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EQUIVALENCE OF QUOTIENT HILBERT MODULES–II

RONALD G. DOUGLAS AND GADADHAR MISRA

Abstract. For any open, connected and bounded set Ω ⊆ Cm, let A be a
natural function algebra consisting of functions holomorphic on Ω. Let M
be a Hilbert module over the algebra A and let M0 ⊆ M be the submodule

of functions vanishing to order k on a hypersurface Z ⊆ Ω. Recently the
authors have obtained an explicit complete set of unitary invariants for the
quotient module Q = M� M0 in the case of k = 2. In this paper, we relate
these invariants to familiar notions from complex geometry. We also find
a complete set of unitary invariants for the general case. We discuss many
concrete examples in this setting. As an application of our equivalence results,
we characterise certain homogeneous Hilbert modules over the bi-disc algebra.

1. Introduction

One source of fascination in the study of operator theory is the wide variety of
connections made with other branches of mathematics. Techniques from algebra,
topology, geometry and analysis are used to understand bounded linear operators
on Hilbert space. In many instances, the behavior and properties of the operators
can be used to illustrate critical features and aspects of the other fields. This is
particularly true in the case of multivariate operator theory, that is, when several
operators or an algebra of operators is studied. Here the setting and results from
these other areas can be quite sophisticated and the techniques used to understand
multivariate operator theory often require additional development. Such is the
focus of this paper.

Although the spectral theorem is a key tool in the study of self-adjoint and
normal operators, there are large and important classes of naturally occurring op-
erators to which this theory doesn’t apply. Examples illustrating such phenomena
can be obtained by considering multiplication operators on spaces of holomorphic
functions on some domain in C

m. For domains in C, one is in the realm of single
operator theory while it would be multivariate operator theory for m > 1. If one
considers the unit ball B

m in C
m and the Bergman space A2(Bm) for it, one obtains

a module over the polynomial algebra C[z], where z = (z1, . . . , zm).
Techniques from complex geometry were shown in [6], [7], and [8] to be useful

in studying such Hilbert modules. Closed submodules related to polynomial ideals
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were shown to reflect properties of the ideals and results in a rigidity phenomenon
for such submodules [16]. In [10], it was shown that the study of quotient modules,
determined by polynomial ideals, could also be reduced to the earlier work involving
complex geometry if the ideal is principal and prime. As might be expected, the
non-prime case is more complicated (cf. [14]) and some real technical difficulties
arise in the complex geometry needed to handle its study. Overcoming these prob-
lems by developing new results and techniques in complex geometry is the main
goal of this paper.

In a basic construction, Hilbert modules, such as A2(Bm), can be shown to yield a
hermitian holomorphic vector bundle over the domain, and this bundle characterizes
the module up to unitary equivalence. Moreover, the geometric invariants of the
bundle, including the curvature, can be obtained from the module action. For
quotient modules by multiplicity-free principal ideals, a bundle still exists but over
the intersection of the domain with the zero variety of the ideal. One can also
exhibit a kernel function that characterizess the quotient module. In [10, Theorem
1.4], the fundamental class of the hypersurface Z was expressed using the curvatures
of the pair of modules M and the submodule M0 and the localization of the inclusion
map M0 ↪→ M. Here we give a complete set of invariants for the equivalence of the
quotient modules. In [14] it was shown that for quotient modules obtained using
submodules of higher multiplicity, there is still a higher rank hermitian holomorphic
bundle, but its bundle structure is not enough to characterize the quotient module.
One must also involve the flag structure in the bundle defined by the module action
which now involves nilpotents. But even that is not enough. In particular, we must
consider the nilpotent structure defined by the module action itself. Classifying
such objects requires introducing new ideas and techniques and extending older
ones from complex geometry which involve jet bundles and moving frames. Before
describing our main results, we neeed to introduce some terminology.

For any bounded open connected subset Ω of C
m, let A(Ω) be the completion,

with respect to the supremum norm on the closure Ω of the domain Ω, of functions
holomorphic in a neighbourhood of Ω. The Hilbert space M is said to be a Hilbert
module over A(Ω) if M is a module over A(Ω) with module map A(Ω) × M → M

having the property that

‖f · h‖M ≤ C‖f‖A(Ω)‖h‖M for f ∈ A(Ω) and h ∈ M,

for some positive constant C independent of f and h. It is said to be contractive
if we also have C ≤ 1.

We work in a class of locally free Hilbert modules called quasi-free, which is
defined in Section 2. Now fix a hypersurface Z ⊆ Ω and let M0 ⊆ M be the
submodule of the quasi-free Hilbert module M of rank 1 consisting of those functions
in M that vanish to order k on the hypersurface Z. The quotient Q = M � M0

is a Hilbert module over A(Ω), where the module action is naturally defined as
f · (h + M0) = f · h + M0 (cf. [15, Definition 2.2]). In other words,

(1.1) 0 ←− Q � M ←↩ M0 ←− 0

is an exact sequence of Hilbert modules over A(Ω), where � is the quotient map
and ←↩ is the inclusion map. It is then possible to obtain geometric invariants for
the quotient module Q using the module map M � M0 (cf. [10, Theorem 1.4]).

For any fixed but arbitrary u ∈ Ω, we may pick a small enough open neighbor-
hood U ⊆ Ω of u such that U ∩Z admits a defining function, say ϕ, with gradient of
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ϕ not zero in the normal direction to U ∩Z. Since U is open in Ω, it follows that the
module M and the submodule M0 ⊆ M are isomorphic to the module M|res U and
the submodule (M0)|res U ⊆ M|res U of functions in M|res U that vanish on U ∩ Z,
respectively. Consequently, if we choose to work with the latter pair of modules,
then the corresponding quotient module M|res U � (M0)|res U is isomorphic to the
quotient module M�M0. Therefore we may cut down, if necessary, the domain Ω
to a suitable small open subset U ⊆ Ω and work with the smaller open set U and
the hypersurface U ∩ Z ⊆ U without loss of generality.

The submodule M0 in [14] is taken to be the (maximal) set of functions which
vanish to some given order k on the hypersurface Z. As in the case of multiplicity
one, two descriptions are provided for the quotient module. A matrix – valued
kernel function must now be used and, in the vector bundle picture, we have a
rank k hermitian, anti-holomorphic vector bundle over Z∗. Some invariants for the
quotient module (though not a complete set) are described in [14].

Finally, in the paper [11], a complete set of unitary invariants is obtained for
the particular case where M0 consists of functions vanishing to order 2 on the
hypersurface. While two of the three invariants obtained there consist of coefficients
of the curvature form for the jet bundle for E, the third, which we called the “angle”,
seemed to be not so familiar. In this note, we show that the angle invariant can
be replaced by the second fundamental form corresponding to the inclusion of the
bundle E in the jet bundle J (2)E.

Our main goal, however, is to obtain invariants that are complete, computable
and natural in complex geometry – for general k, not just in the case k = 2. We’ll
state our results in the following section after we introduce the necessary notation.

We provide a number of applications of our results to the context of homogeneous
operators. Moreover, we discuss various aspects of global versus local differences
in connection with the jet bundle construction. Finally, we describe some relations
between the new invariants we introduce and several other topics relating to the
moving frames of Cartan and integrability conditions in Chern-Moser theory.

In a recent paper [13], we pointed out that much of what we proved there was
valid for modules over algebras of holomorphic functions that are not complete,
for example, C[z] or the functions holomorphic on the closure of the domain. This
continues to be the case in this paper as well. However, we will continue to state
our principal results for Hilbert modules over the complete function algebra A(Ω)
even though a more general statement would be possible.

2. Main results

2.1. We recall some basic notions from complex geometry following Wells [27, Chap-
ter III]. If E is a hermitian holomorphic vector bundle, then there is a canonical
connection D on the bundle E which is compatible with both the holomorphic and
hermitian structures. The curvature K of the bundle E is then simply defined to
be D ◦ D. Let us provide some more details.

Let E be a hermitian holomorphic vector bundle of rank k over a complex man-
ifold M and C∞

p (M, E) be the space of smooth p - forms on M whose coefficients
are smooth sections of E. A connection on the bundle E is a differential operator
D : C∞

p (M, E) → C∞
p+1(M, E) of order 1 satisfying

(2.1) D(f ∧ s) = df ∧ s + (−1)pf ∧ Ds
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for any f ∈ C∞
p (M, C) and s ∈ C∞

p (M, E), where df stands for the usual exterior
derivative of f .

Assume that θ : E|U → U × C
k is a trivialization of E over some open subset U

of M . Let (s1, . . . , sk) be the corresponding frame of E|U . Then any s ∈ C∞
p (M, E)

can be written uniquely as

s =
∑

j

σj ⊗ sj , σj ∈ C∞
p (U, C), 1 ≤ j ≤ k.

Using the hermitian structure h of E, we can define a natural sesquilinear map

C∞
p (M, E) × C∞

q (M, E) → C∞
p+q(M, C)

(s1, s2) �→ {s1, s2}
combining the wedge product of forms with the hermitian metric on E. If s =∑

j σj ⊗ sj and s̃ =
∑

j σ̃j ⊗ sj , then

{s, s̃} =
∑
j,�

σj ∧ ¯̃σ�h(sj , s�).

The curvature tensor K associated with the canonical connection D is in
C∞

1,1(M, herm(E, E)). (Here C∞
p,q represents the space of forms of degree p in the

holomorphic differentials and q in the anti-holomorphic ones.) Moreover, if h is a lo-
cal representation of the metric in some open set, then the curvature K = ∂̄(h−1∂h)
[27, page 82].

2.2. To study quotient Hilbert modules determined by a hypersurface, we must
consider the behavior of the holomorphic tangent bundle to Ω relative to an an-
alytic hypersurface. The holomorphic tangent bundle TΩ|res Z naturally splits as
TZ+̇NZ, where NZ is the normal bundle. It can be identified with the quotient
TΩ|res Z/TZ. The conormal bundle N∗Z is the dual of NZ; it is the subbundle of
T ∗Ω|res Z consisting of cotangent vectors that vanish on TZ ⊆ TΩ|res Z. Indeed,
there is an easy formula for the conormal bundle of a smooth hypersurface, which
we describe now following [20, page 145].

Suppose Z is given by local defining functions ϕz on Uz ⊆ Ω, z ∈ Ω, as in
Definition 4.1. The line bundle [Z] defined on Ω is then given by transition functions
{ψzw = ϕz

ϕw
: z, w ∈ Ω} on Uz ∩ Uw. By definition, ϕz ≡ 0 on Uz ∩ Z. It follows

that the differential dϕz is a section of the conormal bundle N∗Z. Besides, dϕz is
holomorphic and nonzero everywhere. On Uz∩Uw∩Z, we have dϕz = ψzwdϕw; that
is, dϕz defines a nonzero global section of the bundle N∗Z ⊗ [Z]. Thus N∗Z ⊗ [Z]
is the trivial bundle, which gives the formula N∗Z = [−Z]|res Z, where [−Z] is the
inverse of the line bundle [Z]. This is the Adjunction Formula I [20, page 146].

In the following calculation, we assume that Z = {z1 = 0}. We show in subsec-
tion 4.2 that there is no loss of generality in doing so. Let P1 : T ∗Ω|res Z → N∗Z be
the bundle map which is the projection onto N∗Z and P2 = (1−P1) : T ∗Ω|res Z →
T ∗Z be the bundle map which is the projection onto T ∗Z. Now, we have a splitting
of the (1, 1) forms as follows:

∧(1,1)T ∗Ω|res Z =
2∑

i,j=1

Pi

(
∧(1,0) T ∗Ω|res Z

)
∧ Pj

(
∧(0,1) T ∗Ω|res Z

)
.

Accordingly, we have the component of the curvature along the transverse direction
to Z which we denote by Ktrans. Clearly, Ktrans = (P1 ⊗ I)K|res Z. Similarly, let
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the component of the curvature along tangential directions to Z be Ktan. Again,
Ktan = (P2⊗I)K|res Z. (Here I is the identity map on the vector space herm(E, E).)
In local coordinates, the curvature of E at w ∈ Ω∗ is given by

K(w) = −
m∑

i,j=1

∂̄i

(
K(w, w)−1∂jK(w, w)

)
dw̄i ∧ dwj

= K11(w)dw̄1 ∧ dw1 +
m∑

j=2

K1j(w)dw̄1 ∧ dwj

+
m∑

i=2

Ki1(w)dw̄i ∧ dw1 +
m∑

i,j=2

Kij(w)dw̄i ∧ dwj

=
(

Ktan(w) S(w)
−S(w) Ktrans(w)

) (
d′

t
w̄

dw̄1

)
∧

(
d′

t
w

dw1

)
,(2.2)

where ∂i = ∂
∂wi

, ∂̄j = ∂
∂w̄j

and d′
t
w denotes the transpose of (dwm, . . . , dw2).

Also, we let S(w), which appears in the (1, 2) position of the decomposition for the
curvature, denote the (1, 1) form

∑m
j=2 K1j(w)dw̄1 ∧ dwj .

We will study quotient modules for a special class of Hilbert modules which
includes the Hardy and Bergman modules. Recall that M is said to be a quasi-free
Hilbert module of rank n, 1 ≤ n < ∞, for A(Ω), if it is a Hilbert space completion
of A(Ω) ⊗alg C

n (the algebraic tensor product) such that

(1) evaluation ew, ew(f) = f(w), is locally uniformly bounded for w ∈ Ω,
(2) pointwise multiplication by functions in A(Ω) defines a bounded operator

on M, and
(3) a sequence {fi} contained in A(Ω) ⊗alg C

n that is Cauchy in the norm of
M converges to 0 in the norm of M if and only if {ew(fi)} converges to 0
in C

n for all w in Ω (cf. [12], [13]).

These assumptions ensure, among other things, via the Riesz representation
theorem, that there is a unique vector K(·, w) ∈ M satisfying the reproducing
property; that is,

h(w) = 〈h, K(·, w)〉, h ∈ M, w ∈ Ω.

Clearly, the map w �→ ew, which is defined on Ω and takes values in M, is weakly
holomorphic. Hence, ew is locally uniformly bounded in norm and K(w, w) =
〈ew, ew〉 is locally uniformly bounded.

The Hilbert modules that we describe in this paper are the ones that arise as
the quotient of a pair of Hilbert modules from the class B1(Ω). The following
definition makes this precise along with a mild hypothesis that we must impose on
the quotient.

Definition 2.1 ([11], p. 284). We will say that the module Q over the algebra
A(Ω) is a quotient Hilbert module in the class Bk(Ω, Z) if

(i) there exists a resolution of the module Q as in equation (1.1) for some
quasi-free Hilbert module M of rank 1 over the algebra A(Ω);

(ii) for f ∈ A(Ω), the restriction of the map Jf to the hypersurface Z defines
the module action on Q; and
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(iii) the Hilbert module J (k)M|res Z which is isomorphic to the quotient module
Q is quasi-free of rank k over the algebra A|res Z(Ω).

Our main theorem is easily stated using the k×k array of differential operators:

(2.3) Dk =

⎛
⎜⎜⎜⎜⎜⎝

∂̄′t∂′ ∂̄′t∂1 ∂̄′t∂2
1 . . . ∂̄′t∂k−1

1

∂̄1∂
′ ∂̄1∂1 ∂̄1∂

2
1 . . . ∂̄1∂

k−1
1

∂̄2
1∂′ ∂̄2

1∂1 ∂̄2
1∂2

1 . . . ∂̄2
1∂k−1

1
...

...
...

. . .
...

∂̄k−1
1 ∂′ ∂̄k−1

1 ∂1 ∂̄k−1
1 ∂2

1 . . . ∂̄k−1
1 ∂k−1

1

⎞
⎟⎟⎟⎟⎟⎠ ,

where ∂′ denotes the differential operator (∂m, . . . , ∂2) and ∂̄′t is the conjugate
transpose of ∂′. We point out that the (1, 1) position of the matrix Dk consists
of an (m − 1) × (m − 1) block and that each entry of the first row (respectively,
column) is a column (respectively, row) vector of size m − 1.

Definition 2.2. Let � and �̃ be two positive real analytic functions on a domain
Ω. We say that the � and �̃ are equivalent to order k on Z if Dk

(
log �̃

�

)
= 0 on Z.

Theorem 1. Suppose that Q = M � M0 and Q̃ = M̃ � M̃0 are a pair of quotient
Hilbert modules over the algebra A(Ω) in the class Bk(Ω, Z). Then the quotient
modules Q and Q̃ are isomorphic if and only if �̃ and � are equivalent to order k,
where �̃ and � are the hermitian metrics for the line bundles corresponding to the
two modules M and M̃ respectively.

In case k = 2, we may restate Theorem 1 in terms of the tangential and the
transverse curvatures along with the second fundamental form. The validity of
such a statement will follow from Theorem 1 which holds for an arbitrary k. We
consider the case of k = 2 separately for comparison with our previous result which
was limited to this case only. In the statement of the theorem below, we use
the invariants tan and trans to stand for the tangential and transverse curvatures.
These invariants occurred in [11, Theorem, page 289]. We emphasize that the third
invariant that appears in Theorem 2 is the second fundamental form. Therefore,
this theorem is different from that of [11]. We provide an independent proof using
explicit computations.

Theorem 2. Suppose that Q = M � M0 and Q̃ = M̃ � M̃0 are a pair of quotient
Hilbert modules over the algebra A(Ω) in the class B2(Ω, Z). Then the modules Q

and Q̃ are isomorphic if and only if the restrictions of the corresponding curvatures
to the hypersurface Z coincide; that is,

tan: Ktan = K̃tan,
trans: Ktrans = K̃trans,
angle: S = S̃

are equal on Z.

3. Reproducing kernels and the multivariate class Bk

3.1. Let L(F) be the Banach space of all linear transformations on a Hilbert space
F of dimension n for some n ∈ N. Let H be a Hilbert space of functions from Ω to
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F. For w ∈ Ω, let ew : H → F be defined by ew(f) = f(w). The Hilbert space H is
called a (vector-valued) functional Hilbert space if ew is bounded for each w ∈ Ω.
In this case, the function K : Ω × Ω → L(F) defined by K(z, w) = eze

∗
w, z, w ∈ Ω,

is called the reproducing kernel of H. We recall some of the basic properties of a
reproducing kernel following [1].

First, the kernel K has the reproducing property:

(3.1) 〈f, K(·, w)η〉H = 〈f(w), η〉F for η ∈ F, w ∈ Ω, f ∈ H.

In particular, taking f = K(·, w)ζ for w ∈ Ω, ζ ∈ F, we see that K satisfies

(3.2) 〈K(·, w)ζ, K(·, z)η〉 = 〈K(z, w)ζ, η〉 for ζ, η ∈ F, z, w ∈ Ω.

This shows for p ≥ 1, w1, . . . , wp ∈ Ω that the block operator
((
K(wi, wj)

))
1≤i,j≤p

on F ⊕ · · · ⊕ F (p copies) is positive. Conversely, if K : Ω × Ω → L(F) satisfies this
positivity requirement for all p - tuples in Ω, one can see that there is a unique
functional Hilbert space with reproducing kernel K. (It is the completion of the
linear span of the functions K(·, z)η for z ∈ Ω, η ∈ F, with inner product given by
(3.2).)

For 1 ≤ i ≤ m, suppose that the operators Mi : H → H defined by (Mif)(z) =
zif(z), z ∈ Ω, f ∈ H are bounded. Then it is easy to verify that for each fixed
w ∈ Ω, and 1 ≤ i ≤ m,

(3.3) M∗
i K(·, w)η = w̄iK(·, w)η for η ∈ F.

Differentiating (3.1) we also obtain the following extension of the reproducing prop-
erty:

(3.4) 〈(∂j
i f)(w), η〉 = 〈f, ∂̄j

i K(·, w)η〉 for 1 ≤ i ≤ m, j ≥ 0, w ∈ Ω, η ∈ F, f ∈ H.

Let M = (M1, . . . , Mm) denote the commuting m-tuple of multiplication oper-
ators defined by the coordinate functions z1, . . . , zm, and let M∗ be the m-tuple
(M∗

1 , . . . , M∗
m). It then follows from (3.3) that the joint eigenspace of the m-tuple

M∗ at w ∈ Ω∗ ⊆ C
m, where as before, Ω∗ = {w ∈ C

m : w̄ ∈ Ω}, contains the
n-dimensional subspace ranK(·, w̄) ⊆ H.

Suppose K is the reproducing kernel of a Hilbert space H consisting of F - valued
analytic functions on Ω. Then K is analytic in the first argument (and hence co-
analytic in the second argument). We now obtain a holomorphic vector bundle E
on the base space Ω∗ by requiring that {K(·, w)v : v ∈ B} ⊆ H, where B is an
orthonormal basis for F, be a frame at w̄ ∈ Ω∗. We will also assume that K(w, w)
is an invertible operator for each w ∈ Ω. Then K(w, w) defines a hermitian metric
for the bundle E. The assumption that K(w, w) is invertible is automatic if H is a
quasi-free Hilbert module of finite rank n.

Before proceeding any further, we recall the class Bk(Ω) for Ω ⊂ C and k ∈ N,
which was introduced in [6]. It consists of those operators T on a Hilbert space H

for which each w ∈ Ω is an eigenvalue of uniform multiplicity k, the eigenvectors
span the Hilbert space H and ran(T − wIH) = H for w ∈ Ω. Later the definition
was adapted to the case of an m - tuple of commuting operators T = (T1, . . . , Tm)
acting on a Hilbert space H, first in the paper [7] and then in the paper [9] from
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a slightly different point of view, which emphasized the role of the reproducing
kernel.

For w ∈ Ω ⊆ C
m, the m-tuple T is in Bk(Ω) if

(1) ran DT−w is closed for all w ∈ Ω, where DT : H → H ⊗ C
m is defined by

DTh = (T1h, . . . , Tmh), h ∈ H;
(2) span {ker DT−w : w ∈ Ω} is dense in H; and
(3) dim kerDT∗−w = k for all w ∈ Ω.

It was then shown that each of these operator m - tuples T determines a hermitian
holomorphic vector bundle E of rank k on Ω and that two m - tuples of operators
in Bk(Ω) are unitarily equivalent if and only if the corresponding bundles are lo-
cally equivalent. In the case k = 1, this is a question of equivalence of hermitian
holomorphic line bundles. It is, of course, well known that two such line bundles
are equivalent if and only if their curvatures are equal. However, no such simple
characterization is available if rank E = k > 1.

We now recall that for the module M over the algebra A(Ω), the coordinate
functions define an m-tuple of bounded multiplication operators M. We have al-
ready observed in (3.3) that the joint eigenspace of M∗ at w̄, w ∈ Ω, includes the
subspace {K(·, w)ζ : w ∈ Ω, ζ ∈ C

m} ⊆ H.
Recall that if (KE)ij(w) = (KF )ij(w) for w ∈ Z and 2 ≤ i, j ≤ m, then the

restrictions of the two bundles E and F to the hypersurface Z are equivalent [10,
Theorem 1.3]. In other words, g(w) = |u(w)|2h(w) for some holomorphic function
u on Z and w ∈ Z. Let Q be the quotient module, as in (1.1), corresponding to the
submodule M0 consisting of all those functions in M that vanish on the hypersurface
Z. We showed in [10] that the restriction of just the tangential curvature Ktan to
the hypersurface Z determines the quotient module up to unitary equivalence. If we
make the stronger assumption of equality of all coefficients of the curvature on Z,
then the quotient modules can again be shown to be equivalent in the case of k = 2,
as is pointed out in Remark 6.1 below. (This is a key step in the reformulation of our
earlier equivalence result for this case.) In this paper, we generalize this result to
the case k > 2 by introducing (see (2.3)) the k× k matrix Dk of partial differential
operators so that the restriction of Dk log � to Z determines the equivalence of
the corresponding quotient modules. However, at this point we have no standard
complex geometric interpretation of this characterization.

4. Jet bundles relative to a hypersurface

4.1. We are interested in submodules M0 contained in M which consist of all func-
tions in M that vanish to some fixed order k on a hypersurface Z contained in Ω.
Before we can make this notion precise, however, we need some definitions.

Definition 4.1 ([21, Definition 8, p. 17]).
(1) A hypersurface is a complex submanifold of complex dimension m−1; that is,

a subset Z ⊆ Ω is a hypersurface if for any fixed z ∈ Z, there exists a neighbourhood
U ⊆ Ω of z and a local defining function ϕ for U ∩ Z.

(2) A local defining function ϕ is a holomorphic map ϕ : U → C such that
U ∩ Z = {z ∈ U : ϕ(z) = 0} and f

ϕ is holomorphic on U whenever f|U∩Z = 0. In
particular, this implies that the gradient of ϕ doesn’t vanish on Z and that any two
defining functions for Z must differ by a unit.
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(3) We say that the function f vanishes to order k on the hypersurface Z if
f = ϕng for some n ≥ k, a holomorphic function g on U and a defining function
ϕ of Z. The order of vanishing on Z of a holomorphic function f : Ω → C does
not depend on the choice of the local defining function. This definition can also be
framed in terms of the partial derivatives normal to Z.

It is clear that if there exists a global defining function ϕ for the hypersurface
Z, then a valid choice of a normal direction is the gradient of the function ϕ, which
is defined on all of Ω. In general, it may not be possible to find a global defining
function for the hypersurface Z. However, if the second Cousin problem is solvable
for Ω, then there exists a global defining function (which we will again denote by
ϕ) for the hypersurface Z. This is pointed out in the remark preceding Corollary 3
in [21, p. 34].

Even if we don’t impose the condition of “solvability of the second Cousin prob-
lem” on Ω, we may restrict the holomorphic functions in the algebra A(Ω) and the
module M to the open set U without loss of generality.

4.2. We now consider in some detail the construction of the jet bundles needed to
characterize quotient modules of higher multiplicity.

Suppose, to begin with, we have a quasi-free Hilbert module M of finite rank k
over A(Ω) with kernel function K on Ω and corresponding hermitian holomorphic
vector bundle EM. It is easy to see that if U is any open set in Ω and A|res U(Ω) =
{f|res U : f ∈ A(Ω)} is the restriction algebra, then M|res U, the restriction of the
functions in the module M to the open set U , is naturally a module over the algebra
A|res U(Ω) and this module is isomorphic to M. (Note, in general, A|res U(Ω) is not a
function algebra since it may not be complete.) So we can restrict all our discussion,
without loss of generality, to any open subset U of Ω. In particular, we don’t need
to take the domain to be as large as possible. Thus our treatment will be local.

The jet bundle construction introduced in [14] involves the kernel function K and
differentiation along the normal to the hypersurface Z ⊆ Ω. We will attempt to
recall the essential ideas involved as succinctly as possible, but still our description
of the jet bundle will require us to repeat substantial material from the earlier
paper.

Let us construct the jet bundle J (k)E over some open subset U of Ω which
intersects Z. Here we assume that M has rank one and make essential use of the
fact that the line bundle E is given as a pullback from the Grassmanian defined
by M. In particular, this means that a holomorphic section for E over Ω can be
viewed as arising from a holomorphic function from Ω to M. Now one takes U so
small that U ∩ Z equals the zero set of a holomorphic function ϕ on U and the
gradient of ϕ doesn’t vanish on U .

A normal direction to Z in U ∩Z is then given by the gradient of ϕ. By choosing
to reorder the coordinates and by possibly cutting down the size of U , we can
assume that ∂

∂z1
ϕ �= 0 on U . It then follows that λ1 = ϕ(z), λ2 = z2, . . . , λm = zm

for z ∈ Z defines a local coordinate system for U . As pointed out in [14, pp. 368
- 369], ∂�f

∂z�
1
(z) = 0 for z ∈ U ∩ Z, 0 ≤ � ≤ k − 1 if and only if ∂�f

∂λ�
1
(λ) = 0 for

λ ∈ V ∩ φ(Z), 0 ≤ � ≤ k − 1, where φ(z) = (ϕ(z), z2, . . . , zm) and V = φ(U). Then
the submodule M0 (cf. [14, (1.5)]) consisting of those functions in M that vanish



2238 RONALD G. DOUGLAS AND GADADHAR MISRA

to order k on the hypersurface Z may be described as

M0 = {f ∈ M :
∂�f

∂z�
1

(z) = 0, z ∈ U ∩ Z, 0 ≤ � ≤ k − 1}.

In the new coordinate system φ(z) = (ϕ(z), z2, . . . , zm), differentiation along the
normal to the hypersurface coincides with ∂1 = ∂

∂z1
. To construct the jet bundle

J (k)E on U , let us take a frame for E, that is, a nonzero holomorphic section s for
the line bundle E on U . Thus we can assume, without loss of generality, that s is
defined and nonzero on all of U . (Recall we can view s as a holomorphic function
from U to M.) The jet bundle J (k)E over U is now simply the bundle determined
by the holomorphic frame {s, ∂1s, . . . , ∂

k−1
1 s} on the open set U . (Here, the section

s is viewed as a holomorphic function from U to M, and the differentiation of s is
the usual differentiation of the holomorphic function s.)

It is clear that the normal direction we pick in this manner is not unique. Thus
the construction of the jet bundle J (k)E, even on an open subset U of Ω, depends
on the choice of a normal direction, and hence on the defining function. It follows
that the normal directions obtained from the different defining functions for U ∩ Z

give rise to distinct jet bundles. However, [14, Proposition 2.4] shows that these
bundles coincide on U ∩ Z modulo holomorphic hermitian equivalence. Hence, we
may proceed by assuming, without loss of generality, that the normal direction to
the hypersurface Z is z1 by making a holomorphic change of coordinates mapping
the set U ∩ Z to {z1 = 0} ⊆ V ∩ Ω for some open subset V ⊆ Ω. Now on U , and
using ϕ, we can define a kernel function

JK(z, w) = ((〈(∂i
1s)(z), (∂j

1s)(w)〉M))k−1
i,j=0

on U . However, the kernel function J (k)K depends on the choice of U and ϕ, but
the relationship between the kernel functions obtained for different choices of sub-
domains and defining functions is particularly simple on Z. Further, if we restrict
JK to Z, or actually the intersection of this set with U , then we obtain a kernel
function which defines a Hilbert space canonically isomorphic to the quotient space
Q. In Section 8, we will discuss further the global versus local nature of the jet
bundle.

4.3. In this subsection, we first recall the “change of variable formula” for the jet
bundle. We then define an action of the algebra A(Ω) on the holomorphic sections
of the jet bundle. We use the hermitian structure of the jet bundle to define an
inner product on the linear space of holomorphic sections of the jet bundle. This
is then identified as a positive definite kernel on Ω. We then discuss a notion of
equivalence of the jet bundles along with a similar notion of equivalence for the
corresponding module of holomorphic sections.

Let us examine more closely the relationships between the jet bundles defined
by different choices of defining function on an open set U . First, we recall (cf. [14])
the construction of the jet bundle J (k)E starting with a holomorphic hermitian line
bundle E over U . Let s0 and s1 be holomorphic frames for E on the coordinate
patches Uz ⊆ U and Uw ⊆ U , respectively. That is, s0 (respectively s1) is
a nonvanishing holomorphic section of E on Uz (respectively Uw). Then there
is a nonvanishing holomorphic function g on Uz ∩ Uw such that s0 = gs1 there.
Let εp, p = 1, . . . , k be the standard basis vectors for C

k. For � = 0, 1, we let



EQUIVALENCE OF QUOTIENT HILBERT MODULES–II 2239

J(s�) =
∑k−1

j=0
∂j
1s�

∂1wj εj+1. An easy computation shows that Js0 and Js1 transform
on Uz ∩Uw by the rule J(s0) = (Jg)J(s1), where J is the lower triangular operator
matrix

(4.1) J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . . . . . . . 0

∂1 1
...

...
. . .

...
...

(
l
j

)
∂�−j
1 1

...
...

. . . 0
∂k−1
1 . . . . . . . . . . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 0 ≤ �, j ≤ k − 1.
The components of Js, that is, s, ∂1s, . . . , ∂

k−1
1 s, determine a frame for a rank

k holomorphic vector bundle J (k)E on U . The transition function with respect to
this frame is represented by the matrix (Jg)tr, which is just the transpose of the
matrix (Jg). We will refer to this bundle J (k)E over U as the kth order jet bundle
of the bundle E. The hermitian metric �(w) = 〈s(w), s(w)〉E on E with respect to
the frame s on E induces a hermitian metric J� on J (k)E such that with respect
to the frame Js,

(4.2) (J�)(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�(w) . . . (∂k−1�)(w)

...

. . .
(∂�

1∂̄
m
1 �)(w)

. . .

...

(∂̄k−1
1 �)(w) . . . (∂k−1

1 ∂̄k−1
1 �)(w)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now, for any Hilbert module M over the function algebra A(Ω) and h ∈ M|U ,
let

h =
k−1∑
�=0

∂�
1h ⊗ ε�+1

and J(M|U ) = {h : h ∈ M|U} ⊆ M ⊗ C
k. Consider the map J : M|U → M ⊗ C

k

defined by Jh = h, for h ∈ M|U . Let J (k)M denote the module J(M|U ). Since J is
injective, we can define an inner product on J (k)M,

〈J(g), J(h)〉J(M) = 〈g, h〉M,

so as to make J unitary. We point out that the module action on J (k)M is no
longer pointwise multiplication but the one that ensures J is a module map.

Proposition 4.1 ([14, page 378]). The reproducing kernel JK : U × U → Mk(C)
for the Hilbert space J (k)M is given by the formula:

(JK)�,j(z, w) =
(
∂�
1∂̄

j
1K

)
(z, w), z, w ∈ U, 0 ≤ �, j ≤ k − 1,

where ∂̄1 = ∂
∂w̄1

and ∂1 = ∂
∂z1

as before.

To complete the description of the Hilbert module J (k)M, we will have to trans-
port the action of the algebra A(Ω) from M to J (k)M via the map J . The resultant
action is described in [14, Lemma 3.2], which we recall now.
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Lemma 4.2. Let M be a Hilbert module of holomorphic functions on Ω over the
algebra A(Ω) with reproducing kernel K. Let J (k)M be the associated module of jets
with reproducing kernel JK. The adjoint of the module action Jf on JK(·, w)x,
x ∈ C

k, is given by

J∗
f JK(·, w) · x = JK(·, w)(Jf)(w)∗ · x, f ∈ A(U), w ∈ U.

The module J (k)M may be thought of as the kth order jet module of the given
module M relative to the hypersurface Z. For w ∈ U and 1 ≤ � ≤ k, let s�(w) =
K(·, w)ε�. The vectors s�(w) span the range Ew of K(·, w) : C

k → M. The
holomorphic frame w → {s1(w̄), . . . , sk(w̄)} determines a holomorphically trivial
vector bundle E over U∗. The fiber of E over w is Ew = span{K(·, w̄)ε� : 1 ≤ � ≤
k}, w ∈ U∗. An arbitrary section of this bundle is of the form s =

∑k
�=1 a�s�,

where a�, � = 1, . . . , k, are holomorphic functions on U∗. The norm at w ∈ U∗ is
determined by

(4.3) ‖s(w)‖2 = 〈
k∑

�=1

a�(w)s�(w),
k∑

�=1

a�(w)s�(w)〉M = 〈K(w, w)tra(w), a(w)〉Ck ,

where a(w) =
∑k

�=1 a�(w)ε� and K(w, w)tr denotes the transpose of the matrix
K(w, w). Since K(w, w) is positive definite and w �→ K(w, w) is real analytic, it
follows that K(w, w) determines a hermitian metric for the vector bundle E. It is
easy to verify that if the module M is quasi-free and E is the corresponding bundle
whose hermitian structure is determined by the kernel function K, then the bundle
E along with the hermitian structure induced by the kernel JK is the one we would
have obtained by applying the jet construction to the bundle E.

Suppose M is a Hilbert module over the function algebra A(Ω) which is in
B1(Ω). Then one may identify the Hilbert space M with a space of holomorphic
functions on Ω possessing a complex-valued reproducing kernel K. This deter-
mines a line bundle EM on Ω∗ whose fiber at w̄ ∈ Ω∗ is spanned by the vec-
tor K(·, w). The jet bundle of rank k is determined by the holomorphic frame
{K(·, w), ∂̄1K(·, w), . . . , ∂̄k−1

1 K(·, w)}. The metric for the bundle with respect to
this frame is given by the formula (compare (4.2)):

〈
k−1∑
j=0

aj∂
j
1K(·, w),

k−1∑
j=0

aj∂
j
1K(·, w)〉 =

k−1∑
j,�=0

aj ā�〈∂j
1K(·, w), ∂�

1K(·, w)〉.

Clearly, the action of the algebra A(Ω) on the module J (k)M given in Lemma 4.2
defines a holomorphic bundle map θf on the holomorphic frame {JK(·, w) · εi : 1 ≤
i ≤ k, w ∈ Ω}, of the jet bundle J (k)EM for each f ∈ A(Ω). Hence the algebra
A(Ω) acts on the holomorphic sections of the jet bundle J (k)EM as well, making
it into a module equivalent to the module J (k)M. This is the jet bundle J (k)EM

associated with EM.
On the other hand, the Hilbert space J (k)M together with its kernel function

JK defined in Proposition 4.1 defines a rank k hermitian holomorphic bundle on
Ω∗ (see discussion preceding equation (4.3)). That these two constructions yield
equivalent hermitian holomorphic bundles is a consequence of the fact that J is a
unitary map from M onto J (k)M.

Remark 4.1. Therefore we see that the question of determining the equivalence
class of the module J (k)M is the same as determining the equivalence class of the
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jet bundle J (k)EM assuming that the map implementing the equivalence is also
a module map on holomorphic sections. Thus it is natural to make the following
definition.

Definition 4.2. Two jet bundles are said to be equivalent if there exists an iso-
metric holomorphic bundle map which induces a module isomorphism of the holo-
morphic sections.

5. Equivalence of jet bundles

5.1. Let E be a holomorphic line bundle over Ω∗ equipped with a hermitian metric
G. For Z∗ ⊆ Ω∗, let us expand the real analytic function G using the coordinates
(z1, z

′) ∈ Ω∗ with z′ = (z2, . . . , zm) ∈ Z∗ :

G(z1, z
′) =

∞∑
m,n=0

Gm,n(z′)zm
1 z̄n

1 .

(Note that G and Gm,n are merely real analytic functions. Therefore, they depend
on the variables we have indicated along with their conjugates.)

Suppose we start with a resolution of the form (1.1). Then we have at our
disposal the domain Ω ⊆ C

m and the hypersurface Z ⊆ Ω. We recall from [14, The-
orem 3.4] that the quotient module Q can be identified with the module J (k)M|res Z.
The module action Jf on the quotient J (k)M|res Z, for f ∈ A(Ω), is defined via the
restriction of the map

(5.1) (J∗
f s�)(w) = JK(·, w)(Jf)(w)∗ε�

to Z, and J is defined in equation (4.1).
Let ϕ be a local defining function for Z; that is, for some open subset U ⊆ Ω,

we have Z ∩ U = {z ∈ U : ϕ(z) = 0}. If necessary, by restricting to a smaller
open subset of U , which we continue to denote by U , we may assume that ϕ is
in A(U). We recall that we may assume Ω = U and Z = Z ∩ U without loss of
generality. Now, we see that ϕ induces a nilpotent action on each fiber of the jet
bundle J (k)E|res Z via the restriction of the map J∗

ϕ to Z.
Therefore in this picture, with the assumptions we have made along the way,

we see that the quotient modules Q satisfy the requirements listed in (i) – (iii) of
Definition 2.1.

We begin the proof of Theorem 1 after proving a couple of results of a general
nature. Indeed, the lemma below is a function theoretic result and the proposition
that follows is algebraic in nature. These two results, more or less, yield immediately
a proof of the theorem.

Definition 5.1. Let r be a positive real analytic function defined on Ω. Let

r(z1, z
′) =

∞∑
�,m=0

r�,m(z′)z�
1z̄

m
1

be the expansion of r in the variables z1, z̄1 around a small neighborhood of (0, 0).
We say that r is holomorphic to order k along Z if the coefficients r�,0, � ≤ k, are
holomorphic and r0,m = r̄m,0, m ≤ k, are anti-holomorphic while all the coefficients
r�,m = 0 for 0 < �, m ≤ k.
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Since D2

(
log �̃

�

)
= 0 on all of Ω is the same as saying that

m∑
i,j=1

∂̄i∂j log
�̃

�
dz̄i ∧ dzj = 0

on all of Ω, it follows that �̃ = |ψ|2� for some holomorphic function ψ on Ω. The
following lemma is a generalization of this statement in two directions. On the
one hand, we allow higher order differentiation and on the other hand, we require
equality only on Z.

Lemma 5.1. Two positive real analytic functions � and �̃ on Ω are equivalent to
order k on Z if and only if �̃ = |ψ|2�, where ψ is some real analytic function for
which log |ψ|2 is holomorphic to order k along Z.

Proof. Since �̃
� is a positive real analytic function on Ω, it follows that we may write

�̃
� = |ψ|2 for some real analytic function ψ : Ω → C. Let us expand the real analytic
function log |ψ|2 in the variables z1 and z̄1

log |ψ|2(z1, z
′) =

∞∑
�,m=0

ψ�,m(z′)z�
1z̄

m
1 ,

where the coefficients ψ�,m are real analytic functions of z′ ∈ Z for �, m ≥ 0.
(Strictly speaking, we should have said (0, z′) is in Z and not z′ ∈ Z.)

For k = 1, to say that D1

(
log �̃

�

)
= 0 on Z is the same as saying ∂′∂̄′t log �̃

� =

0 on Z. This, in turn, is equivalent to ∂′∂̄′t
(
log �̃

�

)
|Z = 0. As is well known,

∂′∂̄′t
(
log �̃

�

)
|Z = 0 if and only if �̃ = |ψ0|2� for some holomorphic function ψ0 on

Z. This proves the lemma for k = 1.
The proof in the forward direction is by induction. We have already verified the

statement for k = 1. Now, assume that it is valid for k; that is, ψ�,0 is holomorphic
for � ≤ k − 1, ψ0,m = ψ̄m,0 for m ≤ k − 1 and ψ�,m = 0 for all 0 < �, m ≤ k − 1.
We will show that the same conditions are forced on the coefficients even when
we replace k − 1 by k as long as we assume Dk log |ψ|2 = 0 on Z. Thus we have
that ∂̄′t∂k

1 log |ψ|2|Z = 0, which forces ∂̄′tψk,0 = 0 on Z. Similarly, ∂′ψ0,k = 0 on
Z making ψ0,k anti-holomorphic on Z. The condition that ∂̄�

1∂
k
1 log |ψ|2|Z = 0 is

clearly equivalent to ψ�,k = 0 for � ≤ k. Again, we have ∂̄k
1∂m

1 log |ψ|2|Z = 0 is

clearly equivalent to ψk,m = 0 for m ≤ k. Since |ψ|2 = 1
2

(
|ψ|2 + |ψ|2

)
, we see that

ψ�,0 = 1
2

(
ψ�,0 + ψ̄0,�

)
and ψ0,� = ψ̄�,0.

The proof in the other direction is a straightforward verification: Dk log |ψ|2 = 0
on Z assuming that ψ�,0, � ≤ k are holomorphic, ψ0,m = ψ̄m,0, m ≤ k are anti-
holomorphic and the coefficients ψ�,m = 0 for 0 < �, m ≤ k. �

Let C
k×k be the algebra of all k × k complex matrices and Tk×k ⊆ C

k×k be
the subalgebra of lower triangular Toeplitz matrices, that is, those lower triangular
matrices A for which A(� + p, �) = A(p) for 0 ≤ �, p ≤ k, � + p ≤ k.

In the proof of the following proposition we use the fact that if |ψ|2 is holomorphic
to order k along Z, then the coefficient function α�,0, in the expansion |ψ|2(z′) =∑∞

�,m=0 α�,m(z′)z�
1z̄

m
1 , is a holomorphic function for � ≤ k.
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Proposition 5.2. Suppose �̃, � are two positive real analytic functions on Ω with
�̃ = |ψ|2�. Then the function log |ψ|2, which is necessarily real analytic, is holo-
morphic to order k along Z if and only if there exists some holomorphic function
Ψ : Z → Tk+1×k+1 with ψp at the (� + p, �) position satisfying

(J�̃)(z′) = Ψ(z′)(J�)(z′)Ψ(z′)∗, z′ ∈ Z.

Proof. Assume that �̃ = |ψ|2� and |ψ|2 is holomorphic to order k along Z. Let us
compute the derivatives

∂̄i
1∂

j
1 �̃ = ∂̄i

1

(
ψ̄

j∑
n1=0

(
j

n2

)
ψ(n2)�(j−n2)

)

=
i∑

n1=0

j∑
n2=0

(
i

n1

)(
j

n2

)
ψ(n1)ψ(n2)�(j−n2,i−n1),

where �(j−n2,i−n1) = ∂j−n2
1 ∂̄i−n1

1 �. If we restrict this equation to Z, we see that

�̃j,i =
i∑

n1=0

j∑
n2=0

ψ̄n1ψn2�j−n2,i−n1 ,

where �̃j,i, �j−n2,i−n1 and ψn2 , ψn1 are the coefficients in the expansion of the
respective real analytic functions around z

(0)
1 = 0 in the variable z1. However,

this says that J�̃ = Ψ(J�)Ψ∗, where Ψ is the lower triangular matrix with the
holomorphic function ψp at the (� + p, p) position.

Conversely, suppose (J�̃)(z′) = Ψk(z′)(J�)(z′)Ψk(z′)∗, z′ ∈ Z, for some holo-
morphic function Ψ : Z → T(k+1)×(k+1). We have to show that �̃ = |ψ|2� for some
real analytic function |ψ|2 which is holomorphic to order k along Z. Clearly, on the
hypersurface Z, we have

�̃j,i =
i∑

n1=0

j∑
n2=0

ψ̄n1ψn2�j−n2,i−n1 ,

where ψn1 is the holomorphic function on Z that occurs in the n1 subdiagonal of
the function Ψ. Now, we apply the preceding lemma to infer that �̃ and � are
equivalent to order k on Z, completing the proof. �

Corollary 5.3. Let (E, �) and (Ẽ, �̃) be two hermitian holomorphic line bundles on
Ω ⊆ C

m. Let J (k)E and J (k)Ẽ be the jet bundles of E and Ẽ, respectively, equipped
with the natural action of the algebra A(Ω), that is, f �→ (Jf) · s, f ∈ A(Ω), for a
holomorphic section s. The restrictions to the hypersurface Z of the two jet bundles
J (k)E and J (k)Ẽ are equivalent if and only if � and �̃ are equivalent to order k on
Z.

Proof. The equivalence of the two jet bundles in the sense of Definition 4.2 amounts
to the existence of a holomorphic map Ψ : Z → Tk×k which intertwines the module
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action, that is, ΨJf = JfΨ. This intertwining property is easily verified –

Ψ∗(Jf)∗(i, j) =
(
0, . . . , 0, ψ0, . . . , ψk−1−i

)(
∂jf, . . . , f, 0, . . . , 0

)tr

=
(

j

i

)
∂j−iψ0 + · · · + ψj−if

= ψj−if + · · · +
(

j

i

)
∂j−iψ0

=
(
0, . . . , 0, f, . . . , ∂k−1−if

)(
ψj , . . . , ψ0, 0, . . . , 0

)tr

= (Jf)∗Ψ∗(i, j),

completing the proof of the corollary. �

Proof of Theorem 1. We have pointed out in Remark 4.1 that the equivalence of the
jet bundles in the sense of Definition 4.2 is the same as that of the corresponding
modules. Therefore, the corollary given above completes the proof of Theorem
1. �

6. The second fundamental form

We let M0 ⊆ M be the submodule of all functions that vanish to order 2 on the
hypersurface Z. As before, let {s, ∂1s} be a frame for the jet bundle J (2)E of rank
2 corresponding to the module M. In this case, under some mild hypothesis on the
quotient module Q, we know [11, p. 289] that Ktrans, Ktan and the angle 〈∂s, s〉
restricted to the hypersurface Z determine the unitary equivalence class of Q. Let
us explain the nature of this hypothesis.

In subsection 6.2, we show that the angle invariant, which together with the
transverse and the tangential curvatures forms a complete set of unitary invariants
for the quotient module Q can be replaced by the second fundamental form I for
the inclusion E ⊆ J (2)E. In view of the equation (6.10), we have stated the
theorem in terms of the restriction of the curvature. One of the disadvantages in
using the angle as an invariant for the isomorphism class of the quotient module
is that for it to make sense we must introduce normalized reproducing kernels (cf.
[9, Remark 4.7 (b)]). To avoid this ad hoc normalization, we replace it with the
second fundamental form which is a more natural geometric invariant.

6.1. Let Ω be an open connected and bounded subset of C
m and Z ⊆ Ω be a

hypersurface, that is, a complex submanifold of codimension 1. Let ∂1 denote
differentiation along the normal direction to Z. Let E be a hermitian holomorphic
line bundle on Ω. Let s be a holomorphic frame for E and h be the hermitian
metric. One sees that {s, ∂1s} is a holomorphic frame for the jet bundle J (2)E of
rank 2 in the normal direction to Z. Then

(6.1)
(
J (2)h

)
(w) =

(
h(w) (∂1h)(w)

(∂̄1h)(w) (∂̄1∂1h)(w)

)
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defines a metric for the jet bundle J (2)E. One obtains an orthonormal frame, say
{e1, e2}, from the holomorphic frame by the usual Gram-Schmidt process:

e1 = h−1/2s,

e2 =
∂1s − 〈∂1s, e1〉e1

‖∂1s − 〈∂1s, e1〉e1‖

=
∂1s − 〈∂1s, e1〉e1

h1/2(∂1∂̄1 log h)1/2
,(6.2)

where we see that ‖∂1s − 〈∂1s, e1〉e1‖ = h1/2(∂1∂̄1 log h)1/2 as in [6, 1.17.1]. Let
D be the canonical connection and ∂̄ be the operator ∂̄f =

∑m
1 ∂̄jfd̄zj . Since s is

holomorphic, ∂̄s = 0 and it follows that

(6.3) ∂̄e1 = −1
2
h−3/2∂̄h · s = −1

2
h−1∂̄h · e1 = −1

2
∂̄(log h) · e1.

Similarly, differentiating (6.2), we have

∂̄e2 = ∂̄
( 1
h1/2(∂1∂̄1 log h)1/2

)
(∂1s − 〈∂1s, e1〉e1) +

∂̄(∂1s − 〈∂1s, e1〉e1)
h1/2(∂1∂̄1 log h)1/2

= −1
2

∂̄
(
h∂1∂̄1 log h

)
(h∂1∂̄1 log h)3/2

· (∂1s − 〈∂1s, e1〉e1) +
−∂̄(h−1∂1h) · s
(h∂1∂̄1 log h)1/2

= −1
2

∂̄(h(∂1∂̄1 log h))
h∂1∂̄1 log h

· e2 −
∂̄(∂1 log h)

(∂1∂̄1 log h)1/2
e1.(6.4)

Let us calculate the canonical hermitian holomorphic connection D in J (2)(E)
with respect to the metric (6.1). We have

De1 = D1,0e1 + D0,1e1

= α11e1 + α21e2 + ∂̄e1

= (α11 − 1/2∂̄ log h)e1 + α21e2 by (6.3)
= θ11e1 + θ21e2,(6.5)

where α11, α21 is a pair of (1, 0) forms. Similarly, we have

De2 = D1,0e1 + D0,1e2

= α12e1 + α22e2 + ∂̄e2

=
(
α12 −

∂̄∂1 log h

(∂1∂̄1 log h)1/2

)
e1 +

(
α22 −

1
2

∂̄
(
h∂1∂̄1 log h

)
h∂1∂̄1 log h

)
e2 by (6.4)

= θ12e1 + θ22e2,(6.6)

where α12, α22 is another pair of (1, 0) forms. Since we are working with an or-
thonormal frame, the compatibility with the metric (2.1) amounts to the require-
ment

{Dei, ej} + {ei, Dej} = θji + θ̄ij

= 0 for 1 ≤ i, j ≤ 2.(6.7)

For 1 ≤ i, j ≤ 2, equating (1, 0) and (0, 1) forms separately to zero in the equations

θij + θ̄ij = 0, we obtain α11 = 1
2∂ log h, α12 = 0, α21 =

∂
(
∂̄1 log h

)
(∂1∂̄1 log h)1/2 and α22 =
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1
2

∂
(
h∂1∂̄1 log h

)
h∂1∂̄1 log h

. It therefore follows that

(6.8) θ =

(
1
2 (∂ − ∂̄) log h − ∂̄(∂1 log h)

(∂1∂̄1 log h)1/2

∂(∂̄1 log h)

(∂1∂̄1 log h)1/2
1
2

(∂−∂̄)(h∂1∂̄1 log h)

h(∂1∂̄1 log h)

)

is the matrix representation of the canonical connection D on J (2)E with respect
to the orthonormal frame {e1, e2}. Thus the second fundamental form I for the
inclusion E ⊆ J (2)E is

(6.9) 〈De2, e1〉 = θ12 = − ∂̄(∂1 log h)
(∂1∂̄1 log h)1/2

.

Let E be a holomorphic hermitian vector bundle over Ω. We can easily express
the second fundamental form I on Z in terms of the coefficients of the full curvature
(2.2) on Z:
(6.10)

I(z) = (I1(z)dz1, . . . , Im(z)dzm) = (Ktrans(z))−1/2(Ktrans(z) S(z)) ·
(

dz̄1 ∧ dz1

dz̄′ ∧ dz′

)
for z = (z1, z

′) ∈ Ω.

Remark 6.1. It follows that if we fix the transverse curvature Ktrans of a line bun-
dle E, then the second fundamental forms I for the inclusion E ⊆ J

(2)
1 E and the

coefficient S of the curvature KE determine each other. Consequently, the restric-
tions to the hypersurface Z of Ktrans, Ktan and the second fundamental forms I of
two holomorphic hermitian bundles are equal if and only if the restrictions to the
hypersurface Z of all the coefficients of the curvature K are equal.

6.2. The proof of Theorem 2 is facilitated by the following lemma. We let K(z)
denote the (1, 1) form

∑m
i,j=1 ∂̄i∂j(log h)(z)dz̄i∧dzj , z = (z1, . . . , zm) ∈ Ω, for some

positive real analytic function h on the domain Ω.

Lemma 6.1. Let h and h̃ be two positive real analytic functions on a domain Ω.
The restrictions to the hypersurface Z ⊆ Ω of the corresponding (1, 1) forms K and
K̃ are equal if and only if there exist holomorphic functions α, β on the hypersurface
Z such that

h̃00 = |α|2h00,

h̃10 = h10 + β|α|2h00,

h̃01 = h01 + β̄|α|2h00,

h̃11 = |α|2h11 + β|α|2h01 + β̄|α|2h10 + |β|2|α|2h00,

where h(z1, z
′) =

∑∞
i,j=0 hij(z′)zi

1z̄
j
1 and h̃(z1, z

′) =
∑∞

i,j=0 h̃ij(z′)zi
1z̄

j
1 are the

power series expansions of the real analytic functions h and h̃.

Proof. Let us put γ = h̃/h and Γ = log γ. Let us expand Γ in a power series:

(6.11) Γ(z1, z
′) = Γ00(z′) + z1Γ10(z′) + z̄1Γ01(z′) + · · · ,

where (z1, z
′) ∈ Ω. (We will suppress the dependence of the coefficients on z′

whenever there is no possibility of confusion.) Recall that ∂′ = (∂2, . . . , ∂m). The
assumption that the restrictions to the hypersurface Z ⊆ Ω of K and K̃ are equal
amounts to saying that ∂̄∂Γ = 0. We split this condition into four separate ones.
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The first of these is the requirement that (∂̄′∂′Γ)|Z = 0. The second and the third
are similar: (∂1∂̄

′Γ)|Z = 0 and (∂̄1∂
′Γ)|Z = 0. The final one is (∂̄1∂1Γ)|Z = 0.

In view of the expansion (6.11), the first condition is clearly the same as the
requirement that ∂̄′∂′Γ00 = 0. Therefore it follows that Γ00 = α1 + ᾱ2 for some
holomorphic functions α1, α2 on the hypersurface Z. Since Γ00 is positive, we also
have Γ00 = ᾱ1 + α2. Hence Γ00 = α1+α2

2 + α1+α2
2 . Consequently, γ|Z = exp(Γ|Z) =

|α|2, where α = exp (α1+α2
2 ) is a holomorphic function defined on the hypersurface

Z.
The second condition (∂1∂̄

′Γ)|Z = 0 can be restated using the power series
expansion (6.11) which is ∂̄′Γ10 = 0. Hence Γ10 is holomorphic on Z. Similarly, Γ01

is easily seen to be anti-holomorphic on Z.
Finally, the condition (∂̄1∂1Γ)|Z is clearly equivalent to the vanishing of the

coefficient Γ11 in the expansion (6.11), that is, Γ11 = 0.
Now, we put all of the above together and modify the expansion (6.11):

(6.12) Γ(z1, z
′) = α1 + β1z1 + η1z

2
1 + α2 + β2z1 + η2z2

1 + · · · .

It is not hard to see that we can have α1 = α2 and β1 = β2. Indeed, Γ = Γ+Γ̄
2 , which

allows us to take the common value α1+α2
2 , and similarly β1+β2

2 , as the coefficient
of both z1 and z̄1. While similar considerations apply to the coefficient of z2

1 , we
have to remember that in that case, and for all the other coefficients, these are not
holomorphic functions. Therefore, we see that

γ = expΓ

= | exp(
α1 + α2

2
)|2| exp(

β1 + β2

2
z1)|2| exp(

η1 + η2

2
z2
1)|2 · · ·

= |α|2|(1 + βz1 + β2z2
1 + · · · )|2|(1 + η2z2

1 + · · · |2 · · ·
= |α|2(1 + βz1 + β̄z̄1 + |β|2z̄1z1 + · · · ),

where α = exp(α1+α2
2 ) and β = β1+β2

2 . It now follows that

h̃ = h̃00 + h̃10z1 + h̃01z̄1 + h̃11z̄1z1 + · · ·
= γh

= (h00 + h10z1 + h01z̄1 + h11z̄1z1 + · · · )(|α|2(1 + βz1 + β̄z̄1 + |β|2z̄1z1 + · · · ))
= |α|2(h00 + (h10 + βh00)z1 + (h01 + β̄h00)z̄1

+ (h11 + β̄h10 + βh01 + h00|β|2)z̄1z1 + · · · ).

Equating the coefficients in this equation, we clearly have the following relation-
ships:

h̃00 = |α|2h00,

h̃10 = |α|2(h̃10 + βh00),

h̃01 = |α|2(h̃01 + β̄h00),

h̃11 = |α|2(h11 + β̄h10 + βh01 + h00|β|2).(6.13)
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Conversely, we see that K22 = h11h00−|h10|2
h2
00

on Z. If we assume the relationships

between h and h̃ as in (6.13), then on the hypersurface Z,

K̃22 =
|α|4(h11 + β̄h10 + βh01 + |β|2h00)h00 − |α|2(h10 + βh00)(h01 + β̄h00)

|α|4h2
00

=
h11h00 − |h10|2

h2
00

.

It therefore follows that K̃22 = K22 on Z. Similarly, again restricted to Z, we
have K12 = h00∂h01−h01∂h00

h2
00

. We see that K12 = h00∂′h01−h01∂′h00
h2
00

on Z. Hence a
calculation, using (6.13), shows that

K̃12 =
(∂h01 + β̄∂h00)h00 − (h01 + β̄h00)∂h00

h2
00

=
∂′h01h00 − h01∂

′h00

h2
00

ensuring K̃12 = K12 on Z. Finally, it is clear that K11(z) = K̃11(z), for z ∈ Z is
equivalent to h̃00 = |α|2h00 for some holomorphic function α defined on Z. �

Proof of Theorem 2. We first prove the “if” part of the theorem. In this case, we
have equality of all the coefficients of the two curvatures on the hypersurface Z.
This is equivalent to the relationship given in the equations (6.13). We then find
that (

α 0
αβ α

) (
h00 h01

h10 h11

) (
ᾱ ᾱβ̄
0 ᾱ

)

= |α|2
(

h00 h01 + β̄h00

h10 + βh00 h11 + β̄h10 + βh01 + h00|β|2
)

=
(

h̃00 h̃01

h̃10 h̃11

)
.

It follows that the bundle map Θ : J
(2)
1 E|Z → J

(2)
1 Ẽ|Z defined by Θ(z) =

(
α 0

αβ α

)
for z ∈ Z is holomorphic as well as isometric. Moreover, it intertwines the nilpotent
action as well. Therefore, the quotient modules are isomorphic via this map.

For the proof of the “only if” part, we first observe that any unitary implementing
the equivalence of the quotient modules must map the submodule M0 onto M̃0. This
implies that the tangential curvatures must coincide. The matrix representation
for the nilpotent action corresponding to the normal coordinate has the transverse
curvature at the (1, 2) position. So, if these nilpotent actions are equivalent, then
the transverse curvature corresponding to them must coincide. Furthermore, any
such intertwining unitary between the quotient modules must be of the form ( a 0

b a )
for holomorphic functions a, b defined on the hypersurface Z. We can assume,
without loss of generality, that b = ac. Hence we must have(

a 0
ac a

) (
h00 h01

h10 h11

)(
ā āc̄
0 ā

)
=

(
h̃00 h̃01

h̃10 h̃11

)
.

It then follows that we must have that the relationships given by (6.13) hold, which
completes the proof. �
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7. Applications and examples

7.1. Consider Ω0 contained in C
m and M a quasi-free rank one Hilbert module for

A(Ω0). For Ω = D × Ω0 contained in C
m+1, we can obtain quasi-free rank one

Hilbert modules R = H2(D) ⊗ M and R′ = B2(D) ⊗ M over A(Ω). Consider the
hypersurface Z = {z ∈ Ω : z1 = 0} = 0 × Ω0 contained in Ω and the quotient
Hilbert modules Q = R/R0 and Q′ = R′/R′

0, where R0 and R′
0 are the submodules

of functions in R and R′, respectively, that vanish on Z. Then Q ∼= Q′ ∼= M′, where
M′ is the module over A(Ω) obtained by pushing forward the module M over A(Ω0)
using the inclusion map i : Ω0 → Ω.

However, if we consider the submodules R1 and R′
1 of functions f in R and R′,

respectively, so that both f and the partial derivative of f with respect to z1 vanish
on Z, we obtain a rather different result. In this case, R/R1 = Q1 is not equivalent
to Q′

1 = R′/R′
1, which can be shown by direct calculation of the quotient modules

or by using the fact that the transverse curvatures are not equal.
In both cases, the longitudinal curvatures agree with that of M. In these cases,

restricted to the zero set, the transverse curvatures are constant and the angle
invariant or the second fundamental forms vanish identically. It is not hard to
produce an example where the restriction of the transverse curvature to the zero
set is not constant.

Let A2(B2) be the Bergman space on the unit ball B
2. It consists of square inte-

grable holomorphic functions on B
2 and possesses a reproducing kernel B(z, w) =

(1 − 〈z, w〉)−3, z, w ∈ B
2. As it turns out, any positive real power of the Bergman

kernel B is positive definite. Therefore, there exists a Hilbert space A(λ)(B2) corre-
sponding to such a positive definite kernel K(λ)(z, w) := Bλ/3(z, w) = (1−〈z, w〉)−λ

for λ > 0. Thus we obtain a module A(λ)(B2) over the polynomial algebra C[z],
z ∈ B

2. Now, the curvature of the corresponding holomorphic hermitian line bun-
dle E(λ) over the unit ball B

2 is easy to compute. It then follows that the re-
striction of neither the longitudinal nor the transverse curvature to the zero set
{z ∈ B

2 : z1 = 0} is constant. However, the angle invariant is still zero in these
examples.

In the rest of this section, we construct examples of modules R and R′ where
both the longitudinal and the transverse curvatures of these modules are the same,
yet the corresponding quotient modules are not isomorphic; see Remark 7.1. In
these examples, it is the “angle invariant” which is not the same.

We also give applications of our results to a familiar class of Hilbert modules over
the bi-disc algebra. These applications involve homogeneity of the modules under
the action of the Möbius group. The study of homogeneity for Hilbert modules over
the algebra A(Ω) for a bounded symmetric domain Ω ⊆ C

m was initiated in [24]
and was further studied in [2]. However, in these papers, it was assumed that Ω is
irreducible. So, the question of considering the possibility of Ω = D

2 did not arise.
Although the theorem below is stated in this case, it is clear that the proof works
just as well in the case of D

m. The recent work of Ferguson and Rochberg ([18]
and [19]) is very close to the discussion below – at least, in spirit. Similarly, the
work of the second named author with Koranyi [22, 23] on homogeneous operators
in the class Bk(D) is closely related to what we report here.

7.2. For λ > 0, let M(λ) be the Hilbert space which is determined by requiring
that {e(λ)

n (z) := c
−1/2
n zn : n ≥ 0} is a complete orthonormal set in it, where cn
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is the coefficient of xn in the expansion of (1 − x)−λ or cn is the set of binomial
coefficients:

(−λ
n

)
= λ(λ+1)···(λ+n−1)

n! . It follows that M(λ) possesses a reproducing
kernel K(λ) : D × D → C, which is given by the formula

K(λ)(z, w) =
∞∑

n=0

e(λ)
n (z)e(λ)

n (w)

= (1 − zw̄)−λ,

where D is the open unit disc. Thus M(λ) consists of holomorphic functions on
the open unit disc D. For θ ∈ [0, 2π) and α ∈ D, let ϕα,θ(z) = eiθ z−α

1−ᾱz for
z ∈ D. The group of bi-holomorphic automorphisms Möb of the unit disc is {ϕα,θ :
θ ∈ [0, 2π) and α ∈ D}. We recall that for λ > 0, the natural action of the
polynomial ring C[z] on each of the Hilbert spaces M(λ), for λ ≥ 0, makes it into
a module. However, for each λ > 1, this action extends to the disc algebra A(D).
The modules M(λ), λ ≥ 0, lie in the class B1(D). What is more, they are Möb –
homogeneous; that is, the module ϕ∗M

(λ) defined by the action (f, h) �→ (f ◦ϕ) · h
for f ∈ A(D), h ∈ M(λ) is isomorphic to the module M(λ) for all ϕ in Möb. It turns
out these are the only homogeneous modules in the class B1(D). For a complete
discussion, we refer the reader to the survey paper [3]. D. Wilkins [28] has obtained
a classification of all homogeneous Hilbert modules over the disc algebra which are
in the class Bk(D) for k > 1. However, he was able to give an explicit description of
these modules only for rank 2. In a recent preprint, Ferguson and Rochberg have
obtained a similar description of these modules, again only in the case of rank 2.
A. Koranyi and the second named author [22] have also obtained a model for these
quotient modules which works for an arbitrary k ∈ N.

7.3. For λ, µ > 0, there is a natural action of the group Möb×Möb on the mod-
ule M(λ,µ), which is just the tensor product M(λ) ⊗ M(µ). The Hilbert space
M(λ,µ) is then a space of holomorphic functions on the bi-disc via the identifi-
cation of the elementary tensor e

(λ)
m ⊗ e

(µ)
n with the function of two variables zm

1 zn
2

on the bi-disc D × D. It naturally possesses the reproducing kernel K(λ,µ)(z,w) =
(1− z1w̄1)−λ(1− z2w̄2)−µ, where z = (z1, z2) and w = (w1, w2) are both in D×D.
These modules are then Möb×Möb – homogeneous, with respect to the obvious
action of this group on M(λ,µ). We now show that these are the only Möb×Möb –
homogeneous modules which are in B1(D2).

Theorem 3. Let M be a Hilbert module over the bi-disc algebra A(D2). Assume
that M is in B1(D2) and that it is homogeneous. Then M is isomorphic to M(λ,µ)

for some λ, µ > 0.

Proof. Let γ be a holomorphic section for the bundle E corresponding to M. It
then follows that γ ◦ φ−1 is a holomorphic section for the module φ∗M, where
φ = (ϕ1, ϕ2) is an arbitrary element of the group Möb×Möb. These modules are
then isomorphic if and only if the curvatures of the bundle E corresponding to M

and the bundle φ∗E corresponding to φ∗M are equal. Let KE be the curvature of
the line bundle E, that is,

KE(z) =
2∑

i,j=1

∂̄i∂j log ‖γ(z)‖2dz̄i ∧ dzj .
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It will be convenient to let KE also denote the coefficient matrix of the curvature
of the line bundle E, namely

KE = D log ‖γ‖2, where D =
((
∂̄i∂j

))
i,j=1,2

.

Using the chain rule, we find that the curvature of φ∗E can be related to the
curvature of E as follows. For z ∈ D

2,

Kϕ∗E(z) = D log ‖γ ◦ φ−1(z)‖2

= Dφ−1(z)∗KE(φ−1(z))Dφ−1(z)

=

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

)∗

KE(φ−1(z))

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

)
.

(7.1)

The equality of the curvatures for E and φ∗E now amounts to

KE(z) =

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

)∗

KE(φ−1(z))

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

)

for all φ in Möb × Möb. By setting z = (0, 0) in the equation relating the curvatures
KE at z and at φ−1(z), we see that

KE(a1, a2)=

(
e−iθ1 1

1−|a1|2 0
0 e−iθ2 1

1−|a2|2

)∗

KE(0, 0)

(
e−iθ1 1

1−|a1|2 0
0 e−iθ2 1

1−|a2|2

)
.

We can now put a1 = 0 = a2 to infer that KE(0, 0) must be diagonal, with diagonals
equal to λ, µ, say.

Finally, we can show, without loss of generality by setting θ1 = 0 = θ2, that the
curvature has the form

KE(a1, a2) =
(

λ(1 − |a1|2)−2 0
0 µ(1 − |a2|2)−2

)
,

for (a1, a2) ∈ D
2. However, the curvature of the module M(λ,µ) has exactly this

form. So, we conclude that the homogeneous module M is isomorphic to M(λ,µ). �
The notion of homogeneity can be adapted easily to quotient modules over the

bi-disc algebra. Let M be a module over the bi-disc algebra which is in the class
B2(D2). Let us define the module ϕ∗M to be the module which as a Hilbert space is
the same as M. However, the algebra A(D2) now acts via the map (f, h) �→ (f◦φ)·h,
where φ = (ϕ, ϕ) with ϕ in Möb. Let M0 be the submodule of functions vanishing to
order k on the diagonal set {(z, z) : z ∈ D} ⊆ D

2. Then the action (f, h) �→ (f ◦φ)·h
of the algebra A(D2) on M leaves the submodule M0 invariant. Consequently,
ϕ∗M0 ⊆ ϕ∗M. In particular, ϕ∗M

(λ,µ)
0 is a submodule of ϕ∗M

(λ,µ). Therefore, we
may form the quotient module ϕ∗Q

(λ,µ) = ϕ∗M
(λ,µ)/ϕ∗M

(λ,µ)
0 . We clearly have,

in view of Corollary 7.1, that ϕ∗Q is isomorphic to ϕ∗Q
(λ,µ) for ϕ in Möb. This

prompts the following definition.

Definition 7.1. Let 0 ←− Q � M ←↩ M0 ←− 0 be a short exact sequence of Hilbert
modules over the bi-disc algebra with the property that the natural action of the
group Möb leaves the submodule M0 invariant. The quotient module Q is said to
be homogeneous if ϕ∗Q := ϕ∗M/ϕ∗M0 is isomorphic to Q for all ϕ in the Möbius
group.
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Corollary 7.1. Let M
(λ,µ)
0 be the submodule of M(λ,µ) which consists of functions

vanishing to order 2 on the diagonal set � = {(z, z) : z ∈ D}. Then the quotient
module Q(λ,µ) = M(λ,µ)/M

(λ,µ)
0 is homogeneous.

The proof of this corollary is a straightforward application of Theorem 1, which
in the case of rank 2, as we have pointed out, says that the restriction of the
curvature to the zero set is a complete set of invariants for the quotient modules.
An explicit description of these quotient modules follows.

7.4. Let M
(λ,µ)
0 be the subspace of all functions in M(λ,µ) that vanish to order k on

the diagonal {(z, z) : z ∈ D} ⊆ D × D. To describe the quotient M(λ,µ)/M
(λ,µ)
0 , it

will be useful to consider the ascending chain

(7.2) {0} = V0(p) ⊆ V1(p) ⊆ V2(p) ⊆ · · · ⊆ Vp+1(p) = Hom(p),

where Hom(p) is the space of homogeneous polynomials of degree p and Vk(p) is the
subspace of Hom(p) that is orthogonal to the submodule M

(λ,µ)
0 . The second named

author and B. Bagchi have developed methods to calculate f
(k)
p ∈ Vk(p) � Vk−1(p)

for 1 ≤ k ≤ p+1. These calculations are also related to the recent work of Ferguson
and Rochberg on higher order Hankel forms [18]. Also, in a recent paper, Peng and
Zhang [25] have shown how to carry out such calculations in the context of much
more general domains. However, for our purposes, we will give the details of these
calculations for the case of k = 2 only.

First, we compute an orthonormal basis for the quotient module Q = M(λ,µ)/

M
(λ,µ)
0 . We then describe the compression of the two operators, M1 : f �→ z1f

and M2 : f �→ z2f for f ∈ M(λ,µ), on the quotient module Q, as a block weighted
shift operator with respect to the orthonormal basis we have computed. These are
homogeneous operators in the class B2(D) which were first discovered by Wilkins
[28].

It is easily seen that

g(1)
p =

p∑
�=0

zp−�
1 z�

2

‖zp−�
1 ‖2‖z�

2‖2
,

g(2)
p =

p∑
�=0

�zp−�
1 z�

2

‖zp−�
1 ‖2‖z�

2‖2

are in V1(p) and V2(p) respectively. We set f
(1)
p = g

(1)
p . To find f

(2)
p , all we have to

do is to find constants ap, bp such that
p∑

�=0

ap� + bp

‖zp−�
1 ‖2‖z�

2‖2
= 0.

This will ensure that f
(2)
p = bpg

(1)
p + apg

(2)
p vanishes on the set {(z, z) : z ∈ D}.

Hence it must be orthogonal to V1. It is clear that ap = −
∑p

�=0
1

‖zp−�
1 ‖2‖z�

2‖2 and

bp =
∑p

�=0
�

‖zp−�
1 ‖2‖z�

2‖2 meet the requirement. Therefore,{
e(1)
p =

f
(1)
p

‖f (1)
p ‖

, e(2)
p

def=
f

(2)
p

‖f (2)
p ‖

}∞

p=0
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forms an orthonormal set of vectors in the quotient module M/M
(λ,µ)
2 . To calculate

the module action, we first note that

(1 − |z1|2)−(λ+µ) = (1 − |z1|2)−λ(1 − |z2|2)−µ
|z1=z2

=
∞∑

p=0

p∑
�=0

|z1|2(p−�)

‖zp−�
1 ‖2

|z2|2�

‖z�
2‖2

∣∣∣∣∣
z1=z2

=
∞∑

p=0

|z1|2p

p∑
�=0

‖zp−�
1 ‖−2‖z�

2‖−2.

It follows that −ap = ‖f (1)
p ‖2 is the coefficient of zp in the expansion of

(1 − |z1|2)−(λ+µ) which is
(−(λ+µ)

p

)
. Similarly,

µ(1 − |z1|2)−(λ+µ+1) = (1 − |z1|2)−λ d

d |z2|2
(1 − |z2|2)−µ

∣∣∣∣
z1=z2

=
∞∑

p=0

p∑
�=0

|z1|2(p−�)

‖zp−�
1 ‖2

�|z2|2(�−1)

‖z�
2‖2

∣∣∣∣∣
z1=z2

=
∞∑

p=0

|z1|2(p−1)

p∑
�=0

�‖zp−�
1 ‖−2‖z�

2‖−2.

Therefore, we see that bp = 〈g(1)
p , g

(2)
p 〉 is the coefficient of zp−1 in the expansion of

µ(1 − |z1|2)−(λ+µ+1) which is µ
(−(λ+µ+1)

p−1

)
.

Further,

µ(1 + µ|z1|2)(1 − |z1|2)−(λ+µ+2)

= (1 − |z1|2)−λ d

d |z2|2
(
|z2|2

d

d |z2|2
(1 − |z2|2)−µ

)∣∣∣∣
z1=z2

=
∞∑

p=0

p∑
�=0

|z1|2(p−�)

‖zp−�
1 ‖2

�2|z2|2(�−1)

‖z�
2‖2

∣∣∣∣∣
z1=z2

=
∞∑

p=0

|z1|2(p−1)

p∑
�=0

�2‖zp−�
1 ‖−2‖z�

2‖−2.

Consequently, if we set cp = ‖g(2)
p ‖2, then cp is the coefficient of zp−1 in the expan-

sion of µ(1 + µ|z1|2)(1− |z1|2)−(λ+µ+2) which is µ
((−(λ+µ+2)

p−1

)
+ µ

(−(λ+µ+2)
p−2

))
. We

find that

(7.3) ‖g(1)
p ‖2‖g(2)

p ‖2 − 〈g(1)
p , g(2)

p 〉2 =
λµ

λ + µ

(
−(λ + µ)

p

)(
−(λ + µ + 2)

p − 1

)
.

It is now easy to compute the norm of f
(2)
p :

‖f (2)
p ‖2 =

∥∥ 〈g(1)
p , g(2)

p 〉g(1)
p − ‖g(1)

1 ‖2‖g(2)
p

∥∥2

= ‖g(1)
p ‖2

(
‖g(1)

p ‖2‖g(2)
p ‖2 − 〈g(1)

p , g(2)
p 〉2

)
=

λµ

λ + µ

(
−(λ + µ)

p

)2(−(λ + µ + 2)
p − 1

)
.(7.4)
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Now, we have all the ingredients to compute the module action. Let us first

compute the matrix M
(1)
p =

(
α

(1)
p 0

β
(1)
p η

(1)
p

)
for multiplication by z1 with respect to

the orthonormal basis {e(1)
p , e

(2)
p }∞p=0. It is clear that

α(1)
p = 〈z1e

(1)
p , e

(1)
p+1〉

=
1

‖g(1)
p+1‖ ‖g

(1)
p ‖

〈
p∑

�=0

zp+1−�
1

‖zp−�
1 ‖2

z�
2

‖z�
2‖2

,

p+1∑
�=0

zp+1−�
1 z�

2

‖zp+1−�
1 ‖2‖z�

2‖2
〉

=
1

‖g(1)
p+1‖ ‖g

(1)
p ‖

p∑
�=0

‖zp−�
1 ‖−2‖z�

2‖−2

=
‖g(1)

p ‖
‖g(1)

p+1‖

=

(−(λ+µ)
p

)1/2

(−(λ+µ)
p+1

)1/2
.

Similarly,

β(1)
p = 〈z1e

(1)
p , e

(2)
p+1〉

=
1

‖g(1)
p ‖‖f (2)

p ‖
〈g(1)

p , f (2)
p 〉

=
1

‖g(1)
p ‖‖f (2)

p ‖
〈g(1)

p+1, g
(2)
p+1〉‖g(1)

p ‖2 − 〈g(1)
p , g(2)

p 〉‖g(1)
p+1‖2

=
(µ

λ

)1/2(λ + µ + 1)1/2
(
(λ + µ + p)(λ + µ + p + 1)

)−1/2

.

Finally, we have

η(1)
p = 〈z1e

(2)
p , e

(2)
p+1〉

=
1

‖f (2)
p ‖ ‖f (2)

p+1‖
〈z1f

(2)
p , f

(2)
p+1〉

=
1

‖f (2)
p ‖ ‖f (2)

p+1‖
‖g(1)

p+1‖2
(
‖g(1)

p ‖2‖g(2)
p ‖2 − 〈g(1)

p , g(2)
p 〉2

)

=

(−(λ+µ+2)
p−1

)1/2

(−(λ+µ+2)
p

)1/2
.

Since e
(2)
p = 0 on the set {(z1, z2) : z1 = z2}, it follows that z2e

(2)
p = 0 on this set

as well. Hence the projection of z2e
(2)
p to the subspace V1(p) is 0. Consequently,

M
(1)
p (1, 2) = 0. Similarly, we can compute the matrix

M (2)
p =

(
α

(2)
p 0

β
(2)
p η

(2)
p

)
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for multiplication by z2 with respect to the same orthonormal basis {e(1)
p , e

(2)
p }∞p=0

as before. Calculations similar to the ones described above show that α
(1)
p = α

(2)
p

and β
(1)
p = β

(2)
p . However, η

(2)
p = −λ

µη
(1)
p .

Summarizing, the matrix

M (1)
p =

⎛
⎜⎜⎝

(−(λ+µ)
p )1/2

(−(λ+µ)
p+1 )1/2 0

(
µ
λ

)1/2 (λ+µ+1)1/2(
(λ+µ+p)(λ+µ+p+1)

)1/2
(−(λ+µ+2)

p−1 )1/2

(−(λ+µ+2)
p )1/2

⎞
⎟⎟⎠

represents the operator M1 which is multiplication by z1 with respect to the or-
thonormal basis {e(1)

p , e
(2)
p }∞p=0. Similarly,

M (2)
p =

⎛
⎜⎜⎝

(−(λ+µ)
p )1/2

(−(λ+µ)
p+1 )1/2 0

−
(

λ
µ

)1/2 (λ+µ+1)1/2(
(λ+µ+p)(λ+µ+p+1)

)1/2
(−(λ+µ+2)

p−1 )1/2

(−(λ+µ+2)
p )1/2

⎞
⎟⎟⎠

represents the operator M2 which is multiplication by z2 with respect to the or-
thonormal basis {e(1)

p , e
(2)
p }∞p=0. Therefore, we see that Q

(p)
1 = 1

2 (M (p)
1 −M

(p)
2 ) is a

nilpotent matrix of index 2 while Q
(p)
2 = 1

2 (M (p)
1 + M

(p)
2 ) is a diagonal matrix in

case µ = λ. These definitions naturally give a pair of operators Q1 and Q2 on the
quotient module Q(λ,µ). Let f be a function in the bi-disc algebra A(D2) and

f(u1, u2) = f0(u1) + f1(u1)u2 + f2(u1)u2
2 + · · ·

be the Taylor expansion of the function f with respect to the coordinates u1 = z1+z2
2

and u2 = z1−z2
2 . Now the module action for f ∈ A(D2) in the quotient module

Q(λ,µ) is then given by

f · h = f(Q1, Q2) · h
= f0(Q1) · h + f1(Q1)Q2 · h
def=

(
f0 0
f1 f0

)
·
(

h1

h2

)
,

where h =
(
h1
h2

)
∈ Q(λ,µ) is the unique decomposition obtained from realizing the

quotient module as the direct sum Q(λ,µ) =
(
M(λ,µ) �M

(λ,µ)
1

)
⊕

(
M

(λ,µ)
1 �M

(λ,µ)
2

)
,

where M
(λ,µ)
i , i = 1, 2, are the submodules in M(λ,µ) consisting of all functions

vanishing on Z to order 1 and 2, respectively.
We now calculate the curvature K(λ,µ) for the bundle E(λ,µ) corresponding to

the metric K(λ,µ)(u,u), where u = (u1, u2) ∈ D
2. The curvature K(λ,µ) is easy to

compute:

K(λ,µ)(u1, u2) = (1 − |u1 + u2|2)−2

(
λ λ
λ λ

)
+ (1 − |u1 − u2|2)−2

(
µ −µ
−µ µ

)
.

The restriction of the curvature to the hypersurface {u2 = 0} is

K(λ,µ)(u1, u2)|u2=0 = (1 − |u1|2)−2

(
λ + µ λ − µ
λ − µ λ + µ

)
,

where u1 ∈ D. Thus we find that if λ = µ, then the curvature is of the form
2λ(1 − |u1|2)−2I2.
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Remark 7.1. Let us now compare the two jet bundles, corresponding to λ = µ and
λ1 �= µ1 such that λ1 + µ1 = 2λ. We see that the tangential and the transverse
curvatures of these line bundles restricted to the hypersurface {u2 = 0} are then
equal. However, the jet bundles in these two cases are not equivalent (which is
the same as saying that the quotient modules are not equivalent). The second
fundamental form, which is “essentially” the off-diagonal entry in the restriction of
the curvature, distinguishes them. In the first case it is 0 and in the second case it
is not!

We now describe the unitary map which is basic to the construction of the
quotient module, namely,

h �→
k−1∑
�=0

∂�
1h ⊗ ε�+1

∣∣∣∣∣
z1=z2

for h ∈ M(λ,µ). For k = 2, it is enough to describe this map just for the orthonormal
basis {e(1)

p , e
(2)
p : p ≥ 0}. A simple calculation shows that

e(1)
p (z1, z2) �→

⎛
⎝ (−(λ+µ)

p

)1/2
zp
1

µ
√

p
λ+µ

(−(λ+µ+1)
p−1

)1/2
zp−1
1

⎞
⎠ ,

e(2)
p (z1, z2) �→

(
0√

λµ
λ+µ

(−(λ+µ+2)
p−1

)1/2
zp−1
1

)
.(7.5)

This allows us to compute the 2 × 2 matrix-valued kernel function

KQ(z,w) =
∞∑

p=0

e(1)
p (z)e(1)

p (w)∗ +
∞∑

p=0

e(2)
p (z)e(2)

p (w)∗, z,w ∈ D
2,

which restricted to � corresponds to the quotient Hilbert module. Indeed, a straight
forward computation shows that

KQ(z, z)|res � =(
(1 − |z|2)−(λ+µ) µz(1 − |z|2)−(λ+µ+1)

µz̄(1 − |z|2)−(λ+µ+1) µ2

λ+µ
d

d|z|2
(
|z|2(1−|z|2)−(λ+µ+1)

)
+ µλ

λ+µ(1 − |z|2)−(λ+µ+2)

)

=
((
(1 − |z1|2)−λ∂i∂̄j(1 − |z2|2)−µ

|res �
))

i,j=0,1

= (JK)(z, z)|res Z, z ∈ D
2,

where � = {(z, z) ∈ D
2 : z ∈ D}. These calculations give an explicit illustration of

one of the main theorems on quotient modules from [14, Theorem 3.4].

7.5. Let E be a holomorphic hermitian line bundle defined on the bi-disc and J (k)E
be the jet bundle of order k associated to E. The Möbius group acts on the
holomorphic sections of the jet bundle J (k)E via the module map s �→ Jφ · s, where
φ = (ϕ, ϕ) for ϕ in Möb. The jet bundle along with this action of the group Möb
on its sections will be denoted by (Jϕ)∗(J (k)E). The bundle E is said to be Möb –
homogeneous of rank k if the jet bundle J (k)E of E is equivalent to (Jϕ)∗(J (k)E)
on the set � = {(z, z) : z ∈ D} ⊆ D

2 for all ϕ in the Möbius group.
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It is then natural to ask which quotient modules over the bi-disc algebra are
Möb – homogeneous. In the case of rank k = 2, we have shown that the modules
M(λ,µ) are Möb×Möb – homogeneous. Therefore, these are Möb – homogeneous as
well. Are there any others? We first consider this question for bundles E over the
bi-disc.

Let π : Eβ
α,δ → D

2 be a hermitian (trivial) holomorphic line bundle determined
by the holomorphic frame

γ(w)(z) = (1 − z1w̄2)β(1 − z2w̄1)β(1 − z1w̄1)−α(1 − z2w̄2)−δ

at w ∈ D
2. Let ‖γ(w)‖2 = |(1−w1w̄2)|2β(1− |w1|2)−α(1− |w2|2)−δ. We note that

the metric for the jet bundle J (2)Eα,δ
β is then given by

((
∂i
1∂̄

j
1‖γ(w)‖2

))
i,j=0,1

. But
for this to be positive definite at w = (w, w), w ∈ D, we must have the conditions:
α, δ > 0 and αδ − |β|2 > 0.

Theorem 4. A holomorphic hermitian line bundle E over the bi-disc is Möb –
homogeneous of rank 2 if and only if E is isomorphic to Eβ

α,δ for α, δ > 0 and some
real number β satisfying αδ − |β|2 > 0.

Proof. To prove the “if” part, we compute the curvatures of Eβ
α,δ as well as those

of ϕ∗(Eβ
α,δ), using the chain rule (7.1), and verify that the restrictions of these to

the set � are equal.
For the “only if” part, let E be a line bundle that is Möb – homogeneous of rank

2. Let K(z) =
∑2

i,j=1 Kij(z)dzi ∧ dz̄j be the (1, 1) form valued curvature of the
line bundle E. Then the coefficients Kij |res � form a complete set of invariants for
J (2)E|res �.

On the other hand, it is easy to see using the chain rule (7.1) that the curvature
Kϕ∗E restricted to the set � is given by the formula

Kϕ∗E(z, z) =
(1 − |a|2)2
|1 − āz|4 (KE ◦ φ−1)(z, z),

where φ−1 = (ϕ−1, ϕ−1) and ϕ(z) = z−a
1−āz for a ∈ D. Now, if ϕ∗(J (2)E) is unitarily

equivalent to J (2)E on � ⊆ D
2, then

(KE)ij(z, z) =
(1 − |a|2)2
|1 − āz|4 ((KE)ij ◦ ϕ−1)(z, z)

for all a ∈ D. Putting z = 0, we obtain

(7.6) (KE)ij(0, 0)(1 − |a|2)−2 = (KE)ij(a, a), (KE)ij(0, 0) =
(

α β
β̄ δ

)
.

We assume that the metric h for E is normalized at 0. The curvature of E at 0 for
a normalized metric is

∑2
i,j=1(∂̄i∂jh)(0)dz̄i ∧ dzj . However, the metric for the jet

bundle J (2)E at 0 is (((∂̄i∂jh)(0)))2i,j=1. This metric must be positive definite, which
is equivalent to the condition αδ − |β|2 > 0.

For the rest of the proof, it will be convenient to work with the coordinates
u1 = (z1 + z2)/2 and u2 = (z1 − z2)/2. The curvature of the bundle E with respect
to these new coordinates is then easily seen to be of the form

(7.7) KE(u1, u2)|u2=0 =
(

α + δ + β + β̄ α − δ + β − β̄
α − δ + β − β̄ α + δ − (β + β̄)

)
(1 − |u1|2)−2.
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Let us set a = α + δ + β + β̄, b = α − δ + β − β̄, and c = α + δ − (β + β̄).
Let γ(u1, u2) =

∑∞
m,n=0 amn(u1, ū1)um

2 ūn
2 be a positive real analytic function on

D
2. We will try to find the coefficients amn so as to ensure that the curvature of

γ restricted to the set u2 = 0 satisfies the equation (7.7). We will let ∂i denote
differentiation with respect to u1 or u2 depending on whether i = 1 or i = 2. It is
clear that the equation (7.7) forces

( ∂2

∂1∂̄1
log ‖γ‖2)

|u2=0
=

∂2

∂1∂̄1
log a00(7.8)

= a(1 − |u1|2)−2.

It then follows that a00 = (1 − |u1|2)−a. Similar calculations show that

( ∂2

∂̄1∂2
log ‖γ‖2)

|u2=0
= a−2

00 (a00 ∂̄1 a10 − a10 ∂̄1 a00)(7.9)

= b(1 − |u1|2)−2.

Choosing a10 = (b/a)∂1 a00 = b ū1(1 − |u1|2)−a−1 = b a00 ū1(1− |u1|2)−1, we verify
the equation (7.9). Finally, we have

( ∂2

∂̄2∂2
log ‖γ‖2)

|u2=0
= a−2

00 (a11a00 − |a10|2)(7.10)

= c(1 − |u1|2)−2.

We can now solve for

a11 = a−1
00

(
c(1 − |u1|2)−2a2

00 + b2|u1|2a2
00(1 − |u1|2)−2

)
(7.11)

= a00(1 − |u1|2)−2(c + b2|u1|2).

Recall that the restriction of the curvature determines the coefficients a00, a10 and
a11 in the metric γ modulo unitary equivalence of the quotient modules. Therefore,
the positive definite matrix-valued function

Γ =
(

a00 a01

a10 a11

)

describes all possible homogeneous bundles of rank 2 on the bi-disc. We see that
the jet bundle J (2)Eβ

α,δ on � may be obtained from the line bundle Eβ
α,δ and that

the curvature of this line bundle, computed with respect to the variables u1, u2 at
(u1, 0), u1 ∈ D, is exactly what is prescribed in (7.7). This completes the proof. �

Whether the holomorphic hermitian line bundles Eβ
α,δ, αδ−|β|2 > 0, correspond

to a Hilbert module M over the algebra A(Ω) depends on the question of positive
definiteness of the function γ(w)(z) for z, w ∈ D

2.

8. Some closing remarks

As is true in many cases, the current paper probably raises as many questions
as it answers. While our hope is to investigate many of the directions suggested in
the future, we want to point them out here. Also, other thoughts seem to be of a
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more intuitive, preliminary nature but promise tantalizing connections with other
topics. We will attempt to record these possibilities as well.

8.1. We begin with a succinct conceptual recollection of the original connection
of operator theory with complex geometry couched in the context studied in this
paper.

As mentioned in Section 1, the kernel function KM defined for a finite rank k
quasi-free Hilbert module M over a domain Ω can be used to define a hermitian
holomorphic rank k vector bundle EM which is a pullback of a holomorphic map
from Ω to the Grassmanian of k-dimensional subspaces of M. Moreover, this bundle
determines the module up to unitary equivalence. Since for U an open subset of
Ω, one can show that the span of the fibers of EM over U equals M, the restriction
(EM)|U of EM to U also determines M. Hence there is no compelling reason to
consider the bundle over the largest open set possible. However, the fibers of EM

over any point of Ω can still be seen in terms of M.
In particular, the fiber of EM at w ∈ Ω can be identified naturally with the

quotient M/[A(Ω)wM], where [A(Ω)wM] denotes the closure of the linear span of
the products of A(Ω)w with the functions in M, and A(Ω)w is the maximal ideal
of functions in A(Ω) that vanish at w. It is shown in [14] that the disjoint union
of these fibers can be identified with EM. Moreover, for f a function in A(Ω), the
module action defines a holomorphic bundle map on EM which is multiplication by
the scalar f(w). We complete this brief summary by stating the three basic parts
of the theory in the form of a theorem.

Theorem 8.1. Let M be a Hilbert module in the class Bk(Ω) with associated bundle
EM. Then

(a) a complete set of “geometric invariants” for a hermitian holomorphic vector
bundle E, which determines the bundle up to equivalence, consists of its
curvature and sufficiently many partial derivatives of the curvature;

(b) a complete set of “operator invariants” which determines the Hilbert module
M up to unitary equivalence, consists of the m-tuples of commuting nilpo-
tent matrices obtained by restricting the coordinate multiplication operators
to the common generalized eigenspaces to high enough order; and

(c) the “geometric invariants” of (a) determine the “operator invariants” of
(b) and vice versa.

We refer the reader to the earlier papers [6, 7, 8, 5] for complete details.

8.2. Now we want to consider the same set of questions for the quotient Hilbert
modules considered in this paper.

We begin with a few comments on the notion of an analytic hypersurface. In
general, a subset Z of Ω defined as the zero set of a holomorphic function possesses
singularities of various kinds. Even so, the set of smooth manifold points forms a
dense open subset Z′ of Z. Although one can restrict attention to Z′ contained in
a smaller open subset of Ω, as we have done, a function in M that vanishes on Z′

will actually vanish on all of Z. Moreover, the quotient Hilbert module will yield
a kind of spectral sheaf defined over all of Z with the fibers over singular points
also having an operator theoretic meaning. But this phenomenon is a topic for a
later investigation. Thus we will assume, as we have done in the paper, that Z is a
smooth manifold.
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In Section 3 we showed how to construct the jet bundle J (k)EM over an open
subset U of Ω on which there is a “good defining function” ϕ and determined the
change in this construction corresponding to a change in the defining function. An
obvious question which presents itself at this point is whether or not the jet bundle
can be defined over a neighborhood of Z or even on all of Z? As in the previous
section, one can use the fact that the J (k)EM constructed on an open set U is
defined as a pullback bundle from the Grassmanian of k-dimensional subspaces
of the quotient Hilbert space Q to identify it and its fibers concretely, at least
over points of Z. Analogous to the earlier case, such a fiber can be identified
with Q/[A(k)(Ω)wQ] for w in Z. Thus, one can show that J (k)EM is a well defined
hermitian holomorphic vector bundle over Z. Actually, there is a simpler expression
for these fibers. For w ∈ Z and v a vector normal to Z at w, let A(Ω)w,v denote
the functions in A(Ω) for which both the function and the partial derivative in
the v-direction vanish at w to order k. Then one can show that Q/[A(k)(Ω)wQ] is
naturally isomorphic to M/[A(k)(Ω)w,vM]. (Here the exponent again refers to the
linear span of k-fold products.) In this context, even more is true.

The identification of Q/[A(k)(Ω)w,vQ] with the fiber over w preserves Q/

[A(i)(Ω)w,vQ] for 1 ≤ i ≤ k, and hence the flag structure of J (k)EM is also well
defined over Z. To make this more precise, one needs to recall the special frame
for the jet bundle constructed over an open set U in Section 4. Now the metric on
J (k)EM defined in Section 3 is the same as the one inherited from the Grassma-
nian or the quotient norm on M/[A(k)(Ω)w,vM]. But there is even more structure
present.

For ψ a function in A(Ω), a bounded operator is defined on Q and hence also on
each fiber Q/[A(k)(Ω)w,vQ]. Relative to the special basis chosen in Section 4, the
operator at each point w is a Toeplitz-like matrix. In particular, the matrix for a
defining function for Z at w in Z is a nilpotent matrix of order k. It is the unitary
equivalence class of this nilpotent matrix at the points w in Z that corresponds to
the operator invariants for this case. We summarize these results in the following
theorem:

Theorem 8.2. Let M be a rank one quasi-free Hilbert module over A(Ω) and
Z be an analytic hypersurface contained in Ω. Then the jet bundle J (k)EM over
Z can be identified with the union of the fibers M/[A(k)(Ω)w,vM]. Moreover, the
module action induces by restriction to each fiber an algebra isomorphic to the
lower triangular Toeplitz matrices. Finally, the quotient module determines these
fiber operators up to unitary equivalence.

Unfortunately, at this point we don’t understand what constitutes a complete set
of “operator-theoretic invariants”, although, in analogy with the results described
in Section 7.1, we might expect it to be the commuting m - tuple of nilpotents ob-
tained from the restriction of the coordinate multipliers to higher order generalized
eigenspaces. These invariants can be viewed as analogues to “geometric invari-
ants”, but except for the case k = 2, a better description should be possible. We
will say more about this matter below. We were, however, able to obtain a complete
set of invariants in terms of the operator Dk which is the result we presented in
Section 4.

8.3. In this part we begin by reviewing what it means for bundles to be equiv-
alent in terms of frames, in both the contexts of sections 7.1 and 7.2. With that
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information in hand, we will see that characterizing equivalence can be divided into
two parts, equivalence at a point and equivalence in a neighborhood of the point.
After that, we will attempt to use this framework to interpret the invariants we
have obtained earlier in the paper.

In section 7.1 the bundle EM in question has rank k and a hermitian holomorphic
structure and is defined as a pullback from the Grassmanian. Moreover, at least
locally on an open set U of Ω, one can find a holomorphic frame {s1(w), . . . , sk(w)},
which we can take to be the holomorphic M - valued functions on U , where M is a
Hilbert module over A(Ω).

Now suppose M̃ is another Hilbert module over A(Ω) which defines a rank k
hermitian holomorphic bundle EM̃ with a holomorphic frame {s̃1(w), . . . , s̃k(w)}
also over U . What does it mean to say that EM and EM̃ are equivalent over U?

Essentially, there must exist a k × k matrix of holomorphic functions ((ψi,j)) on
U such that

(1) s̃p(w) =
∑k

j=1 ψp,j(w)sj(w) for p = 1, . . . , k; and
(2) the matrix ((ψi,j(w))) defines a unitary map between the corresponding fibers

of EM and EM̃ for w ∈ U .

Now an obvious necessary condition for the existence of such a matrix of functions
is that such a matrix must exist at each point w. This is the pointwise condition
mentioned above. However, here that condition is vacuously satisfied.

By hypothesis, the set of values at w of a frame over U for EM forms a basis for
the k-dimensional fiber as does the set of values at w of a frame over U for EM̃.
Now both fibers have an inner product and we can find a matrix taking one basis
to the other and acting as a unitary. (Note this is not the same thing as saying
that the matrix is a unitary matrix since the inner products on the domain and
range are different.) However, note that such a matrix is far from being unique
since we can both pre- and post-multiply it by a unitary matrix. In case k = 1, or
the bundles are line bundles, the nonuniqueness is a scalar of modulus one.

In the general case, one can choose a matrix of functions which accomplishes
both (1) and (2), but the question is whether or not those functions can be chosen
to be holomorphic. That is the question answered in [6], [7], and [8] with the
answer involving the curvature and partial derivatives of the curvature. We will
not proceed any further with a descriptive analysis in this case.

8.4. Now we want to treat the bundle discussed in 7.2 which arises from the quotient
Hilbert module in the same fashion as we did for EM.

In particular, we have the jet bundles for the two Hilbert modules M and M̃.
Each has rank k and there is a canonical frame s(w) over an open set U for each
once one fixes sections s(w) and s̃(w). The other elements of the frame are obtained
by differentiating the given section in the direction normal to the hypersurface Z

using the same good defining function for each. Again, we ask when these two
bundles are equivalent, but now we want more, not just equivalence of the two
bundles but a bundle map effecting that equivalence which is also a module map.
Before discussing just what that entails, let us point out that although we didn’t
mention it in 7.3, the bundle maps discussed there were module maps because the
action induced by a multiplier ψ in A(Ω) on the fiber over w is just multiplication
by the scalar ψ(w).
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Now a bundle map effecting an equivalence between J (k)EM and J (k)EM̃ must
again be a matrix of holomorphic functions satisfying (1) and (2), but now there is
also a condition:

(3) the matrix for the value of ((ψi,j)) at w is a Toeplitz-like matrix; that is, it is
lower triangular and the entries on a diagonal are predetermined multiples
of each other. Moreover, the matrix corresponding to a defining function
for Z at w is a nilpotent matrix of order k consisting of a single Jordan
block.

This latter condition places strong restrictions on the matrix function Ψ, particu-
larly in view of (2), which means it must define a unitary map, and, whereas in
the case of 7.3 there is no pointwise obstruction, now there is. This issue can be
approached as follows.

Consider a separable, infinite dimensional Hilbert space H and the collection
Nk(H) of ordered, linearly independent k-tuples X = {x1, . . . , xk} in H. For a given
X in Nk(H), there is a unique element Gr(X) of the Grassmanian, Grk(H), of k -
dimensional subspaces of H which it determines. There is also an element St(X)
in the complex Stiefel manifold of linearly independent subsets with k elements.
Finally, let us consider the order k nilpotent operator Nil(X) defined on the span
of the vectors in X by the simple shift, that is, the operator which takes xi to xi+1

for 0 ≤ i < k.
We can define several notions of equivalence on Nk(H) as follows. First, we

can identify X and X ′ if the subspaces they span are equal or, equivalently, if
Gr(X) = Gr(X ′). Second, we can identify them if the two Stieffel elements, St(X)
and St(X ′), are unitarily equivalent. Finally, we can identify them if the nilpotent
operators Nil(X) and Nil(X ′) are unitarily equivalent. One can easily see that
equivalence of the nilpotent operators implies equivalence of the Stieffel elements,
which in turn implies equivalence of the Grassmanians, and none of the equivalences
are the same. Moreover, one can easily determine the Lie group of operators that
respect each of the equivalences, in case X = X ′.

Now let us return to the question of a pointwise obstruction to the existence of
a k × k matrix of holomorphic functions satisfying (1), (2) and (3).

Theorem 8.3. Let s(w) and s′(w) be the canonical frames over U for two jet
bundles determined by the same defining function and consider the elements S(w)
and S′(w) of Nk(M) and Nk(M′), respectively, that they determine. Then a neces-
sary condition for the jet bundles to be equivalent is that Nk(M) and Nk(M′) are
equivalent.

The proof is straightforward since (1), (2), and (3) imply equivalence of the
nilpotent operators.

If s(w) and s′(w) are the canonical frames over U for the two jet bundles deter-
mined by the same defining function, then for each w ∈ U they yield elements in
Nk(M) and Nk(M′), respectively, by evaluating the ordered frames at w. Condi-
tions (1), (2) and (3) imply that the corresponding nilpotent operators are unitarily
equivalent. Hence for each w, a necessary condition for the jet bundles to be equiv-
alent is that the elements in Nk are equivalent, and this does not always happen.
The relationship of this condition to the unitary invariants obtained in this paper
will be considered in subsequent work.
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8.5. We conclude with a number of comments suggesting additional connections or
further lines of investigation of the results of this paper.

The “nilpotent invariants” identified in the previous subsection refine the Stieffel
invariants studied earlier and would seem to be related to the “moving frames” of
Cartan [4]. Further, one should be able to use the Lie algebra structure relative to
the Toeplitz Lie group to define characteristic forms which capture these invariants.
Moreover, if one assumes that those invariants are the same for the jet bundles for
two line bundles, then the remaining degrees of freedom in choosing the bundle map
to be holomorphic essentially amount to a phase which in this case is a unitary-
valued function. The existence question for such a phase would seem to be related
to the existence of a complex structure and thus to Chern-Moser invariants.

If one considers quotient modules for submodules of functions that vanish to
increasing order, then they form a natural inverse limit of Hilbert modules whose
limit will be M. In a dual manner, one should be able to show that the direct
limit of the jet bundles constructed for these quotient modules has a limit equal
to Ω × M. One way of viewing these constructions would be by expanding M as a
“Taylor series” of modules over Z.

Finally, assume that there is a global defining function φ for Z in A(Ω) and
consider the operator it defines on the quotient module defined by the functions
that vanish to order k in the direction normal to Z. Then φ defines a bundle map
on the k × k matrix-valued kernel Hilbert space for the quotient, which can be
written as the scalar multiplier φIk plus a nilpotent matrix-valued multiplier. Such
an operator can be seen to be analogous to the spectral operators of Dunford [17].
That is the case if one replaces a normal operator by a multiplication operator on
a space of holomorphic functions. An abstract characterization of operators having
such a representation as well as a study of their properties would seem to be of
interest.

It is clear that the ideas and techniques of this paper raise many questions that
warrant additional study.
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