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BRANCH STRUCTURE OF J–HOLOMORPHIC CURVES
NEAR PERIODIC ORBITS OF A CONTACT MANIFOLD

ADAM HARRIS AND KRZYSZTOF WYSOCKI

Abstract. Let M be a three–dimensional contact manifold, and ψ̃ : D \
{0} → M × R a finite–energy pseudoholomorphic map from the punctured

disc in C that is asymptotic to a periodic orbit of the contact form. This
article examines conditions under which smooth coordinates may be defined
in a tubular neighbourhood of the orbit such that ψ̃ resembles a holomorphic
curve, invoking comparison with the theory of topological linking of plane
complex algebroid curves near a singular point. Examples of this behaviour,
which are studied in some detail, include pseudoholomorphic maps into Ep,q ×
R, where Ep,q denotes a rational ellipsoid (contact structure induced by the
standard complex structure on C2), as well as contact structures arising from
non-standard circle–fibrations of the three–sphere.

1. Introduction

The local theory of pseudoholomorphic maps from a Riemann surface into an
almost complex, symplectic 4–manifold (M, J, ω) is developed largely around com-
parisons with the classical theory of plane algebroid curves. Following the initial
investigations of Gromov, in the works of McDuff [12], Micallef and White [14], and
Sikorav [15], methods of construction of local diffeomorphisms between neighbour-
hoods of p ∈ M2k and 0 ∈ Ck (specifically, k = 2) were found in order to exhibit
singular J–holomorphic curves ψ̃ : (C, 0) → (M, p) as being locally equivalent to
holomorphic ones. As a result the local topological data associated with singular-
ities of plane curves can be transferred to the pseudoholomorphic context. Recall
that the germ of an algebraic curve Γ with singularity at 0 ∈ C2 of multiplicity n
is represented by the vanishing locus of a function f(w1, w2) ∈ OC2(U) for some
neighbourhood U of the origin, such that the homogeneous polynomial Hn(w1, w2)
of terms of minimal degree n in the Taylor expansion of f at 0, has n ≥ 2. Each
linear factor of Hn describes a complex tangent line to Γ at 0, hence in order that
the germ of Γ be irreducible at the origin it is necessary that Hn be the n–th power
of a single linear term. If S3

ε bounds a ball of radius ε in U , then the geometric
locus of this term (i.e., ignoring multiplicity) intersects S3

ε in a great circle C corre-
sponding to the axis of a solid torus in which Γ∩S3

ε also describes the trajectory of
an iterated torus knot KΓ. The topological “linking” of KΓ with C provides a set
of numerical invariants in addition to the multiplicity, on which the classification
of singular curve–germs is based (cf., e.g., [2]).
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The existence of a local analytic parametrization of Γ is a problem first stud-
ied systematically by Newton, and later developed rigorously by Weierstrass and
Puiseux among others. Thus Γ may be represented in standard form as the image of
a holomorphic map Φ : (D, 0) → (U ,0) , D ⊆ C, such that Φ(z) = (zn, Σi≥n+1aiz

i)
(cf. [2]). This type of series expansion takes advantage of the natural splitting of
C2 into a product of coordinate planes. In order to conveniently see the relation-
ship between certain essential exponents of the parametrization and the linking
invariants of KΓ, most treatments therefore replace the ball bounded by S3

ε with a
bidisc ∆×∆ (this is, after all, homeomorphic to the ball; hence topological data are
preserved). On the other hand, the totality of all complex 1–dimensional subspaces
of C2 induces a fibration of S3 by great circles, discovered by Hopf. Given a vector
vp ∈ C2 corresponding to p ∈ S3, the standard complex structure J0 defines a vector
field X(p) := J0 · vp which is tangent to the great circle through each p ∈ S3. Via
the Euclidean inner product on R4 ≈ C2, the orthogonal complement of X in TS3

defines a non–integrable plane–field, or “contact structure”, on S3 corresponding to
the kernel of the 1–form λ0 which is the metric dual of X. The splitting of TC2 |S3

induced by this structure provides an alternative natural frame for the relationship
between KΓ and the holomorphic parametrization of plane curves, though we will
return to this matter only in the final section as the “classical model” of a more
general study.

Contact structures are defined on manifolds M of odd dimension, though for the
purposes of this article we will always assume the dimension to be three. If λ is a
1–form representing such a structure, the extension of ω := dλ to M×R determines
a “symplectisation” of (M, λ). Conversely, compact symplectic manifolds (M, ω)
with ends of symplectisation type motivate the role of contact geometry within mod-
ern symplectic topology. Through the work of Hofer, Wysocki and Zehnder [8], [9]
and Eliashberg [3], J–holomorphic curves have been adapted via symplectisation
to contact geometry and topology, specifically as a tool for analysing the Weinstein
conjecture [6] and conversely for explicit construction of moduli of pseudoholomor-
phic maps into manifolds M with symplectisation–type ends [3], [9]. Recall that the
“Reeb vector field” X associated with a given structure λ is uniquely determined by
the conditions λ(X) ≡ 1 , LXλ = 0 (Lie symmetry). The Weinstein conjecture as-
serts that the Reeb flow of a compact contact 3–manifold always admits at least one
closed characteristic (or “periodic orbit”) γ : S1 → M such that γ̇(t) = X(γ(t)). If
ξ ⊂ TM denotes the plane–field corresponding to ker(λ), then a contact structure
on M is said to be “pseudohermitian” when it is equipped with a partial almost
complex structure j ∈ C∞(M, ξ ⊗ ξ∗) such that dλ(∗, j · ∗) |ξ is a positive definite
and symmetric quadratic form. The splitting of TM via X and ξ also provides
a natural extension of j to T (M × R) in relation to which the Cauchy–Riemann
equation is defined for pseudoholomorphic maps into M × R (cf., e.g., [6]).

Let ψ̃ : Σ → M × R be one such map. For any smooth function h : R → [0, 1]
we may extend the contact form to M × R by defining

λh(p, a) = h(a) · λ(p)

to act on each T(p,a)(M × R). In particular, if F1
+ denotes the space of all smooth

h such that the derivative h′ ≥ 0, then the “energy” is given as

E(ψ̃) = sup
h∈F1

+

∫
Σ

ψ̃∗dλh .
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If ψ denotes the projection of ψ̃ onto M and a its projection onto R, recall that

ψ∗dλ = (|ψη|2 + |ψζ |2)dη ∧ dζ ,

where z = η + iζ is a local complex coordinate on Σ. E(ψ̃) consequently vanishes
if and only if ψ̃ is constant – a condition that follows automatically from Stokes’
theorem when Σ is compact; hence pseudoholomorphic maps into symplectisations
are naturally defined on punctured Riemann surfaces. Specifically, let ψ̃ be a finite–
energy map defined on a punctured disc D \ {0} ⊂ C and let r = − ln(|z|) and
ϕ = arg(z) ∈ S1 ≈ R/2πZ. A theorem of Hofer, Wysocki and Zehnder [8] states
that if ψ̃ has unbounded image in M × R, then there exists a real number T �= 0
and a Reeb–periodic orbit γ : S1 → M such that

lim
r→∞

ψ(r, ϕ) = γ(Tϕ) ; lim
r→∞

a(r, ϕ)
r

= T in C∞(S1) .

T is moreover an integer multiple of the minimal period τ of γ and corresponds to
the “charge” limr→∞

1
2π

∫
S1 ψ∗λ of ψ̃ at 0 ∈ D. Closed characteristics of the Reeb

flow are thus realised asymptotically by cylinders mapped pseudoholomorphically
into the corresponding symplectisation of M (we pass over the very substantial
theory devoted to existence of such mappings of cylinders in general; cf., however,
[6], [8]).

The asymptotic relations established in this theorem and refined elsewhere [10]
are fundamental to the present article in which we examine the topological be-
haviour of ψ̃(D \ {0}) within a tubular neighbourhood of P := γ(S1) ⊂ M . Before
summarising our method and results, however, it should be mentioned that they
require added technical hypotheses to be imposed locally upon the Reeb flow itself.
Let ∆ × (R/τZ) (∆ ⊆ R2) be the tubular domain on which a general system of
ordinary differential equations ẋ = f(x), for f smooth and ϑ–periodic (minimal
period τ ) in the coordinates x = (x, y, ϑ) ∈ ∆ × S1, is defined. Suppose that
{x = y = 0} corresponds to a periodic solution γ(ϑ), i.e., if φ(x, y, ϑ) denotes the
associated ϑ–parametric family of diffeomorphisms, depending on initial conditions
(x, y) ∈ ∆ suffciently small, then γ(ϑ) = φ(0, 0, ϑ) , γ(ϑ + τ ) = γ(ϑ). The linear
variational equation for ẋ = f(x) at γ then has the form

(†) ∂

∂ϑ
φ∗(0, 0, ϑ) = f∗(0, 0, ϑ) · φ∗(0, 0, ϑ),

noting that f∗(0, 0, 0) = f∗(0, 0, τ ) and φ∗(0, 0, τ ) = A · φ∗(0, 0, 0) = A, where A
denotes the “holonomy matrix” associated with (†). From the theory of ordinary
differential equations (cf., e.g., [5]) it is well–known that the eigenvalues, or “char-
acteristic multipliers” of A are important in determining the stability of the flow φ
near an orbit P. In particular, 1 is automatically a characteristic multiplier in the
ϑ–direction, while eigenvalues of complex modulus greater than or less than one
imply that the flow will be either unstable or asymptotically stable along closed
surfaces containing P (cf. [5]). Specifically when f corresponds to the Reeb vector
field of a contact structure, the flow φ is area–preserving, hence det(A) = 1 and the
remaining pair of eigenvalues are mutually reciprocal (mutually conjugate if they
are unimodular). Hofer, Wysocki and Zehnder actually use the asumption that A
is not the identity (cf. “non–degeneracy” of P) as a technical hypothesis in obtain-
ing their asymptotic formulae (cf. [8]). From the viewpoint of the present article
this condition has the disadvantage that it does not hold for the Reeb flow of the
standard contact structure on the 3–sphere, corresponding to the Hopf fibration as
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mentioned above. In fact, it does not hold for a large sub–class of the contact struc-
tures which are examined below, although an extension of their methods does allow
these authors to include some contact manifolds that are foliated by periodic orbits
(cf. [10]). The asymptotics have been rederived in a recent thesis of F. Bourgeois
[1], however, by means of the following alternative hypothesis.

Definition 1 (cf. [1]). A contact form λ on M is said to be of “Morse–Bott
type” if, for every T > 0 , NT := {p ∈ M | φ(p, T ) = p} is a smooth, closed,
orientable submanifold of M such that dλ |NT

has locally constant rank, and
TpNT = ker(φ∗(p, T ) − Id).

For present purposes it will henceforth be assumed that all contact structures
under consideration are of Morse–Bott type. Our aim is to understand the extent to
which J–holomorphic cylinders in symplectisations actually link with the periodic
orbits which they approach asymptotically. In this sense the case of algebroid
knots KΓ linking with great circles in the 3–sphere suggests a classical model, since
S3×R is clearly diffeomorphic to C2 \{0} (we will return to this matter below). By
analogy with the work of Sikorav and others we will show that a suitably constructed
diffeomorphism applied to a tubular neighbourhood of P allows ψ̃ to be represented
locally by a holomorphic parametrization, and the sense in which this is possible will
be the subject of sections two and three. The problem of “asymptotic similarity”
addressed here has a global aspect, however, not found in the study of singularities
of J–holomorphic curves. Because of this we have imposed two further conditions
on the pseudohermitian structure:

(1) in a sense to be made precise in section three, P will be said to be “locally
recurrent” if a sufficiently small disc transverse to P can be considered a surface
of section of the Reeb flow (the diffeomorphism of the disc consequently induced
by the return map will be denoted by α). In particular this condition forces the
characteristic multipliers of A to be unimodular, but is a stronger assumption than
orbital stability near P;

(2) it will be assumed that the Reeb flow is not only a Lie symmetry of the contact
form, but also the almost complex structure, i.e., LXj = 0 (hence in particular α
is diffeomorphically equivalent to a rotation).

It now remains to summarise our results.

Theorem 1 (cf. Section 3). Let (ψ, a) : D\{0} → M×R be a J–holomorphic curve
of finite energy and charge n at z = 0, asymptotic to a locally recurrent periodic
orbit P, near which LXλ

j = 0. Consider any tubular neighbourhood of P in M ,
diffeomorphic to ∆ × S1 such that {0} × S1 ≈ P and such that ψ−1(∆ × {ϑ0}) for
some fixed ϑ0 ∈ S1 divides D \ {0} into n “quasi–sectors” Qk. Then there exists a
diffeomorphic change of coordinates in ∆× [0, 2π) such that on each Qk ⊂ D \ {0}
the map (ψ, a) can be expressed in the form

(Fk(z), Hk(z) − 1
2πi

Ĝ(z, z̄)) , 0 ≤ k ≤ n − 1,

where Fk , Hk are holomorphic on Qk and continuous on Qk, such that

Fk |Qk∩Qk+1
= α ◦ Fk+1 |Qk∩Qk+1

,

while each Hk corresponds to an analytic branch of 1
2πi log(ρ) for ρ holomorphic

such that ord0(ρ) = n. Moreover, the function Ĝ belongs to C2(D) and is bounded
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by K|z|. Finally, if α = 1, then each Fk is the restriction of a single function F
holomorphic on D, F (0) = 0.

A representation corresponding to the classical local parametrization of plane
algebroid curves is moreover easily derived when α = 1. In this case the relationship
between charge and algebraic multiplicity also becomes explicit.

In section four we construct a class of pseudohermitian structures on the 3–
sphere for which α = 1, containing the standard structure as a distinct special
case, and using results on characterisation of generalised circle fibrations due to
Gluck and Warner [4]. Recent ideas of McKay [13] relating elliptic line congruences
to “osculating” almost complex structures associated with a four–dimensional real
vector space V are also incorporated in the construction.

Theorem 2 (cf. Section 4). Let J be the osculating complex structure of an elliptic
line congruence Σ ⊂ Gr2(V ), such that the associated skew–symmetric 2–form
ωΣ on V \ {0} is closed. Then the 1–form λ, such that λv := ivωΣ, defines a
(fillable, hence tight) contact structure on S3 for which LXλ

J |ker(λ)= 0 and α = 1.
Moreover, two such structures are equivalent via a diffeomorphism δ of S3 if and
only if δ ∈ O(4).

(The notions of “tight” and “over–twisted” contact structures are important in
the study of global dynamics and topology (cf. [3], [6]) but are not referred to
explicitly in this article.)

The final section is devoted to two examples, the first of which is the standard
structure on S3. Holomorphic maps Φ : (D, 0) → (C2,0) corresponding to irre-
ducible germs of a curve Γ are translated explicitly into pseudoholomorphic maps
Ψ : D → S3 × R such that the tangent to Γ at the origin becomes the locally
recurrent periodic orbit P corresponding to a great circle. We note that α = 1
in this case as a direct consequence of the Hopf fibration restricted to any tubular
neighbourhood of P. It should also be mentioned that the identification of algebraic
curves with finite–energy pseudoholomorphic maps into (S3 × R, λ0, J0) has been
addressed from a different perspective in an article of Hofer and Kriener [7]. The
second example discussed in this section includes the well–known contact struc-
tures λ0 more generally induced by J0 and the Euclidean inner product on rational
ellipsoids

Ep,q = {(w1, w2) ∈ C2 | p|w1|2 + q|w2|2 = 1} ,

where p
q ∈ Q. In this case the hypersurface is foliated by recurrent periodic orbits

such that either α is the identity or a non–trivial rational rotation through either
2π p

q or 2π q
p . Given a tubular neighbourhood ∆ × S1 of one of the two periodic

orbits P for which α is non–trivial, we construct a solid torus ∆′ × S1 with contact
form λ, and a smooth covering map β : ∆ × S1 → ∆′ × S1 such that λ0 = β∗λ and
β∗ ◦ j0 = j′0 ◦ β∗ (where j0 = J0 |ker(λ0) and j′0 = J0 |ker(λ)). Pseudoholomorphic
maps asymptotic to this orbit in ∆× S1 then project pseudoholomorphically via β
into ∆′×S1, where the central axis is a recurrent orbit of the projected Reeb vector
field such that α′ = 1. Working backwards from a holomorphic parametrization in
∆′×S1×R, we then explicitly construct pseudoholomorphic maps (ψ, a) : D\{0} →
∆ × S1 × R according to the prescription of Theorem 1 (cf. section 5).

The authors would like to thank Dr. S. Gadde and Dr. Y. Tonegawa for helpful
and stimulating discussions on occasions during the period of research for this
article. The first author also gratefully acknowledges the support of an Australian
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Research Council grant during the initial phase of work undertaken at the University
of Melbourne.

2. Local model of parametrization

In this section we will first review the phenomenon of holomorphic similarity in
the neighbourhood of a smoothly embedded point, using this as a model for the
asymptotic case to follow. Let M be a closed, oriented three–manifold with contact
form λ and associated Reeb vector field Xλ. If ξ ⊂ TM denotes the sub-bundle
corresponding to the kernel of λ, let J be an almost complex structure on ξ which is
compatible with λ. Consider a Riemann surface Σ and a pseudoholomorphic map

(ψ, a) : Σ → M × R.

Let p0 ∈ im(ψ) be a smoothly embedded point, and let D be a neighbourhood of
ψ−1(p0) with complex coordinate z = η + iζ such that z(ψ−1(p0)) = 0. For all
p ∈ M and all v ∈ TpM , consider the projection map πp : TpM → ξp defined by
πp(v) = v − λp(v) · Xλ. Then ψ satisfies the equations

π(ψη) + Jπ(ψζ) = 0,(∗)
λ(ψζ) = −aη λ(ψη) = aζ .(†)

We recall as a consequence that

ψ∗dλ = (|π(ψη)|2 + |π(ψζ)|2)dη ∧ dζ ,

hence Xλ(p0) does not belong to the image of ψ∗ at the origin of D if and only
if |π(ψη)|2 + |π(ψζ)|2 does not vanish there – a fact which is in turn granted by
the assumption that p0 is smoothly embedded. Now choose a system of Darboux
coordinates (x1, x2, x3) neighbouring p0 in M . Within this neighbourhood the
image of ψ may then be realized as the graph of a smooth function x3 = f(x1, x2).
Noting that λ = dx3 + x1dx2 and Xλ = ∂

∂x3
in these coordinates, we remark that

πp(v1, v2, v3) = (v1, v2,−x1v2) ;

hence the standard projection (v1, v2, v3) �→ (v1, v2) defines a linear isomorphism
µ between ξp and R2 for all p near the origin at p0. It follows that µ ◦ J ◦ µ−1

corresponds to a 2 × 2 matrix j, the restriction of which to the graph of im(ψ)
depends only on the coordinates x := (x1, x2). Under projection by µ, equation (∗)
then becomes

xη(η, ζ) + j(x) · xζ(η, ζ) = 0 .

Letting e1 denote the vector (1, 0), consider the system of ordinary differential
equations

dx

dt
= j(x) · e1 ,

and define a local diffeomorphism ϕ near p0, via existence and uniqueness of solu-
tions, such that

(ẋ1, ẋ2) = j(x1, x2) · e1 ⇒ ϕ(x, t) := (x1(t), x2(t)) , ϕ(x, 0) = (x, 0) .

Hence

ϕ−1
∗ ◦ j ◦ ϕ∗ = j0 =

(
0 −1
1 0

)
,

and x̃η := ϕ−1
∗ (xη) , x̃ζ := ϕ−1

∗ (xζ) implies

x̃η(η, ζ) + j0 · x̃ζ(η, ζ) = 0 .
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Or, more simply, writing w = x + it, we have w = F (z) on a possibly smaller disc
D′ ⊆ D ⊂ C, containing the origin, such that F (0) = 0 , ∂F

∂z̄ = 0.
Within the coordinate neighbourhood defined by (x, t, x3), we now revisit the

equations (†), with respect to

λ′ = (ϕ × 1)∗λ = dx3 + f1(x, t)dx + f2(x, t)dt ,

in the form

λ′(Ψη) = (x3)η + f1(x, t)xη + f2(x, t)tη = aζ ,

λ′(Ψζ) = (x3)ζ + f1(x, t)xζ + f2(x, t)tζ = −aη ,

where Ψ := (ϕ × 1)−1ψ. Hence u = x3 + ia implies

∂u

∂z̄
= −{f1(x, t)

∂x

∂z̄
+ f2(x, t)

∂t

∂z̄
}

= −{f1(F (z), F (z))
∂

∂z̄
�(F ) + f2(F (z), F (z))

∂

∂z̄
�(F )}

= −1
2
[(f1 + if2) ◦ F (z)] · F ′(z) := −F ∗ω ,

where ω := 1
2 (f1(w, w̄) + if2(w, w̄))dw̄. Let ∆ denote a small disc centred at the

origin of the (x, t)–plane, and apply the Cauchy–Green formula to obtain a smooth
function g(w, w̄) , g(0) = 0 satisfying the equation ∂̄g = ω on ∆. Then we have

F ∗ω = ∂̄(F ∗g) = ∂̄(g ◦ F ) .

Hence for the parametrization of Ψ we now have the system of equations

w = F (z) ; u = H(z) − g ◦ F (z) ,

with respect to holomorphic functions F and H, which simplifies under the coor-
dinate transformation

w′ = w ; u′ = u + g(w, w̄) − ia(0)

to u′ = H(z)−ia(0). Finally, ord0(H−ia(0)) = n implies there exists a holomorphic
function h(z), h(0) = 0 , h′(0) �= 0, on a possibly smaller disc D′ ⊆ D, such that
H − ia(0) = hn; hence z′ := h(z) implies

w′ = F ◦ h−1(z′) ; u′ = (z′)n ,

which corresponds to the classical local parametrization of algebroid curves in C2.
In the following section we will examine a class of periodic orbits near which the
analytic representation of the local model above can be achieved in a similar manner.

3. Asymptotic approximation near a periodic orbit

Consider a periodic orbit of the Reeb flow, denoted P, and a tubular neighbour-
hood TP ⊂ M . If ∆ represents a disc centred at the origin in R2, let ∆̃ ⊂ M
be an embedded image such that the origin is mapped to the unique element p0

of P ∩ ∆̃, with ∆̃ itself corresponding to a transverse slice of TP . The Reeb flow
will be assumed moreover to be Lyapunov–stable near P in the sense that for all
p ∈ ∆̃′, where ∆′ ⊆ ∆ is a sufficiently small disc centred at the origin, there exists
a unique solution γp : [0,∞) → M to the equation

dγp

dt
= Xλ(γp(t)) , γp(0) = p ,
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which depends smoothly on both t and p, and remains inside TP for all t ≥ 0.
Given p ∈ ∆̃′, we will define (i) τ (p) to be the smallest t > 0 such that γp(t) ∈
∆̃, (ii) Γp := γp((0, τ (p)]), and for each connected open neighbourhood of the origin
Ω ⊆ ∆̃ ,

(iii) Γ(Ω) :=
⋃

p∈Ω×{θ0}
Γp .

We may now consider a recursively defined system of neighbourhoods {Ωk}, such
that Ω0 := ∆̃′, while Ωk denotes the origin–component of Γ(Ωk−1)∩Ωk−1. The set
Ω∞ :=

⋂∞
k=0 Ωk measures an important dynamic aspect of the Reeb flow.

Proposition 1. If Ω∞ is open, then it is conformally equivalent to a disc.

Proof. Conformal equivalence to a disc will follow immediately if Ω∞ can be shown
to be simply connected, which we now prove by induction: Ω0 = ∆̃′. Suppose Ωk

is simply connected, and let C ⊂ Ωk+1 be a simple closed loop. By the existence
and uniqueness of ordinary differential equations C can be traced back under the
Reeb flow to a simple closed loop C ′ which bounds a contractible subdomain, say
U ⊂ Ωk. Once again, existence and uniqueness ensures that for all p ∈ U we have
Γp ∩ Γ(C ′) = ∅, while the Jordan Curve Theorem for plane domains implies that
the domain bounded by a given closed simple loop is unique. It follows that

C = Γ(∂U) ∩ Ωk = ∂Γ(U) ∩ Ωk = ∂(Γ(U) ∩ Ωk) .

Moreover, Γ(U) ∩ Ωk is a homeomorphic image of U , and is therefore itself a con-
tractible subdomain, hence Ωk+1 is simply connected.

Now consider a simple closed loop C ⊂ Ω∞, i.e., C ⊂ Ωk for all k, and hence
there exists a contractible subdomain Uk in Ωk such that ∂Uk = C. But uniqueness
of the interior of C of course implies that Uk ≡ U for all k, and hence U ⊂ Ω∞. �

Definition 2. The Reeb flow will be said to be “locally recurrent” near a periodic
orbit P if it is Lyapunov–stable within a tubular neighbourhood TP and for any
sufficiently small embedded disc ∆̃, corresponding to a transversal slice through TP
at some point p0, the limit set Ω∞ ⊆ ∆̃′ ⊆ ∆̃ is open. An orbit P itself may also
be referred to as “locally recurrent” in this context.

As mentioned in section 1, the treatment of a finite–energy pseudoholomorphic
map (ψ, a) : Σ → M × R from a punctured Riemann surface, asymptotic to a
periodic orbit, may be restricted to a map between D\{0} ⊂ C and, for convenience,
the Martinet neighbourhood ∆×S1 × [a0,∞) of P, with coordinates (x, y, θ, a) (cf.
[8], [10], [11]). In particular, for p0 corresponding to the origin of ∆, we have
γ0(t) = (0, 0, ei(θ0+2πt/τ0)), where τ0 denotes the minimal period of P. In relation
to the asymptotic results of [8], it will sometimes be convenient to use cylindrical
coordinates on D\{0}, viz. (r, ϕ) = (− ln(|z|), arg(z)) ∈ [r0,∞)×S1. In particular,
the charge of the puncture is given by

T :=
1
2π

lim
r→∞

∫
S1

ψ∗λ ,

and is a well–defined integer multiple of τ0 (cf. [8]). Within this coordinate system,
the asymptotic relations of Hofer, Wysocki and Zehnder (mentioned in section one)
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may be interpreted as

a(r, ϕ) = Tr + a0 + ε(r, ϕ) ,

θ(r, ϕ) = T (
ϕ

τ0
) + θ0 + δ(r, ϕ) ,

with ε , δ approaching zero uniformly in ϕ as r → ∞. For |z| sufficiently small
(i.e., r sufficiently large) we may think of θ−1(θ0) as a union of radial arcs meeting
at the origin and differing by only a small perturbation from the rays defined by
arg(z) = 1

n (θ0 + 2πk), 0 ≤ k ≤ n − 1, where n = T
τ0

. Hence we will consider
D \ {0} as a union of n quasi–sectors Qk, bounded by these arcs, on which the
quasi–analytic “branches” of (ψ, a) are defined.

For the local model in section 2 it was sufficient to assume that ψ is a local
embedding in order to represent the image as a graph on which the restriction of
an almost complex structure J depends on just two of the coordinates of a Darboux
chart. Under the assumption that the Reeb flow is locally recurrent near P, we now
select Ω∞ × {θ0} as a coordinate disc within the initial Martinet tube (on which
λ = f · (dϑ + xdy), for a function f such that f(0, 0, ϑ) ≡ τ0 and ∇f(0, 0, ϑ) ≡ 0
as described in [8], [11], though these facts are not used here). Without loss of
generality, let θ0 be zero and consider the cylinder Ω∞ × [0, 2π], which maps to
the tube via the obvious identification mod(2π). The cylinder has P as its axis,
x = y = 0, and the Reeb vector field in Martinet coordinates already looks like 1

τ0

∂
∂θ

when restricted to P. There is no consequent loss of generality if we “normalise” λ
by the constant multiple 1

τ0
, so that the minimal period is effectively 1, and hence

the charge T is an integer. By analogy with the standard construction of Darboux
coordinates, the next step is to define

C := {(p, t) | p = (x, y) ∈ Ω∞ , 0 ≤ t ≤ τ (p)}

and a homeomorphism

h : C → Ω∞ × [0, 2π] , h |Ω∞×{0}= 1 ,

which is smooth for all 0 < t < τ (p), coming from solutions of the ordinary differ-
ential equation

dγp

dt
= Xλ(γp(t)) .

It follows that on the interior of C, the standard contact form λ0 and λ′ := h∗λ
have the same Reeb vector field, corresponding to ∂

∂t . We now consider the Cauchy–
Riemann system

π((h−1ψ)η) + Jπ((h−1ψ)ζ) = 0,(∗∗)
λ′((h−1ψ)ζ) = −aη λ′((h−1ψ)η) = aζ .(††)

As in the local model, for a sufficiently “thin” neighbourhood of P, the standard
projection (v1, v2, v3) �→ (v1, v2) determines a linear isomorphism µ between ξ′ :=
ker(λ′) and R2. Hence we define a 2×2 matrix–valued function j(x, y) = µ◦J ◦µ−1,
such that x := (x, y) implies (∗∗) can be written in the form

xη(z) + jxζ(z) = 0 .

Let α denote the diffeomorphism of Ω∞ × {θ0} defined by the return map α(p) :=
γp(τ (p)), hence α(0) = 0.
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Lemma 1. If LXλ
J = 0, then in a neighbourhood of 0 ∈ ∆, the smooth automor-

phism α is diffeomorphically equivalent to a rotation.

Proof. Letting e1 denote the vector (1, 0), consider the system of ordinary differ-
ential equations

dx

ds
= j(x) · e1 ,

and define a local diffeomorphism ϕ : ∆′′ → U ⊆ Ω∞ via existence and uniqueness
of solutions, such that

(ẋ1, ẋ2) = j(x) · e1 ⇒ ϕ(x, s) := (x1(s), x2(s)) ,

ϕ(x, 0) = (x, 0) . Hence

ϕ−1
∗ ◦ j ◦ ϕ∗ = j0 =

(
0 −1
1 0

)
.

Let Ω′
∞ denote the simply connected domain inside U which is stabilised by

the Reeb flow. The diffeomorphism α̂ := ϕ−1 ◦ α ◦ ϕ then acts on ϕ−1(Ω′
∞) ⊆

∆′′ as a restricted automorphism such that α̂(0) = 0 under the assumption of
local recurrence. The additional assumption LXλ

J = 0 implies that α∗j = j,
hence in particular α̂j0 = j0α̂, i.e., α̂ is a conformal automorphism. Modulo a
conformal transformation identifying ϕ−1(Ω′

∞) with a disc, α̂ is then equivalent to
a rotation. �

Now x̃ζ := ϕ−1
∗ (xζ) and x̃η := ϕ−1

∗ (xη) implies

(†*) x̃η(η, ζ) + j0 · x̃ζ(η, ζ) = 0.

Note that each “branch” of

Ψ := (h ◦ (ϕ × 1))−1ψ

is defined smoothly in the interior and continuously up to the boundaries of a quasi–
sector Qk in D \ {0}, but discontinuities arise at points z0 lying on the smooth
arcs that bound adjacent sectors (in the usual way “±” will be used to denote
opposite sides of the boundary). Discontinuities of the transverse projection of Ψ
are therefore described by the relations

lim
z→z±

0

x̃(z) := x̃±(z0) ⇒ α̂(x̃−(z0)) = x̃+(z0) .

Hence on each Qk ⊂ D\{0} , (†∗) defines a holomorphic function w = Fk(z) which
partially describes a branch of Ψ, such that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

, 0 ≤ k ≤ n − 1 .

Lemma 2. If the Reeb flow determines a fibration of a tubular neighbourhood by
periodic orbits over Ω∞, i.e., α = 1, then there is a single holomorphic function
F (z) on D, F (0) = 0, describing the transverse projection of Ψ.

Proof. α = 1 implies the existence of a function F (z), continuous on D and holomor-
phic on the interior of each quasi–sector. The demonstration that F is holomorphic
on D is a standard application of Morera’s Theorem (and the Removable Singu-
larities Theorem at the origin). Specifically, let z0 lie on one of the smooth arcs
bounding a quasi–sector and let z′ = η′ + iζ ′ be a local complex coordinate with
respect to which the arc is locally described as the graph of a function ζ ′ = ρ(η′).
Let Γ be a simple loop inside the z′–coordinate neighbourhood of z0. Clearly if Γ
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does not intersect the arc, then F must be holomorphic on a slightly larger domain
containing Γ, hence ∫

Γ

F dz′ = 0 .

If Γ intersects the arc, consider a simple affine coordinate transformation so that
the cord joining the endpoints a, b of the intersection is now the axis corresponding
to ζ ′ = 0. Hence, without loss of generality, we may assume ρ(a) = ρ(b) = 0. Let γ
denote the arc corresponding to the graph between a and b, and for ε > 0 let γ±ε

denote the arcs corresponding to ζ ′ = ρ(η′)± ε, lying between a± iε and b± iε and
on either side of γ. From the continuity of F it follows that∫

γ

F dz′ =
∫ b

a

F (η′ + iρ(η′))dη′ = lim
ε→0

∫ b

a

F (η′ + i(ρ(η′) ± ε)) dη′

= lim
ε→0

∫
γε

F dz′ .

Now decomposing Γ into two simple loops Γ± having γ as their common boundary
component, and applying the above limit, we see that∫

Γ

F dz′ = 0 .

Hence F extends holomorphically to a neighbourhood of z0. �

Now returning to the particular form of the equations (††) in C note that any λ′

with ∂
∂t as its Reeb vector field must take the general form

λ′ = dt + f1(x)dx + f2(x)dy .

As was seen with respect to a Darboux chart of the local model, such a local
presentation of the contact form allows decoupling of (††) into an inhomogeneous
Cauchy–Riemann equation. This property is preserved under the diffeomorphism
ϕ, however, if it is assumed that LXλ

J = 0, hence in particular the matrix j above
is independent of t. In this case, letting u = t + ia, (††) becomes

∂

∂z̄
[u |Qk

] = −{f1(Fk(z))
∂�(Fk)

∂z̄
+ f2(Fk(z))

∂�(Fk)
∂z̄

}

= −1
2
[(f1 + if2) ◦ Fk(z)] · F ′

k(z) ,

keeping in mind that this equation is defined smoothly only on the interior of each
quasi–sector Qk. Define ω := 1

2 (f1 + if2)(w, w̄)dw̄, so that

λ′ = dt + 2�(ω) , and
1
2
[(f1 + if2) ◦ Fk(z)] · F ′

k(z)dz̄ = F ∗
k ω .

Now LXλ
λ = 0 implies α̂∗�(ω) = �(ω). In particular, f := (f1, f2) implies

�(ω) = (f , ∗) with respect to the standard inner product on R2, and hence α̂t
∗f = f .

Similarly �(ω) = (j0f , ∗), while LXλ
J = 0 implies α̂t

∗j0 = j0α̂
t
∗, so that

α̂∗�(ω) = (α̂t
∗j0f , ∗) = (j0f , ∗) = �(ω) .
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It follows that α̂∗ω = ω, and hence

F ∗
k ω |Qk∩Qk+1

= F ∗
k (α̂∗ω) |Qk∩Qk+1

= (α̂ ◦ Fk)∗ω |Qk∩Qk+1

= F ∗
k+1ω |Qk∩Qk+1

.

There now exists a continuous function G(z, z̄) on D such that

G(z, z̄)dz̄ |Qk
:= F ∗

k ω , 0 ≤ k ≤ n − 1 .

Letting Φ(w, w̄) = f1 + if2 and assuming, from Lemma 1, that α̂ is a rotation, we
may write

α̂∗ω = ω ⇒ Φ ◦ α̂(w, w̄) = α̂−1Φ(w, w̄) .

It is easily seen that

Φw ◦ α̂(w, w̄) = |α̂|−2Φw , Φw̄ ◦ α̂(w, w̄) = α̂−2Φw̄ ,

and hence
∂G

∂z
|Qk∩Qk+1

= Φw(Fk+1) · |F ′
k+1|2

= Φw(α̂ · Fk) · |α̂ · F ′
k|2 = Φw(Fk) · |F ′

k|2 ,

while
∂G

∂z̄
|Qk∩Qk+1

= Φw̄(Fk+1) · (F̄ ′
k+1)

2 + Φ(Fk+1) · F̄ ′′
k+1

= Φw̄(α̂ · Fk) · (α̂ · F ′
k)2 + Φ(α̂ · Fk) · α̂ · F ′′

k

= Φw̄(Fk) · (F̄ ′
k)2 + Φ(Fk) · F̄ ′′

k .

Thus G is a continuously differentiable function, and

Ĝ(z, z̄) :=
∫

D

G(µ, µ̄)
µ − z

dµ ∧ dµ̄

is a twice-continuously differentiable function on D. We may therefore write the
solutions u = Hk(z)− 1

2πi Ĝ(z, z̄) for a holomorphic function Hk defined on each Qk.
Now a(z) = �(u) is a smooth function on D\{0}, while Ĝ belongs to C2(D). Hence
�(Hk(z)) must in fact correspond to a single function h(z) for all k, which belongs to
C2(D\{0}) and is harmonic inside each Qk, therefore harmonic throughout D\{0}.
Moreover, the harmonic conjugate of h is uniquely defined up to a constant, hence
we have a single harmonic function ĥ on the punctured disc such that

�(Hk(z)) = ĥ(z) + ck , 0 ≤ k ≤ n − 1 .

Recall that �(u) corresponds to t such that 0 < t < τ (p) for some (p, t) belong-
ing to the image of Ψ. Discontinuities of t along the boundaries of each Qk are
consequently determined by τ (p), i.e.,

lim
z→z−

0

ĥk(z) = lim
z→z+

0

ĥk+1(z) + τ (x̃−(z0))

for z0 lying in the boundary arc Qk ∩ Qk+1. From the discussion above it follows
that τ (x̃−(z)) must be constant for Ψ restricted to a boundary arc. By continuity of
these arcs as they radiate from the origin of D, this constant value must correspond
to τ0, or 1 if λ is assumed to have been normalised. The arcs themselves were
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originally defined by the arbitrary choice of θ0 ∈ S1, hence we may conclude that
τ (p) = 1 for all p ∈ Ω′

∞. Moreover, we have

ck+1 − ck = 1 , 0 ≤ k ≤ n − 1 ,

where, without loss of generality, we may set c0 = 0, hence ck = k. Recalling the
asymptotic formulae a(z) = − ln |z|n +ε(z) and θ(z) = arg(zn)+δ(z), one may also
notice the approximation of the holomorphic part of u by the branched analytic
function log(zn). Specifically,

u =
1

2πi
{log(ρ(z)e−Ĝ(z,z̄))} ,

where the analytic function ρ(z) := e2πH(z) has order n at z = 0, and K :=
supD|G(z, z̄)| implies

1
2π

|Ĝ(z, z̄)| =
1
2π

|
∫

D

G(µ, µ̄)
µ − z

dµ ∧ dµ̄| ≤ K|z|

is uniformly bounded in the parameter arg(z), i.e.,

lim
r→∞

|Ĝ(r, ϕ)| = 0 in C0(S1) .

In summary, we have the following

Theorem 1. Let (ψ, a) : D \ {0} → M × R be a J–holomorphic curve of finite
energy and charge n at z = 0, asymptotic to a locally recurrent periodic orbit P, near
which LXλ

J = 0. Consider any tubular neighbourhood of P in M , diffeomorphic to
∆× S1 such that {0}× S1 ≈ P. There exists a diffeomorphic change of coordinates
in ∆ × [0, 2π) such that on each quasi–sector Qk ⊂ D \ {0} the map (ψ, a) can be
expressed in the form

(Fk(z), Hk(z) − 1
2πi

Ĝ(z, z̄)) , 0 ≤ k ≤ n − 1,

where Fk, Hk are holomorphic on Qk and continuous on Qk, such that

Fk |Qk∩Qk+1
= α̂ ◦ Fk+1 |Qk∩Qk+1

,

while each Hk corresponds to an analytic branch of 1
2πi log(ρ), ord0(ρ) = n. More-

over, the function Ĝ belongs to C2(D) and is bounded by K|z|. Finally, if α = 1,
then each Fk is the restriction of a single function F holomorphic on D, F (0) = 0.

A representation corresponding to the classical local parametrization of plane
algebroid curves is easily obtained as follows for the case α = 1. Let

g(w, w̄) :=
1

2πi

∫
∆′

(f1 + if2)(µ, µ̄)dµ ∧ dµ̄

µ − w
,

so that ∂̄g = ω. Then

G(z, z̄)dz̄ = F ∗ω = F ∗(∂̄g)

= ∂̄(F ∗g) = ∂̄(g ◦ F ) ,

and hence Ĝ = 2πi(g ◦ F + Ĥ), for some holomorphic function Ĥ. Now define a
coordinate

v := e2πiu = ρ(z)e−Ĝ = ρ(z)e−g◦F−Ĥ
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and let ρ(z)e−Ĥ = f(z)n for some holomorphic function f on D′ ⊆ D, with f ′(0) �=
0. Now ξ := f(z) implies w = F (z) = F ◦ f−1(ξ), while v = ξne−g◦F◦f−1(ξ). From
the final coordinate diffeomorphism w′ = w; v′ = veg(w,w̄), it now follows that

w′ = F ◦ f−1(ξ) ; v′ = ξn .

4. α = 1: Circle fibrations of S3

A class of examples of tight contact structures for which α = 1 and LXλ
J = 0

near a periodic orbit is provided by the circle fibrations of S3, of which the most
elementary instances are the Hopf fibrations. Given a four–dimensional real vector
space V , these fibrations correspond to families of invariant planes (i.e., “complex
lines”) distinguished by linear endomorphisms J0 determining standard complex
structures on V , and are parametrised by O(4)/U(2). The base space of each such
fibration is a (Riemann) sphere inside the Grassmann manifold Gr2(V ). More gen-
eral fibrations correspond to families of planes (“line congruences”) parametrised
by compact surfaces Σ ⊂ Gr2(V ). A line congruence is said to be elliptic if for all
P ∈ Σ, there exists a 2–sphere S corresponding to some J0 such that TP Σ = TP S

inside Gr2(V ), hence in particular Σ is itself diffeomorphic to a sphere. Let
∧2

V
denote the space of exterior 2-forms, on which the duality operator acts in the stan-
dard way. The spaces of “self-dual” and “anti–self–dual” forms then correspond
to +1 and –1 eigenspaces of this operator, defining a direct sum decomposition∧2

V ∼=
∧2

+

⊕∧2
−. If S+ and S− denote the 2–spheres of radius 1√

2
inside each of

these eigenspaces, then the Grassmann manifold of oriented 2–planes of V is well–
known to correspond to S+ × S−. Moreover, it was shown by Gluck and Warner
[4] that the surfaces Σ of generalised Hopf fibrations are precisely the graphs of
distance–decreasing smooth maps f : S− → S+, with standard Hopf fibrations cor-
responding to constant maps. In [13], McKay also observed that they correspond to
general elliptic line congruences and hence determine non–linear complex structures
on V which “osculate” with linear structures at each P ∈ Σ. We apply this idea to
the explicit construction of contact structures on S3 as follows. Let J (V ) denote
the space of linear endomorphisms of V corresponding to linear complex structures.
Then it was shown in [13] that each elliptic line congruence Σ determines a map

J : Σ → J (V ) ⊂ V ⊗ V ∗

such that for each plane P ∈ Σ, J(P ) is linear and is the “osculating” structure to
Σ at P in the sense that both P and P⊥ (with respect to a given inner product
on V ) are complex lines relative to J(P ). The family of planes determined by Σ
describes a rank–two vector bundle P π−→ Σ such that the total space, corresponding
to the incidence manifold P = {(v, P ) ∈ V × Σ | v ∈ P}, also maps surjectively
to V . In fact, there exists P σ−→ V such that P \ σ−1(0) ∼= V \ {0}. Hence define
ϕ := π ◦ σ−1 : V \ {0} → Σ, so that ϕ−1(P ) = {v ∈ V \ {0} | v ∈ P}.

Consider the pullback ϕ∗J : V \ {0} → V ⊗ V ∗. Hence with respect to a
designated orthonormal basis of V , noting that J and ϕ∗J are skew–symmetric
matrix–valued functions, we may represent it in the form

ϕ∗J = Σµ.νJµν ∂

∂xµ
∧ dxν .
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Note moreover that the isomorphism V ∗ ∼= V via the Euclidean inner product
allows us to define a 2–form ωΣ := Σµ.νJµνdxµ ∧ dxν . In the following, let iv
denote contraction of a form by the position vector v = 1

2Σηvη
∂
∂η .

Lemma 3. If dωΣ = 0, then ωΣ(v) = d(ivωΣ).

Proof.

ivωΣ =
1
2
Σµ<νJµν(xµdxν − xνdxµ)

=
1
2
Σβ �=α(−1)εxβJαβdxα ,

where

ε =
{

0, β < α,
1, β > α .

Therefore

d(ivωΣ) = ωΣ +
1
2
Σγ<α�=β(−1)εxβ(

∂Jαβ

∂xγ
− ∂Jγβ

∂xα
)dxγ ∧ dxα

= ωΣ +
1
2
Σγ<α�=βxβ

∂Jγα

∂xβ
dxγ ∧ dxα

(using the relations provided by dωΣ = 0)

= ωΣ +
1
2
Σγ<α(∇vJγα)dxγ ∧ dxα .

Note that the functions Jγα, obtained by pulling back J , are constant in the radial
directions of V , hence the directional derivatives ∇vJγα = 0 for all v ∈ V \ {0}.

�

Now define the 1–form λΣ := ivωΣ for ωΣ closed, noting that if [J ] denotes the
matrix of ϕ∗J , then we may express λΣ in terms of the inner product as

λΣ(w) = −(w, [J ] · v)

for all w ∈ V . Moreover, let Xλ be the vector field defined by Xλ(v) = −[J ] · v, so
that

(i) Xλ is tangent to S3, since

(v, Xλ(v)) = −(v, [J ] · v) = −([J ]t · v, v) = ([J ] · v, v) ,

hence (v, Xλ(v)) = 0,
(ii) λΣ(Xλ) = |[J ] · v|2 = 1, since [J ]v ∈ O(4) for each v ∈ V \ {0}, and
(iii) for all w , u ∈ V we have

ωΣ(w, u) = Σµ<νJµν(wµuν − wνuµ) = (w, [J ] · u) ,

and hence
iXλ

ωΣ = −(∗, [J ]2 · v) = (∗, v) = 0
when restricted to TS3. Clearly ϕ∗J is preserved by the Reeb flow, i.e., LXλ

ϕ∗J =
0. Moreover, if Pv denotes the subspace spanned by {v , [J ]·v}, then ker(λ)∩TS3 =
P⊥

v is also an invariant subspace of [J ]v, so we may write j := [J ] |P⊥
v

for all v ∈ S3.
In particular, for all ξ ∈ ker(λ), we have ωΣ(ξ, j · ξ) = −|ξ|2, which means that λΣ

is a contact structure compatible with the partial complex structure j.
It should be mentioned that all Hopf fibrations, including the non–linear ones,

are smoothly equivalent as circle bundles (cf. [4]), and yet at the level of contact
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structures they are distinct. For suppose δ : S3 → S3 is a diffeomorphism that
identifies the Reeb flows of a given structure λΣ and that of the standard structure
λ0. In particular, suppose that δ∗Xλ = Xλ0 and δ∗◦ϕ∗J◦δ−1

∗ = J0, where J denotes
the osculating complex structure associated with λΣ. Now assume in addition that
δ∗λ0 = λΣ, hence

δ∗λ0(u) = λ0(δ∗u) = (δ∗u , J0 · v) = λΣ(u) = (u , ϕ∗J · δ−1
∗ v) .

Therefore
(δ∗u, J0 · v) = (u, δ−1

∗ J0δ∗δ
−1
∗ v) = (u, δ−1

∗ J0 · v) ,

that is,
(u, δt

∗J0 · v) = (u, δ−1
∗ J0 · v) ,

and hence δt
∗Xλ0 = δ−1

∗ Xλ0 (or, conversely, δ∗Xλ = (δt
∗)−1Xλ). On the other hand,

(δ∗u, J0 · v) = ((δ−1
∗ )tu, J0 · v) if and only if

(δ∗u, δ∗ϕ
∗Jδ−1

∗ v) = ((δ−1
∗ )tu, δ∗ϕ

∗Jδ−1
∗ v),

i.e., letting v′ := δ−1
∗ v,

(δt
∗δ∗u, ϕ∗J · v′) = (u, ϕ∗J · v′) .

In particular, we see that ker(λΣ) is an invariant subspace of δt
∗δ∗. Note moreover

that
δt
∗δ∗ϕ

∗Jδ−1
∗ (δt

∗)
−1 = (δ−1

∗ J t
0δ∗)

t = ϕ∗J ,

which implies that δt
∗δ∗ |ker(λ) is complex–linear. But since it is clearly symmetric,

it follows that δt
∗δ∗ |ker(λ)= c ·I for some c ∈ R\{0}. Now d(δ∗λ0) = δ∗(dλ0) = dλΣ

implies

dλΣ(u, w) = dλ0(δ∗u, δ∗w) = (δ∗u, J0 · δ∗w)

= (u, δt
∗J0δ∗w) = (u, δt

∗δ∗ϕ
∗J · w) = (u, ϕ∗Jδt

∗δ∗w) = c(u, ϕ∗J · w)

(if w ∈ ker(λΣ)), and hence

dλΣ(u, w) = c · dλΣ(u, w) , i.e., c = 1 .

We conclude that δt
∗ = δ−1

∗ , and hence that δ ∈ O(4), which restricts any such
equivalence of contact structures to the family of linear Hopf fibrations. In sum-
mary:

Theorem 2. Let J be the osculating complex structure of an elliptic line congruence
Σ ⊂ Gr2(V ), such that the skew–symmetric 2–form ωΣ on V \ {0} is closed. Then
the 1–form λ, such that λv := ivωΣ, defines a fillable, hence tight, contact structure
on S3 for which LXλ

J = 0 and α = 1. Moreover, two such structures are equivalent
via a diffeomorphism δ of S3 if and only if δ ∈ O(4).

5. The classical models of the sphere and rational ellipsoids

As an explicit illustration of Theorem 1, we will first examine the classical case
of analytic curves in C2. The realization of algebraic curves as finite-energy pseu-
doholomorphic maps has also been examined in [7], though from a slightly different
point of view. Let M = S3 ⊆ C2, with

(λ0)v = (∗, J0 · v) |TS3
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the standard contact form defined with respect to the complex structure J0 of
C2 and the Euclidean inner product of R4. M is then defined by the equation
|w1|2 + |w2|2 = 1 with respect to complex coordinates in C2, while

λ0 = �(−i(w̄1dw1 + w̄2dw2)) .

Consider Φ(z) : D → C2 a complex–analytic curve defined on a neighbourhood of
the origin in C such that Φ(z) = (zn, ρ(z)) and ord0(ρ) ≥ n + 1, hence Φ has a
singularity of multiplicity n at (0, 0). The corresponding map (ψ, a) : D → S3 × R

is given by

ψ(z) = [|ρ|2 + |z|2n]−
1
2 (zn, ρ(z)) ,

a(z) = −1
2

ln(|z|2n + |ρ|2) = −n ln |z| − 1
2

ln(1 + |z|−2n|ρ|2) .

The periodic orbit P corresponds simply to the circle defined by {w2 = 0}∩S3 and is
associated with the degenerate tangent cone of Φ at (0, 0). It is, moreover, a simple
calculation to verify that chargez=0(ψ) = n. Consider the proper holomorphic map
σ : OP1(−1) → C2 , where OP1(−1) denotes the complex line bundle of Chern class
equal to –1 on the Riemann Sphere P1(C) = σ−1(0), with σ : OP1(−1) \ σ−1(0) ∼=
C2 \ {0}, given in local coordinates by the quadratic transformation w1 = µ , w2 =
µν. Noting that |µ|2(1+ |ν|2) = 1 on the chart of σ−1(S3) corresponding to ν �= ∞,
we have

σ∗λ0 = �(−i(µ−1dµ + ν̄|µ|2dν)) ;

moreover, for each ν ∈ P1(C) \ {∞}, the Hopf fibration corresponding to

� : σ−1(S3) → P1(C) ≈ S2

has fibres �−1(ν) = {µ ∈ C | |µ| = (1+ |ν|2)− 1
2 }. Let ν = x+iy; then µ = |µ|eiϑ =

(1 + x2 + y2)−
1
2 eiϑ , h := σ |�−1(P1\{∞}) implies

h∗λ0 = �(−i{µ−1dµ + ν̄|µ|2dν})

= �(−i{(
√

1 + x2 + y2 )eiϑ

(
−(xdx + ydy)eiϑ√

(1 + x2 + y2)3
+

ieiϑdϑ√
1 + x2 + y2

)

+(x − iy)
dx + idy

1 + x2 + y2
})

= �(−i

{
−(xdx + ydy)
1 + x2 + y2

+
xdx + ydy

1 + x2 + y2
+ i(dϑ +

xdy − ydx

1 + x2 + y2
)
}

)

= dϑ + (1 + x2 + y2)−1(xdy − ydx) ,

while h∗Xλ0 = ∂
∂ϑ . Now

Ψ(z) := h−1ψ(z) = (arg(zn) , F (z)) where F (z) := z−nρ(z) .

Clearly ν = F (z) is holomorphic, so it remains to show that

h∗λ0(Ψη) = aζ ; h∗λ0(Ψζ) = −aη .
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Note that a(z) = −1
2 ln((η2 + ζ2)n(1 + x2 + y2)) implies

aζ =
−nζ(η2 + ζ2)n−1(1 + x2 + y2) − (η2 + ζ2)n(xxζ + yyζ)

(η2 + ζ2)n(1 + x2 + y2)

=
−nζ

η2 + ζ2
− xxζ + yyζ

1 + x2 + y2
,

while Ψη = (xη, yη, ϑη) = (xη, yη, −nζ
η2+ζ2 ) implies

h∗λ0(Ψη) =
−nζ

η2 + ζ2
+

xyη − yxη

1 + x2 + y2
.

But ν = x + iy = F (z) is holomorphic, hence xη = yζ , xζ = −yη yields aζ =
h∗λ0(Ψη), and similarly for aη.

Recalling the discussion of section 3, if we write λ′ = dt+f1(x, y)dx+f2(x, y)dy,
then h∗λ0 = 2πλ′, where

f1(x, y) =
−y

2π(1 + |ν|2) ; f2(x, y) =
x

2π(1 + |ν|2) .

Now
1
2
(f1 + if2) =

iν

4π(1 + |ν|2) =
i

4π
∂̄ ln(1 + |ν|2) ,

and hence g◦F = i
2π ln(1+ |F |2) 1

2 . Moreover, we can simply define Ĝ = 2πig◦F =
− ln(1 + |F |2) 1

2 .
On the other hand, modulo rescaling by 2π so that

â(z) =
−1
2π

ln(|z|n(1 + |F |2) 1
2 ) ,

we have

u = t + iâ =
1
2π

(arg(zn) + i{− ln |z|n − ln(1 + |F |2) 1
2 })

=
1

2πi
(log(zn) − Ĝ) ,

in accordance with the statement of Theorem 1.
Let Γ ⊂ C2 be the locus of the plane curve parametrized by Φ. We remark in

conclusion that although the multiplicity of the singular point of the strict transform
σ−1(Γ) \ σ−1(0) is less than n, the charge at z = 0 of Ψ is easily seen to be conserved
by the diffeomorphism h. The singular plane curve corresponding to the strict
transform (assuming the singularity has not been resolved by a single quadratic
transformation) is in fact asymptotic (viewed locally as a J–holomorphic curve Ψ′)
to a distinct periodic orbit within a new 3–sphere bounding a neighbourhood of
the transformed singularity. However, the linking of the transform of KΓ with the
original periodic orbit of σ−1(S3) is topologically unaffected.

Now let us turn to the ellipsoids

Ep,q := {(w1, w2) ∈ C2 | p|w1|2 + q|w2|2 = 1 ; (p, q) ∈ R2
+} .

The restriction to Ep,q of λ0 as defined above determines a different contact struc-
ture on TEp,q, and in particular a Reeb vector field XP := A·J0 ·vP for all P ∈ Ep,q,
where

A =
(

p 0
0 q

)
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is viewed as an element of GL(2, C). Solutions of the equation γ̇(t) = X(γ(t)) , γ(0)
= P = (z1, z2), then correspond to maps t �→ (z1e

ipt, z2e
iqt) (cf., e.g., [7]). Note

that there are two periodic orbits corresponding to w1 = 0 and w2 = 0 separately.
These are the only periodic orbits of the Reeb flow if p

q is irrational, whereas Ep,q is
foliated by periodic orbits if p

q ∈ Q. Moreover the periodic orbit corresponding to
w1 = 0 has minimal period τ = 2π

q and for w2 = 0 it is 2π
p , while τ = 2πk

p = 2πl
q for

all other orbits with respect to fixed relatively prime positive integers k, l. Without
loss of generality, consider a tubular neighbourhood U of the orbit w2 = 0, and
let ν := zk

2
zl
1

such that l > k. All periodic orbits of the Reeb vector field within
this tubular neighbourhood then correspond to intersections of Ep,q with algebraic
curves (uniquely determined by ν) of the form

wk
2 = νwl

1 , |ν| < ε ,

for some positive ε. Once again, we have

λ0 = �(−i(w̄1dw1 + w̄2dw2)) ,

but this time it will be convenient to introduce a formal coordinate transformation
of the form

w1 = µ , w2 = (νµl)
1
k

so that

w̄1dw1 + w̄2dw2 = µ̄dµ +
1
k
|ν| 2

k |µ| 2l
k (

1
ν

dν +
l

µ
dµ) .

Moreover, p|w1|2 + q|w2|2 = 1 implies

|ν| 2
k |µ| 2l

k =
1
q
(1 − p|µ|2) ,

hence

w̄1dw1 + w̄2dw2 =
(

µ̄ +
(1 − p|µ|2)l

kqµ

)
dµ +

(
1 − p|µ|2

kqν

)
dν .

Now µ = reiϑ implies dµ = eiϑ(dr + irdϑ), so that(
µ̄ +

(1 − p|µ|2)l
kqµ

)
dµ =

1
p
(
dr

r
+ idϑ) ,

while ν = x + iy implies

1 − p|µ|2
kqν

dν =
1 − p|µ|2

kq

{
xdx + ydy

x2 + y2
+ i

(
xdy − ydx

x2 + y2

)}
,

and hence

(∗) λ0 =
1
p
{dϑ +

(1 − p|µ|2)(xdy − ydx)
l(x2 + y2)

}.

Consider f(r) := pr2 + q|ν| 2
k r

2l
k − 1, so that

f ′(r) = 2pr(1 +
q2

p2
|ν| 2

k r2( l
k−1)) .

Hence f ′(r) = 0 when r = 0 or ( −p2

q2|ν|
2
k

)
k

2(l−k) . Moreover f(0) = −1 , limr→∞ f(r)

= ∞ implies that the equation f(r) = 0 has a unique positive real solution. In other
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words, the value of |µ| satisfying the equation p|µ|2 + q|ν| 2
k |µ| 2l

k = 1 is uniquely
determined by p, q, |ν|. Hence write |µ| = ϕ(p, q, |ν|) and recall that

w2 = (ν(ϕ(|ν|)eiϑ)l)
1
k , i.e., wk

2e−ilϑ = νϕ(|ν|)l .

Note also that ϕ(p, q, 0) = 1√
p implies that the complex function χ(ν) := νϕ(|ν|)l

admits a locally differentiable inverse, and we may write

ν = χ−1(wk
2e−ilϑ) .

Let ∆ = {|w2| < ε}, ∆′ = {|ν| < ε′} and consider the k–fold covering map
β : U ≈ ∆ × S1 → ∆′ × S1 such that

β(w2, ϑ) = (χ−1(wk
2e−ilϑ), ϑ) .

Alternatively, the map Θ : C2 → C2 such that (µ, ν) = Θ(w1, w2) = (w1, w
k
2w−l

1 )
is holomorphic away from {w1 = 0} such that β = Θ |Ep,q

. The equation (∗) above
may then be written more precisely in the form λ0 = 1

pβ∗λ, where

λ = dϑ +
(1 − pϕ(p, q, |ν|)2)(xdy − ydx)

l|ν|2

(note also that lim|ν|→0
1−pϕ2

l|ν|2 (xdy − ydx) = 0). Consequently finite–energy pseu-
doholomorphic maps

(ψ, a) : D \ {0} → ∆ × S1 × R

project onto finite–energy maps (β ◦ ψ, a), pseudoholomorphic with respect to 1
pλ.

This claim is easily verified if we note that

aζ =
1
p
β∗λ(ψη) =

1
p
λ(β∗ ◦ ψη) =

1
p
λ((β ◦ ψ)η) ,

and similarly for aη. Moreover,

π̃((β ◦ ψ)η) := β∗ψη − 1
p
λ((β ◦ ψ)η)X̃ ,

where X̃ := β∗Xλ0 = p ∂
∂ϑ is a well–defined vector field under the above conditions.

Hence
π̃((β ◦ ψ)η) = β∗(π(ψη)) ,

and therefore

0 = β∗(π(ψη) + J0π(ψζ)) = π̃(β ◦ ψ)η + β∗(J0π(ψ)ζ) .

Let J0 denote the standard complex structure on C2 as represented by both (w1, w2)
and (µ, ν) (and its restriction to the contact planes of λ0 and λ, respectively). Then
β = Θ |Ep,q

for Θ holomorphic implies β∗ ◦ J0 = J0 ◦ β∗, and hence

0 = π̃(β ◦ ψ)η + J0π̃(β ◦ ψ)ζ .

Note that the tubular neighbourhood into which β◦ψ maps is fibred by Reeb orbits,
hence the return map α = 1. By comparison, the Reeb flow in a neighbourhood
of the original orbit {w2 = 0} in Ep,q induces a return map that is equivalent to
a rational rotation through 2π l

k . In order to find a class of J–holomorphic curves
asymptotic to the given periodic orbit within Ep,q, let us first make a harmless
renormalization of the contact structure, i.e., λ′

0 := p · λ0 , Xλ′
0

= 1
pXλ0 . Now

λ′
0 = dϑ +

(1 − p · ϕ(|ν|)2)(xdy − ydx)
l · |ν|2 ,
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and we are ready to work backwards from a holomorphic parametrization of the
form

µ = zn ; ν = Φ(z) ,

such that ord0(Φ) = b · l ≥ −nl + 1 and n = c · k for some integers b, c. Now

w1 = zn ; w2 = (znl · Φ(z))
1
k = (zn+b · f0(z))

l
k ; f0(0) �= 0

implies that w2 is a multi–valued function of z. Subdivide the disc D into equal
sectors Qm, 0 ≤ m ≤ n − 1, and hence define on each Qm a holomorphic function
Fm(z), such that F0 is the principal branch of (zn+b · f0(z))

l
k , and Fm+1(z) :=

e2πi l
k · Fm(z).

As in the previous example, letting ϑ = 2πt, we have

ω =
1
2
(f1 + if2)(ν, ν̄)dν̄ =

1 − p · ϕ(|ν|)2
4πl · |ν|2 · iνdν̄ = ∂̄g(ν, ν̄) .

Let

γ(s) :=
1 − p · ϕ(

√
s)2

l · s ,

noting ϕ(0) = 1√
p implies that the improper integral

γ̂(s) :=
∫ s

0

γ(τ )dτ

is convergent. It follows that we can set g(ν, ν̄) = i
4π γ̂(|ν|2). Hence

Φ∗ω = ∂̄(g ◦ Φ) =
i

4π
∂̄γ̂(|Φ|2)

is smoothly defined on D. Moreover

Ĝ = 2πig ◦ Φ = −1
2
γ̂(|Φ|2) .

Setting t = 1
2π arg(zn), we then have

t + iâ =
1

2πi
(log(zn) − Ĝ) =

1
2π

arg(zn) +
i

2π
(Ĝ − n ln |z|) ,

with which we combine the statement of Theorem 1 to conclude

a(z) = −n ln(|z|e 1
2n γ̂(|Φ|2))

in order to define a pseudoholomorphic map (ψ, a) : D \ {0} → Ep,q × R of charge
n at the origin, asymptotic to the orbit corresponding to {w2 = 0}.
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