n and we have

now seen that these numbers are precisely k-Littlewood-Richardson coefficients in
the relevant cases. However, since there are far more k-Littlewood-Richardson co-
efficients than Gromov-Witten invariants we naturally sought the larger geometric
picture that would be explained by the complete set of k-Littlewood Richardson
coefficients. As mentioned in the Introduction, Mark Shimozono conjectured that
the k-Schur functions form the Schubert basis for the homology of affine (loop)
Grassmannian of GLk+1, and that the expansion coefficients of the coproduct of
k-Schur functions in terms of k-Schur functions give the integral cohomology of
loop Grassmannian (see e.g. [8], [13] for more details on the loop Grassmannian).
Theorem 5.6 provides further evidence for this assertion based on the existence [26]
of a surjective ring homomorphism from the homology of the loop Grassmannian
onto the quantum cohomology of the Grassmannian at q = 1.3

While the homology of the loop Grassmannian is isomorphic to Λk, the coho-
mology is isomorphic to Λ/J(k) for the ideal

J
(k) = 〈mλ : λ1 > k〉 .

See [11] for details on this identification. We will show that there is a duality
between Λk and Λ/J(k) that implies that the coproduct in Λk amounts to a product
in Λ/J(k). Under the aforementioned isomorphisms, Shimozono’s conjectures thus
imply that the Schubert classes of the integral homology and cohomology of the loop
Grassmannian of GLk+1 are respectively sent to k-Schur functions and to symmetric
functions dual to the k-Schur functions. This suggests that there is a fundamental
basis for Λ/J(k) that is closely tied to the k-Schur basis. Here, we introduce a family
of functions defined by the k-weight of k-tableaux and derive a number of properties
including a duality relation to the k-Schur functions. In particular, it will develop
that if the coproduct of k-Schur functions in terms of k-Schur functions indeed
gives the integral cohomology of the loop Grassmannian, then these functions are
the Schubert basis for the cohomology of the loop Grassmannian.

Recall that a Schur function can be defined as

(6.1) sλ =
∑
T

xT ,

where the sum is over all tableaux of shape λ. We extend this idea by considering
the family of functions that arises by summing over all k-tableaux (defined in § 3
with k-weights).

Definition 6.1. For any λ ∈ Pk, the “dual k-Schur function” is defined by

(6.2) S
(k)
λ =

∑
T

xT ,

where the sum is over all k-tableaux of shape c(λ), and xT = xk-weight(T ).

Using a generalization of the Bender-Knuth involution [6], it was shown in [23]
that the number of k-tableaux of shape c(λ) and k-weight γ equals the number of k-
tableaux of shape c(λ) and k-weight α, for α any rearrangement of the composition

3These conjectures have recently been proven by Thomas Lam. See [18] for the proof as well
as further details on the surjection of [26] and Shimozono’s conjectures.
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γ. The symmetry of the dual k-Schur functions then follows since the coefficient of
xγ in S

(k)
λ is the number of k-tableaux of k-weight γ.

Proposition 6.2. For any k-bounded partition λ, S
(k)
λ is a symmetric function.

Since the k-Kostka number K
(k)
λα denotes the number of k-tableaux of shape c(λ)

and k-weight α, the symmetry of dual k-Schur functions and the unitriangularity
of k-Kostka numbers (3.2) imply the following alternative characterization for dual
k-Schur functions:

Proposition 6.3. For any k-bounded partition λ,

(6.3) S
(k)
λ = mλ +

∑
µ�λ

K
(k)
λµ mµ .

From this, we see that the dual k-Schur functions are a basis for the quotient of
the symmetric function space by the ideal J(k):

Proposition 6.4. The dual k-Schur functions form a basis of Λ/J(k).

Recall that the k-Schur functions form a basis for Λ/〈hi | i > k〉. The ideal J(k)

is dual to 〈hi | i > k〉 with respect to the scalar product defined on Λ by

〈hλ, mµ〉 = δλµ .

Since the definition of the k-Schur function, s
(k)
λ =

∑
ν K̄

(k)
νλ hν , implies that

〈s(k)
λ , S(k)

µ 〉 =
〈∑

α

K̄
(k)
αλ hα,

∑
β

K
(k)
µβ mβ

〉
=

∑
α

K(k)
µα K̄

(k)
αλ = δλµ ,

as suggested by their name, the dual k-Schur basis is dual to the k-Schur basis.

Proposition 6.5. Let λ and µ be a k-bounded partition. Then,

〈s(k)
λ , S(k)

µ 〉 = δλµ .

We can extract several combinatorial properties for dual k-Schur functions from
the k-Schur function properties using duality and the following lemma.

Lemma 6.6. Let f ∈ Λk. Then, for g ∈ Λ, we have

〈f , g〉 = 〈f , g mod J
(k)〉 .

Proof. It suffices to consider f = hλ, with λ ∈ Pk. If A ∈ J(k), then A =
∑

µ aµ mµ

summing over µ �∈ Pk. Thus, 〈hλ , A〉 = 0 and the claim follows. �

Since the ω-involution is an isometry with respect to 〈·, ·〉, we discover from the
action ωs

(k)
µ = s

(k)
µωk (3.6) that ω acts naturally on the dual k-Schur functions.

Proposition 6.7. Let λ be a k-bounded partition. Then

ω
(
S

(k)
λ

)
mod J

(k) = S
(k)
λωk .

As with the Schur functions, the definition of S
(k)
λ makes sense if λ is replaced

by a skew diagram.
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Definition 6.8. For k-bounded partitions µ ⊆ ν, the “dual skew k-Schur function”
is defined by

(6.4) S
(k)
ν/µ =

∑
T

xk-weight (T ) ,

where the sum is over all skew k-tableaux of shape c(ν)/c(µ).

The skew k-tableaux are well-defined since µ ⊆ ν implies that c(µ) ⊆ c(ν) (e.g.
[22], Prop. 14). The involution defined in [23] permuting the weight of k-tableaux
does the same on skew k-tableaux. Thus, S

(k)
ν/µ is also a symmetric function by the

same reasoning that implies Proposition 6.2. Since K
(k)
ν/µ,λ denotes the number of

skew k-tableaux of k-weight λ and shape c(ν)/c(λ), and since a given letter cannot
have k-weight larger than k, we have the expansion:

(6.5) S
(k)
ν/µ =

∑
λ ; λ1≤k

K
(k)
ν/µ,λ mλ .

This form of the skew dual k-Schur function makes it clear that the “skew affine
Schur functions” of [17] are the same functions.

In what follows, the methods of proof are straightforward extensions of results
concerning skew-Schur functions that can be found for instance in [24]. The next
theorem will illustrate these methods and is the only one for which we shall provide
a proof.

Theorem 6.9. For any k-bounded partitions µ ⊆ ν,

S
(k)
ν/µ =

∑
λ

cν,k
µλ S

(k)
λ .

Proof. Since S
(k)
ν/µ lies in Λ/J(k), for which the dual k-Schur functions form a basis,

S
(k)
ν/µ =

∑
λ

Aν,k
µλ S

(k)
λ ,

for some Aν,k
µλ . On one hand consider:

〈s(k)
λ , S

(k)
ν/µ〉 = 〈s(k)

λ ,
∑
α

Aν,k
µαS

(k)
α 〉 = Aν,k

µλ

and
〈s(k)

λ , S
(k)
ν/µ〉 = 〈

∑
α

K̄
(k)
αλ hα,

∑
β

K
(k)
ν/µ,βmβ〉 =

∑
α

K̄
(k)
αλ K

(k)
ν/µ,α .

On the other hand, since (3.5) tells us hλ s
(k)
µ =

∑
ν K

(k)
ν/µ,λ s

(k)
ν , we have

〈s(k)
µ s

(k)
λ , S(k)

ν 〉 = 〈
∑
α

K̄
(k)
αλ hαs(k)

µ , S(k)
ν 〉 = 〈

∑
α

K̄
(k)
αλ

∑
β

K
(k)
β/µ,αs

(k)
β , S(k)

ν 〉

=
∑
α

K̄
(k)
αλ K

(k)
ν/µ,α

and
〈s(k)

µ s
(k)
λ , S(k)

ν 〉 = 〈
∑
α

cα,k
λµ s(k)

α , S(k)
ν 〉 = cν,k

λµ .
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Therefore the result follows from

Aν,k
λµ =

∑
α

K̄
(k)
αλ K

(k)
ν/µ,α = cν,k

λµ .

�

Given the duality between Λk and Λ/J(k), it is natural to also consider a skew
k-Schur function. The previous proposition, exposing k-Littlewood-Richardson co-
efficients as the expansion coefficients for a the dual skew k-Schur function in terms
of dual k-Schur functions, leads us to also consider the coefficients in

S
(k)
λ S

(k)
µ =

∑
ν

d
ν,k
λµ S

(k)
ν mod J

(k) .

Similar to the k-Littlewood-Richardson coefficients, Proposition 6.7 implies a
symmetry satisfied by these coefficients:

(6.6) d
ν,k
λµ = d

νωk ,k
λωk µωk .

We also note that:

〈s(k)
ν , S

(k)
λ S

(k)
µ 〉 = 〈s(k)

ν , S
(k)
λ S

(k)
µ mod J

(k)〉 = d
ν,k
λµ .

We can now introduce the skew k-Schur function and discuss several identities
regarding the relations between these functions and their dual.

Definition 6.10. For any k-bounded partitions µ ⊆ ν, the “skew k-Schur function”
is defined by

s
(k)
ν/µ =

∑
λ

d
ν,k
µλ s

(k)
λ .

This given, our first property is:

Proposition 6.11. For any f ∈ Λ,

〈s(k)
ν/µ, f〉 = 〈s(k)

ν , f S
(k)
µ 〉 ,

and for any f ∈ Λk,
〈f, S

(k)
ν/µ〉 = 〈f s(k)

µ , S(k)
ν 〉 .

The ω-involution again has a natural role in our study. Given its action on
k-Schur functions and their dual, with the symmetries (3.10) and (6.6), we find

Proposition 6.12.

ω
(
S

(k)
ν/µ

)
mod J

(k) = S
(k)
νωk /µωk

and ω
(
s
(k)
ν/µ

)
= s

(k)
νωk/µωk

.

The corollary of the next proposition explains why the coproduct of k-Schur
functions in terms of k-Schur functions has the dual k-Littlewood-Richardson coef-
ficients as expansion coefficients, and thus connects the dual k-Schur functions with
the cohomology of the loop Grassmannian based on the conjecture of Shimozono.
Recall (e.g. [24]) that from the coproduct, ∆ : Λ → Λ(x) ⊗ Λ(y) by ∆f = f(x, y),
a bialgebra structure is imposed:

〈∆f, g(x) h(y)〉 = 〈f, gh〉 ,

where the first scalar product is in Λ(x) ⊗ Λ(y).



2038 LUC LAPOINTE AND JENNIFER MORSE

Proposition 6.13. For any λ ∈ Pk and two sets of indeterminants, x and y,

s
(k)
λ/µ(x, y) =

∑
ν

s
(k)
λ/ν(x) s

(k)
ν/µ(y)

and
S

(k)
λ/µ(x, y) =

∑
ν

S
(k)
λ/ν(x) S

(k)
ν/µ(y) .

Corollary 6.14. For any λ ∈ Pk and two sets of indeterminants, x and y,

∆s
(k)
λ = s

(k)
λ (x, y) =

∑
µ,ν

d
λ,k
µν s(k)

µ (x) s(k)
ν (y)

and
∆S

(k)
λ = S

(k)
λ (x, y) =

∑
µ,ν

cλ,k
µν S

(k)
µ (x) S

(k)
ν (y) .

We conclude our exploration of the k-Schurs and their dual by mentioning that
they give rise to a refined Cauchy formula. Letting J(k)(y) stand for J(k) in the y
variables, we have:

Theorem 6.15. Consider two bases of homogeneous symmetric functions, {aλ}λ∈Pk

and {bλ}λ∈Pk for Λk and Λ/J(k), respectively.∏
i,j

(1 − xiyj)−1 mod J
(k)(y) =

∑
λ

aλ(x) bλ(y)

iff 〈aλ, bµ〉 = δλµ for all k-bounded partitions λ and µ. Note that modding out by
J(k)(y) simply amounts to setting yn

j = 0 whenever n > k in the series expansion
of the Cauchy kernel.

Proof. The proof is similar to that of [24], I (4.6). �
Corollary 6.16.∏

i,j

(1 − xiyj)−1 mod J
(k)(y) =

∑
λ1≤k

hλ(x)mλ(y) =
∑

λ1≤k

s
(k)
λ (x)S(k)

λ (y) .

7. Further work

As detailed in the Introduction, the Schur functions provide a vehicle to di-
rectly reach the structure constants for multiplication in the cohomology of the
Grassmannian from the Littlewood-Richardson coefficients. More generally, The-
orem 5.6 implies that the k-Schur functions provide the analogous link between
the quantum structure constants (or 3-point Gromov-Witten invariants) and the
k-Littlewood-Richardson coefficients. There are beautiful combinatorial methods
for computing the Littlewood-Richardson coefficients that use, for example, skew
tableaux or reduced words for permutations. Although there has been progress in
certain cases [2], [3], [4], [14], [15], [27], [28], [30], a combinatorial interpretation
for the 3-point Gromov-Witten invariants in complete generality remains an open
problem. The theory of k-Schur functions suggests a number of natural approaches
to this problem, with an extended notion of skew tableaux to k-skew tableaux, and
the revelation [22] that affine permutations are the appropriate extended notion of
permutations in this study.

The conjecture that the (dual) k-Schur functions are the Schubert basis for the
(cohomology) homology of the loop Grassmannian remains to be proven. More
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generally, this supports the idea that there exists an affine version of Schubert
polynomials related to k-Schur functions. In particular, the (dual) k-Schur functions
are indexed by k-bounded partitions, which are in bijection with affine permutations
in the quotient [7]. Such affine permutations can be considered as the Grassmannian
version of affine permutations. The results here, with the conjectures that the (dual)
k-Schur basis is related to the Schubert basis for the (cohomology) homology of the
loop Grassmannian, suggest that these functions provide the symmetric component
of (dual) affine Schubert polynomials. The first step in this direction is being
developed by Thomas Lam in a forthcoming paper [17] on affine Stanley symmetric
functions.
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