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CONSTRUCTING TILTING MODULES

OTTO KERNER AND JAN TRLIFAJ

Abstract. We investigate the structure of (infinite dimensional) tilting mod-

ules over hereditary artin algebras. For connected algebras of infinite repre-
sentation type with Grothendieck group of rank n, we prove that for each
0 ≤ i < n− 1, there is an infinite dimensional tilting module Ti with exactly i
pairwise non-isomorphic indecomposable finite dimensional direct summands.
We also show that any stone is a direct summand in a tilting module. In
the final section, we give explicit constructions of infinite dimensional tilting
modules over iterated one-point extensions.

The study of finite dimensional tilting modules of projective dimension at most
one over finite dimensional algebras was initiated by Brenner and Butler [11] and
continued by Happel and Ringel [17]. Since then, many variations of this con-
cept have been introduced and used successfully, for example: Tilting modules of
higher projective dimension, tilting modules over rings, tilting complexes in de-
rived categories, tilting objects in hereditary categories or in cluster categories. In
this paper, we use the term tilting module as follows: Let R be a ring and T be
a right R-module. Then T is a tilting module provided that (T1) p.dimT ≤ 1,
(T2) Ext1R(T, T (I)) = 0 for any set I, and (T3) there is a short exact sequence
0 → R → T0 → T1 → 0 where T0 and T1 are direct summands in a direct sum
of (possibly infinitely many) copies of T . Equivalently, T is tilting if and only if
Gen(T ) = {T}⊥, [13].

Here, Gen(T ) denotes the class of all homomorphic images of direct sums of
copies of T , and, for a class of modules C,

C⊥ = KerExt1R(C,−) = {M ∈ Mod-R | Ext1R(C, M) = 0 for all C ∈ C}.
If T is a tilting module, then {T}⊥ is a torsion class in Mod-R, the tilting class

generated by T . If T ′ is another tilting module, then T is said to be equivalent to
T ′ if {T}⊥ = {T ′}⊥.

Though our definition of a tilting module allows infinitely generated modules,
there is an implicit finiteness property connected with tilting, recently proved by
Bazzoni and Herbera in [9, Theorem 2.4]. Namely, any tilting module T is of
finite type, that is, there exists a set S consisting of finitely presented modules of
projective dimension at most 1 such that S⊥ = {T}⊥.
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It has been shown in [25, Theorem 2.1] that for an artin algebra A there is a
bijection between the set of equivalence classes of tilting A-modules of finite type
and the set of torsion classes {T | D(A) ∈ T } in mod-A where D(A) denotes the
injective cogenerator in mod-A. The bijection is defined by T �→ {T}⊥ ∩ mod-A.

Combining these two results, we get for an artin algebra A a bijection between
equivalence classes of tilting modules in Mod-A and torsion classes in mod-A con-
taining all injective modules. We therefore call such torsion classes T in mod-A
tilting torsion classes. (This notion generalizes the classical case where only finite
dimensional tilting modules were considered, and hence the extra condition of T
being generated by a single module had to be assumed; cf. [3], [19].)

Our first goal here is to investigate direct summands of tilting modules, in par-
ticular, the finite dimensional ones, and to use these investigations to construct
tilting modules with various additional properties.

We will show that indecomposable finite dimensional direct summands of a tilt-
ing module T ∈ Mod-A coincide with the indecomposable Ext-projective modules
in T = {T}⊥ ∩ mod-A. Then we will study the open problem of the number
of indecomposable Ext-projective modules in tilting torsion classes in mod-A for
hereditary artin algebras, and prove

Theorem A. Let H be a connected hereditary artin algebra of infinite representa-
tion type with n simple modules.

(1) If T is a tilting H-module with at least n−1 pairwise non-isomorphic finite
dimensional indecomposable direct summands, then T is equivalent to a
finite dimensional tilting H-module T̂ (so that T has exactly n such direct
summands).

(2) For any natural number i with 0 ≤ i ≤ n − 2, there exists an infinite di-
mensional tilting H-module Ti with exactly i pairwise non-isomorphic finite
dimensional indecomposable direct summands.

The proof of Theorem A will be presented in Section 2.
As a direct consequence, we obtain

Corollary. Let H be a connected hereditary artin algebra with n simple modules
and T a tilting torsion class in mod-H.

(a) If H is representation finite, then T contains n pairwise non-isomorphic
indecomposable Ext-projective modules.

(b) If H is representation infinite and 0 ≤ i ≤ n with i �= n − 1, then there
exists a tilting torsion class in mod-H with i pairwise non-isomorphic in-
decomposable Ext-projective modules.

It should be mentioned that the Ext-projective torsion modules are central in
the construction of torsion pairs in [4].

In Section 3, we study the problem of which modules in Mod-A occur as di-
rect summands of tilting A-modules. Of course, any such module has projective
dimension ≤ 1, and no self-extensions.

Until now, only partial cases were considered. In [13], a module X is called
partial tilting if Gen(X) = {X}⊥ and {X}⊥ is a torsion class in Mod-A, that is, if
X can be completed to a tilting module T by the Bongartz construction.
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Restricting to right hereditary right artinian rings, we show

Theorem B. Let H be a right hereditary right artinian ring and X be an H-
module with Ext1H(X, X(I)) = 0 for every set I. If X is finitely generated over its
endomorphism ring, then X is a direct summand in a tilting H-module.

The assumption that X is finitely generated over its endomorphism ring, fre-
quently called finendo, is quite natural: by [13, Proposition 2.5.], each tilting mod-
ule is finendo.

Let H be a connected hereditary algebra. The endofinite modules, that is, the
modules of finite length over their endomorphism rings, clearly are finendo. Since
any endofinite module X is Σ-pure-injective (see [14, 26]) the pure embedding
X(I) → XI splits, hence Ext1H(X, X) = 0 implies in this case the stronger condi-
tion of Ext1H(X, X(I)) = 0. Since endofinite modules are direct sums of indecom-
posable endofinite modules [14, 4.5] with local endomorphism rings and nilpotent
radical [14, 4.2,4.4], we may restrict to indecomposable endofinite modules X with
Ext1H(X, X) = 0. Following Schofield, such an H-module X is called a stone.
Stones are studied in [15] in the case where the ground-field k is algebraically
closed: There always exist infinite dimensional stones when H is connected and
representation-infinite. They are in 1-1 correspondence with imaginary indivisi-
ble Schur roots, whereas finite dimensional stones correspond to real Schur roots.
The correspondence is defined as follows: Let X be a stone and E = EndH(X).
Then E is a division algebra; see [15]. If (P1, . . . , Pn) is a compete family of pair-
wise non-isomorphic indecomposable projective H-modules, then the assignment
X �→ (dimE HomH(Pi, X))1≤i≤n defines this bijection. Since dimE HomH(Pi, X) is
finite and each finite dimensional H-module M has a finite dimensional projective
cover, dimE HomH(M, X) is also finite, for M finite dimensional.

If H is tame, there is a unique imaginary indivisible Schur root, and the generic
module, G, is the unique infinite dimensional stone (originally studied in [31]). If H
is wild, there always exist infinitely many such roots; consequently, there exist in-
finitely many pairwise non-isomorphic infinite dimensional stones. We immediately
get from Theorem B:

Corollary. Let H be a hereditary algebra, and X be a stone. Then X is a direct
summand in a tilting H-module.

The proof of Theorem B is done in several steps. One of these steps (Proposition
3.3) deals with the problem of when a tilting R/I-module T̄ , where I is an idem-
potent ideal in R, can be completed to a tilting R-module T with {T}⊥ = {T̄}⊥.
This situation is studied again in the special case when B is a finite dimensional
k-algebra, T̄ ∈ Mod-B a tilting B-module and A an iterated one-point extension
of B. We obtain rather explicit results concerning this case in Section 4.

For background on representation theory of finite dimensional modules, we refer
to [5, 6, 32], of infinite dimensional modules to [15, 26, 31], and on wild hereditary
algebras to [23].

1. Preliminaries

For a commutative artinian ring k, a k-algebra A is called an artin algebra if it is
finitely generated as a k-module. Additionally, we will assume that A is a faithful
k-module, and that A is connected. This means that 0 and 1 are the only central
idempotents in A, in particular, k is a local ring.
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By Mod-A, we denote the category of all (right A-) modules, and by mod-A the
subcategory of all finitely presented modules. ind-A will denote a (fixed) represen-
tative set of the class of all finitely generated indecomposable modules. If I is the
injective hull of the simple k-module, then the functor D = Homk(−, I) defines a
duality between mod-A and A-mod. Also, τA = DTr and τ−

A = TrD denote the
Auslander-Reiten translations in mod-A.

The Auslander-Reiten quiver, Γ(A), is a directed graph whose set of vertices is
ind-A, and whose arrows are induced by the Auslander-Reiten sequences 0 → τX →
E → X → 0 for X ∈ ind-A non-projective, and by the embeddings radX ⊆ X for
X ∈ ind-A projective. For more details, see [6].

Moreover, if A is hereditary, then k is a field, hence A is a finite dimensional
k-algebra and τ−

A = Ext1A(D(A),−) and τA = DExt1A(−, A) ∼= TorA
1 (D(A),−) are

endo-functors on mod-A.
Assume A is hereditary and representation-infinite. Then Γ(A) is partitioned

into three types of modules: a module X ∈ ind-A is preprojective (preinjective) if
τmX = 0 (τ−mX = 0) for some m ≥ 0; X is regular if τmτ−mX ∼= X for all integers
m. A module M ∈ mod-A is preprojective (preinjective, and regular) if either M =
0, or each indecomposable direct summand of M is isomorphic to a preprojective
(preinjective, and regular) module in ind-A. The set of all M ∈ mod-A that are
preprojective (preinjective, and regular) will be denoted by P (I, and R). To avoid
ambiguity, occasionally for example P(A) instead of just P will be written.

The Auslander-Reiten quiver Γ(A) consists of infinitely many (connected) com-
ponents: one preprojective component whose vertices are the elements of P∩ ind-A,
one preinjective component with the elements of I∩ind-A as vertices, and an infinite
set of regular components (with vertices in R∩ ind-A).

If A is tame hereditary, all regular components are tubes, all of them homoge-
neous, up to finitely many. If A is wild hereditary, all regular components are of
type ZA∞. In both cases, the modules at the border of the regular components
are called quasi-simple. If Y is an arbitrary indecomposable module contained in
a regular component C, there exists a unique quasi-simple module X in C and a
chain of irreducible monomorphisms

(∗) X = X(1) → X(2) → · · · → X(r) = Y,

which we will consider as inclusions. The number r is called the quasi-length of Y ,
and X(i)/X(i − 1) ∼= τ−i+1X holds for 1 < i ≤ r; see [30].

Dually, there exists a unique quasi-simple module Z in C and a chain of irre-
ducible epimorphisms of the same length r

(∗∗) Y = (r)Z → (r − 1)Z → · · · → (1)Z = Z.

Given an abelian category A, we call a pair (T ,F) of classes of objects in A a
torsion pair if Hom(T ,F) = 0, and both classes are maximal with respect to this
property. This means that for any object M ∈ A, there is a short exact sequence,
called the canonical short exact sequence

0 → t(M) → M → f(M) → 0,

with t(M) ∈ T and f(M) ∈ F .
An object P ∈ T is called Ext-projective (in T ), provided Ext1A(P, T ) = 0, that

is, T ⊆ {P}⊥.
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If H is a finite dimensional hereditary algebra with n simple modules and X
is a finite dimensional H-module with Ext1H(X, X) = 0, we consider the full
subcategory {X}⊥≥0 of Mod-H, defined by the modules {M | HomH(X, M) =
0 = Ext1H(X, M)}. It is easy to check that {X}⊥≥0 is an exact and extension
closed abelian subcategory of Mod-H. It is well known that for X indecomposable,
{X}⊥≥0 is equivalent to a module category Mod-C, where C is a finite dimensional
hereditary algebra with n − 1 simple modules. Indeed, if X = eH is indecom-
posable projective, then {X}⊥≥0 ∼= Mod-(H/HeH). If X is not projective, and
0 → H → Y → Xr → 0 is the Bongartz universal short exact sequence [10], then
Y is a finite dimensional projective generator in {X}⊥≥0 , hence X⊥≥0 is equivalent
to Mod-EndH(Y ).

More generally, if X ′ is a finite dimensional partial tilting module with r pair-
wise non-isomorphic indecomposable direct summands, then {X ′}⊥≥0 is equivalent
to Mod-C ′, where C ′ is finite dimensional hereditary with n − r pairwise non-
isomorphic simple modules. Indeed, let 0 → H → E → X ′r → 0 be the Bongartz
universal short exact sequence. Then the factor-module Y of E by the X-trace of
E is a small projective generator in {X ′}⊥≥0 , hence {X ′}⊥≥0 ∼= Mod-C ′, where
C ′ =EndH(Y ); see [16, Proposition 3.8]. Especially, if X ′ has n − 1 pairwise non-
isomorphic indecomposable direct summands, then C ′ is a hereditary artin algebra
with one simple module S, which means C ′ is a full matrix ring over the division
algebra K = End(S). We refer to [16] for more details on perpendicular categories.

2. Finite dimensional direct summands of tilting modules

The first aim of this section is to study finitely generated indecomposable direct
summands of a tilting module T in Mod-A, for A an artin algebra. For this purpose,
we consider the torsion class T = {T}⊥ ∩ mod-A in mod-A, and its corresponding
torsion free class F .

Lemma 2.1. Let A be an artin algebra and T a tilting A-module. A finitely gen-
erated A-module X is in addT if and only if X is Ext-projective in T .

Proof. If X ∈ addT , then X is Ext-projective in {T}⊥, hence also in T .
Conversely, let X be Ext-projective in T . Then τAX is in F by [7, 19]. Since the

injective cogenerator DA is a torsion module, HomA(DA, τAX) = 0 follows. Hence
p.dimX ≤ 1 by [32, 2.4]. Combining [9, Theorem 2.4] and [25, Theorem 2.1], we
get {T}⊥ = (τ−

AF)⊥. Since X ∈ τ−
AF , we have X ∈ {T}⊥ ⊂ {X}⊥. Consequently

X ∈ addT by [13, Lemma 2.2]. �
The following lemma is well known:

Lemma 2.2. Let R be a ring and X an R-module with a local endomorphism ring.
If X is a direct summand of Y =

⊕r
i=1 Yi, then X is a direct summand of some

direct summand Yi0 .

Proposition 2.3. Let A be an artin algebra and T a tilting A-module. If {Xi | 1 ≤
i ≤ r} is a set of pairwise non-isomorphic indecomposable Ext-projective modules
in T , then

⊕
i Xi is a direct summand of T .

Proof. By Lemma 2.1 Xi is in addT with a local endomorphism ring. Therefore,
by Lemma 2.2, Xi is a direct summand of T , for each i.

The proof now is done by induction. X1 is a direct summand of T . Assume
T = (

⊕t−1
j=1 Xj) ⊕ Y for 1 < t ≤ r. Since Xt is a direct summand of T , but not a
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direct summand of the indecomposable modules Xj , for 1 ≤ j < t, again by Lemma
2.2 Xt is a direct summand of Y . Consequently

⊕t
j=1 Xj is a direct summand of

T . �

Proof of Theorem A(1). Let X1, . . . , Xn−1 be the pairwise non-isomorphic inde-
composable finite dimensional direct summands of T and X =

⊕
i Xi. Clearly,

{T}⊥ ⊂ {X}⊥.
It follows from [4] and [13] that T �→ T ∩ {X}⊥≥0 defines a bijection between

the torsion classes T in Mod-H containing X as an Ext-projective module, and
the torsion classes in {X}⊥≥0 . Since X has n − 1 pairwise non-isomorphic inde-
composable direct summands, the category X⊥≥0 is equivalent to Mod-K, where
K is a k-division algebra; see Section 1. Mod-K only contains the trivial torsion
classes {0} and Mod-K. Hence Gen(X) and {X}⊥ are the only torsion classes in
Mod-H, containing X as an Ext-projective module. The torsion class {X}⊥ is the
tilting torsion class of a finite dimensional tilting module T ′. If X is not sincere,
then Gen(X) is not a tilting torsion class since there are indecomposable injective
H-modules not contained in Gen(X). Therefore T ∈ Add(T ′), and hence T is
equivalent to T ′ in this case. If X is sincere, then Gen(X) also is the tilting torsion
class of a finite dimensional tilting module T ′′; see [18]. Hence T ∈ Add(T ′) or
T ∈ Add(T ′′) in the second case. �

The proof of part (2) is by induction on n, but requires some preparation:

Proposition 2.4. Let H be a representation-infinite connected hereditary artin
algebra with n simple modules. Then the following holds true:

(1) There exists a quasi-simple regular H-module X with Ext1H(X, X) = 0, if
and only if n > 2.

(2) Let n > 2, X be quasi-simple regular without self-extensions, and {X}⊥≥0 ∼=
Mod-C where C is hereditary with n − 1 simple modules. Then C is con-
nected to the same representation type (tame or wild) as H.
If 0 → τHX → Z → X → 0 is the Auslander-Reiten sequence ending in X,
then Z ∈ {X}⊥≥0 and Z is quasi-simple regular in mod-C.
If H is tame and X belongs to a tube of rank p > 1, then Z belongs to a
tube of rank p − 1 in mod-C.

Proof. The first part is proved in [33], and the second in [34]. �

Let H be a hereditary artin algebra and X a finite dimensional H-module without
self-extensions. Then {X}⊥≥0 ∼= Mod-C, where C is a hereditary artin algebra. To
simplify the notation, we will identify these categories.

For Y ∈ {X}⊥≥0 ∩ mod-H =mod-C with Ext1C(Y, Y ) = 0 = Ext1H(Y, X), we
consider the full subcategory {YC}⊥≥0 of Mod-C. This category then coincides
with the full subcategory {X ⊕ Y }⊥≥0 in Mod-H.

Lemma 2.5. Let H be a wild connected hereditary artin algebra with n > 2 simple
modules, and i be a natural number with 1 ≤ i ≤ n− 2. Then there exists a regular
partial tilting module X =

⊕i
j=1 Xj, where the modules Xj are indecomposable in

mod-H, and for each 1 ≤ j < i, the following holds:
(1) There exists an epimorphism φj : Xj+1 → Xj;
(2) Xj+1 is a quasi-simple regular module in {

⊕
1≤a≤j Xa}⊥≥0 .
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Proof. The proof is by induction on i. For i = 1, we just choose a quasi-simple
regular H-module X1 without self-extensions; see Proposition 2.4(1).

Let i > 1 and choose a quasi-simple regular H-module X1 with Ext1H(X1, X1) =
0. We identify {X1}⊥≥0(∼= Mod-C) with Mod-C. Then C is a connected wild
hereditary artin algebra with n − 1 simple modules; see Proposition 2.4(2). By
induction, we find a regular partial tilting module Y = Y1 ⊕ · · · ⊕ Yi−1 in mod-C
satisfying (1) and (2).

Let 0 → τHX1 → Z1 → X1 → 0 be the Auslander-Reiten sequence, ending in
X1. We know that Z1 is a regular C-module. By [20, 28] there exists a natural
number m with the following properties:

(a) 0 = Ext1C(τ−m
C Y, Z1) = Ext1H(τ−m

C Y, Z1).
(b) There is an epimorphism ψ : τ−m

C Y1 → Z1.
Since τ−m

C Y ∈ {X1}⊥≥0 , we have Ext1H(X1, τ
−m
C Y ) = 0. From the choice of

m we get 0 = Ext1H(τ−m
C Y, Z1) = Ext1H(τ−m

C Y, X1). Hence X = X1 ⊕ τ−m
C Y is a

partial tilting module. Defining Xj+1 = τ−m
C Yj , for 1 ≤ j ≤ i−1, a straightforward

computation yields the properties (1) and (2) for X. �

Lemma 2.6. Let H be a hereditary artin algebra and X be a finitely generated
indecomposable H-module without self-extensions. Let {X}⊥≥0 = Mod-C, and T ′

be a tilting C-module which generates X. Then T = T ′ ⊕ X is a tilting H-module.

Proof. Since H is hereditary, p.dimT ≤1. Since X is finite dimensional, Ext1H(X, T )
= 0 implies Ext1H(X, T (I)) = 0 for all sets I.

From 0 = Ext1C(T ′, T ′(I)) ∼= Ext1H(T ′, T ′(I)) we deduce Ext1H(T ′, X(I)) = 0 for
all sets I, since X is generated by T ′; hence (T2) holds. We have to show that
condition (T3) holds for T .

Let
0 → H

u→ P
v→ Xr → 0

be Bongartz’s universal short exact sequence [10]. Since X is indecomposable, P is
a projective generator in {X}⊥≥0 = Mod-C. Since T ′ is a tilting C-module, there
exists a short exact sequence

0 → P
f→ T1

g→ T2 → 0,

with T1, T2 ∈ Add(T ′).
Forming the pushout of f and v, we get the following commutative diagram,

with exact rows and columns:

0 0
↓ ↓

0 → H
u−→ P

v−→ Xr → 0
‖ ↓f ↓

0 → H
h−→ T1

l−→ Q → 0
↓ ↓
T2 == T2

↓ ↓
0 0

Since Ext1H(T2, X) = 0, the last column splits, that is, Q = T2 ⊕ Xr. So T is a
tilting H-module. �
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Proof of Theorem A(2). For i = 0, let P be the set of preprojective modules in
mod-H. Then P⊥ is a tilting torsion class, generated by a countably generated
tilting module T∞, [28, 25]. Since T∞ = P⊥∩ ind-H consists of the indecomposable
regular and preinjective modules, there is no non-zero Ext-projective module in T∞.
Consequently T0 = T∞ has no indecomposable finite dimensional direct summand;
see Lemma 2.1.

For i > 0 first let H be wild and consider the partial tilting module X = X1⊕· · ·⊕
Xi from Lemma 2.5. Let {

⊕
1≤j≤i−1 Xj}⊥≥0 = Mod-C ′. Then Xi is a quasi-simple

regular C ′-module, with Auslander-Reiten sequence 0 → τC′Xi → Zi → Xi → 0 in
mod-C ′. Moreover we know that Zi is quasi-simple regular in {X}⊥≥0 = Mod-C ′′.
Choose in Mod-C ′′ the infinite dimensional tilting module (without indecomposable
finite dimensional direct summands) T ′′

∞, with {T ′′
∞}⊥ = P(C ′′)⊥ as in the case of

i = 0. Since Zi is a regular C ′′-module, it is generated by T ′′
∞. Hence there exists

an epimorphism φ : T ′′l
∞ → Zi → Xi, for some l > 0. Consequently we have a chain

of epimorphisms
T ′′l
∞ → Xi → · · · → X1.

Let Ti = T ′′
∞ ⊕ Xi ⊕ · · · ⊕ X1. It follows from Lemma 2.6 by induction that Ti is a

tilting H-module.
If H is tame hereditary, then there exist 1 ≤ r ≤ 3 inhomogeneous tubes

T1, . . . , Tr of rank p1, . . . , pr where
∑

(pi − 1) = n − 2. Let Ys ∈ Ts be quasi-
simple and choose natural numbers 0 ≤ is < ps with

∑r
s=1 is = i. For each s we

consider the chain of irreducible epimorphism in Ts (see (∗∗))

(is + 1)Ys → (is)Ys → · · · → (1)Ys = Ys.

Let Y(s) =
⊕is

t=1(t)Ys and X =
⊕

Y(s) Then X is a partial tilting H-module with i

indecomposable direct summands. Let {X}⊥≥0 ∼= Mod-C ′′. Then C ′′ is a connected
tame hereditary algebra with n−i simple modules. Moreover, the modules (is+1)Ys

are quasi-simple regular C ′′-modules, contained in tubes of rank ps− is. In analogy
to the first case, we chose the tilting C ′′-module T ′′

∞ with {T ′′
∞}⊥ = P(C ′′)⊥. Since

T ′′
∞ generates all the modules (is + 1)Ys, it generates X, hence again we get for

Ti = T ′′
∞ ⊕ X that Ext1H(Ti, T

(I)
i ) = 0, for all sets I. As in the wild case, Lemma

2.6 and induction give that Ti is a tilting module in Mod-H.
Finally, we have to show in both cases that an indecomposable finite dimensional

direct summand Y of Ti = T ′′
∞ ⊕ X is isomorphic to some direct summand of X.

Since T ′′
∞ has no finite dimensional indecomposable direct summand, Y is a direct

summand of X by Lemma 2.2. Therefore Y is isomorphic to some indecomposable
direct summand of X by the Krull-Schmidt theorem. �

3. Direct summands of tilting modules

In this section, Theorem B will be proved. Most steps of the proof work in more
generality: Recall, that for a class C of R-modules, a morphism f : M → C0 with
C0 ∈ C is called a C-preenvelope or also left C-approximation, if for any C ∈ C
the induced morphism HomR(f, C) : HomR(C0, C) → HomR(M, C) is surjective.
The preenvelope f is called an envelope or minimal left approximation, if for any
endomorphism g of C0 the condition gf = f implies that g is an automorphism. In
this case the image of f cannot be contained in a proper direct summand of C0.



CONSTRUCTING TILTING MODULES 1915

Proposition 3.1. Let R be a ring, and M be an R-module. Then M is a direct
summand of a tilting module T with Gen(T ) = Gen(M) if and only if p.dimM ≤ 1,
Ext1R(M, M (I)) = 0 for all sets I, M is a faithful R-module, and M is finitely
generated over its endomorphism ring.

Proof. If there exists a tilting module T = M ⊕ Y with Gen(T ) = Gen(M), then
clearly Ext1R(M, M (I)) = 0 and p.dimM ≤ 1 holds. Moreover, Gen(T ) = Gen(M)
implies that M is faithful and finendo by [13, Proposition 2.5].

Conversely, assume M satisfies the four conditions of the proposition. Since M is
finendo, by [2, Proposition 1.2] R has an add(M)-preenvelope f : R → P . The map
f is necessarily monic, since M is faithful. Hence it gives rise to a exact sequence

(ε) 0 → R
f→ P → Q → 0.

Let T = M ⊕ Q.
Clearly, Gen(T ) = Gen(M). Since p.dimM ≤ 1, also p.dimQ ≤ 1, and condition

(T1) holds. The exact sequence (ε) yields condition (T3).
It remains to prove condition (T2). From Ext1R(M, M (I)) = 0 and (ε) one gets

Ext1R(M, T (I)) = 0 for any set I. Since p.dimQ ≤ 1, it remains to prove that
Ext1R(Q, M (I)) = 0 for any set I.

However, f is an add(M)- and hence an Add(M)-preenvelope, so the map
HomR(f, M (I)) is surjective, and we have the exact sequence

HomR(P, M (I))
HomR(f,M(I))→ HomR(R, M (I))→Ext1R(Q, M (I))→Ext1R(P, M (I)).

Since Ext1R(P, M (I)) = 0, we conclude that Ext1R(Q, M (I)) = 0. �

In general, it is not easy to check whether a module (without self-extensions) is
faithful. We will see that this becomes easier when the underlying ring is a right
hereditary artinian ring, generalizing a well known result on finite dimensional
modules over hereditary artin algebras; see for example [23, 8.3].

First, recall that a module M over a ring R is sincere if HomR(P, M) �= 0 for
all non-zero projective modules P . Clearly, any faithful module is sincere. If R is
a right perfect ring, then a module M is sincere if and only if all simple modules
appear as subfactors of M .

Lemma 3.2. Let H be a right hereditary right artinian ring and M be a module
with Ext1H(M, M) = 0. Then M is faithful if and only if M is sincere.

Proof. It suffices to show that M is faithful provided M is sincere. Let L =
AnnH(M). Since H is right artinian, the module H/L is finitely cogenerated.
So there is a finite subset F ⊆ M such that L =

⋂
m∈F AnnH(m), and L is the

kernel of the map f : H → MF defined by f(h) = (mh)m∈F . Denote by I the
image of f , and consider the short exact sequence 0 → L ↪→ H

p−→ I → 0.
By construction, the map HomH(p, M) : HomH(I, M) → HomH(H, M) is sur-
jective, hence HomH(L, M) ∼= Ext1H(I, M). Since I is a submodule of MF and
Ext1H(MF , M) = 0, we infer that HomH(L, M) ∼= Ext1H(I, M) = 0. Since H is
right hereditary, the module L is projective. But M is sincere, so L = 0, and M is
faithful. �
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Proposition 3.3. Let R be a ring, I2 = I an idempotent two-sided ideal of R,
finitely generated as right ideal, and T̄ a tilting R̄-module where R̄ = R/I. Assume
that p.dimRT̄ ≤ 1.

Then T̄ is a direct summand in a tilting module T with T⊥ = T̄⊥.

Proof. First, since I is idempotent, we have Ext1R̄(A, B) = Ext1R(A, B) for all R̄-
modules A and B. In particular, Ext1R(T̄ , T̄ (X)) = 0 for any set X.

Since p.dimRT̄ ≤ 1, it remains only to prove that the class T̄⊥ is closed under
arbitrary direct sums (then T̄ is partial tilting, and T is obtained by the Bongartz
construction; cf. [13, Lemma 1.8]).

Assume that Ext1R(T̄ , Mj) = 0 for a family of R-modules Mj (j ∈ J). Since
T̄⊥ ∩ Mod-R̄ is a class of R̄-modules of finite type [9, Theorem 2.4], there is a set,
S, of finitely presented R̄-modules of projective dimension ≤ 1 such that R̄ ∈ S,
and T̄⊥ ∩ Mod-R̄ = S⊥ ∩ Mod-R̄.

By [35, Theorem 2.2], T̄ is a direct summand in an R̄-module, T ′, such that
there are an ordinal λ and an increasing chain, (Tα | α < λ), consisting of R̄-
submodules of T ′ and satisfying T0 = 0, Tα =

⋃
β<α Tβ for each limit ordinal

α < λ, T ′ =
⋃

α<λ Tα, and Tα+1/Tα is isomorphic to an element of S for each
α + 1 < λ. Similarly, by [35, Theorem 3.3], each S ∈ S is a direct summand in an
R̄-module NS such that NS is an extension of a free R̄-module by a direct sum of
copies of T̄ .

By assumption on T̄ , there is a short exact sequence 0 → R̄ → A → B → 0 where
A, B ∈ Add(T̄ ). So Ext1R(R̄, Mj) = 0, hence Ext1R(NS , Mj) = 0, and consequently
Ext1R(S, Mj) = 0, for all S ∈ S and j ∈ J . Since I is finitely generated as a
right ideal, a finitely presented right R̄-module remains finitely presented, when
considered as an R-module. Since S ∈ S is finitely presented as an R-module,
we have Ext1R(S,

⊕
j∈J Mj) = 0, and hence Ext1R(T ′,

⊕
j∈J Mj) = 0. Then also

Ext1R(T̄ ,
⊕

j∈J Mj) = 0. �

The condition I2 = I cannot be dropped in Proposition 3.3, since otherwise we
can easily have Ext1R(T̄ , T̄ ) �= 0 = Ext1R̄(T̄ , T̄ ) even if T̄ is a free R̄-module (just
take R = Z and I = Zn for an integer n > 1).

Proof of Theorem B. Let X be as in Theorem B.
(a) Assume X is sincere. Then X is faithful by Lemma 3.2. By Proposition 3.1,

there exists a tilting module T = X ⊕ Y with {T}⊥ = Gen(X).
(b) If X is not sincere, let H ′ be the support ring of X, that is, let H ′ =

H/(HeH) where e is the sum of all primitive idempotents ei with Xei = 0. Then
HeH is an idempotent ideal in H, finitely generated as a right H-module. Since
Ext1H′(A, B) = Ext1H(A, B) for all H ′-modules A and B, the ring H ′ is a right
hereditary and right artinian factor ring of H, and X is a sincere H ′-module with
Ext1H′(X, X(I)) = 0. So part (a) applies and we get a tilting H ′-module T ′ = X⊕Y ′.
The tilting H ′-module T ′ can be completed to a tilting H-module T = X⊕Y ′⊕Y ′′

by Proposition 3.3. �

Remark 3.4. If X is a stone, then E = EndH(X) is a skew field (see [15]), and for
each finite dimensional H-module M the dimension dimE HomH(M, X) is finite.
If {g1, . . . , gt} is an E-basis of HomH(M, X), the map g = (g1, . . . , gt) : M → Xt

clearly is an Add(X)-envelope of M . If moreover X is sincere, hence faithful, and
{f1, . . . , fr} is a basis of HomH(H, X), considered as an E-vector space, then the
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morphism f = (f1, . . . , fr) : H → Xr is the Add(X)-envelope of H, and there is a
tilting module T = X ⊕ Y induced by the short exact sequence

0 → H
f−→ Xr −→ Y → 0.

It is easy to check that f : H → Xr is an Add(T )-envelope, simultaneously.
If P is a direct summand of H, say H = P ⊕P ′, by the Snake lemma we receive

the following exact and commutative diagram:

0
↓

0 P ′

↓ ↓
0 → P

g′

−→ Xr −→ Z ′ → 0
↓ ‖ ↓

0 → H
f−→ Xr −→ Y → 0

↓ ↓
P ′ 0
↓
0

As in the case of finite dimensional tilting modules one checks that Z ′ ∈ Add(T ).
Moreover, g′ : P → Xr is an Add(T )- and an Add(X)-preenvelope, simultaneously.
Since P has an Add(X)-envelope, the first row induces a short exact sequence

0 → P
g−→ Xt → Z → 0

where g : P → Xt, for some t ≤ r, is an Add(X)-envelope and Z ∈ Add(T ).
In the case when H is a tame connected hereditary algebra, G is the generic

module and dimE G = r, in the short exact sequence

0 → H → Gr → Y → 0,

the tilting module T = G ⊕ Y is equivalent to G ⊕ (
⊕

λ∈k∪∞ Rλ) where {Rλ} is
the set of all Prüfer modules. For more details, we refer to [1].

4. Iterated one-point extensions

In some cases, the torsion class {T}⊥ in Proposition 3.3 can be described rather
precisely. Let B be a finite dimensional k-algebra and 0 �= R ∈ mod-B. The
one-point extension A = B[R] of B by R is the generalized lower triangular matrix
ring

A = B[R] =
(

B 0
R k

)
.

Then eω =
(

0 0
0 1

)
is a primitive idempotent in A and the indecomposable

projective A-module Pω = eωA has radical
(

0 0
R 0

)
. The injective A-module

Sω = D(Aeω) is simple, and (1A − eω)A(1A − eω) ∼= B ∼= A/(AeωA).
Following [32], we will identify right A-modules M with the triples (M0, V, φ)

where M0 ∈ Mod-B, V ∈ Mod-k and φ : V → HomB(R, M0) is a k-linear map.
Also, we will identify Mod-B with the full subcategory {(M0, 0, 0) | M0 ∈ Mod-B}
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of Mod-A. Consequently B can be considered as a right ideal in A, and for a
B-module M0 we have p.dimBM0 = p.dimAM0.

For the global dimension of A = B[R] one has g.d. A = max{g.d. B, 1+p.dimR}.
Consequently A is hereditary, if and only if B is hereditary and R is projective.

For M = (M0, V, φ) ∈ Mod-A we have a short exact sequence

η : 0 → M0 → M → S(dim V )
ω → 0

in Mod-A. It is also shown in [32] that for an indecompososable module X ∈ mod-B
and for the Auslander-Reiten translations τA, respectively τB, one has

τAX = (τBX, HomB(R, τBX), 1).

A finite dimensional K-algebra A is called an iterated one-point extension (or,
more precisely, an m-fold one-point extension) of B if there is a sequence

B = A0, A1, . . . , Am = A

such that Ai = Ai−1[Ri−1] is a one-point extension of Ai−1 by some module Ri−1 ∈
mod-Ai−1. In this case, for an A-module M we again denote by M0 = MB the
biggest submodule of M , having support in (the right ideal) B ∼= A/(A(1A−1B)A).

Let A be an iterated one-point extension of B and T̄ be a tilting B-module.
Then p.dimAT̄ = p.dimB T̄ ≤ 1, hence Proposition 3.3 applies. Thus there exists
an A-module C such that T = T̄ ⊕ C is a tilting A-module with {T}⊥ = {T̄}⊥.
The B-submodule T0 of T then is of the form T0 = T̄ ⊕ C0. The tilting B-module
T̄ induces a torsion pair (T̄ , F̄) in mod-B. The torsion pair in mod-A, induced by
T , is denoted by (T ,F).

Proposition 4.1. Let A be an iterated one-point extension of some finite dimen-
sional k-algebra B. Let T̄ be a tilting B-module and T = T̄ ⊕C a tilting A-module
with {T̄}⊥ = {T}⊥. Then the following hold:

(1) {T̄}⊥ = {M ∈ Mod-A | M0 ∈ Gen(T̄ ) ⊂ Mod-B}.
(2) T = {M ∈ mod-A | M0 ∈ T̄ }.

For A hereditary, one has moreover:
(3) Add(T̄ ) = Add(T0).
(4) F̄ = F ∩ mod-B.
(5) T contains indecomposable finite dimensional direct summands if and only

if T̄ does.

Proof. By induction it is enough to consider the case where A = B[R] is a one-point
extension of B. Recall that for an A-module M = (M0, V, φ), there is the short
exact sequence

η : 0 → M0 → M → S(I)
ω → 0,

where I = dim V and Sω is injective.
(1) We apply the functor HomA(T̄ ,−) to η and get 0 = HomA(T̄ , S

(I)
ω ) →

Ext1A(T̄ , M0) → Ext1A(T̄ , M) → Ext1A(T̄ , S
(I)
ω ) = 0. Hence M ∈ {T̄ )}⊥ if and only

if M0 ∈ {T̄}⊥ if and only if M0 ∈ Gen(T̄ ).
(2) follows from (1), since Gen(T̄ ) ∩ mod-B = T̄ .
For the remaining parts of the proof, assume that A is hereditary.
(3) Consider the short exact sequence

ρ : 0 → T0 → T → S(J)
ω → 0.
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For any set L, Ext1A(T, T (L)) = 0, so Ext1A(T0, T
(L)) = 0. Since HomA(T0, Sω) =

0, we get 0 → Ext1A(T0, T0
(L)) → Ext1A(T0, T

(L)) = 0, hence Ext1B(T0, T
(L)
0 ) =

Ext1A(T0, T
(L)
0 ) = 0. But T̄ is a tilting B-module, and T0 = T̄ ⊕ C0. Since B is

hereditary, p.dimT0 ≤ 1. Since C0 ∈ Gen(T̄ ), there exists a short exact sequence
0 → L −→ T̄ (J) π−→ C0, with L ∈ Gen(T̄ ); see [13, Lemma 1.2.]. Since C0 has
projective dimension at most one and Ext1B(C0, T̄

(J)) = 0, the module C0 is Ext-
projective in Gen(T̄ ), hence π is a split epimorphism. Therefore Add(T0) = Add(T̄ )
holds.

(4) Since F ∩ mod-B = {M ∈ mod-B | HomA(T, M) = 0}, we get F̄ ⊇ F ∩
mod-B. Let M ∈ F̄ . Since T0 ∈ Add(T̄ ), we get HomA(T0, M) = 0. An application
of HomA(−, M) to the short exact sequence ρ then gives 0 = HomA(S(J)

ω , M) →
HomA(T, M) → HomA(T0, M), hence HomA(T, M) = 0, which means that M ∈
F ∩ mod-B.

(5) Since T̄ is a direct summand of T , it is enough to show that if T has an
indecomposable finite dimensional direct summand X, then so does T̄ . Let T =
X ⊕ T ′. Since Ext1A(Sω, T̄ ) �= 0, we get X �∼= Sω. Therefore the submodule X0 of
X is non-zero. We have T0 = X0 ⊕ T ′

0 ∈ Add(T̄ ), hence 0 �= X0 ∈ add(T̄ ). By
Proposition 2.3 each indecomposable direct summand of X0 is therefore a direct
summand in T̄ . �

If A is not hereditary, part (3) and (5) of the proposition no longer hold:

Example 4.2. Let B be connected wild hereditary, and T̄ the tilting B-module
without non-zero finite dimensionsional direct summands, such that T̄ consists of
the direct sums of regular and preinjective B-modules. Let R �= 0 be a regular
B-module. The one-point extension A = B[R] has global dimension two. The
new projective B[R]-module Pω is in T , since so are R and Sω. Therefore it is
Ext-projective in T and consequently a direct summand of T . It is easy to see that
T is equivalent to Pω ⊕ T̄ , hence (3) and (5) fail. Nevertheless we get (4) in this
example since F = F ∩ mod-B = F̄ .

If A = B[R] is a one-point extension and T̄ is a finite dimensional tilting B-
module, then there exists (a unique) indecomposable A-module X0, such that T =
T̄ ⊕X0 is a tilting A-module; see [18]. If A additionally is hereditary, which means
B is hereditary and R is a projective B-module, one can prove more.

Proposition 4.3. Let A = B[R] be a hereditary k-algebra, and T̄ be a tilting
B-module. If R admits an Add(T̄ )-envelope, then there exists an indecomposble
A-module X0, such that T = T̄ ⊕ X0 is a tilting A-module with {T}⊥ = {T̄}⊥.

Proof. Since R is a projective B-module, there exists a short exact sequence

0 → R
f−→ T̄1

g−→ T̄2 → 0,

with T̄1, T̄2 ∈ Add(T̄ ). The morphism f clearly is an Add(T̄ )-preenvelope. Since R
admits an Add(T̄ )-envelope, we may assume that f is already an Add(T̄ )-envelope;
see [13]. Let Pω be the indecomposable projective A-module with radical R, let
i : R → Pω be the inclusion and let Sω be the new simple A-module, which is injec-
tive. Forming the pushout of f and i, we get the following exact and commutative
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diagram:
0 0
↓ ↓

0 → R
f−→ T̄1

g−→ T̄2 → 0
↓i ↓i′ ‖

0 → Pω
f ′

−→ X0
g′

−→ T̄2 → 0
↓ ↓

Sω === Sω

↓ ↓
0 0

and we consider i′ to be the inclusion. Since HomA(T̄1, Sω) = 0, we get k ∼=
HomA(Sω, Sω) ∼= HomA(X0, Sω). Let X0 = U ⊕ V with HomA(U, Sω) �= 0. Then
0 = HomA(V, Sω) ∼= HomA(Pω, V ), since Sω is injective. Therefore f ′(Pω) ⊂ U ,
hence we get T̄2

∼= (U/f ′(Pω))⊕V . From HomA(V, Sω) = 0 we deduce T̄1 = i′(T̄1) =
U ′ ⊕ V , with U ′ ⊂ U and additionally f(R) ⊂ U ′. But f : R → T̄1 is an Add(T̄ )-
envelope, consequently V = 0 follows. This implies that X0 is indecomposable.

Let I be any set. Since Mod-B is closed under extensions in Mod-A, we get 0 =
Ext1B(T̄ , T̄ (I)) = Ext1A(T̄ , T̄ (I)). From the second column of the diagram we infer
Ext1A(T̄ , X

(I)
0 ) = 0, since Sω is injective. The second row shows Ext1A(X0, T̄

(I)) = 0
and Ext1A(X0, X

(I)
0 ) = 0. Hence Ext1A(T, T (I)) = 0 holds for T = T̄ ⊕ X0. Since T̄

is a tilting B-module, there exists a short exact sequence 0 → B → T̄ ′ → T̄ ′′ → 0,
with T̄ ′, T̄ ′′ ∈ Add(T̄ ). Since A = B ⊕ Pω, the short exact sequence

0 → A → T̄ ′ ⊕ X0 → T̄ ′′ ⊕ T̄2 → 0

shows (T3).
The second row of the diagram also implies {T̄}⊥ ⊂ {T̄2}⊥ ⊂ {X0}⊥, hence

{T}⊥ = {T̄}⊥ follows. �

If H is a connected wild hereditary artin algebra, then an indecomposable regular
module E is called elementary, if there is no short exact sequence 0 → U → E →
V → 0, where both U and V are non-zero and regular. Elementary modules always
are quasi-simple with a trivial endomorphism ring, and E is elementary if and only
if τ i

HE is elementary for all integers i. Moreover, each non-zero regular H-module
M has a filtration with elementary subquotients. Fore details see [29, 24].

Before presenting our final example, we collect some facts on tilting torsion pairs
in mod-H for a finite dimensional hereditary algebra H; see [21, 4].

Proposition 4.4. Let H be a connected finite dimensional hereditary algebra,
(T ,F) a tilting torsion pair in mod-H, and E = {T1, . . . , Tr} a complete set of
indecomposable Ext-projective modules in T . Then the following hold:

(1) Let X be an indecomposable non-projective torsion module. Then τHX ∈ T ,
if and only if HomH(X, Ti) = 0 for all i. If τHX is not torsion, then the
add(E)-envelope X →

⊕r
i=1 T si

i is surjective.
(2) Let Y be an indecomposable non-injective torsion-free module. Then τ−

HY ∈
F , if and only if HomH(τHTi, Y ) = 0 for all i. If τ−

HY is not torsion-free,
then the add(τHE)-cover

⊕r
i=1 τHT ti

i → Y is injective.
(3) If there exists a preprojective module which is not torsion-free, then there

exists an indecomposable preprojective Ext-projective torsion module.
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(4) Let H be wild hereditary and R an indecomposable regular H-module. If
τ i
HR is torsion (respectively, torsion-free) for all integers i, then all regular

and preinjective modules are torsion (all regular and preprojective modules
are torsion-free, respectively).

(5) Let H be wild hereditary and assume that all preprojective modules are
torsion-free and all preinjective modules are torsion. Then each elementary
module E is either torsion or torsion-free.

Example 4.5. Let K be an algebraically closed field and H = KQ be the path
algebra of the quiver

• • •���
1 2 3

Then H is a connected wild hereditary algebra with three simple modules. Also,
H is a one-point extension of the Kronecker algebra A = H/(He3H) by the pro-
jective module P2, so Proposition 4.1 applies in this setting.

By [22], for regular H-modules X and Y with HomH(X, Y ) �= 0, for all i ≥ 2
we get HomH(X, τ i

HY ) �= 0, since H has three simple modules. The elementary H-
modules form the τ -orbit of the indecomposable module X with dimension vector
dimX = (5, 4, 0), and the τ -orbits of the P (1, K)-family of indecomposable modules
Yρ, ρ ∈ P (1, K) with dimYρ = (1, 1, 0), by [29].

(1) Let X be the elementary module with dimX = (5, 4, 0). In {X}⊥≥0 =
Mod-C we consider the tilting module T∞, defined by {T∞}⊥ = P(C)⊥; see [28, 25].
This tilting C-module generates all regular and preinjective C-modules. Let 0 →
τHX → (2)X → X → 0 be the Auslander-Reiten sequence, ending in X. Then
(2)X is a regular C-module, hence it is generated by T∞. Consequently X is also
generated by T∞, hence T = T∞ ⊕ X is a tilting H-module, by Lemma 2.6. Let
T = T⊥ ∩ ind-H. By construction X is the only indecomposable Ext-projective
module in T , since T∞ has no non-zero finite dimensional direct summands; see
Lemma 2.2.

Consequently all indecomposable preinjective H-modules are contained in T ,
whereas all preprojective H-modules are torsion-free. Since HomH(X, τ i

HX) �= 0
for all i > 1, the elementary modules τ i

HX ∈ T , for i > 1. Dually, all the modules
τ−i
H X, for i < 0, are torsion-free, since HomH(τ−i

H X, τHX) �= 0. Similarly, from
HomH(X, τ i

HYρ) �= 0 for i ≥ 0, we conclude τ i
HYρ ∈ T , for all i ≥ 0 and all

ρ ∈ P (1, K). The modules τ i
HYρ, for i < 0, are torsion-free, since they map non-

trivially to τHX. Since each indecomposable regular module has a filtration with
elementary subquotients, we conclude that each regular component C contains a
quasi-simple module U , such that the cone (→ U) of predecessors of U in the
component C consists of torsion modules. Here, V is a predecessor of U in C if there
exists a path of arrows in the AR-quiver of H of length ≥ 0 from V to U . Similarly,
there exists a quasi-simple module V = τ−r

H U for some r > 0, such that all modules
in the cone (V →) of successors of V in C are torsion-free. Since (2)X is generated
by T∞, we get (2)X ∈ T . Since the modules τ2

H(j)X ∈ T , for all j ≥ 1 and we
have short exact sequences τ2

H(i − 2)X → (i)X → (i − 1)X → 0, for all i > 0, we
conclude from X, (2)X ∈ T by induction that (i)X ∈ T for all i.

All regular C-modules are generated by T∞, hence they are torsion modules.
If R is an indecomposable regular C-module, then HomC(τ−m

C R, (2)X) �= 0, for
m � 0, by [8]. Since 0 �= HomC(τ−m

C R, (2)X) ∼= HomH(τ−m
C R, X), we conclude
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from Proposition 4.4 that τHτ−m
C R �∈ T . Hence there exist infinitely many in-

decomposable regular torsion modules τ−m
C R, not contained in the torsion cones

(→ U), described above; we call them the isolated torsion modules. By definition
they are those indecomposable torsion modules M , such that τ r

HM �∈ T , for some
r > 0.

We first show that each regular component C contains at most one isolated
quasi-simple torsion module. Indeed, suppose U and V = τ−t

H U , with t > 0, are
quasi-simple isolated torsion modules in C. We may assume that τHU �∈ T , hence
by Proposition 4.4 HomH(U, X) �= 0. Consequently HomH(V, τ−t

H X) �= 0, but
τ−t
H X is torsion-free, for i > 0, a contradiction.

Next we show that all isolated torsion modules, with the exception of the modules
(i)X, are quasi-simple. Indeed, assume M �∼= (r)X is an indecomposable isolated
torsion module of quasi-length r > 1. Then there exists a quasi-simple regular
module S and a chain of irreducible epimorphisms

M = (r)S → (r − 1)S → · · · → (2)S → S.

Therefore all the modules (i)S, for 1 ≤ i ≤ r, are indecomposable torsion modules.

Consider the Auslander-Reiten sequence 0 → τHS
f−→ (2)S

g−→ S → 0. Since M
is an isolated torsion module, so is S. Therefore S is the only quasi-simple isolated
torsion module in C, which implies τHS is not torsion. Since S �= X, the module
τHS is not torsion-free. Let 0 → t(τHS) → τHS → f(τHS) → 0 be the canonical
short exact sequence, where t(τHS) is the torsion submodule of τHS and f(τHS) is
torsion-free. Since the epimorphism τHS → f(τHS) is not a split monomorphism,
it factorises through the source map f : τHS → (2)S. But (2)S is a torsion module,
a contradiction.

Dually, we call an indecomposable regular torsion-free module F , isolated torsion-
free, if τ−r

H F is not torsion-free, for some r > 0. We now show that τHX is the only
isolated torsion-free module. Indeed, suppose M �∼= τHX is isolated torsion-free
and τ−

HM is not torsion-free By Proposition 4.4 there exists a non-zero morphism
h : τHX → M , which clearly is not a split mono. Hence it factorises through the
source map f : τHX → (2)X, but (2)X is a torsion module, a contradiction.

(2) Let S3 be the simple injective H-module, corresponding to the vertex 3
of the quiver. Let A = S

⊥≥0
3 ⊂ Mod-H. Then A is equivalent to Mod-A, where

A is the Kronecker-algebra, the minimal projective generator of A is the direct
sum P1 ⊕ P3 of projective modules, and an H-module M is in A if and only if
HomH(M, S2) = 0.

The equivalence F : Mod-A → A is given (in term of representations) by
f−→ f−→

U V �→ U
1U−→ U V

g−→ g−→
Let T ′ = G ⊕

⊕
λ Rλ be the tilting A-module, where G is the generic A-module

and {Rλ | λ ∈ P (1, K)} the set of all Prüfer A-modules; see [1, Example 1.4].
Then T ′⊥ ∩ mod-A consists of the preinjective A-modules. Let T1 ∈ A be the
image of T ′ under the equivalence F . The indecomposable injective module I2 is
preinjective in A. Indeed, it is the simple injective object in A, hence it is generated
by T1. Consequently S3 is also generated by T1. By Lemma 2.6 T̂ = T1 ⊕ S3

is an H-tilting module with exactly one finite dimensional indecomposable direct
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summand S3. Additionally, we know from the construction of T̂ that {T̂}⊥ =
Gen(F (G)). It is easy to check that T = T̂⊥ ∩ ind-H consists of the module S3

and the countably many indecomposable H-modules Zi without self-extensions,
where dimZi = (i, i + 1, i + 1), for i ≥ 0. Indeed, for Z ∈ T with Z �∼= S3, we get
HomH(S3, Z) = 0 which means that Z ∈ T ∩ A. Note that the modules Zi are
regular for i ≥ 2, that Z2 is elementary, and that Z0 and Z1 are injective.

Since S2 = τHS3, the simple module S2 is torsion-free [19]. If I �∼= S2 is an
indecomposable preinjective module, then HomH(Z5, I) �= 0, hence S2 is the only
indecomposable preinjective torsion-free module. Since S3 is the unique indecom-
posable Ext-projective module in T , all preprojective H-modules are torsion-free.
The elementary modules X with dimX = (5, 4, 0) and the elementary modules Yλ

with dimYλ = (1, 1, 0) have filtrations with composition factors S1 and S2, therefore
they are torsion-free. If R is an indecomposable regular torsion-free module, then
τ−r
H R is torsion-free by Proposition 4.4, for all r ≥ 0, since HomH(S2, R

′) = 0 for
all regular modules R′, which means that there are no isolated regular torsion-free
modules. Consequently all elementary modules τ−r

H Yλ and τ−r
H X are torsion-free.

Again we conclude that each regular component C contains a quasi-simple module
U , such that the cone (U →) consists of the indecomposable torsion-free modules
in C. All torsion modules are isolated.

This example has another interpretation: We now consider the stone X, corre-
sponding to the imaginary Schur root (1, 1, 1). Then X is the image of the generic
A-module G under the functor F : Mod-A → A. Therefore X is the representation

t−→
K(t) 1−→ K(t) K(t)

1−→

and E = EndH(X) = K(t), the rational function field. Since X is sincere, hence
faithful, we get by Proposition 3.1 a tilting module T = X ⊕ Y with {T}⊥ =
Gen(X). Since also {T̂}⊥ = Gen(X), the tilting modules T and T̂ are equivalent.

(3) Let A = H/(He3H) be the Kronecker algebra. We identify Mod-A,
respectively mod-A, with the full subcatecories of Mod-H, respectively mod-H,
consisting of H-modules, having support in the full subquiver Q̄, defined by the
vertices 1 and 2. In Mod-A we consider the tilting A-module T ′ = G ⊕

⊕
Rλ,

where G is the generic module and {Rλ} is the set of all Prüfer A-modules. Then
T ′⊥ ∩mod−A consists of the preinjective A-modules. Let T be a tilting H-module
with {T}⊥ = {T ′}⊥. Then we infer from Proposition 4.1:

(1) M ∈ {T}⊥ if an only if M0 = MA ∈ Gen(T ′). If additionally M is finite
dimensional, then M ∈ {T}⊥ if and only if M0 is a preinjective A-module.

(2) T has no finite dimensional indecomposable direct summands.
Let (T ,F) be the torsion pair in mod-H, induced by T . From Lemma 2.1 and

Proposition 4.4 we therefore deduce:
(a) τHT ⊂ T and τ−

HF ⊂ F .
(b) All preprojective modules are torsion free, and all preinjective modules are

torsion.
The elementary H-module X ′ with dimX = (1, 2, 0) is in T , hence τ r

HX ′ ∈ T ,
for all r ≥ 0. The elementary H-modules Yλ with dimYλ = (1, 1, 0) are not torsion,
but the elementary modules τ2

HYλ have the biggest A-submodule X ′, hence they
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are torsion modules. Consequently all the modules τ r
HYλ, for r ≥ 2 are torsion

modules.
Again we conclude that each regular component C contains quasi-simple modules

U and V = τ−r
H U , for some r > 0, such that the cone (→ U) consists of torsion

modules in C and the cone (V →) of the torsion free modules in C.
We know from Remark 3.4 that the projective A-module P2 admits an Add(T ′)-

envelope of the form
0 → P2 → G → T ′

1 → 0
with T ′

1 ∈ Add(T ′), since dimE HomA(P2, G) = 1, for E = EndA(G) ∼= k(t). Con-
sequently, the tilting module T with {T}⊥ = {T ′}⊥ can be chosen by Proposition
4.3 as T = T ′ ⊕ X0, with X0 indecomposable. Indeed, X0 is the middle term of
the non-split short exact sequence 0 → G → X0 → S3 → 0. Additionally, a direct
calculation shows EndH(X0) ∼= k.
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