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SEQUENTIAL FOURIER-FEYNMAN TRANSFORM,
CONVOLUTION AND FIRST VARIATION

K. S. CHANG, D. H. CHO, B. S. KIM, T. S. SONG, AND I. YOO

Abstract. Cameron and Storvick introduced the concept of a sequential
Fourier-Feynman transform and established the existence of this transform for

functionals in a Banach algebra Ŝ of bounded functionals on classical Wiener
space. In this paper we investigate various relationships between the sequen-
tial Fourier-Feynman transform and the convolution product for functionals
which need not be bounded or continuous. Also we study the relationships
involving this transform and the first variation.

1. Introduction and preliminaries

The concept of an L1 analytic Fourier-Feynman transform for functionals on clas-
sical Wiener space (C0[0, T ], m) was introduced by Brue in [1]. In [2], Cameron and
Storvick introduced an L2 analytic Fourier-Feynman transform on classical Wiener
space. In [15], Johnson and Skoug developed an Lp analytic Fourier-Feynman
transform theory for 1 ≤ p ≤ 2 that extended the results in [2] and gave various
relationships between the L1 and L2 theories. In [12], Huffman, Park and Skoug
defined a convolution product for functionals on classical Wiener space and they
obtained various results on the analytic Fourier-Feynman transform and the con-
volution product [13, 14]. In [16], Park, Skoug and Storvick investigated various
relationships among the first variation, the convolution product and the analytic
Fourier-Feynman transform for functionals on classical Wiener space which belong
to the Banach algebra S introduced by Cameron and Storvick in [3].

Recently, Chang, Kim, Song and Yoo studied analytic Fourier-Feynman trans-
form, convolution and the first variation for functionals on abstract Wiener space,
product abstract Wiener space and the space of abstract Wiener space valued con-
tinuous functions [8, 9, 10, 11] which extended the results in [12, 13, 14, 16]. For a
detailed survey of previous work, see [17].

On the other hand, Cameron and Storvick gave a simple definition of the se-
quential Feynman integral which is applicable to a rather large class of functionals
[4]. In [5], they used the sequential Feynman integral to define a sequential Fourier-
Feynman transform and established the existence of the sequential Fourier-Feynman
transform for functionals in the Banach algebra Ŝ introduced by Cameron and
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Storvick in [4]. Moreover they showed that the set of sequential Fourier-Feynman
transforms {Γp : p ∈ R} forms an abelian group of isometries of Ŝ.

In this paper we study the sequential Fourier-Feynman transform, convolution
and first variation of functionals which need not be bounded or continuous. In
Section 2, we prove the existence of the sequential Fourier-Feynman transform and
a translation theorem for functionals of the form F (x) = G(x)Ψ(x(T )), where G is
in the Banach algebra Ŝ and Ψ = Ψ1 +Ψ2 where Ψ1 ∈ L1(R) and Ψ2 is the Fourier
transform of a complex Borel measure of bounded variation on R.

In Section 3, we show that the sequential Fourier-Feynman transform of the
convolution product is a product of the sequential Fourier-Feynman transforms for
functionals studied in Section 2. We also obtain Parseval’s relation for functionals
in Ŝ.

Finally, in Section 4, we study relationships involving the sequential Fourier-
Feynman transform and the first variation. The transform can be taken with respect
to the first or the second argument of the variation.

Let C0[0, T ] be the space of continuous functions x(t) on [0, T ] such that x(0) = 0.
Let a subdivision σ of [0, T ] be given:

σ : 0 = τ0 < τ1 < · · · < τm = T,

and let X ≡ X(t) be a polygonal curve in C0[0, T ] based on a subdivision σ and
the real numbers �ξ ≡ {ξk}, that is,

X(t) ≡ X(t, σ, �ξ)

where

X(t, σ, �ξ) =
ξk−1(τk − t) + ξk(t − τk−1)

τk − τk−1

when τk−1 ≤ t ≤ τk, k = 1, 2, · · · , m and ξ0 = 0. If there is a sequence of
subdivisions {σn}, then σ, m and τk will be replaced by σn, mn and τn,k.

Let q �= 0 be a given real number and let F (x) be a functional defined on a subset
of C0[0, T ] containing all the polygonal curves in C0[0, T ]. Let {σn} be a sequence
of subdivisions such that ‖σn‖ → 0 and let {λn} be a sequence of complex numbers
with Reλn > 0 such that λn → −iq. Then if the integral in the right hand side of
(1.1) exists for all n and if the following limit exists and is independent of the choice
of the sequences {σn} and {λn}, we say that the sequential Feynman integral with
parameter q exists and is denoted by
(1.1)∫ sfq

F (x) dx= lim
n→∞

γσn,λn

∫
Rmn

exp
{
−λn

2

∫ T

0

∣∣∣dX

dt
(t, σn, �ξ)

∣∣∣2 dt
}

F (X(·, σn, �ξ)) d�ξ,

where

γσ,λ =
( λ

2π

)m/2 m∏
k=1

(τk − τk−1)−1/2.

Let

Wλ(σ, �ξ) ≡γσ,λ exp
{
−λ

2

∫ T

0

∣∣∣dX

dt
(t, σ, �ξ)

∣∣∣2 dt
}

=
( λ

2π

)m/2 m∏
k=1

(τk − τk−1)−1/2 exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1

}
.



SEQUENTIAL FOURIER-FEYNMAN TRANSFORM 1821

Thus in terms of Wλ(σ, �ξ), the sequential Feynman integral can be written∫ sfq

F (x) dx = lim
n→∞

∫
Rmn

Wλn
(σn, �ξ)F (X(·, σn, �ξ)) d�ξ.

Let D[0, T ] be the class of elements x ∈ C0[0, T ] such that x is absolutely con-
tinuous on [0, T ] and its derivative x′ ∈ L2[0, T ].

Definition 1.1. Let q be a nonzero real number. For y ∈ D[0, T ], we define the
sequential Fourier-Feynman transform Γq(F ) of F by the formula

(1.2) Γq(F )(y) =
∫ sfq

F (x + y) dx

if it exists.

Definition 1.2. Let q be a nonzero real number. For y ∈ D[0, T ], we define the
convolution (F ∗ G)q of F and G by the formula

(1.3) (F ∗ G)q(y) =
∫ sfq

F
(y + x√

2

)
G

(y − x√
2

)
dx

if it exists.

Definition 1.3. Let y ∈ C0[0, T ]. The first variation of F in the direction y is
defined by the formula

(1.4) δF (x|y) =
∂

∂h
F (x + hy)|h=0

if it exists.

Remark 1.4. Cameron and Storvick [5] defined the sequential Fourier-Feynman
transform by the formula

(1.5) Γq(F )(y) =
∫ sf1/q

F (x + y) dx

for y ∈ D[0, T ]. The two definitions (1.2) and (1.5) are essentially the same. For
more discussions, see Remark 3.5.

For u, v ∈ L2[0, T ] and x ∈ C0[0, T ], we let

〈u, v〉 =
∫ T

0

u(t)v(t) dt

and

(u, x) =
∫ T

0

u(t) dx(t),

the Paley-Wiener-Zygmund stochastic integral. For a subdivision σ of [0, T ], we let

〈v, 1〉k =
∫ τk

τk−1

v(t) dt

for k = 1, · · · , m. If there is a sequence of subdivisions {σn}, then 〈v, 1〉k will be
replaced by 〈v, 1〉n,k.

Let M ≡ M(L2[0, T ]) be the class of complex measures of finite variation defined
on B(L2[0, T ]), the Borel measurable subsets of L2[0, T ]. A functional F defined on
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a subset of C0[0, T ] that contains D[0, T ] is said to be an element of Ŝ ≡ Ŝ(L2[0, T ])
if there exists a measure f ∈ M such that for x ∈ D[0, T ],

(1.6) F (x) =
∫

L2[0,T ]

exp{i〈v, x′〉} df(v).

Cameron and Storvick showed in [4] that each functional F ∈ Ŝ is sequential
Feynman integrable and

(1.7)
∫ sfq

F (x) dx =
∫

L2[0,T ]

exp
{
− i

2q
‖v‖2

2

}
df(v).

Moreover they showed in [5] that for each functional F ∈ Ŝ, its sequential Fourier-
Feynman transform exists and is given by

(1.8) Γq(F )(y) =
∫

L2[0,T ]

exp
{
i〈v, y′〉 − i

2q
‖v‖2

2

}
df(v).

We finish this section by introducing three lemmas which are useful in Section 2
and Section 3.

Lemma 1.5 (Lemma 3.2 in [4]). Let v ∈ L2[0, T ]. Let {σn} be a sequence of
subdivisions of [0, T ] such that ‖σn‖ → 0. Define the averaged function vσn

for v
on σn by

vσn
(t) ≡

{ 〈v,1〉n,k

τn,k−τn,k−1
, if τn,k−1 ≤ t < τn,k, k = 1, · · · , mn,

0, if t = T.

Then

(1.9) lim
n→∞

‖vσn
‖2
2 = ‖v‖2

2.

The following lemma is essentially the same as Lemma 1 in [6]. But we rewrite
it with our notation.

Lemma 1.6. Let v ∈ L2[0, T ]. Let σ be a subdivision of [0, T ] and let Re λ > 0.
Let

Jσ,λ(ξm, v)

=γσ,λ

∫
Rm−1

exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1
+ i

m∑
k=1

〈v, 1〉k
ξk − ξk−1

τk − τk−1

}
dξ1 · · · dξm−1.

(1.10)

Then we have
(1.11)

Jσ,λ(ξm, v) =
( λ

2πT

)1/2

exp
{〈v, 1〉2

2λT
− 1

2λ

m∑
k=1

〈v, 1〉2k
τk − τk−1

+
1

2T
(−λξ2

m+2iξm〈v, 1〉)
}
.

Using Lemma 1.5, we easily obtain the following lemma.

Lemma 1.7. Let v and {σn} be given as in Lemma 1.5. Let {λn} be a sequence of
complex numbers such that Re λn > 0 and λn → −iq as n → ∞. Let Jσn,λn

(ξ, v)
be given by (1.11) with σ, λ and ξm replaced by σn, λn and ξ. Then we have

(1.12) lim
n→∞

Jσn,λn
(ξ, v) =

( −iq

2πT

)1/2

exp{Kq(ξ, v)}
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where

(1.13) Kq(ξ, v) =
i

2qT
〈v, 1〉2 − i

2q
‖v‖2

2 +
i

2T
(qξ2 + 2ξ〈v, 1〉).

2. Sequential Fourier-Feynman transform

In [6], Cameron and Storvick established the sequential Feynman integrability
of functionals of the form

F (x) = G(x)Ψ(x(T )),
where G ∈ Ŝ and Ψ need not be bounded or continuous.

In this section we prove the existence of the sequential Fourier-Feynman trans-
form and a translation theorem for such functionals.

Theorem 2.1. For x ∈ D[0, T ], let

(2.1) F (x) = G(x)Ψ(x(T )),

where G ∈ Ŝ is given by (1.6) with corresponding measure g in M and Ψ ∈ L1(R).
Then for each nonzero real q, the sequential Fourier-Feynman transform Γq(F ) of
F exists and is given by

(2.2) Γq(F )(y) =
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{i〈v, y′〉+Kq(ξ, v)}Ψ(ξ+y(T )) dξ dg(v)

for y ∈ D[0, T ], where Kq(ξ, v) is given by (1.13).

Proof. Let σ : 0 = τ0 < τ1 < · · · < τm = T be a subdivision of [0, T ], let λ be a
complex number with Reλ > 0, and let

Iσ,λ(F ) =
∫

Rm

Wλ(σ, �ξ)F (X(·, σ, �ξ) + y) d�ξ

=γσ,λ

∫
Rm

exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1

}
F (X(·, σ, �ξ) + y) d�ξ.

By (2.1) and (1.6), we have for y ∈ D[0, T ],

F (X(·, σ, �ξ) + y) =
∫

L2[0,T ]

exp
{

i

m∑
k=1

〈v, 1〉k
ξk − ξk−1

τk − τk−1
+ i〈v, y′〉

}
Ψ(ξm + y(T )) dg(v).

Using the Fubini theorem and Lemma 1.6, we have

Iσ,λ(F ) =
∫

L2[0,T ]

∫
R

Jσ,λ(ξm, v) exp{i〈v, y′〉}Ψ(ξm + y(T )) dξm dg(v),

where Jσ,λ(ξm, v) is given by (1.11).
Now let {σn} be a sequence of subdivisions of [0, T ] such that ‖σn‖ → 0, and

let {λn} be a sequence of complex numbers such that Re λn > 0 and λn → −iq as
n → ∞. Then we have

Iσn,λn
(F ) =

∫
L2[0,T ]

∫
R

Jσn,λn
(ξ, v) exp{i〈v, y′〉}Ψ(ξ + y(T )) dξ dg(v).

But by the Schwartz inequality,

1
T
〈v, 1〉2 −

mn∑
k=1

〈v, 1〉2n,k

τn,k − τn,k−1
≤ 0,
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and so we apply the dominated convergence theorem and use Lemma 1.7 to conclude
that

lim
n→∞

Iσn,λn
(F )=

( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{i〈v, y′〉 + Kq(ξ, v)}Ψ(ξ + y(T )) dξ dg(v),

and this completes the proof. �

In [4], Cameron and Storvick gave a translation theorem for the sequential Feyn-
man integral for functionals in Ŝ. In our next corollary, we give a translation
theorem for functionals we considered in Theorem 2.1.

Corollary 2.2. Let F be given as in Theorem 2.1 and let y ∈ D[0, T ]. Then for
each nonzero real q, each side of the following equation exists and

(2.3)
∫ sfq

F (x + y) dx = exp
{ iq

2
‖y′‖2

2

}∫ sfq

F (x) exp{−iq(y′, x)} dx.

Proof. Let
F̃ (x) = F (x) exp{−iq(y′, x)}.

Using (2.1) and (1.6), we have for x ∈ D[0, T ],

F̃ (x) =
∫

L2[0,T ]

exp{i〈v − qy′, x′〉} dg(v) Ψ(x(T )).

Let g̃ be a measure in M defined by

(2.4) g̃(E) = g(E + qy′)

for E ∈ B(L2[0, T ]). Then

F̃ (x) =
∫

L2[0,T ]

exp{i〈w, x′〉} dg̃(w) Ψ(x(T ))

which is of the form (2.1). Thus by Theorem 2.1,

Γq(F̃ )(0) =
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{Kq(ξ, w)}Ψ(ξ) dξ dg̃(w).

Using the expressions (1.13), (2.4) and letting ξ = η + y(T ), we have

Γq(F̃ )(0) =
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp
{

i〈v, y′〉 + Kq(η, v) − iq

2
‖y′‖2

2

}
Ψ(η + y(T )) dη dg(v).

Hence we have proven that

Γq(F̃ )(0) = exp
{
− iq

2
‖y′‖2

2

}
Γq(F )(y)

which completes the proof of Corollary 2.2. �

Let T be the set of functions Ψ defined on R by

(2.5) Ψ(r) =
∫

R

exp{irs} dρ(s)

where ρ is a complex Borel measure of bounded variation on R.
For s ∈ R, let φ(s) be the function v such that v(t) = s for 0 ≤ t ≤ T ; thus

φ : R → L2[0, T ] is continuous. For E ∈ B(L2[0, T ]), let

(2.6) ψ(E) = ρ(φ−1(E)).
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Thus ψ ∈ M. Transforming the right hand member of (2.5), we have for x ∈
D[0, T ],

(2.7) Ψ(x(T )) =
∫

L2[0,T ]

exp{i〈u, x′〉} dψ(u),

and Ψ(x(T )), considered as a functional of x, is an element of Ŝ.

Theorem 2.3. For x ∈ D[0, T ], let F (x) = G(x)Ψ(x(T )) where G ∈ Ŝ and Ψ ∈ T
are given by (1.6) with corresponding measure g in M and (2.5) respectively. Then
for each nonzero real q, the sequential Fourier-Feynman transform Γq(F ) of F

exists, belongs to Ŝ and is given by

(2.8) Γq(F )(y) =
∫

L2[0,T ]

∫
R

exp
{

i〈v + s, y′〉 − i

2q
‖v + s‖2

2

}
dρ(s) dg(v)

for y ∈ D[0, T ].

Proof. Because Ŝ is a Banach algebra, and G and Ψ(x(T )) are in Ŝ, we see that
F ∈ Ŝ. By (1.6) and (2.7), we have for x ∈ D[0, T ],

F (x) =
∫

L2
2[0,T ]

exp{i〈v + u, x′〉} dg(v) dψ(u).

Making the substitution w = v + u on the inner integral, we have

F (x) =
∫

L2
2[0,T ]

exp{i〈w, x′〉} dwg(w − u) dψ(u).

Then by the unsymmetric Fubini theorem (Theorem 6.1 in [3]), we have

F (x) =
∫

L2[0,T ]

exp{i〈w, x′〉} dh(w),

where h is a complex measure on B(L2[0, T ]) defined by

(2.9) h(E) =
∫

L2[0,T ]

g(E − u) dψ(u).

Now, by applying (1.8) to the expression for F above, we have

(2.10) Γq(F )(y) =
∫

L2[0,T ]

exp
{

i〈w, y′〉 − i

2q
‖w‖2

2

}
dh(w)

for y ∈ D[0, T ]. By Theorem 6.1 in [3] and the transformation v = w − u, we have

Γq(F )(y) =
∫

L2
2[0,T ]

exp
{
i〈v + u, y′〉 − i

2q
‖v + u‖2

2

}
dg(v) dψ(u).

Using (2.6) and the Fubini theorem, we obtain (2.8).
Finally from (2.10), it is easy to see that

Γq(F )(y) =
∫

L2[0,T ]

exp{i〈w, y′〉} dh̃(w),

where h̃ is a complex Borel measure on B(L2[0, T ]) defined by

h̃(E) =
∫

E

exp
{
− i

2q
‖w‖2

2

}
dh(w)

and so Γq(F ) belongs to Ŝ. �
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Corollary 2.4. Let F be given as in Theorem 2.3 and let y ∈ D[0, T ]. Then our
translation theorem (2.3) holds.

Proof. Without loss of generality, we may assume that F ∈ Ŝ. Let F̃ (x) be given
as in the proof of Corollary 2.2. By the same method as in the proof of Corollary
2.2, we write for x ∈ D[0, T ]

F̃ (x) =
∫

L2[0,T ]

exp{i〈w, x′〉} df̃(v),

where f̃ is the measure on B(L2[0, T ]) defined by f̃(E) = f(E +qy′). Now by (1.8),

Γq(F̃ )(0) =
∫

L2[0,T ]

exp
{
− i

2q
‖v − qy′‖2

2

}
df(v) = exp

{
− iq

2
‖y′‖2

2

}
Γq(F )(y),

and this completes the proof. �

From Theorems 2.1, 2.3, Corollaries 2.2, 2.4 and the linearity of the sequential
Feynman integral, we have the following results.

Theorem 2.5. For x ∈ D[0, T ], let F (x) = G(x)Ψ(x(T )) where G ∈ Ŝ and Ψ =
Ψ1+Ψ2 ∈ L1(R)+T . Then for each nonzero real q, the sequential Fourier-Feynman
transform Γq(F ) of F exists, and Γq(F )(y) for y ∈ D[0, T ] is equal to the sum of
the right hand side of equations (2.2) and (2.8).

Corollary 2.6. Let F be given as in Theorem 2.5 and let y ∈ D[0, T ]. Then our
translation theorem (2.3) holds.

3. Convolution product for the sequential

Fourier-Feynman transform

In this section we show that the sequential Fourier-Feynman transform of the
convolution product is a product of the sequential Fourier-Feynman transforms for
the functionals studied in Section 2.

We begin with the existence theorem for the convolution product for functionals
in Ŝ.

Theorem 3.1. Let Fj ∈ Ŝ be given by (1.6) with corresponding measures fj in M
for j = 1, 2. Then for each nonzero real number q, the convolution (F1 ∗F2)q exists,
belongs to Ŝ and is given by

(3.1) (F1 ∗F2)q(y) =
∫

L2
2[0,T ]

exp
{ i√

2
〈v1 + v2, y

′〉 − i

4q
‖v1 − v2‖2

2

}
df1(v1) df2(v2)

for y ∈ D[0, T ].

Proof. Let σ and λ be given as in the proof of Theorem 2.1 and let

Iσ,λ(F1, F2) =
∫

Rm

Wλ(σ, �ξ)F1

(y + X(·, σ, �ξ)√
2

)
F2

(y − X(·, σ, �ξ)√
2

)
d�ξ.

Using (1.6), the Fubini theorem, we have for y ∈ D[0, T ]

Iσ,λ(F1, F2) =
∫

L2
2[0,T ]

Jσ,λ

(v1 − v2√
2

)
exp

{ i√
2
〈v1 + v2, y

′〉
}

df1(v1) df2(v2),
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where

Jσ,λ

(v1 − v2√
2

)
=γσ,λ

∫
Rm

exp
{
−λ

2

m∑
k=1

(ξk − ξk−1)2

τk − τk−1

+
i√
2

m∑
k=1

〈v1 − v2, 1〉k
ξk − ξk−1

τk − τk−1

}
d�ξ.

Using the integration formula∫
R

exp{−aξ2 + ibξ} dξ =
(π

a

)1/2

exp
{
− b2

4a

}
when Re a > 0 and b ∈ R, we have

Jσ,λ

(v1 − v2√
2

)
= exp

{
− 1

4λ

m∑
k=1

〈v1 − v2, 1〉2k
τk − τk−1

}
.

Let {σn} and {λn} be given as in the proof of Theorem 2.1. Then we have
(3.2)

Iσn,λn
(F1, F2) =

∫
L2

2[0,T ]

Jσn,λn

(v1 − v2√
2

)
exp

{ i√
2
〈v1 + v2, y

′〉
}

df1(v1) df2(v2),

where

Jσn,λn

(v1 − v2√
2

)
= exp

{
− 1

4λn

mn∑
k=1

〈v1 − v2, 1〉2n,k

τn,k − τn,k−1

}
.

By Lemma 1.5,

lim
n→∞

Jσn,λn

(v1 − v2√
2

)
= exp

{
− i

4q
‖v1 − v2‖2

2

}
.

Now applying the bounded convergence theorem to (3.2), we obtain (3.1).
Let µ be a set function on B(L2

2[0, T ]), defined by

µ(E) =
∫

E

exp
{
− i

4q
‖v1 − v2‖2

2

}
df1(v1) df2(v2).

Then µ ∈ M(L2
2[0, T ]). Define a function φ : L2

2[0, T ] → L2[0, T ] by φ(v1, v2) =
1√
2
(v1 + v2). Then φ is a Borel measurable function and so k ≡ µ ◦ φ−1 is in M.

Using the change of variable theorem, we have

(3.3) (F1 ∗ F2)q(y) =
∫

L2[0,T ]

exp{i〈u, y′〉} dk(u),

and this completes the proof. �

Theorem 3.2. Let Fj, j = 1, 2, be given as in Theorem 3.1. Then for each nonzero
real number q and for y ∈ D[0, T ], Γq((F1 ∗ F2)q)(y) exists and

(3.4) Γq((F1 ∗ F2)q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

Proof. From the expression (3.3) and (1.8), we have

(3.5) Γq(F1 ∗ F2)q(y) =
∫

L2[0,T ]

exp
{

i〈u, y′〉 − i

2q
‖u‖2

2

}
dk(u)
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for y ∈ D[0, T ]. Using the definition of k, we rewrite Γq(F1 ∗ F2)q(y) as

Γq(F1 ∗F2)q(y) =
∫

L2
2[0,T ]

exp
{ i√

2
〈v1 + v2, y

′〉− i

2q
(‖v1‖2

2 + ‖v2‖2
2)

}
df1(v1) df2(v2)

which is equal to the right hand side of (3.4). �

Theorem 3.3. Let Fj, j = 1, 2, be given as in Theorem 3.1. Then for each nonzero
real number q, Parseval’s relation

(3.6)
∫ sf−q

Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
dy =

∫ sfq

F1

( y√
2

)
F2

(
− y√

2

)
dy

holds.

Proof. From (3.4), we have∫ sf−q

Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
dy =

∫ sf−q

Γq((F1 ∗ F2)q)(y) dy.

Moreover from (3.5), we have

(3.7) Γq(F1 ∗ F2)q(y) =
∫

L2[0,T ]

exp{i〈u, y′〉} dk̃(u),

where k̃ ∈ M is a measure on B(L2[0, T ]) defined by

k̃(E) =
∫

E

exp
{
− i

2q
‖u‖2

2

}
dk(u)

and k is the measure given in the proof of Theorem 3.1. Applying (1.7) to the
expression (3.7), we obtain∫ sf−q

Γq(F1 ∗ F2)q(y) dy =
∫

L2
2[0,T ]

exp
{
− i

4q
‖v1 − v2‖2

2

}
df1(v1) df2(v2).

On the other hand, using (1.6) and (1.7), it is easy to see that the right hand side of
(3.6) is equal to the right hand side of the last expression above, and this completes
the proof. �

Remark 3.4. From a careful look at the expressions (3.1), (3.3) and (3.7), and the
proof of Theorem 3.3, we easily obtain the following alternative form of Parseval’s
relation: ∫ sf−q

Γq/2(F1)(y)Γq/2(F2)(y) dy =
∫ sfq

F1(y)F2(−y) dy

for every nonzero real number q.

Remark 3.5. If we adopt Cameron and Storvick’s definition of the sequential Fourier-
Feynman transform ((1.5) in Section 1), then the equality (3.6) still holds true, but
relationship (3.4) should be

Γq((F1 ∗ F2)1/q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

On the other hand, if we adopt Cameron and Storvick’s definition of the sequential
Fourier-Feynman transform and if we define the convolution product by the formula

(F ∗ G)q(y) =
∫ sf1/q

F
(y + x√

2

)
G

(y − x√
2

)
dx,
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then the equality (3.4) still holds true, but (3.6) should be

∫ sf−1/q

Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
dy =

∫ sf1/q

F1

( y√
2

)
F2

(
− y√

2

)
dy

for every nonzero real number q.

From now on, we investigate the convolution product for functionals of the form
F (x) = G(x)Ψ(x(T )), where G ∈ Ŝ and Ψ need not be bounded or continuous.

Theorem 3.6. For j = 1, 2 and x ∈ D[0, T ], let Fj(x) = Gj(x)Ψj(x(T )) where
Gj ∈ Ŝ is given by (1.6) with corresponding measures gj in M and Ψj ∈ L1(R) ∩
L2(R). Then for each nonzero real number q and for y ∈ D[0, T ], the convolution
product (F1 ∗ F2)q(y) exists and is given by

(F1 ∗ F2)q(y) =
( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R

exp
{ i√

2
〈v1 + v2, y

′〉 + Kq

(
ξ,

v1 − v2√
2

)}

Ψ1

(y(T ) + ξ√
2

)
Ψ2

(y(T ) − ξ√
2

)
dξ dg1(v1) dg2(v2),

(3.8)

where Kq(ξ, v) is given by (1.13).

Proof. Let {σn} and {λn} be given as in the proof of Theorem 2.1 and let

Iσn,λn
(F1, F2) =

∫
Rmn

Wλn
(σn, �ξ)F1

(y + X(·, σn, �ξ)√
2

)
F2

(y − X(·, σn, �ξ)√
2

)
d�ξ.

Using the expression (1.6), the Fubini theorem and Lemma 1.6, we have

Iσn,λn
(F1, F2) =

∫
L2

2[0,T ]

∫
R

Jσn,λn

(
ξ,

v1 − v2√
2

)
exp

{ i√
2
〈v1 + v2, y

′〉
}

Ψ1

(y(T ) + ξ√
2

)
Ψ2

(y(T ) − ξ√
2

)
dξ dg1(v1) dg2(v2)

where Jσn,λn
(ξ, v) is given by (1.11). Now, the fact that Ψ1, Ψ2 ∈ L2(R) and the

Schwartz inequality justify the application of the dominated convergence theorem
to the last expression above; so by Lemma 1.7, we have the desired result. �

Theorem 3.7. Let Fj , j = 1, 2, be given as in Theorem 3.6. Then for each nonzero
real number q and for y ∈ D[0, T ], the sequential Fourier-Feynman transform
Γq((F1 ∗ F2)q)(y) exists and

(3.9) Γq((F1 ∗ F2)q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

Proof. Let {σn} and {λn} be given as in the proof of Theorem 2.1 and let

Iσn,λn
((F1 ∗ F2)q) =

∫
Rmn

Wλn
(σn, �η)(F1 ∗ F2)q(X(·, σn, �η) + y) d�η.
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Using the expression (3.8), the Fubini theorem and Lemma 1.6, we have

Iσn,λn
((F1 ∗ F2)q) =

( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R2

Jσn,λn

(
η,

v1 + v2√
2

)

exp
{ i√

2
〈v1 + v2, y

′〉 + Kq

(
ξ,

v1 − v2√
2

)}

Ψ1

(y(T ) + η + ξ√
2

)
Ψ2

(y(T ) + η − ξ√
2

)
dη dξ dg1(v1) dg2(v2),

where Jσn,λn
(η, v) and Kq(ξ, v) are given by (1.11) and (1.13) respectively. By

the same reason as in the proof of Theorem 3.6, we apply dominated convergence
theorem to the last expression above and so by Lemma 1.7, we have that

Γq((F1 ∗ F2)q)(y) =
( −iq

2πT

) ∫
L2

2[0,T ]

∫
R2

exp
{ i√

2
〈v1 + v2, y

′〉

+ Kq

(
ξ,

v1 − v2√
2

)
+ Kq

(
η,

v1 + v2√
2

)}
Ψ1

(y(T ) + η + ξ√
2

)

Ψ2

(y(T ) + η − ξ√
2

)
dη dξ dg1(v1) dg2(v2).

A direct calculation shows that

Kq

(
ξ,

v1 − v2√
2

)
+ Kq

(
η,

v1 + v2√
2

)
= Kq

(η + ξ√
2

, v1

)
+ Kq

(η − ξ√
2

, v1

)
,

and finally using (2.2) we obtain (3.9). �
Theorem 3.8. For j = 1, 2 and x ∈ D[0, T ], let Fj(x) = Gj(x)Ψj(x(T )) where
Gj ∈ Ŝ is given by (1.6) with corresponding measures gj in M and Ψj ∈ T is given
by (2.5) with corresponding complex Borel measures ρj. Then for each nonzero real
number q and for y ∈ D[0, T ], the convolution product (F1 ∗ F2)q(y) exists and is
given by

(F1 ∗ F2)q(y) =
∫

L2
2[0,T ]

∫
R2

exp
{ i√

2
〈v1 + v2 + s1 + s2, y

′〉

+
i

4q
‖v1 − v2 + s1 − s2‖2

2

}
dρ(s1) dρ(s2) dg1(v1) dg2(v2).

(3.10)

Moreover Γq((F1 ∗ F2)q)(y) exists and

(3.11) Γq((F1 ∗ F2)q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

Proof. From the first part of the proof of Theorem 2.3, we know that Fj is in Ŝ.
Hence we apply Theorem 3.1 to conclude that

(F1 ∗ F2)q(y) =
∫

L2
2[0,T ]

exp
{ i√

2
〈w1 + w2, y

′〉 − i

4q
‖w1 − w2‖2

2

}
dh1(w1) dh2(w2)

where hj is the complex measure defined by (2.9) with corresponding measures gj

and ψj . Using Theorem 6.1 in [3] and the transformation wj = vj + uj , we have

(F1 ∗ F2)q(y) =
∫

L4
2[0,T ]

exp
{ i√

2
〈v1 + u1 + v2 + u2, y

′〉

− i

4q
‖v1 + u1 − v2 − u2‖2

2

}
dg1(v1) dψ1(u1) dg2(v2) dψ2(u2).
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Now, the Fubini theorem and the change of variable theorem give (3.10). Since
Fj ∈ Ŝ, equation (3.11) follows immediately from Theorem 3.2. �

Theorem 3.9. For j = 1, 2 and x ∈ D[0, T ], let Fj(x) = Gj(x)Ψj(x(T )) where
Gj ∈ Ŝ is given by (1.6) with corresponding measures gj in M, Ψ1 ∈ L1(R) and
Ψ2 ∈ T is given by (2.5) with corresponding complex Borel measure ρ2. Then for
each nonzero real number q and for y ∈ D[0, T ], the convolution product (F1∗F2)q(y)
exists and is given by

(F1 ∗ F2)q(y) =
( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R2

exp
{ i√

2
〈v1 + v2 + s, y′〉

+ Kq

(
ξ,

v1 − v2 − s√
2

)}
Ψ1

(y(T ) + ξ√
2

)
dξ dρ2(s) dg1(v1) dg2(v2),

(3.12)

where Kq(ξ, v) is given by (1.13). Moreover Γq((F1 ∗ F2)q)(y) exists and

(3.13) Γq((F1 ∗ F2)q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

Proof. As we know from the proof of Theorem 2.3, F2 is expressed by

F2(x) =
∫

L2[0,T ]

exp{i〈w2, x
′〉} dh2(w2),

where h2 is the complex measure defined by (2.9) with corresponding measures g2

and ψ2. Replacing Ψ2 by the constant function 1, g2 by h2 and v2 by w2 whenever
they occur in the proof of Theorem 3.6, we have

(F1 ∗ F2)q(y) =
( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R

exp
{ i√

2
〈v1 + w2, y

′〉

+ Kq

(
ξ,

v1 − w2√
2

)}
Ψ1

(y(T ) + ξ√
2

)
dξ dg1(v1) dh2(w2).

Using (2.9), Theorem 6.1 in [3], the transformation v2 = w2 − u2 and (2.6), we
obtain (3.12).

The existence of Γq((F1 ∗F2)q) can also be obtained from the proof of Theorem
3.7 by replacing Ψ2 by 1, g2 by h2 and v2 by w2. Hence we have

Iσn,λn
((F1 ∗ F2)q) =

( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R2

Jσn,λn

(
η,

v1 + w2√
2

)

exp
{ i√

2
〈v1 + w2, y

′〉 + Kq

(
ξ,

v1 − w2√
2

)}

Ψ1

(y(T ) + η + ξ√
2

)
dη dξ dg1(v1) dh2(w2).

Using (1.11) and (1.13), we rewrite the above expression as

Iσn,λn
((F1 ∗ F2)q) =

( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R2

Pσn,λn
(v1, w2) exp

{ i√
2
〈v1 + w2, y

′〉
}

Rλn
(η, ξ, v1, w2)Ψ1

(y(T ) + η + ξ√
2

)
dη dξ dg1(v1) dh2(w2),
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where

Pσn,λn
(v1, w2) =

( λn

2πT

)1/2

exp
{〈v1 + w2, 1〉2

4λnT
− 1

4λn

mn∑
k=1

〈v1 + w2, 1〉2k
τn,k − τn,k−1

+
i

4qT
〈v1 − w2, 1〉2 −

i

4q
‖v1 − w2‖2

2

}
and

Rλn
(η, ξ, v1, w2) = exp

{ 1
2T

[−λnη2 +
√

2iη〈v1 + w2, 1〉+ iqξ2 +
√

2iξ〈v1 −w2, 1〉]
}
.

Letting α = η+ξ√
2

and β = η−ξ√
2

, we have

Rλn
(η, ξ, v1, w2) = exp

{
−λn − iq

4T
β2 +

2i〈w2, 1〉 − (λn + iq)α
2T

β

− λn − iq

4T
α2 +

i〈v1, 1〉
T

α
}

.

Hence evaluating the integral with respect to β, we obtain

Iσn,λn
((F1 ∗ F2)q) =

( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R

( 4πT

λn − iq

)1/2

Pσn,λn
(v1, w2)

exp
{ i√

2
〈v1 + w2, y

′〉 +
1

4(λn − iq)T
[2i〈w2, 1〉 − (λn + iq)α]2

− λn − iq

4T
α2 +

i

T
α〈v1, 1〉

}
Ψ1

(y(T )√
2

+ α
)

dα dg1(v1) dh2(w2).

(3.14)

Now by the Schwartz inequality

1
T
〈v1 + w2, 1〉2 −

mn∑
k=1

〈v1 + w2, 1〉2n,k

τn,k − τn,k−1
≤ 0

and a direct calculation shows that

Re
{ 1

4(λn − iq)T
[2i〈w2, 1〉 − (λn + iq)α]2 − λn − iq

4T
α2

}
≤ 0.

Now we apply the dominated convergence theorem to the expression (3.14) to con-
clude that

Γq((F1 ∗ F2)q)(y) =
( −iq

2πT

)1/2
∫

L2
2[0,T ]

∫
R

exp
{ i√

2
〈v1 + w2, y

′〉 − i

2q
‖w2‖2

2

+ Kq(α, v1)
}
Ψ1

(y(T )√
2

+ α
)

dα dg1(v1) dh2(w2).

Finally, from (2.2) and (1.8) we obtain (3.13). �

From Theorems 3.6, 3.7, 3.8, 3.9 and the linearity of the sequential Feynman
integral, we have the following result.

Corollary 3.10. For j = 1, 2 and x ∈ D[0, T ], let Fj(x) = Gj(x)Ψj(x(T )) where
Gj ∈ Ŝ is given by (1.6) with corresponding measures gj in M and Ψj = Ψj1+Ψj2 ∈
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L1(R) ∩ L2(R) + T . Then for each nonzero real number q and for y ∈ D[0, T ],
(F1 ∗ F2)q(y) and Γq((F1 ∗ F2)q)(y) exist and

(3.15) Γq((F1 ∗ F2)q)(y) = Γq(F1)
( y√

2

)
Γq(F2)

( y√
2

)
.

4. Sequential Fourier-Feynman transform and the first variation

In this section we study the sequential Fourier-Feynman transform and the first
variation of functionals studied in Sections 2 and 3.

We begin with the formula for the first variation of functionals in F ∈ Ŝ.

Theorem 4.1. Let F ∈ Ŝ be given by (1.6) with
∫

L2[0,T ]
‖v‖2 |df(v)| < ∞ and let

y ∈ D[0, T ]. Then for each x ∈ D[0, T ], the first variation δF (x|y) exists, belongs
to Ŝ as a function of x ∈ D[0, T ] and is given by

(4.1) δF (x|y) =
∫

L2[0,T ]

exp{i〈v, x′〉} dfy(v)

for x ∈ D[0, T ], where fy is given by

(4.2) fy(E) = i

∫
E

〈v, y′〉 df(v)

for E ∈ B(L2[0, T ]).

Proof. For x, y ∈ D[0, T ], we have

δF (x|y) =
∂

∂h

∫
L2[0,T ]

exp{i〈v, x′ + hy′〉} df(v)
∣∣∣
h=0

.

Since ∫
L2[0,T ]

|〈v, y′〉| |df(v)| ≤ ‖y′‖2

∫
L2[0,T ]

‖v‖2 |df(v)| < ∞,

we can take the partial derivative under the integral sign, so

δF (x|y) =
∫

L2[0,T ]

i〈v, y′〉 exp{i〈v, x′〉} df(v)

and we obtain (4.1). Since

‖fy‖ ≤ ‖y′‖2

∫
L2[0,T ]

‖v‖2 |df(v)| < ∞,

fy ∈ M, and we complete the proof. �

Theorem 4.2. Let F be given as in Theorem 4.1. Let y ∈ D[0, T ] and let q be a
nonzero real number. Then

(4.3) Γq(δF (·|y))(x) = δΓqF (x|y)

for x ∈ D[0, T ].

Proof. Using the expressions (1.8) and (4.1) we have

Γq(δF (·|y))(x) =
∫

L2[0,T ]

exp
{

i〈v, x′〉 − i

2q
‖v‖2

2

}
dfy(v).
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On the other hand, using the expression (1.8) and taking the partial derivative
under the integral sign, we have

δΓqF (x|y) =
∂

∂h

(∫
L2[0,T ]

exp
{

i〈v, x′ + hy′〉 − i

2q
‖v‖2

2

}
df(v)

)∣∣∣
h=0

=
∫

L2[0,T ]

i(v, y′) exp
{

i〈v, x′〉 − i

2q
‖v‖2

2

}
df(v).

By (4.2) we obtain (4.3). �

Theorem 4.3. Let F be given as in Theorem 4.1. Let x ∈ D[0, T ] and let q be a
nonzero real number. Then

(4.4) Γq(δF (x|·))(y) = δF (x|y)

for y ∈ D[0, T ].

Proof. Let {σn} and {λn} be given as in the proof of Theorem 2.1 and let

Iσn,λn
(δF (x|·)) =

∫
Rmn

Wλn
(σn, �ξ)δF (x|X(·, σn, �ξ) + y) d�ξ.

By Theorem 4.1 we have for y ∈ D[0, T ]

δF (x|X(·, σn, �ξ) + y) =
∫

L2[0,T ]

(
i〈v, y′〉 + i

mn∑
k=1

〈v, 1〉n,k
ξk − ξk−1

τn,k − τn,k−1

)
exp{i〈v, x′〉} df(v).

The Fubini theorem and a direct calculation show that

Iσn,λn
(δF (x|·)) =

∫
L2[0,T ]

i〈v, y′〉 exp{i〈v, x′〉} df(v).

Hence

lim
n→∞

Iσn,λn
(δF (x|·)) =

∫
L2[0,T ]

i〈v, y′〉 exp{i〈v, x′〉} df(v),

and by Theorem 4.1, the proof is completed. �

From now on, we investigate the first variation of functionals of the form F (x) =
G(x)Ψ(x(T )).

Theorem 4.4. Let F (x) = G(x)Ψ(x(T )), x ∈ D[0, T ], where G ∈ Ŝ is given by
(1.6) with

∫
L2[0,T ]

‖v‖2 |dg(v)| < ∞, and Ψ ∈ L1(R) with Ψ′ exists. Let y ∈ D[0, T ].
Then

(4.5) δF (x|y) = δG(x|y)Ψ(x(T )) + G(x)Ψ′(x(T ))y(T )

for x ∈ D[0, T ]. Also the right hand side of (4.5) can be expressed explicitly using
(4.1) and (1.6).

Proof. For x, y ∈ D[0, T ], we have

δF (x|y) =
∂

∂h
(G(x + hy)Ψ(x(T ) + hy(T )))|h=0,

and this is equal to the right hand side of (4.5). �
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Theorem 4.5. Let F be given as in Theorem 4.4 and suppose that Ψ′ ∈ L1(R).
Let y ∈ D[0, T ] and let q be a nonzero real number. Then

(4.6) Γq(δF (·|y))(x) = δΓqF (x|y)

for x ∈ D[0, T ].

Proof. First note that δG(·|y) ∈ Ŝ with corresponding measure gy, where gy is the
measure induced by g as fy was induced by f in (4.2). Using Theorem 2.1 we have

Γq(δG(·|y)Ψ(·(T )))(x)

=
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{i〈v, x′〉 + Kq(ξ, v)}Ψ(ξ + x(T )) dξ dgy(v)

for x ∈ D[0, T ]. Similarly, since Ψ′ ∈ L1(R), we have

Γq(G(·)Ψ′(·(T )))(x)

=
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{i〈v, x′〉 + Kq(ξ, v)}Ψ′(ξ + x(T )) dξ dg(v)

for x ∈ D[0, T ]. Hence by (4.5) and (4.2),

Γq(δF (·|y))(x) =
( −iq

2πT

)1/2
∫

L2[0,T ]

∫
R

exp{i〈v, x′〉 + Kq(ξ, v)}

[i〈v, y′〉Ψ(ξ + x(T )) + Ψ′(ξ + x(T ))y(T )] dξ dg(v).

On the other hand, using (2.2) and taking the partial derivative under the integral
sign, we see that δΓq(F )(x|y) can also be expressed as the right hand side of the
last expression above, and this completes the proof. �

Theorem 4.6. Let F be given as in Theorem 4.4. Let x ∈ D[0, T ] and let q be a
nonzero real number. Then

(4.7) Γq(δF (x|·))(y) = δF (x|y)

for y ∈ D[0, T ].

Proof. Obviously the sequential Fourier-Feynman transform of a constant function
is the constant itself. Moreover it is easy to see that if we let H(y) = y(T ),
y ∈ D[0, T ], then

Γq(H)(y) = H(y) = y(T ).
Hence using the relationship (4.5) for δF (x|y) and applying Theorem 4.3, we have

Γq(δF (x|·))(y) =Γq(δG(x|·))(y)Ψ(x(T )) + G(x)Ψ′(x(T ))y(T )

=δG(x|y)Ψ(x(T )) + G(x)Ψ′(x(T ))y(T ).

Equation (4.7) now follows from (4.5). �

Theorem 4.7. Let F (x) = G(x)Ψ(x(T )), x ∈ D[0, T ], where G ∈ Ŝ is given as in
Theorem 4.4 and Ψ ∈ T is given by (2.5) with

∫
R
|s| |dρ(s)| < ∞. Let y ∈ D[0, T ].

Then

(4.8) δF (x|y) = i

∫
L2[0,T ]

∫
R

〈v + s, y′〉 exp{i〈v + s, x′〉} dρ(s) dg(v)

for x ∈ D[0, T ].
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Proof. As we see in the proof of Theorem 2.3, F belongs to Ŝ. Moreover by Theorem
6.1 in [3] and the transformation v = w − u, it is easy to see that∫

L2[0,T ]

‖w‖2 |dh(w)| ≤
∫

L2[0,T ]

∫
R

(‖v‖2 + |s|) |dρ(s)||dg(v)|

=‖ρ‖
∫

L2[0,T ]

‖v‖2 |dg(v)| + ‖g‖
∫

R

|s| |dρ(s)| < ∞,

where ‖g‖ and ‖ρ‖ denote the total variation of g and ρ, respectively. Applying
Theorem 4.1 to the expression for F , we have

δF (x|y) = i

∫
L2[0,T ]

〈w, y′〉 exp{i〈w, x′〉} dh(w)

where h is given by (2.9). Using Theorem 6.1 in [3] and transforming v = w − u
once more, we have

δF (x|y) = i

∫
L2

2[0,T ]

〈v + u, y′〉 exp{i〈v + u, x′〉} dg(v) dψ(u)

where ψ is given by (2.6). Finally (2.6) and the Fubini theorem give (4.8). �

Now we apply Theorems 4.2 and 4.3 to the functional F in Theorem 4.7 to obtain
the following results.

Theorem 4.8. Let F be given as in Theorem 4.7. Let q be a nonzero real number.
Then

(4.9) Γq(δF (·|y))(x) = δΓqF (x|y)

and

(4.10) Γq(δF (x|·))(y) = δF (x|y)

for x, y ∈ D[0, T ].

From Theorems 4.4, 4.7 and the linearity of the sequential Feynman integral, we
have

Corollary 4.9. Let F (x) = G(x)Ψ(x(T )), x ∈ D[0, T ], where G ∈ Ŝ is given as
in Theorem 4.4 and Ψ = Ψ1 + Ψ2 ∈ L1(R) + T with Ψ′

1 exists and Ψ2 satisfies∫
R
|s| |dρ(s)| < ∞. For any x, y ∈ D[0, T ], δF (x|y) exists and is equal to the sum

of the right hand sides of equations (4.5) and (4.8).

From Theorems 4.5, 4.6, 4.8 and the linearity of the sequential Feynman integral,
we have

Corollary 4.10. Let F be given as in Corollary 4.9. Let q be a nonzero real
number. Then

(4.11) Γq(δF (x|·))(y) = δF (x|y).

In addition, if Ψ′
1 ∈ L1(R), then

(4.12) Γq(δF (·|y))(x) = δΓqF (x|y)

for all x, y ∈ D[0, T ].
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Remark 4.11. We thank the referee for calling our attention to the paper of Cameron
and Storvick [7], where, for functionals F we considered in Theorem 2.5, they
showed that for each nonzero real q the sequential Feynman integral of F with
parameter q and the analytic Feynman integral of F with parameter q both exist
and are equal. This implies that for each F (x) = G(x)Ψ(x(T )) where G ∈ Ŝ and
Ψ = Ψ1 + Ψ2 ∈ L1(R) + T , if either the sequential Fourier-Feynman transform of
F exists or the analytic Fourier-Feynman transform of F exists, then both exists
and equality holds. The same conclusions follow for the convolution products of
functionals in Ŝ.

Hence all of the results established for the sequential Feynman integral setting
in Section 2 also hold for the analytic Feynman integral setting. Moreover, using
results in [7], Theorems 3.1, 3.2, 3.3 and Remark 3.4 in Section 3 can also be
obtained from Theorems 3.2, 3.3, 3.4 and equation (3.9a) in [13], respectively. In
the same way, Theorems 4.1, 4.2 and 4.3 in Section 4 can also be obtained from
Lemma 3.1, Theorems 3.2 and 3.3 in [16], respectively.
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