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CONFORMAL ENERGY, CONFORMAL LAPLACIAN,
AND ENERGY MEASURES ON THE SIERPINSKI GASKET

JONAS AZZAM, MICHAEL A. HALL, AND ROBERT S. STRICHARTZ

Abstract. On the Sierpinski Gasket (SG) and related fractals, we define a
notion of conformal energy Eϕ and conformal Laplacian ∆ϕ for a given confor-
mal factor ϕ, based on the corresponding notions in Riemannian geometry in
dimension n �= 2. We derive a differential equation that describes the depen-
dence of the effective resistances of Eϕ on ϕ. We show that the spectrum of ∆ϕ

(Dirichlet or Neumann) has similar asymptotics compared to the spectrum of
the standard Laplacian, and also has similar spectral gaps (provided the func-
tion ϕ does not vary too much). We illustrate these results with numerical
approximations. We give a linear extension algorithm to compute the energy
measures of harmonic functions (with respect to the standard energy), and as
an application we show how to compute the Lp dimensions of these measures
for integer values of p ≥ 2. We derive analogous linear extension algorithms
for energy measures on related fractals.

1. Introduction

In Riemannian geometry, a conformal change of metric induces a well-defined
change in curvature, energy, and Laplacian. For example, when the dimension
n = 2, the energy is unchanged. In all other dimensions, the new energy uniquely
determines the conformal factor (it is simply the integral of the gradient squared
with respect to a measure that is the old Riemannian measure multiplied by a
power of the conformal factor).

In fractal analysis we have, as yet, no analogue of Riemannian metric or cur-
vature, but we do have energy and Laplacian (see [18] for a discussion of these
matters). So we will construct an analogue of “conformal change” by considering a
change in energy obtained by multiplying all energy measures by a conformal factor
ϕ(x). We neeed ϕ to be positive and measurable, and to avoid technicalities we
will assume

(1.1) 0 < c1 ≤ ϕ(x) ≤ c2,
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although in the future it might be desirable to drop these conditions. We definitely
do not want to assume that ϕ is continuous, as our basic examples will be step
functions.

Suppose, to be specific, we have a self-similar energy E on a p.c.f, self-similar
fractal K ([8],[22]). For the most part we will deal with the standard energy on the
Sierpinski Gasket SG. Recall that SG is the unique nonempty compact set in R

2

satisfying

(1.2) K =
⋃
i

FiK

where Fi(x) = 1
2x + 1

2qi and {q0, q1, q2} = V0 are the vertices of a triangle (we
call V0 the boundary of K). We approximate K by a sequence of graphs Γm with
vertices Vm and edge relation x ∼

m
y defined inductively by applying the m-fold

iterations of {Fi} to V0. We define the renormalized graph energies

(1.3) Em(u) =
(

5
3

)m ∑
x ∼

m
y

(u(x) − u(y))2

for any function defined on Vm (typically the restriction of a function defined on
K), and then

(1.4) E(u) = lim
m→∞

Em(u)

(the limit is always well defined since {Em(u)} is always monotone increasing). We
define the domain of energy domE to be the functions u with E(u) < ∞. It is
known that domE ⊆ C(K), so these functions are determined by their restriction
to V∗ =

⋃
m Vm, which is dense in K. The resistance metric R(x, y) is defined by

(1.5) R(x, y) =
(

inf
{
E(u) : u(x) = 0, u(y) = 1

})−1

= sup
(u(x) − u(y))2

E(u)
.

It is known that R(x, y) is finite and defines a metric that is topologically equiva-
lent to the Euclidean metric (it is metrically equivalent to a power of the Euclidean
metric).

The pair (E , domE) satisfies the axioms for a Dirichlet form on K: domE modulo
constants is a Hilbert space with respect to the inner product E(u, v) obtained from
E(u) by polarization, and the Markov property holds. The energy is also local,
meaning E(u, v) = 0 if u and v have disjoint support. It is known that the energy
E(u) may be written as the integral over K of a positive measure νu, which may be
characterized in two ways. First, if C = FwK is a cell (Fw = Fw1 ◦Fw2 ◦ ...◦Fwm

for
any word w = (w1, w2, ..., wm)), then νu(C) is defined in the same manner as E(u),
except that the sum is restricted to edges lying in C. Second, for any f ∈ domE,

(1.6)
∫

f dνu = E(u, fu) − 1
2
E(f, u2).

Similarly, we can define signed measures νu,v so that E(u, v) =
∫

dνu,v. An
interesting observation of Kusuoka ([11], see [2] for another proof) is that these
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measures are all singular with respect to the standard self-similar measure µ on K
(the normalized Hausdorff measure), but they are all absolutely continuous with
respect to a single measure ν, called the Kusuoka measure, defined below. See [5]
and [6] for more recent singularity results.

A function on K is called harmonic if it minimizes energy among all func-
tions with the same boundary values. The space H0 of harmonic functions is
3-dimensional, as each harmonic function is determined by its boundary values.
Indeed, there is a local linear harmonic extension algorithm

(1.7) h
∣∣
FwV0

= Aw(h
∣∣
V0

)

for Aw = Awm
...Aw1 , where Ai are explicit matrices,

(1.8) A0 =

⎛⎜⎝ 1 0 0
2
5

2
5

1
5

2
5

1
5

2
5

⎞⎟⎠
and A1,A2 are obtained from A0 by cyclic permutation of rows and columns. Of
course constants are harmonic and have zero energy, so one can find an explicit
orthonormal basis {h1, h2} for harmonic functions in the energy inner product.
Then we define

(1.9) ν = νh1 + νh2 .

It is easy to see that ν is independent of the choice of basis.
So now, given a conformal factor ϕ, we will define a conformal energy by

(1.10) Eϕ(u) =
∫

ϕ dνu

and

(1.11) Eϕ(u, v) =
∫

ϕ dνu,v.

Using the ideas in [9], it is straightforward to verify that Eϕ with domain domE
is a Dirichlet form that is strongly local and for which the resistance metric is finite.
This is actually a nontrivial fact. In [13] a description of all such Dirichlet forms
is given, but it is very indirect and does not allow for the construction of a large
family of forms.

It follows from [9] that the energy Eϕ may by obtained as a monotone increasing
limit of graph energies (Eϕ)m on Γm,

(1.12) (Eϕ)m(u) =
∑

x ∼
m

y

cm(x, y)(u(x) − u(y))2

for certain positive conductances cm(x, y). In fact (1.12) is just the restriction of
Eϕ to Γm. That means that (1.12) is just the minimum of Eϕ(ũ) over all ũ that
agree with u on Vm. The exact determination of the conductances is a difficult
problem. One of the main results of this paper is that we can write a kind of
differential equation that determines these conductances. Nevertheless, it is easy
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to find a different family of discrete energies (Ẽϕ)m, given by (1.12) with different
conductances c̃m(x, y) so that

(1.13) Eϕ(u) = lim
m→∞

(Ẽϕ)m(u)

for u ∈ domE, but not necessarily monotonic, at least in the case that ϕ is contin-
uous or even piecewise continuous. One can take

(1.14) c̃(x, y) =
1
2
(ϕ(x) + ϕ(y))

(
5
3

)m

,

or better still we can replace the discrete average 1
2 (ϕ(x) + ϕ(y)) with an integral

average of ϕ over the m-cell with vertices x and y, with respect to µ or ν. This
is certainly adequate for numerical approximations and is clearly consistent with
(1.10).

To construct a Laplacian we need an energy form and a measure. For the stan-
dard Laplacian ∆ on SG we choose the energy (1.4) and the measure µ. We define
u ∈ domE and ∆u = f to mean that u ∈ domE, f ∈ C(K), and

(1.15) −E(u, v) =
∫

fv dµ

for all v ∈ dom0E, where dom0E is defined to be the subspace of domE of functions
vanishing on the boundary. Similarly we define domL2∆ with the only difference
that we only require f ∈ L2. Then −∆ on domL2∆ becomes a positive selfad-
joint operator under Dirichlet boundary conditions with compact inverse (or un-
der Neumann boundary conditions with compact resolvant), and so has a discrete
spectrum, with eigenfunctions belonging to domD. In fact the nature of the eigen-
values and eigenfunctions is known explicity via the method of spectral decimation
of Fukushima and Shima ([4], [15], [16]). For functions in domD there is also a
pointwise formula for ∆u as a limit of a difference quotient

(1.16) ∆u(x) = lim
m→∞

3
2
5m∆mu(x)

for x ∈ V∗ \ V0, where

(1.17) ∆mu(x) =
∑

y ∼
m

x

(u(y) − u(x)).

To define a conformal Laplacian ∆ϕ we want to modify (1.15) by replacing E
by Eϕ on the left side, and also changing the measure µ on the right side. In
Riemannian geometry, when we make a conformal change of metric we also change
the Riemannian measure by multiplying by a power of the conformal factor, so that
leads us to expect that the new measure µφ should be a power of ϕ multiplying µ.
But what power? One way to answer this is to think about cells of different sizes
in K. They are all topologically equivalent to K, but for an m-cell, the energy is
boosted by a factor of

(
5
3

)m, while the measure is reduced by a factor of
(

1
3

)m.
Since

(
1
3

)m =
( (

5
3

)m )−α for

(1.18) α =
log(3)

log(5/3)
,
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this is consistent with

(1.19) dµφ = ϕ−αdµ.

With this choice, we define u ∈ dom∆ϕ and ∆ϕu = f by

(1.20) −Eϕ(u, v) =
∫

fv dµφ.

In this paper we study the spectra of the conformal Laplacians ∆ϕ. Although
the method of spectral decimation does not apply, we are able to prove spectral
asymptotic results, which depend only on the distribution of values µ({x : ϕ(x) ≤
t}) of ϕ. We also show that certain peculiar features of the spectrum of the standard
Laplacian, such as the existence of infinitely many large spectral gaps, persist in ∆ϕ

provided ϕ does not vary too much (c2/c1 is close to 1 in (1.1)). We also present
graphical data from numerical approximations of lower portions of the spectra.
Similar results for the spectrum of Schrödinger operators −∆+V are given in [14].

In the second half of this paper we present a linear extension algorithm for
computing energy measures of harmonic functions for the standard energy on SG.
The definition of energy measure yields a quadratic expression for νh(FwK) in terms
of the matrix Aw and the initial values h

∣∣
V0

. Instead we work with the 3-vectors
e(w) = (νh(FwFiK))i=0,1,2, where the initial vector corresponding to the empty
word e = (νh(F0K), νh(F1K), νh(F2K)) is a quadratic expression in h

∣∣
V0

. We find
another set of matrices Ei such that

(1.21) e(w) = Ewe for Ew = Ewm
...Ew1 .

The initial vector e is not arbitrary, but must lie on a certain cone, which is
preserved by the Ei matrices. In other words, we have a complete description of
the energy measure for a harmonic function in terms of a linear dynamical system
on a cone in 3-space. We believe that this description will be very useful. As an
application we give an algorithm for computing the Lp dimension ([17]) of νh for
integer values of p ≥ 2 and find the explicit values for p = 2, 3, 4. It follows from
results in [2] that νu will have the same dimensions as νh for any u ∈ domE.

The organization of this paper is as follows. In section 2 we prove the differential
equation for the conductances (and effective resistances) for conformal energies Eϕ.
In section 3 we study the spectrum of the conformal Laplacian ∆ϕ. In section 4 we
establish the linear extension algorithm for energy measures of harmonic functions.
In section 5 we study the Lp dimensions of energy measures. In section 6 we discuss
extensions of the results in sections 4 and 5 to some other p.c.f. self-similar fractals.

A website with further details of our results is available at www.math.cornell.
edu/∼mhall/.

2. Derivatives of conformal energy

In this section we study the differentiability of the conformal energy as a func-
tion of the conformal factor ϕ(x) in the Banach space C(K). As mentioned in
the introduction, the energy Eϕ determines conductances cm(x, y) for neighboring
vertices x, y in Vm, and we would like to understand how they depend on ϕ. In
fact it suffices to understand what happens for m = 0, since the problem is local
on each cell FwK. However the conductances c0(qi, qj) may be expressed in terms
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of effective resistances Rϕ(qi, qj) defined by (1.5) with E replaced by Eϕ. Indeed,
it is easy to see that

(2.1) Rϕ(q1, q2) =
c0(q0, q1) + c0(q2, q0)

C
, etc.

for

(2.2) C = c0(q0, q1)c0(q1, q2) + c0(q1, q2)c0(q2, q0) + c0(q2, q0)c0(q0, q1).

We need to solve for the conductances. Taking linear combinations of (2.1) we
obtain

(2.3) c0(q1, q2) =
C

2
(Rϕ(q0, q1) + Rϕ(q2, q0) − Rϕ(q1, q2)), etc.

Multiplying the equations (2.3) and adding we obtain an equation with C on the
left and C2 on the right, which allows us to solve for C and substitute the result
back into (2.3) to obtain finally

(2.4) c0(q1, q2) =
2
(
(Rϕ(q0, q1) + Rϕ(q2, q0) − Rϕ(q1, q2)

)
D

, etc.

for

D = 2
(
Rϕ(q0, q1)Rϕ(q1, q2) + Rϕ(q1, q2)Rϕ(q2, q0) + Rϕ(q2, q0)Rϕ(q0, q1)

(2.5)

− (Rϕ(q0, q1))2 − (Rϕ(q1, q2))2 − (Rϕ(q2, q0))2
)
.

So our goal will be to find the derivative of Rϕ with respect to ϕ. This question
has a simple answer, and in fact we will be able to find ∂

∂ϕRϕ(x, y) for any pair
of points x, y. Moreover, the argument we give is quite generic and applies to any
resistance form energy in the sense of [9]. Recall that ∂

∂ϕRϕ(x, y) is defined to be
an element of the dual space of C(K), and we write

(2.6)
〈

∂
∂ϕRϕ(x, y), h

〉
= lim

t→0
t−1(Rϕ+th(x, y) − Rϕ(x, y)).

The differentiability of Rϕ means that the limit exists. We will also be able to
identify the derivative as an energy measure.

Definition 2.1. Let uϕ denote the energy minimizer in (1.5) for Eϕ, i.e. uϕ(x) =
0, uϕ(y) = 1, and uϕ minimizes Eϕ(u) over all functions u satisfying these two
conditions. Similarly, let uϕ+th denote the energy minimizer for Eϕ+th. This is well
defined for t small enough so that ϕ + th is positive.

Note that uϕ is harmonic in the complement of {x, y}. In particular, if x, y are
boundary points, then uϕ is a global harmonic function in K.

Theorem 2.2. Assume (1.1). Then Rϕ(x,y) is differentiable and

(2.7)
〈

∂
∂ϕRϕ(x, y), h

〉
= −Rϕ(x, y)2

∫
h dνuϕ

for any h ∈ C(K). (Here νuϕ is defined with respect to the energy E .)

Proof. Note that Rϕ(x, y)−1 = Eϕ(uϕ) and (Rϕ+th)−1 = Eϕ+th(uϕ+th). Thus, by
the quotient rule for derivatives, it suffices to show that

(2.8) lim
t→0

t−1(Eϕ+th(uϕ+th) − Eϕ(uϕ)) =
∫

h dνuϕ
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holds for all h ∈ C(K). The idea of the proof is that we can replace uϕ+th by uϕ

in (2.8), making a change of order o(t) that disappears in the limit, and we already
have

(2.9) t−1(Eϕ+th(uϕ) − Eϕ(uϕ)) =
∫

h dνuϕ

even without taking the limit.
Observe that both uϕ and uϕ+th satisfy u(x) = 0 and u(y)=1, so by energy

minimization we have

(2.10) Eϕ+th(uϕ+th) − Eϕ+th(uϕ) ≤ 0

and

(2.11) Eϕ(uϕ+th) − Eϕ(uϕ) ≥ 0;

hence

Eϕ+th(uϕ+th) − Eϕ(uϕ+th)(2.12)

≤ Eϕ+th(uϕ+th) − Eϕ(uϕ)

≤ Eϕ+th(uϕ) − Eϕ(uϕ).

Since we can evaluate the outer expressions in (2.12) exactly, this means

t

∫
h dνuϕ+th

≤ Eϕ+th(uϕ+th) − Eϕ(uϕ)(2.13)

≤ t

∫
h dνuϕ .

Thus to complete the proof it suffices to show that

(2.14) lim
t→0

∫
h dνuϕ+th

=
∫

h dνuϕ .

We will establish (2.14) for h ∈ domE, and since domE is dense in C(K), it
follows that it holds for all h ∈ C(K); this uses the uniform boundedness of the
measures νϕ+th.

Now we claim that uϕ+th converges to uϕ in energy as t → 0; in fact,

(2.15) E(uϕ+th − uϕ) ≤ c|t|
for h ∈ domE. Since Eϕ is equivalent to E , it suffices to show the same estimate
for Eϕ. Now uϕ+th − uϕ vanishes at x and y, so it must be Eϕ-orthogonal to uϕ by
the minimization condition,

(2.16) Eϕ(uϕ+th − uϕ, uϕ) = 0

(since Eϕ(uϕ + s(uϕ+th − uϕ)) ≥ Eϕ(uϕ) for all s). Thus

Eϕ(uϕ+th − uϕ) = Eϕ(uϕ+th) − Eϕ(uϕ)(2.17)

=
(
Eϕ(uϕ+th) − Eϕ+th(uϕ+th)

)
+

(
Eϕ+th(uϕ+th) − Eϕ+th(uϕ)

)
+

(
Eϕ+th(uϕ) − Eϕ(uϕ)

)
.

Then (2.10) allows us to drop the middle term to obtain

(2.18) Eϕ(uϕ+th − uϕ) ≤
(
Eϕ(uϕ+th) − Eϕ+th(uϕ+th)

)
+

(
Eϕ+th(uϕ) − Eϕ(uϕ)

)
.
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However, by (1.6) and (1.10) we have

(2.19) Eϕ+th(u) − Eϕ(u) = t(E(u, hu) − 1
2
E(h, u2))

for any u, and it is easy to see that

(2.20)
∣∣∣∣E(u, hu) − 1

2
E(h, u2)

∣∣∣∣ ≤ cE(u)

if u(x) = 0. Since E(uϕ+th) is uniformly bounded for small t, we may combine
(2.20), (2.19), and (2.18) to obtain (2.15) (for Eϕ) as claimed.

Returning to (2.14), we have by (1.6) that∫
h dνuϕ+th

−
∫

h dνu =
(
E(uϕ+th, huϕ+th) − E(uϕ+th, huϕ)

)
− 1

2
(E(h, u2

ϕ+th) − E(h, uϕ
2)).

(2.21)

It is easy to control each of the differences in (2.21) by E(uϕ+th−uϕ), and hence
(2.15) implies

�(2.22)
∣∣∣∣∫ h dνuϕ+th

−
∫

h dνuϕ

∣∣∣∣ ≤ c|t|.

It is easy to see that the result extends to functions h that are piecewise continu-
ous on m-cells, since the argument can be localized to each cell. It seems plausible
that it is valid for all h ∈ L∞(dν), but it is not clear how to prove this.

3. Spectral asymptotics of conformal Laplacians

In this section we show how to transfer information about the spectrum of the
standard Laplacian on SG to information about the spectrum of the conformal
Laplacian ∆ϕ. We may impose either Dirichlet or Neumann boundary condi-
tions. Let {λj} denote the eigenvalues in increasing order (repeated according

to multiplicity) of ∆, and
{
λ̃j

}
the same for ∆ϕ. Let N(x) = #{λj ≤ x} and

Ñ(x) = #
{

λ̃j ≤ x
}

denote the eigenvalue counting functions. It is known that

N(x) has a growth rate of xβ for β = log(3)/ log(5). This power may be inter-
preted as the ratio α/(α+1), where α = log 3/ log(5/3) is the Hausdorff dimension
of SG in the resistance metric, and α + 1 = log 5/ log(5/3) is the order of the op-
erator ∆ ([19]). What is more interesting is that there is a more refined statement
([10]):

(3.1)
N(x)
xβ

= ψ(log x) + R(x)

with R(x) → 0 as x → ∞, where ψ is a certain discontinuous periodic function of
period log 5, satisfying

(3.2) 0 < c3 ≤ ψ ≤ c4.

In fact ψ has a countable number of jump discontinuities, with only a finite
number with jump size exceeding ε for any fixed ε > 0. Its graph is shown in
Figure 1. (More precisely, this is the graph of the spectral counting function for
a finite graph approximation to SG, and this approximation to the SG spectral
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Figure 1. The Weyl ratio for the spectral counting function of
the standard Laplacian as a function of log x

counting function loses accuracy for large x.) It is also known that R(x) = O(x−β),
but we will not use this fact, and the analogous statement for Ñ(x) is most likely
not true. We will use the fact that (3.1) continues to hold if we only count localized
eigenfunctions. Fix a value m, and let Nm(x) denote the number of eigenvalues
λj ≤ x corresponding to eigenfunctions supported in any one of the m-cells FwK
with |w| = m. Then (3.1) holds for Nm(x) in place of N(x), with the same function
ψ (but a different remainder). In other words the nonlocalized eigenfunctions are
relatively rare,

(3.3) N(x) − Nm(x) = o(xβ)

(in fact it grows with a smaller power).
Now suppose ϕ is piecewise constant on m-cells, say

(3.4) ϕ =
∑

|w|=m

awχFwK .

If u is an eigenfunction of ∆ supported on FwK with eigenvalue λ, then it is also
an eigenfunction of ∆ϕ with eigenvalue a

(1+α)
w λ. If we write Ñm(x) for the counting

function for localized eigenfunctions of ∆ϕ, it is easy to see that the analog of (3.3)
holds, so

(3.5)
Ñ(x)
xβ

=
Ñm(x)

xβ
+ R(x).
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We may compute Ñm(x) exactly because it is known that the number of eigen-
functions supported in FwK is proportional to µ(FwK) = 3−m (this is exactly true
in the Dirichlet case, and off by an inconsequential amount for the three boundary
cells in the Neumann case). Thus

(3.6) Ñm(x) =
∑

|w|=m

µ(FwK) · Nm(a1+α
w x).

When we substitute (3.1) into (3.6) we obtain (since (1 + α)β = α)

(3.7)
Ñ(x)
xβ

=
∑

|w|=m

µ(FwK) · aα
w (ψ(log x + (α + 1) log aw)) + R(x).

Note that we can write the sum in (3.7) as

(3.8)
∫

ϕ(y)αψ(log x + (α + 1) log ϕ(y)) dµ(y),

and this expression makes sense for any conformal factor ϕ. We will define the
function ψϕ(log x) by (3.8). Note that (3.8) is essentially a convolution; by writing
ϕ(y) = t and defining the pull-back measure µ ◦ ϕ−1 on the line, we have

(3.9) ψϕ(log x) =
∫ c2

c1

tαψ(log x + (α + 1) log t) dµ ◦ ϕ−1(t).

The basic hypothesis we will make is that the measure µ ◦ ϕ−1 is absolutely
continuous. Then, after a change of variable, (3.9) is a convolution of an L1 function
and an L∞ function, hence continuous. Of course, this hypothesis is not satisfied
by the piecewise constant function (3.4).

Theorem 3.1. Assume ϕ is piecewise continuous, satisfies (1.1), and µ ◦ ϕ−1 is
absolutely continuous. Then

(3.10)
Ñ(x)
xβ

= ψϕ(log x) + R̃(x)

with limx→∞ R̃(x) = 0.

Proof. Given any ε > 0, there exists δ > 0 so that |t − t′| ≤ δ implies |ψϕ(t) −
ψϕ(t′)| ≤ ε, since ψϕ is continuous. Next choose ϕ1 of the form (3.4) (for some m)
so that ||ϕ−ϕ1||∞ ≤ δ and also ||ψϕ −ψϕ1 || ≤ ε (this uses the piecewise continuity
of ϕ for the first estimate, and simple estimates using (3.9) for the second).

Now we want to compare Ñ(x) and N ′(x), where N ′(x) denotes the counting
function for ∆ϕ1 . Because of (1.1) we may write

(3.11) (1 − δ′)ϕ1(x) ≤ ϕ(x) ≤ (1 + δ′)ϕ1(x)

where δ′ may be controlled by δ. Then N ′((1−δ′)1+αx)≤Ñ(x)≤N ′((1+δ′)1+αx),
which may be written

(3.12) N ′((1 − δ′′)x) ≤ Ñ(x) ≤ N ′((1 + δ′′)x)
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with δ′′ controlled by δ. So

Ñ(x)
xβ

≤ (1 + δ′′)β N ′(1 + δ′′)x)
((1 + δ′′)x)β

= (1 + δ′′)β(ψϕ1(log x + log(1 + δ′′)) + R′(x))

= (1 + δ′′)β
(
ψϕ(log x) + [ψϕ(log x + log(1 + δ′′)) − ψϕ(log x)]

+ [ψϕ1(log x + log(1 + δ′′)) − ψϕ(log(1 + δ′′))] + R′(x)
)
.

Now the two terms in brackets are each bounded by ε, so we obtain

(3.13)
Ñ(x)
xβ

≤ (1 + δ′′)β[ψϕ(log x) + 2ε + R′(x)]

and a similar estimate from below. By taking x large enough we can make R′(x) ≤ ε
as well, so ∣∣∣∣∣ Ñ(x)

xβ
− (1 + δ′′)βψϕ(log x)

∣∣∣∣∣ ≤ (1 + δ′′)β3ε,

and if δ is small enough this yields
∣∣∣ Ñ(x)

xβ − ψϕ(log x)
∣∣∣ ≤ 5ε if x is large enough. �

It is striking that this is a better result than (3.1) because ψϕ is continuous. Also
note that ψϕ only depends on µ ◦ ϕ−1, which is determined by the distribution of
values of ϕ (say µ({x : ϕ(x) ≥ s})) and not the locations where the values are at-
tained. So any measure-preserving permutation of ϕ does not influence the spectral
asymptotics. Note that we no longer expect to see any localized eigenfunctions of
∆ϕ, although there may be many eigenfunctions that are close to being localized.

Another striking and important feature of the spectrum of ∆ is the existence of
infinitely many large gaps, meaning places where

(3.14) λj+1 ≥ aλj

for fixed a > 1. (In fact it is possible to take a ≈ 2.425.) We claim that this
property persists for ∆ϕ provided the ratio c2/c1 in (1.1) is close enough to 1. To
see this we need only recall the minimax formula:

(3.15) λj = min
dim L=j

max
u∈L

R(u)

for the Rayleigh quotient

(3.16) R(u) =
E(u)∫
|u|2dµ

,

and of course the same formula holds for λ̃j if we replace R(u) by

(3.17) R̃(u) =
Eϕ(u)∫
|u|2dµϕ

.

(This is the formula for Neumann spectra; for Dirichlet spectra we just need to
impose Dirichlet conditions on the spaces L.) From (1.1) we easily obtain

(3.18) c1E(u) ≤ Eϕ(u) ≤ c2E(u),

and also (1.19) implies

(3.19) c−α
2

∫
|u|2dµ ≤

∫
|u|2dµϕ ≤ c−α

1

∫
|u|2dµ.
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Together (3.18) and (3.19) imply

(3.20) c1+α
1 R(u) ≤ R̃(u) ≤ c1+α

2 R(u),

so the minimax formula implies

(3.21) c1+α
1 λj ≤ λ̃j ≤ c1+α

2 λj .

Combining (3.21) with (3.14) yields

(3.22) λ̃j+1 ≥ ãλj

for

(3.23) ã =
(

c1

c2

)1+α

a.

So the condition

(3.24)
c2

c1
< a1/(1+α) ≈ 1.325

suffices to conclude that the spectrum of ∆ϕ has infinitely many large gaps at
exactly the same locations as the spectrum of ∆. We can even ensure that ã > 2
by further restricting

(3.25)
c2

c1
<

(a

2

)1/(1+α)

≈ 1.063.

In [21] it was shown that eigenfunction expansions (for ∆) of continuous functions
always converge uniformly to the function, provided you restrict to partial sums
up to a large gap. The argument required both the existence of large spectral
gaps and the known sub-Gaussian heat kernel estimates for ∆. The same heat
kernel estimates also hold for ∆ϕ by recent results of Barlow, Bass, and Kumagai
([1]), so we have the same convergence theorem for eigenfunction expansions for
∆ϕ provided (3.24) holds. Also by reasoning in [21], we can extend the result to
products K×K of SG ([20]) under the stronger condition (3.25). It is even possible
to allow different functions ϕ on each factor, provided (3.25) holds for each one.
(In this context it would be more natural to allow conformal factors not necessarily
of product form, but we will not discuss this here.)

Another interesting feature of the spectrum of ∆ is that the set of all ratios
{λj/λk} of eigenvalues has gaps ([3],[22]). Again (3.12) guarantees that this will per-

sist for the ratios
{

λ̃j/λ̃k

}
of eigenvalues of ∆ϕ provided c2/c1 is sufficiently small.

Specifically, 2.0611106 ≥ λj/λk or 2.428766 ≤ λj/λk, so 2.0611106
(

c2
c1

)1+α

≥

λ̃j/λ̃k or 2.428766
(

c1
c2

)1+α

≤ λ̃j/λ̃k, and this is a gap provided

(3.26)
(

c2

c1

)
≤

(
2.428766
2.0611106

) 1
2(1+α)

≈ 1.026.

To illustrate the above results, we produce, for various choices of the conformal
factor ϕ, approximations of the spectrum of ∆ϕ of the type in Figure 1. To form
ϕ we choose a perturbative function h (which we choose to be an asymmetric
sinusoidal function on a planar embedding of SG) and look at ∆ϕ for ϕ = 1 + th
for different values of t. Thus we are able to adjust the ratio c2

c1
by varying t.

The graph in Figure 1 is an approximation of the logarithmic plot of the Weyl
ratio N(x)/xβ , where N is the spectral counting function, using a finite graph
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approximation of SG with m = 7. The graph of the Weyl ratio is asymptotic to
a multiplicatively periodic function ψϕ, so we attempt to surmise the nature of ψ
from our approximate plot, observing its nearly-periodic qualities. Figures 2–6 use
(∆ϕ)m for m = 7 also. The form of the calculations is similar to the pointwise
formula (1.16). Here we instead use

(3.27) ∆ϕu(x) = lim
m→∞

3
2
5m(∆ϕ)mu(x)

where

(3.28) (∆ϕ)mu(x) =
∑

y ∼
m

x

γ−(1+α)
xy (u(y) − u(x))

and the coefficients γxy are obtained by using a step function approximation of ϕ.
In this context it is easy to see that, for functions v (in the sense of (1.20)) whose
support is contained in some region where a given ϕ takes some constant value γ,
and for u ∈ dom∆ϕ, we have, by pulling out powers of gamma from Eϕ and dµϕ in
(1.20),

(3.29) −E(u, v) = γ−(1+α)

∫
(∆ϕu)v dµ.

The pointwise formulas (1.16) and (1.17) then imply that (∆ϕ)m as defined above
must converge to ∆ϕ.

In Figure 1 we are able to notice eigenvalues of high multiplicity and gaps in
the spectrum of ∆, corresponding to jump discontinuities and smooth, decreasing,
concave up intervals of the Weyl ratio for N(x), respectively. We observe in Figure
2 that for an only slightly nonconstant conformal factor (here we choose c2

c1
=

1.005) the graph of the Weyl ratio for Ñ is similar to that for N . The intervals
of smoothness (indicating spectral gaps) persist, while instead of eigenvalues of
high multiplicity we see large clusters of similar eigenvalues, producing rapid but
fragmented increases instead of the large jumps observed in Figure 1. The second
image is a closeup of several of the later periods.

As we increase the size of the perturbation, most gaps in the spectrum are
destroyed, though the largest of these can be seen to persist for larger perturbations.
Figures 3–6 show the cases for c2

c1
= 1.02, 1.1, 1.15, and 1.25. It is more difficult

to see the exact nature of the periodic function ψϕ as the perturbations increase
since our approximation is only useful for the lower part of the spectrum of ∆ϕ.
For a more slowly vanishing error function R̃(x) we do not see several consecutive
intervals of behavior closely resembling one another (cf. Figure 6).

As noted above, the function ψϕ depends only on the distribution of values of ϕ.
Figures 7–11 repeat the methods used for Figures 2–6 with a new conformal factor
obtained by composing with a random permutation of the level 3 cells of SG (i.e.
we use ϕ′ = ϕ ◦σ and σ : SG → SG permutes the cells Fw(SG), where w runs over
words of length 3).

More Weyl ratio plots of the type seen in Figures 1-11 can be found at www.math.
cornell.edu/∼mhall/.
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Figure 2. The Weyl ratio for the spectral counting function of
∆ϕ with factor c1 ≤ ϕ ≤ c2 such that c2

c1
= 1.005, as a function of

log x
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Figure 3. The Weyl ratio for the spectral counting function of
∆ϕ with factor c1 ≤ ϕ ≤ c2 such that c2
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= 1.02, as a function of

log x
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Figure 4. The Weyl ratio for the spectral counting function of
∆ϕ with factor c1 ≤ ϕ ≤ c2 such that c2
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= 1.1, as a function of

log x
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Figure 5. The Weyl ratio for the spectral counting function of
∆ϕ with factor c1 ≤ ϕ ≤ c2 such that c2
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= 1.15, as a function of

log x
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Figure 6. The Weyl ratio for the spectral counting function of
∆ϕ with factor c1 ≤ ϕ ≤ c2 such that c2
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log x
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Figure 7. The Weyl ratio for the spectral counting function of
∆ϕ′ with ϕ′ = ϕ ◦ σ such that c1 ≤ ϕ ≤ c2, c2

c1
= 1.005, and σ

permutes the level 3 cells of SG, as a function of log x
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Figure 8. The Weyl ratio for the spectral counting function of
∆ϕ′ with ϕ′ = ϕ ◦ σ such that c1 ≤ ϕ ≤ c2, c2

c1
= 1.02, and σ

permutes the level 3 cells of SG, as a function of log x
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Figure 9. The Weyl ratio for the spectral counting function of
∆ϕ′ with ϕ′ = ϕ ◦ σ such that c1 ≤ ϕ ≤ c2, c2

c1
= 1.1, and σ

permutes the level 3 cells of SG, as a function of log x
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Figure 10. The Weyl ratio for the spectral counting function of
∆ϕ′ with ϕ′ = ϕ ◦ σ such that c1 ≤ ϕ ≤ c2, c2

c1
= 1.15, and σ

permutes the level 3 cells of SG, as a function of log x



SIERPINSKI GASKET 2111

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log(x)

N
(x

) 
/ x

β

9.5 10 10.5 11 11.5 12 12.5 13

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

log(x)

N
(x

) 
/ x

β

Figure 11. The Weyl ratio for the spectral counting function of
∆ϕ′ with ϕ′ = ϕ ◦ σ such that c1 ≤ ϕ ≤ c2, c2

c1
= 1.25, and σ

permutes the level 3 cells of SG, as a function of log x
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4. Energy distribution for harmonic functions on SG

The objective of this section is to introduce an interesting characterization of
energy measures on the Sierpinski Gasket analogous to self-similar measures. We
demonstrate the construction in the next theorem (showing some applications after-
wards and in the next section) and will show how to replicate it for similar fractals
in section 6.

Theorem 4.1. Let

E0 =
1
75

⎡⎣ 47 −3 −3
14 9 −6
14 −6 9

⎤⎦ , E1 =
1
75

⎡⎣ 9 14 −6
−3 47 −3
−6 14 9

⎤⎦ ,

E2 =
1
75

⎡⎣ 9 −6 14
−6 9 14
−3 −3 47

⎤⎦ .

Then, for any harmonic function h,

(4.1) νh(FwK) = (1 1 1)Ewm
Ewm−1 · · ·Ew1

⎛⎝ νh(F0K)
νh(F1K)
νh(F2K)

⎞⎠
for all words w = w1w2...wm.

Proof. We show here that the matrices above are the unique matrices such that
Ej(νh(FiK))2i=0 = (νh(FjFiK))2i=0 for j = 0, 1, 2, and (4.1) can be derived recur-
sively. Suppose we are given a harmonic function h defined on the boundary points
of SG by x, y, z. Subtract off a constant function such that we get the harmonic
function with boundary points 0, a, b, so we assume that h is of this form. Since we
subtracted a constant function, the energy of this function (and hence the measure)
on the subcells will be the same. Calculating the measure on each cell F0K, F1K,
and F2K, we see that

νh(F0K) =
2
5
a2 +

2
5
b2 +

2
5
ab,(4.2)

νh(F1K) =
6
5
a2 +

2
5
b2 − 6

5
ab,(4.3)

and

(4.4) νh(F2K) =
2
5
a2 +

6
5
b2 − 6

5
ab.

Note that these form a linearly independent set of polynomials. Looking at the
measure on the cells F0F0K, F1F0K, F2F0K, we would like a linear transformation
that will express these in terms of the measures νh(F0K), νh(F1K), and νh(F2K).
We can use the equations above to find the measure of the subcells of F0K since
that cell is of the form 0, a, b, but with values 0, 2

5a + 1
5b, 1

5a + 2
5b; hence we can

plug in these values for a and b in the above equations to get

νh(F00K) =
14
75

a2 +
14
75

b2 +
26
75

ab,

νh(F01K) =
14
75

a2 +
2
75

b2 +
2
75

ab,

and
νh(F02K) =

2
75

a2 +
14
75

b2 +
2
75

ab.
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What we are looking for is a matrix E0 such that

E0

⎛⎝ νh(F0K)
νh(F1K)
νh(F2K)

⎞⎠ =

⎛⎝ νh(F00K)
νh(F01K)
νh(F02K)

⎞⎠ .

Since each measure is a polynomial in terms of a and b, our requirements for the
matrix is that the coefficients match up; for example, if (E0)ij = eij , we want

e11

(
2
5
a2 +

2
5
b2 +

2
5
ab

)
+ e12

(
6
5
a2 +

2
5
b2 − 6

5
ab

)
+e13

(
2
5
a2 +

6
5
b2 − 6

5
ab

)
=

14
75

a2 +
14
75

b2 +
26
75

ab.

From this, and the fact that the coefficients of this linear combination of polynomials
must match the coefficients of the polynomial on the right, we get a set of linear
equations

2
5
e11 +

6
5
e12 +

2
5
e13 =

14
75

,

2
5
e11 +

2
5
e12 +

6
5
e13 =

14
75

,

and
2
5
e11 −

6
5
e12 −

6
5
e13 =

26
75

,

corresponding to the matching conditions for the coefficients of a2, b2, and ab
respectively. Solving this system, we find that1 e11 = 47

75 , e12 = − 3
75 , and e13 = − 3

75 .
Doing the same calculations for the other rows of E0 we find that

E0 =
1
75

⎡⎣ 47 −3 −3
14 9 −6
14 −6 9

⎤⎦ .

To find the matrices E1 and E2 that take the level one measures to the level
two measures in F1K and F2K respectively, we rotate SG and note that, if a
harmonic function h has measures x, y, z on the cells F0K, F1K, F2K respectively
and if x′, y′, z′ are the level two measures on F1K, then

(4.5) E0

⎛⎝ y
z
x

⎞⎠ =

⎛⎝ y′

z′

x′

⎞⎠ ,

or equivalently, ⎛⎝ x′

y′

z′

⎞⎠ =

⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦E0

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦⎛⎝ x
y
z

⎞⎠ .

Therefore,

E1 =
1
75

⎡⎣ 9 14 −6
−3 47 −3
−6 14 9

⎤⎦ .

1Equivalently, if we let A be the matrix whose rows are the coefficients of a2, b2, and ab for
each νh(FiK) and define B similarly for νh(F0iK), then E0 = BA−1.
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A similar computation shows that

E2 =
1
75

⎡⎣ 9 −6 14
−6 9 14
−3 −3 47

⎤⎦ . �

When using these matrices, however, the question arises of what are the possible
combinations of first level measures. Clearly, we cannot have that νh(F0K) =
νh(F1K) = νh(F2K) = 1.

Theorem 4.2. The domain of admissible measures is a circular cone in R
3 defined

by the relation

(4.6) x2 + y2 + z2 =
11
25

(x + y + z)2

where x, y, and z are the first level measures νh(F0K), νh(F1K) and νh(F2K) re-
spectively.

Proof. Setting x, y, and z equal to the equations for the measures in equations (4.2)
through (4.4), we use some linear algebra to solve for a2, b2, and ab and get

a2 =
3
4
x +

3
4
y − 1

2
z,

b2 =
3
4
x − 1

2
y +

3
4
z,

ab = x − 1
4
y − 1

4
z.

We use these expressions by solving the expression a2b2 = (ab)2 and, after some
algebra, we get

xy + xz + yz =
7
11

(x2 + y2 + z2).

Then

(x + y + z)2 = x2 + y2 + z2 + 2(xy + xz + yz) =
25
11

(x2 + y2 + z2),

which then gives us (4.6). This defines a circular cone in R
3 of admissible measures

on the Sierpinski Gasket. If a vector of measures satisfies the above equation, then
the corresponding class of harmonic functions can be solved for by the expressions
for a2 and b2. �

Using Theorem 4.1, we get the following theorem:

Theorem 4.3. Let m ∈ N. Then for all harmonic functions h,

max
|w|=m

νh(FwK) = max
i=0,1,2

νh(Fm
i K),

where the level m cell of maximum measure will be contained in the level 1 cell of
maximum measure.

This theorem is analogous to the classical result that the norm of the gradient of
a harmonic function achieves its maximum on the boundary, which follows from the
fact that, in the classical case, for a harmonic function h, ||∇h||2 is a subharmonic
function. Here we can consider νh(FwK) to be analogous to

∫
FwK

||∇h||2. For
other notions of gradients on fractals, see [11], [12], [7], [24], and [23].
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Proof. Let x, y, z be the first level measures of F0K, F1K, and F2K respectively
and, without loss of generality, assume x ≥ y, z. The case m = 1 is trivial. By
induction, assume the hypothesis is true for all integers less than some m ∈ N. By
hypothesis, if we restrict our focus to the subcells FiK, we know that the maximum
of the measures of the level m−1 cells with respect to these cells (which are level m
cells of all of SG) must occur on one of the boundary cells FiF

m−1
j K for i, j = 0, 1, 2,

and hence we know that

max
|w|=m

νh(FwK) = max
i,j=0,1,2

νh(FiF
m−1
j K).

Using the matrix E0, it is easy to show that νh(F 2
0 K) = maxj=0,1,2 νh(F0FjK),

so by hypothesis we know that maxj=0,1,2 νh(F0F
m−1
j ) = νh(Fm

0 K), so we have
eliminated the i = 0 case from the above equation. Let Fw = F1F

m−1
0 , v = (1, 1, 1)

and e = (x, y, z)T . Note that, by diagonalization, if D = diag{α, β, γ} where α = 1
5 ,

β = 1
15 , and γ = 3

5 are the eigenvalues of the E0 and P =

⎡⎣ 0 1 3
−1 7 1
1 7 1

⎤⎦ is the

matrix of eigenvectors of E0, then

vEm
0 = vPDmP−1

= v
1
40

⎡⎣ −2βm + 42γm 3βm − 3γm 3βm − 3γm

−14βm + 14γm 20αm + 21βm − γm −20αm + 21βm − γm

−14βm + 14γm −20αm + 21βm − γm 20αm + 21βm − γm

⎤⎦
=

1
8

⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

.

So

νh(Fm
0 K) − νh(Fw)

= v
(
Em

0 − Em−1
0 E1

)
e = v

(
PDmP−1 − PDm−1P−1E1

)
e

=
1
8

⎡⎢⎣
⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

−

⎛⎝ −6βm−1 + 14γm−1

9βm−1 − γm−1

9βm−1 − γm−1

⎞⎠T

E1

⎤⎥⎦ e

=
1
8

⎡⎢⎣
⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

− 1
5

⎛⎝ −9βm−1 + 9γm−1

31βm−1 + 9γm−1

6βm−1 − 6γm−1

⎞⎠T
⎤⎥⎦ e

= x

(
21
8

βm +
11
8

γm

)
− y

(
21
2

βm − 1
2
γm

)
+ z

(
−9

8
βm +

1
8
γm

)
.

Since we’re assuming x ≥ y, z, it follows that

νh(Fm
0 K) − νh(Fw) ≥

(
11
8

γm − 9βm

)
x,

which is greater than zero for m > 1. By symmetry, we know that this is also a
lower bound for νh(Fm

0 K) − νh(F2F
m
0 ).
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Now consider the cell F2F
m−1
1 . Let Q =

⎡⎣ 0 0 1
1 0 0
0 1 0

⎤⎦. By (4.5),

νh(Fm
0 K) − νh(F2F

m−1
1 ) = vEm

0 e − vEm−1
1 E2e = vEm

0 e − vQEm−1
0 Q−1E2e

= vEm
0 e − (vEm−1

0 )Q−1E2

=
1
8

⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

e − 1
8

⎛⎝ −6βm−1 + 14γm−1

9βm−1 − γm−1

9βm−1 − γm−1

⎞⎠T

Q−1E2e

=
1
8

⎡⎢⎣
⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

−

⎛⎝ 9βm−1 − γm−1

−6βm−1 + 14γm−1

9βm−1 − γm−1

⎞⎠T

E2

⎤⎥⎦ e

=
1
8

⎡⎢⎣
⎛⎝ −6βm + 14γm

9βm − γm

9βm − γm

⎞⎠T

− 1
5

⎛⎝ 6βm−1 = 6γm−1

−9βm−1 + 9γm−1

31βm−1 + 9γm−1

⎞⎠
⎤⎥⎦

T

e

= x (−3βm + 2γm) + y

(
9
2
βm − 1

2
γm

)
+ z

(
−21

2
βm − 1

2
γm

)
,

and since we are assuming x ≥ y, z, we therefore know that

νh(Fm
0 K) − νh(F2F

m−1
1 K) ≥ γm − 27

2
βm,

which is greater than zero for m > 1. By symmetry, we also know that this is a
lower bound for νh(Fm

0 K)−νh(F1F
m−1
2 K). Therefore, νh(Fm

0 ) is the maximum of
all level m cells. �

We prove a corollary of this result concerning Lp dimensions at the end of the
next section.

5. Lp
dimensions on energy measures

Having looked at the admissible measures and these matrices, we now have
methods of computing the Lp dimensions of energy measures on SG for integer
values of p, where

(5.1) dimp νh = lim
m→∞

log
∑

|w|=m νh(FwK)p

(p − 1)m log 3
5

as defined in [17].

Theorem 5.1. For all harmonic functions h, dim2 νh = log 25
11

log 5
3

≈ 1.6071639985....

Proof. Let w be any word of finite length. By Theorem 4.2,

νh(Fw0K)2 + νh(Fw1K)2 + νh(Fw2K)2 =
11
25

νh(Fw)2.

By induction, we see that∑
|w|=m

νh(FwK) =
(

11
25

)m

νh(K).
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Substituting this into (5.1) for p = 2, we get

dim2 νh = lim
m→∞

log
((

11
25

)m
νh(K)

)
m log 3

5

=
log 25

11

log 5
3

.

Note that this does not depend on our choice of harmonic function.
�

Theorem 5.2. For all harmonic functions h,

dim3 νh =
log

(
31
225 + 1517301634457901/2

134217728

)
2 log 3

5

≈ 1.4404335708....

Proof. Here it’s a little trickier. Let x, y, and z denote νh(Fw0K), νh(Fw1K), and
νh(Fw2K) respectively for some word w. We use equation (5.1) to get

(x + y + z)3 = x3 + y3 + z3 + 3(x2y + x2z + y2x + y2z + z2x + z2y) + 6xyz

= −2(x3 + y3 + z3) + 3(x2 + y2 + z2)(x + y + z) + 6xyz

= −2(x3 + y3 + z3) +
33
25

(x + y + z)3 + 6xyz,

and thus

(5.2) x3 + y3 + z3 =
4
25

(x + y + z)3 + 3xyz.

We need a recurrence relation on xyz for this to work. Consider the second level
cell measures x1, x2, x3, y1, y2, y3, z1, z2, z3 of a cell FwK, where the xi, yi, zi are the
measures of the subcells of FwF0,FwF1, and FwF2 respectively. By the matrices
Ei, we can substitute linear expressions for xi, yi, and zi in terms of x, y, z. Doing
this, we get

x1x2x3 + y1y2y3 + z1z2z3

=
1

3356
[9536(x3 + y3 + z3) − 1467(x2y + x2z + y2x + y2z + z2x + z2y)

+ 15741xyz]

=
1

3356

[
(9536 + 1467)(x3+y3+z3)−1467(x2 + y2 + z2)(x + y + z) + 15741xyz

]
=

1
3356

[
11003

(
4
25

(x + y + z)3 + 3xyz

)
− 1467

(
11
25

(x + y + z)2
)

(x + y + z)

+ 15741xyz

]
=

223
3355

(x + y + z)3 +
26

3252
xyz.

Therefore, we have a recurrence relation on the sums of cubes of level two subcells
and the sums of the products of level two subcells. Suppose we have

2∑
i=0

⎡⎢⎣a

⎛⎝ 2∑
j=0

νh(FwijK)

⎞⎠3

+ bνh(Fwi0K)νh(Fwi1K)νh(Fwi2K)

⎤⎥⎦ .
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Then this is equal to

a′((νh(Fw0K) + νh(Fw1K) + νh(Fw2K))3 + b′νh(Fw0K)νh(Fw1K)νh(Fw2K)

where (
a′

b′

)
=

[
4
25

223
33·55

3 26
32·52

]
︸ ︷︷ ︸

M3

(
a
b

)
.

By induction, we have that

∑
|w|=m

νh(FwK)3 =
(

νh(K)3

νh(F0K)νh(F1K)νh(F2K)

)T

Mm−1
3

(
1
0

)
.

Therefore, when taking the limit of these sums in the log, the limit of the log
divided by m should equal the log of the maximum eigenvalue; hence

dim3 νh =
log

(
31
225 + 1517301634457901/2

134217728

)
2 log 3

5

. �

Theorem 5.3. For all harmonic functions h,

dim4 νh =
log

(
1327
16875 + 32423191741044211/2

1073741824

)
3 log 3

5

≈ 1.3230040245...

Proof. This time we will have an (x + y + z)xyz term in our recurrence relation
instead of an xyz term:

(x + y + z)4 = x4 + y4 + z4 + 4(x3y + x3z + y3x + y3z + z3x + z3y)

+ 6(x2y2 + x2z2 + y2z2) + 12(x + y + z)xyz

= −6(x4 + y4 + z4) + 4(x3 + y3 + z3)(x + y + z) + 3(x2 + y2 + z2)2

+ 12(x + y + z)xyz

= −6(x4+y4+z4) +
(

16
25

+
363
625

)
(x+y+z)4 + (12+12)(x+y+z)xyz

= −6(x4 + y4 + z4) +
763
625

(x + y + z)4 + 24(x + y + z)xyz.

Hence,

(5.3) x4 + y4 + z4 =
23
625

(x + y + z)4 + 4xyz.

To find the recurrence relation for (x + y + z)xyz, we again look at

(x1 + x2 + x3)x1x2x3 + (y1 + y2 + y3)y1y2y3 + (z1 + z2 + z3)z1z2z3

as measures of subcells of three subcells with measures x, y, z respectively. Describ-
ing them as linear combinations of the first level measures x, y, z with the matrices
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Ei, we find that the above equation is equal to
1

3456

(
27636(x4 + y4 + z4) + 4644(x3y + x3z + y3x + y3z + z3x + z3y)

−15984(x2y2 + x2z2 + y2z2) + 14607(x + y + z)xyz
)

=
1

3456

(
(27636 − 4644 + 7992)(x4 + y4 + z4) + 4644(x3 + y3 + z3)(x + y + z)

−7992(x2 + y2 + z2)2 + 14607(x + y + z)xyz
)

=
1

3456

(
30984

(
23
625

(x + y + z)4 + 4(x + y + z)xyz

)
+ 4644

4
25

(x + y + z)3

+ 3xyz

)
(x + y + z) −7992

(
11
25

(x + y + z)2
)2

+ 14607(x + y + z)xyz

)

=
1

3456

(
336(x + y + z)4 + 152475(x + y + z)xyz

)
=

112
3356

(x + y + z)4

+
2033
3354

(x + y + z)xyz.

Therefore, the recurrence relation on the measure is modeled by∑
|w|=m

νh(FwK)4

=
(

νh(K)4

(νh(F0K) + νh(F1K) + νh(F2K))νh(F0K)νh(F1K)νh(F2K)

)T

Mm−1
4

(
1
0

)
where

M4 =
[

23
625

112
3356

4 2033
3354

]
.

Thus, using the maximum eigenvalue of M4 in the log, we obtain

dim4 νh =
log

(
1327
16875 + 32423191741044211/2

1073741824

)
3 log 3

5

. �

For larger p, the calculations get more and more arduous. In fact, we have the
following lemma and theorem:

Lemma 5.4. Let x, y, z be the first level measures of SG. For p ∈ N, there exist

coefficients (a(p)
k )�

p
3 �

k=0 such that

xp + yp + zp =
� p

3 �∑
k=0

a
(p)
k (x + y + z)p−3k(xyz)k.

Proof. We prove by induction. Assume the hypothesis holds for the first p − 1
steps. Let α = x + y + z and β = xyz. We need to solve for (a(p)

k ) in terms of the
coefficients (a(n)

k ) for n < p. Note that

(x + y + z)p =
∑

i+j+k=p

p!
i!j!k!

xiyjzk,

so define

aij = ϕj,p−3i−j
p!

i!(i + j)!(p − 2i − j)!
, where ϕnm =

{
1 if n = m
1
2 if n = m.
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Define s(n) = xn + yn + zn.
Also, recall that the product of two finite power series with coefficients s = (si)

and t = (ti) is

(
n∑

i=0

six
i

)⎛⎝ m∑
j=0

tjx
j

⎞⎠ =
n+m∑
i=0

ci(s, t)xi, where ci(s, t) =
min{i,m}∑

k=i−min{i,n}
si−ktk.

For bookkeeping, define ck(i, j) = ck(a(i), a(p−j)). Then

αp =
� p

3 �∑
i=0

(xyz)i

⎡⎢⎣�
p−3i

2 �∑
j=1

aij(xjyp−3i−j + xp−3i−jyj + · · · + yjzp−3i−j + yp−3i−jzj)

+ ai0s(p − 3i)

⎤⎥⎦

=
� p

3 �∑
i=0

(xyz)i

⎡⎢⎢⎢⎢⎢⎢⎣
� p−3i

2 �∑
j=1

aijs(j)s(p − 3i − j) +

⎛⎜⎝ai0 −
� p−3i

2 �∑
j=1

aij

⎞⎟⎠
︸ ︷︷ ︸

ai

s(p − 3i)

⎤⎥⎥⎥⎥⎥⎥⎦
=

� p
3 �∑

i=1

βi

⎡⎢⎣�
p−3i

2 �∑
j=1

aij

⎛⎜⎝� j
3�∑

k=0

a
(j)
k αj−3kβk

⎞⎟⎠
⎛⎜⎝� p−3i−j

3 �∑
k=0

a
(p−3i−j)
k αp−3i−j−3kβk

⎞⎟⎠
+
� p−3i

3 �∑
k=0

aia
(p−3i)
k αp−3i−3kβk

⎤⎥⎦
+
� p

2 �∑
j=1

a0j

⎛⎜⎝� j
3�∑

k=0

a
(j)
k αj−3kβk

⎞⎟⎠
⎛⎜⎝� p−j

3 �∑
k=0

a
(p−j)
k αp−j−3kβk

⎞⎟⎠ + a0s(p)

=
� p

3 �∑
i=1

⎡⎢⎣�
p−3i

2 �∑
j=1

aij

� j
3�+� p−3i−j

3 �∑
k=0

ck(j, 3i + j)αp−3(i+k)βi+k

+
� p−3i

3 �∑
k=0

aia
(p−3i)
k αp−3(i+k)βi+k

⎤⎥⎦
+
� p

2 �∑
j=1

a0j

� j
3�+� p−j

3 �∑
k=0

ck(j, j)αp−3kβk + a0s(p)
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and, since
⌊

j
3

⌋
+

⌊
p−3i−j

3

⌋
is either

⌊
p−3i

3

⌋
or

⌊
p−3i

3

⌋
− 1 for each i, if we define

c� p−3i
3 �(a

(j), a(p−3i−j)) = 0 if it is the latter case, then this is

=
� p

3 �∑
i=1

⎡⎢⎣�
p−3i

2 �∑
j=1

aij

� p−3i
3 �∑

k=0

ck(j, 3i + j)αp−3(i+k)βi+k +
� p−3i

3 �∑
k=0

aia
(p−3i)
k αp−3(i+k)βi+k

⎤⎥⎦
+
� p

2 �∑
j=1

a0j

� p
3 �∑

k=0

ck(j, j)αp−3iβk + a0s(p)

=
� p

3 �∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
� p−3i

3 �∑
k=0

⎛⎜⎝� p−3i
2 �∑

j=1

aijck(j, 3i + j) + aia
(p−3i)
k

⎞⎟⎠
︸ ︷︷ ︸

dik

αp−3(i+k)βi+k

⎤⎥⎥⎥⎥⎥⎥⎦
+
� p

3 �∑
k=0

⎛⎜⎝� p
2 �∑

j=1

a0jck(j, j)

⎞⎟⎠
︸ ︷︷ ︸

ek

αp−3kβk + a0s(p)

=
� p

3 �∑
i=1

� p
3 �−i∑
k=0

dikαp−3(i+k)βi+k +
� p

3 �∑
k=0

ekαp−3kβk + a0s(p)

=
� p

3 �∑
k=1

(
k∑

i=1

di,k−i + ek

)
αp−3kβk + e0α

p + a0s(p).

Therefore, remembering that this is all equal to α, we solve and get xp + yp + zp =

s(p) =
∑� p

3 �
k=0 a

(p)
k αp−3kβk, where

a
(p)
k =

∑k
i=1 di,k−i + ek

−a0

=

∑k
i=1

[∑� p−3i
2 �

j=1 aijck−i(j, 3i + j) +
(

ai0 −
∑� p−3i

2 �
j=1 aij

)
a
(p−3i)
k−i

]
∑� p

2 �
j=1 a0j − a00

+
∑� p

2 �
j=1 a0jck(j, j)∑� p
2 �

j=1 a0j − a00

for k > 0 and

a
(p)
0 =

e0 − 1
−a0

=

∑� p
2 �

j=1 a0jck(j, j) − 1∑� p
2 �

i=1 a0j − a00

. �
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Theorem 5.5. For p an integer greater than two, let

f(p, n, m)

=
∑

|w|=m

(νh(Fw0K)+νh(Fw1K)+νh(Fw2K))p−3n(νh(Fw0K)νh(Fw1K)νh(Fw2K))n.

For all p > 2, there is a matrix Mp of size
⌊

p
3

⌋
+ 1 such that

f(p, n, m + 1) =
� p

3 �∑
i=0

Mp(n + 1, i + 1)f(p, i, m).

Proof. It suffices to show that this is true for the case of m = 1, since we can use
this matrix on the subcells of each first level cell and so forth. Since each νh(FijK)
can be written as linear combinations of the first level measures x, y, and z using
the matrices Ei, we can expand f(p, n, 2) into a polynomial in terms of the first
level measures. This polynomial will be symmetric by the symmetry of SG, and
therefore can be written in the form

� p
3 �∑

i=0

(xyz)i

⎡⎢⎣�
p−3i

2 �∑
j=1

aij(xjyp−3i−j + xp−3i−jyj + · · ·

+ yjzp−3i−j + yp−3i−jzj) + ai0s(p − 3i)

⎤⎥⎦
where (aij) are the coefficients. From here, we proceed exactly as in the previous
lemma, except that we do not pull out the i = 0 term (i.e. the sum outside the
square brackets) from the sum since we know that xp + yp + zp can be represented
by coefficients (a(p)

k ) (hence we already know that Mp(1, i + 1) = a
(p)
i ). Hence, we

find that

f(p, n, 2) =
� p

3 �∑
k=0

f
(n)
k αp−3kβk =

� p
3 �∑

k=0

f
(n)
k f(p, k, 1)

where

f
(n)
k =

k∑
i=0

di,k−i =
k∑

i=0

⎡⎢⎣�
p−3i

2 �∑
j=1

aijck−i(j, 3i + j) +

⎛⎜⎝ai0 −
� p−3i

2 �∑
j=1

aij

⎞⎟⎠ a
(p−3i)
k−i

⎤⎥⎦ .

Hence, Mp(n + 1, k + 1) = f
(n)
k . �

Supposing we have such a matrix Mp,

P =
(
νh(K)p−3j (νh(F0K)νh(F1K)νh(F2K))j

)� p
3 �

j=0
,

and e1 is the first standard basis vector, then

dimp νh = lim
m→∞

log
(
PMm

p e1

)
m(p − 1) log 3

5

.



SIERPINSKI GASKET 2123

If one can show that the entries in Mp are positive for all integer values p greater
than 2 (as seen in the case of p = 3 and 4), then, by the Perron-Frobenius theorem,
the maximum eigenvalue will be positive and its associated eigenvector will have
all positive entries and we can write

dimp νh =
log max σ(Mp)
(p − 1) log 3

5

,

where σ(Mp) is the spectrum of Mp. However, it is not yet evident how to show
this positivity.

Although these matrices are difficult to compute, we can (rather easily) get
bounds on dimp νh for p > 1 (where p no longer needs to be an integer) and can in
fact pinpoint the limit as p approaches infinity, which is a corollary from Theorem
4.3.

Corollary 5.6. Let νh be an energy measure and p > 1 be a real number. Then

p

p − 1
− log 3

(p − 1) log 5
3

≤ dimp νh ≤ p

p − 1
.

Proof.

dimp νh ≤ lim
m→∞

log νh(Fm
0 K)p

(p − 1)m log 3
5

= lim
m→∞

p log νh(Fm
0 K)

(p − 1)m log 3
5

≤ p

p − 1

since the limit of the log over m converges to the log of the maximum eigenvalue
of E0. Without loss of generality, assume maxi=0,1,2 νh(FiK) = νh(F0K). By
Theorem 4.3, we know that

dimp νh ≥ lim
m→∞

log 3mνh(Fm
0 K)p

(p − 1)m log 3
5

=
p

p − 1
− log 3

(p − 1) log 5
3

.

It follows that limp→∞ dimp νh = 1. �

6. Extensions to SG3 and the tetrahedral Sierpinski Gasket

In this section, we attempt to generalize some of the results in the previous two
sections to two other p.c.f. fractals. Specifically, we determine the analogous ma-
trices for the level-three Sierpinksi Gasket, SG3, compute the L2 dimension of the
corresponding energy measure, and define matrices for the Tetrahedral Sierpinski
Gasket.

A necessary item to derive for each case is the renormalization constant r, such
that, as in equation (1.3), the sum of the squares of the differences of a harmonic
function on an mth level graph, when multiplied by r−m, is the same for all m. In
equation (1.3) (i.e. for the case of SG)), r = 3

5 .
The fractal K = SG3 is like SG, except that there are six contractions instead of

three, each of the contractions F0, ..., F5 mapping to one of the cells as in the above
figure. The harmonic extension matrices for SG3, Ai, which map the boundary
values of a harmonic function to the boundary values of the ith cell are

A0 =

⎡⎣ 1 0 0
8
15

4
15

3
15

8
15

3
15

4
15

⎤⎦ , A3 =

⎡⎣ 1
3

1
3

1
3

3
15

8
15

4
15

3
15

4
15

8
15

⎤⎦ ,
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Figure 12. First level cells of SG3

and A1 and A2 are generated by cyclic permutations of the columns and rows of
A0, while A4 and A5 are generated from A3 similarly. We again define the energy
measure to be νh(FwK) = r−|w|E(h ◦Fw). The renormalization constant is r = 7

15 .
Proceeding as in section 4, we first assume one of the boundary values of our
harmonic function h to be zero, but for simplicity, we assume the other two are√

105a and
√

105b. We then get the following set of equations:

νh(F0K) = 26a2 + 26b2 + 46ab,
νh(F1K) = 98a2 + 26b2 − 98ab,
νh(F2K) = 26a2 + 98b2 − 98ab,
νh(F3K) = 26a2 + 26b2 − 44ab,
νh(F4K) = 8a2 + 26b2 − 8ab,
νh(F5K) = 26a2 + 8b2 − 8ab.

From these polynomials, it is immediate that

(6.1)
5∑

j=3

νh(F0K) =
2
5

2∑
j=0

νh(F0K).

Also, the first and last three polynomials form two linearly independent sets. In
fact,

(6.2)

⎛⎝ νh(F3K)
νh(F4K)
νh(F5K)

⎞⎠ =
1
60

⎡⎣ −2 13 13
13 −2 13
13 13 −2

⎤⎦⎛⎝ νh(F0K)
νh(F1K)
νh(F2K)

⎞⎠ .

So it suffices to just look at how the “corner measures” are distributed. Pro-
ceeding as before, finding polynomial expressions for νh(F00K), νh(F01K), and
νh(F02K) and doing some linear algebra on the coefficients, we get that⎛⎝ νh(F00K)

νh(F01K)
νh(F02K)

⎞⎠ =
98

5433

⎡⎣ 3701 −49 −49
962 287 −238
962 −238 287

⎤⎦⎛⎝ νh(F0K)
νh(F1K)
νh(F2K)

⎞⎠ .

We let E0 equal this matrix, and E1 and E2 can be derived using the symmetry
of SG3 as we used the symmetry of SG in section 4. Similarly, we can show that⎛⎝ νh(F30K)

νh(F31K)
νh(F32K)

⎞⎠ =
1

54334

⎡⎣ 1174 49 49
−962 3613 1213
962 1213 3613

⎤⎦⎛⎝ νh(F0K)
νh(F1K)
νh(F2K)

⎞⎠ .
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We let E3 be this matrix and derive E4 and E5 using symmetry. Let C be the
matrix in (6.2) and let e = (νh(F0K), νh(F1K), νh(F2K))T . Then

(6.3) νh(FwK) = r−|w|E(h ◦ Fw) = (1 1 1)(I + C)Ewm
· · ·Ew1e

where I is the 3 × 3 identity matrix.

Let x, y, z denote the measures of F0K, F1K, and F2K respectively, and x′, y′, z′

denote the other three measures respectively. Solving for a2, b2, and ab and pro-
ceeding as in Theorem 4.2 we get the following relations:

xy + xz + yz =
481
913

(x2 + y2 + z2)

and
x′y′ + x′z′ + y′z′ =

91
118

(x′2 + y′2 + z′2).

It follows that
x2 + y2 + z2 =

913
1875

(x + y + z)2

and

x′2 + y′2 + z′2 =
59
150

(x′ + y′ + z′)2 =
59
150

(
<

2
5

)2

(x + y + z) =
118
1875

(x + y + z).

So

x2 + y2 + z2 + x′2 + y′2 + z′2 =
1031
1875

(x + y + z) =
1031
1875

5
7
(x + y + z + x′ + y′ + z′).

Therefore, since the same relation holds for the energy measures, we get
5∑

i=0

νh(FiK)2 =
1031
2625

νh(K).

Hence, we get the following theorem:

Theorem 6.1. Let νh be an energy measure on SG3. Then

dim2 νh =
log 2625

1031

log 15
7

.

We can look at the measure of a cell of a fractal as an n− 1 variable,
(

n
2

)
-term

polynomial (or vector) where n is the number of boundary points of the fractal.
The significance of SG3 is that the number of first level cells exceeds the maximal
number of linearly independent cell measures needed to span all polynomials. In
that case, we see that we need only look at the “corner subcells” of each cell, since
those fix the other three “middle cells” with the matrix C. The tetrahedral SG,
or SG4, addresses the case of when the number of first level cells is less than the
number of polynomials necessary to make a basis. In this case, we have four first
level cells, but the measure polynomials have six terms, so they don’t form a basis
for the six-dimensional space of polynomials and will not necessarily span the rest
of the cell measures. In fact, they don’t.

However, we can still define matrices for a linear extension algorithm for the
energy measures on the SG4 by taking the second level cells as our first level,
in which case we have sixteen total cells, more than enough to make a linearly
independent set. In general, if a fractal does not have enough first level cells to
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Figure 13. First and second level graphs of SG4

make an independent set, then if the cells in the next level are spanned by those
in the first level, then all cells are spanned by the first level cells and we’re done;
if no, then choose a new independent set by adding the cell that is not in the span
and, recursively, we can construct a linearly independent set of cell measures. As
we shall see, we need only go to level two for SG4.

SG4 is the fractal K satisfying
⋃3

i=0 Fi(K) = K, where Fix = 1
2x + qi and

q0 = (1/2, 1/2, 1), q1 = (0, 0, 0), q2 = (1, 0, 0), q3 = (1/2, 1, 0). So, as in the above
figure, F0 contracts K to the tetrahedron containing a, F0 to the one containing
b, et cetera. As with SG, we approximate SG4 by a sequence of graphs Γm with
vertices Vm, defining edge relations similarly (see the introduction).

We need to determine the harmonic extension matrices that extend the values
on V0 of a harmonic function to the vertices of V1 (as displayed in Figure 13). To
do this, we fix the four boundary values of SG4 to be a, b, c, and d (and label those
points as A, B, etc.). We let the other six points on the first level graph of SG4 be
x1, x2, x3, y1, y2, y3. Computing the energy and setting the partial derivatives with
respect to each variable equal to zero, we get the following linear equations:

6x1 − x2 − x3 − y2 − y3 = c + d,
−x1 + 6x2 − x3 − y1 − y3 = b + d,
−x1 − x2 + 6x3 − y1 − y2 = b + c,
−x2 − x3 + 6y1 − y2 − y3 = a + b,
−x1 − x3 − y1 + 6y2 − y3 = a + c,
−x1 − x2 − y1 − y2 + 6y3 = a + d.

After some linear algebra, we find that

x1 = 1
6a + 1

6b + 1
3c + 1

3d,
x2 = 1

6a + 1
3b + 1

6c + 1
3d,

x3 = 1
6a + 1

3b + 1
3c + 1

6d,
y1 = 1

3a + 1
3b + 1

6c + 1
6d,

y2 = 1
3a + 1

6b + 1
3c + 1

6d,
y3 = 1

3a + 1
6b + 1

6c + 1
3d.
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Hence,

A0 =

⎡⎢⎢⎣
1 0 0 0
1
3

1
3

1
6

1
6

1
3

1
6

1
3

1
6

1
3

1
6

1
6

1
3

⎤⎥⎥⎦
and A1, A2, and A3 are defined similarly.

If we compute the second level energy on SG4 and compare it to the first level
energy, we find that the renormalization constant is r = 2

3 .
We define νh as in the previous cases and let h be the harmonic function with

boundary values 0, a, b, c. Then the polynomials for the measures of F01K,F02K,
F03K,F11K,F22K, and F33K form a linearly independent set, where

(6.4)

νh(F01K) = 1
72 (11a2 + b2 + c2 + ab + ac + bc),

νh(F02K) = 1
72 (a2 + 11b2 + c2 + ab + ac + bc),

νh(F03K) = 1
72 (a2 + b2 + 11c2 + ab + ac + bc),

νh(F11K) = 1
72 (96a2 + 11b2 + 11c2 − 64ab − 64ac + 21bc),

νh(F22K) = 1
72 (11a2 + 96b2 + 11c2 − 64ab + 21ac − 64bc),

νh(F33K) = 1
72 (11a2 + 11b2 + 96c2 + 21ab − 64ac − 64bc).

Also,

νh(F001K) = 1
1728 (51a2 + 21b2 + 21c2 + 61ab + 61ac + 41bc),

νh(F002K) = 1
1728 (21a2 + 51b2 + 21c2 + 61ab + 41ac + 61bc),

νh(F003K) = 1
1728 (21a2 + 21b2 + 51c2 + 41ab + 61ac + 61bc),

νh(F011K) = 1
1728 (171a2 + b2 + c2 + ab + ac + bc),

νh(F022K) = 1
1728 (a2 + 171b2 + c2 + ab + ac + bc),

νh(F033K) = 1
1728 (a2 + b2 + 171c2 + ab + ac + bc).

The matrix relating the first set of linear equations to the second is

E0 =
1

142392

⎡⎢⎢⎢⎢⎢⎢⎣
52853 23188 23188 −3016 −1620 −1620
23188 52853 23188 −1620 −3016 −1620
23188 23188 52853 −1620 −1620 −3016
88621 −12240 −12240 544 544 544
−12240 88621 −12240 544 544 544
−12240 −12240 88621 544 544 544

⎤⎥⎥⎥⎥⎥⎥⎦ .

Unlike the previous cases, however, we cannot obtain the other matrices by cyclic
permutations because we lose symmetry. Nonetheless, we can still solve for the
other matrices by computing the measures for νh(F101K), νh(F102K), and so on,
and solving for the matrix that relates the set of measures in (6.4) to those in F1K,
and we get

E1 =
1

142392

⎡⎢⎢⎢⎢⎢⎢⎣
28084 −7514 −7514 7725 396 396
4437 4437 −1496 431 82 82
4437 −1496 4437 431 82 82
−544 −544 −544 95053 −224 −224
−37825 −37825 63036 14439 14090 −9642
−37825 63036 −37825 14439 −9642 14090

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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and similarly, by the rotational symmetry of our choice of cells,

E2 =
1

142392

⎡⎢⎢⎢⎢⎢⎢⎣
4437 4437 −1496 82 431 82
−7514 28084 −7514 396 7725 396
−1496 4437 4437 82 431 82
−37825 −37825 63036 14090 14439 −9642
−544 −544 −544 −224 95053 −224
63036 −37825 −37825 −9642 14439 14090

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

E3 =
1

142392

⎡⎢⎢⎢⎢⎢⎢⎣
4437 −1496 4437 82 82 431
−1496 4437 4437 82 82 431
−7514 −7514 28084 396 396 7725
−37825 63036 −37825 14090 −9642 14439
63036 −37825 −37825 −9642 14090 14439
−544 −544 −544 −224 −224 95053

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now, we can relate νh(F01K), ..., νh(F33) to the measures of the other cells,

νh(F00K) = 1
72 (11a2 + 11b2 + 11c2 + 21ab + 21ac + 21bc),

νh(F10K) = 1
72 (16a2 + b2 + c2 − 4ab − 4ac + bc),

νh(F12K) = 1
72 (16a2 + 11b2 + c2 − 24ab − 4ac + bc),

νh(F13K) = 1
72 (16a2 + b2 + 11c2 − 4ab − 24ac + bc),

νh(F20K) = 1
72 (a2 + 16b2 + c2 − 4ab + ac − 4bc),

νh(F21K) = 1
72 (11a2 + 16b2 + c2 − 24ab + ac − 4bc),

νh(F23K) = 1
72 (a2 + 16b2 + 11c2 − 4ab + ac − 24bc),

νh(F30K) = 1
72 (a2 + b2 + 16c2 + ab − 4ac − 4bc),

νh(F31K) = 1
72 (11a2 + b2 + 16c2 + ab − 24ac − 4bc),

νh(F32K) = 1
72 (a2 + 11b2 + 16c2 + ab − 4ac − 24bc),

by the matrix

M =
1

5933

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12427 12427 12427 −816 −816 −816
5202 −731 −731 397 48 48
−2193 −2193 3740 1191 842 −554
−2193 3740 −2193 1191 −554 842
−731 5202 −731 48 397 48
−2193 −2193 3740 842 1191 −554
3740 −2193 −2193 −554 1191 842
−731 −731 5202 48 48 397
−2193 3740 −2193 842 −554 1191
3740 −2193 −2193 −554 842 1191

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Therefore, for e = (νh(F00K), νh(F01K), ..., νh(F33K))T , we have

νh(FwK) = (1 1 1 1 1 1)(I + M)Ewm
· · ·Ew1e.
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