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UNIFORM SOBOLEV INEQUALITIES
AND ABSOLUTE CONTINUITY OF PERIODIC OPERATORS

ZHONGWEI SHEN AND PEIHAO ZHAO

Abstract. We establish certain uniform Lp − Lq inequalities for a family of
second order elliptic operators of the form (D + k)A(D + k)T on the d-torus,
where D = −i∇,k ∈ Cd and A is a symmetric, positive definite d × d matrix
with real constant entries. Using these Sobolev type inequalities, we obtain the
absolute continuity of the spectrum of the periodic Dirac operator on Rd with
singular potential. The absolute continuity of the elliptic operator div(ω(x)∇)
on Rd with a positive periodic scalar function ω(x) is also studied.

1. Introduction and main results

Let D = (D1, D2, · · · , Dd) = −i(∂/∂x1, ∂/∂x2, · · · , ∂/∂xd) and A = (ajl)d×d

be a symmetric, positive definite d × d matrix with real constant entries. We will
assume that d ≥ 3. For k = (k1, . . . , kd) ∈ C

d, we use (D+k)A(D+k)T to denote∑
j,l(Dj + kj)ajl(Dl + kl). Let Td = Rd/(2πZ)d ≈ [0, 2π)d be the d-torus. Fixing

a,b ∈ Rd and δ ∈ R, we consider a family of second order elliptic operators

(1.1) Hρ = (D + (δ + iρ)a + b)A(D + (δ + iρ)a + b)T ,

with parameter ρ ∈ R, on L2(Td). Note that H∗
ρ = H−ρ.

Let ‖ ·‖p denote the norm in Lp(Td). In [22], the first named author proved that
given a,b ∈ Rd with |a| = 1 and 〈a,b〉 = 0, there exists δ ∈ R such that

(1.2) ‖ψ‖q ≤ C ‖Hρψ‖p,

for any ψ ∈ C∞(Td) and any ρ ∈ R with |ρ| ≥ 2, where C is a constant independent
of ψ and ρ, and 1 < p < 2 < q satisfy

(1.3)
1
p

+
1
q

= 1,
1
p
− 1

q
=

2
d
,

i.e., p = 2d/(d + 2) and q = 2d/(d − 2). Using inequality (1.2) and L. Thomas’s
original approach [35], Shen established the absolute continuity of the spectrum
of the Schrödinger operator −∆ + V (x) on L2(Rd), under the condition that the
potential V is real, periodic and V ∈ L

d/2
loc (Rd) [22]. In the case d ≥ 5, this

improved the earlier results by Reed–Simon [21] and Birman–Suslina [4] on the

Received by the editors July 13, 2005.
2000 Mathematics Subject Classification. Primary 35J10, 42B15.
Key words and phrases. Dirac operator, periodic potential, absolute continuous spectrum,

uniform Sobolev inequalities.
The first author was supported in part by the NSF (DMS-0500257). The second author

was supported in part by the NSF of Gansu Province, China (ZS021-A25-002-Z) and the NSFC
(10371052).

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1741



1742 ZHONGWEI SHEN AND PEIHAO ZHAO

periodic Schrödinger operator −∆ + V . We remark that in the context of Lp

spaces, the condition V ∈ L
d/2
loc (Rd) is the best possible. Further extensions to the

space L
d/2,∞
loc , the Morrey class as well as the Kato class were carried out in [22],

[24], [25]. We should point out that the results in [4] are concerned with the more
general periodic Schrödinger operators with magnetic potentials. For d ≥ 3, they
rely on the estimates established by A. Sobolev in [30]. We should also mention
that there exists an extensive literature on the two-dimensional periodic elliptic
operators (see e.g. [1], [2], [20], [4], [5], [10], [19], [23], [24], [26], [27], [28]). For
further references on the problem of absolute continuity of periodic operators, we
refer the reader to [18] and [34]. More recent work on the subject may be found in
[11], [13], [29], [36], [12].

Estimate (1.2) should be considered as a uniform Sobolev inequality on the d-
torus Td for the family of second order elliptic operators {Hρ : ρ ∈ R and |ρ| ≥ 2}.
In the setting of Rd, similar inequalities had been established earlier by C. Kenig,
A. Ruiz and C. Sogge [16] (also see [31] for certain forms of uniform Sobolev in-
equalities on compact manifolds). Such estimates play a key role in the study of
unique continuation properties of differential operators (see e.g. [15]). We remark
that the proof of estimate (1.2) in [22] relies on an adaptation of an approach de-
veloped in [16] for R

d. It also uses the (L2, Lq) bounds of the spectral projection
operators for −∆ on Td by Sogge [31] in a localization step.

In the first half of this paper we give a different and simpler proof of (1.2). Our
new approach is motivated by a work of T. Wolff [37]. Sogge’s spectral projection
estimates, which play the role of the Fourier restriction theorems, are essential in
this approach.

We shall consider an extension of the inequality (1.2). To motivate this extension,
we note that operator Hρ is a multiplier operator. In the region outside of {n ∈
Zd : c |ρ| ≤ |n| ≤ C |ρ|}, its multiplier behaves like (|n| + |ρ| + 1)2. It is not hard
to see that if the multiplier of an operator Tρ behaves like (|n| + |ρ| + 1)2 for all
n ∈ Z

d, then

(1.4) |ρ|2 ‖ψ‖p + |ρ| ‖∇ψ‖p + ‖∇∇ψ‖p ≤ C ‖Tρψ‖p

for any 1 < p < ∞. It follows easily from (1.4) and the Sobolev inequalities as well
as complex interpolation that

(1.5) ‖ψ‖q ≤ C |ρ|d( 1
p− 1

q )−2 ‖Tρψ‖p

for any exponents p, q satisfying

(1.6) 0 ≤ 1
p
− 1

q
≤ 2

d
and 1 < p ≤ q < ∞.

Thus in view of (1.5) it seems natural to ask for which pair of exponents (p, q)
satisfying (1.6), the inequality

(1.7) ‖ψ‖q ≤ C |ρ|d( 1
p− 1

q )−2‖Hρψ‖p

holds. The following is one of the main results of the paper.

Theorem 1.8. There exists a constant C such that for any ψ ∈ C∞(Td) and any
ρ ∈ R with |ρ| ≥ 2, inequality (1.7) holds for all (p, q) in the domain
(1.9){

(p, q) :
1
q

<
d − 1

2
(1
p
− 1

2
)
,

1
q

<
1
2
− 2

d − 1
(
1 − 1

p

)
and 0 <

1
p
− 1

q
≤ 2

d

}
.



UNIFORM SOBOLEV INEQUALITIES 1743

Note that if d = 3, estimate (1.7) holds for any (p, q) satisfying 1
2 < 1

p−
1
q ≤ 2

3 and
1 < p < q < ∞. It is also easy to verify that if 1

p − 1
q = 2

d , 2d(d− 3)/(d2 − d− 4) <

p < 2d(d − 3)/(d2 − d − 8) and d ≥ 4, then (p, q) is in the domain (1.9). Thus
Theorem 1.8 extends Theorem 6.1 in [22], where it was used to show the absolute
continuity of the periodic Schrödinger operators with certain potentials in weak-
Ld/2(Td) space.

It is interesting to point out that estimate (1.4) also implies that

(1.10) ‖∇ψ‖q ≤ C |ρ|d( 1
p− 1

q )−1 ‖Tρψ‖p

for any (p, q) satisfying 0 ≤ 1
p − 1

q ≤ 1
d and 1 < p ≤ q < ∞. However, such an

inequality fails for operator Hρ. Instead, we obtain the following.

Theorem 1.11. Suppose 1
p + 1

q = 1 and 0 ≤ 1
r = 1

p − 1
q ≤ 1

d . There exists a
constant C such that for any ψ ∈ C∞(Td) and any ρ ∈ R with |ρ| ≥ 2,

‖ψ‖q ≤ C |ρ|−1+ d−1
2r

(
log |ρ|

) d+1
2r ‖Hρψ‖p,

‖∇ψ‖q ≤ C |ρ| d−1
2r

(
log |ρ|

) d+1
2r ‖Hρψ‖p.

(1.12)

The proof of Theorems 1.8 and 1.11 will be given in Section 2. In the second half
of this paper, we will use estimate (1.12) to study the spectrum properties of the
periodic operators on Rd. We obtain the absolute continuity of the periodic Dirac
operators with certain singular matrix potentials. We also investigate the problem
of absolute continuity of the second order elliptic operator div(ω(x)∇), where ω
is a positive periodic scalar function. More precisely, let V (x) be an m × m real
matrix function on Rd. Suppose V is selfadjoint and periodic with respect to some
lattice of R

d. We consider the periodic Dirac operator

(1.13) D(V ) =
d∑

j=1

αjDj + V (x),

acting on functions in L2(Rd; Cm). Here α1, α2, · · · , αd are Hermitian m × m ma-
trices which satisfy the commutation relations

(1.14) αjαl + αlαj = 2δjlIm×m,

i.e., αjαj = Im×m and αjαl = −αlαj if j 
= l. The following theorem is proved in
Section 4.

Theorem 1.15. Let V = V (x) be a real m × m matrix function on Rd. Suppose
that V is self-adjoint and periodic with respect to some lattice Γ of R

d. Also assume
that

(1.16) α1V α1 = α2V α2 = · · · = αdV αd,

and V ∈ Λr,∞
α (Rd/Γ) for some r ≥ d and α > (d − 1)/(2r), i.e.,

(1.17) ‖V (· + y) − V (·)‖Lr(Rd/Γ) ≤ C
{
dist(y, Γ)

}α
,

for any y ∈ R
d. Then the spectrum of D(V ) on L2(Rd; Cm) is absolutely continuous.

Remark 1.18. Since Λr,∞
α ⊂ Λr,2

α′ ⊂ Lr
α′ and Lr

α ⊂ Λr,r
α ⊂ Λr,∞

α if r ≥ 2 and α′ < α
[32], it is easy to see that the regularity condition on V in Theorem 1.15 may be
restated as V ∈ Lr

α(Rd/Γ) for some r ≥ d and α > (d − 1)/(2r).
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Remark 1.19. For the Schrödinger operator −∆ + V (x) on R3 with real periodic
potential V , L. Thomas [35] proved that the spectrum of the operator is absolutely
continuous if V ∈ L2

loc(R
3). This was done by using the analytic extension in the

so-called quasi-momentum k and the resolvent estimates for a family of operators
of the form (D+k)2+V on L2(Rd/Γ). There exists an extensive literature based on
this approach in the study of absolute continuity of periodic Schrödinger operators
and periodic Dirac operators. In particular, for the periodic Dirac operator (1.13)
with V satisfying a structure condition similar to (1.16), it was proved by L. Danilov
in [6] that the spectrum is absolutely continuous if V is continuous on Rd. The
result was later extended in [7] to the case d = 3 and V ∈ Lp

loc for some p > 3.
For d ≥ 4, the condition on V in [7] was given in terms of Fourier coefficients of V .
For the periodic Dirac operator with magnetic potential, the absolute continuity
was established in [3] (also see [8], [9]). Concerning the regularity condition on the
electric potential V , we mention that the results in [3] require V ∈ Lr(R2/Γ) for
some r > 2 if d = 2, and V ∈ C(Rd/Γ) if d ≥ 3. For comparison, we point out
that functions in Lr

α(Rd/Γ) need not be continuous if d−1
2r < α ≤ d

r . Indeed, given
0 < β < 1

2 + 1
2d , we may choose α so that α > d−1

2d = 1
2 − 1

2d and α + β < 1. It is
possible to construct a function in Ld

α(Rd/Γ) so that

(1.20) |V (x)| ≈ 1
|x|β as |x| → 0.

Thus our Theorem 1.15 is new for d ≥ 4.

Let ω be a positive periodic function in L∞(Rd). Suppose ω ≥ c0 for some
c0 > 0. Consider the second order elliptic operator

(1.21) Lω =
d∑

j,l=1

Dj(ω(x)ajlDl)

on Rd, where A = (ajl)d×d is a symmetric, positive definite d × d matrix with real
constant entries. It was proved in [23] that if ω ∈ C1(Rd), then the spectrum of
Lω is absolutely continuous. With estimates (1.12) at our disposal, we are able to
establish the absolute continuity of the operator Lω for a class of coefficients ω(x)
with discontinuous ∇ω. More precisely, the following theorem is proved in Section
5.

Theorem 1.22. Let ω(x) be a positive, bounded function on Rd, d ≥ 3. Let A =
(ajl)d×d be a d × d symmetric, positive definite matrix with real constant entries.
Suppose that ω is periodic with respect to some lattice of Rd and ω(x) ≥ c0 for some
constant c0 > 0. Also assume that ∇w ∈ Λr,∞

α (Rd/Γ) for some r ≥ d and α > d−1
2r .

Then the spectrum of Lω is absolutely continuous.

Remark 1.23. For the general second order elliptic operator
∑d

j,l=1 Dj(ajl(x)Dl)
with smooth periodic coefficients, the absolute continuity was established in [13]
(also see [36] for the nonsmooth case) under the additional assumption that ajl is
symmetric with respect to the hyperplane x1 = 0 in Rd. Without this assumption,
the problem remains open for d ≥ 3.

Throughout the rest of this paper, we will assume that d ≥ 3. We shall use ‖ · ‖p

to denote the norm in Lp(Ω) where Ω = [0, 2π)d ≈ T
d = R

d/(2πZ)d. Finally C and
c will be used to denote positive constants which are independent of ρ and ψ, and
which are not necessarily the same at each occurrence.
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2. Uniform Sobolev inequalities

For k = (k1, k2, . . . , kd) ∈ Cd, we consider the second order elliptic operator

(2.1) H(k) ≡ (D + k)A(D + k)T =
∑
j,l

(Dj + kj)ajl(Dl + kl)

on the d-torus T
d. For ψ ∈ L2(Td), we may write

(2.2) ψ(x) =
∑
n∈Zd

ψ̂(n)einx

in Fourier series (see e.g. [33]), where

(2.3) ψ̂(n) =
1

(2π)d

∫
Td

e−inyψ(y)dy.

It follows that

(2.4) H(k)ψ(x) =
∑
n∈Zd

(n + k)A(n + k)T ψ̂(n)einx,

for any ψ ∈ C2(Td). Thus

(2.5) {H(k)}−1ψ(x) =
∑
n∈Zd

ψ̂(n)einx

(n + k)A(n + k)T

is a multiplier operator if (n + k)A(n + k)T 
= 0 for any n ∈ Zd.
Next we fix a = (a1, . . . , ad) ∈ Rd and b = (b1, . . . , bd) ∈ Rd. Suppose that

〈a,b〉 = 0 and a satisfies

(2.6) |a| = 1, aA = (s0, 0, . . . , 0) for some s0 
= 0.

Since aAaT = s0a1 > 0, we know a1 
= 0. Let

(2.7) δ =
1
a1

(
1
2
− b1)

and

(2.8) k = (δ + iρ)a + b,

where ρ ∈ R is a parameter. A direct computation shows

(n + k)A(n + k)T = (n + b)A(n + b)T + 2δ(n1 + b1)s0

+ (δ2 − ρ2)a1s0 + 2iρ(n1 +
1
2
)s0.

(2.9)

From this, it is easy to verify that if |ρ| ≥ 2 and n ∈ Zd, then

(2.10) |(n + k)A(n + k)T | ≈ |(n + b)A(n + b)T − ρ2a1s0| + |ρ(n1 +
1
2
)|.

From now on we will assume that |ρ| ≥ 2. We emphasize again that all constants
in this paper are independent of the parameter ρ.

Let B =
√

A. Then (n + b)A(n + b)T = |(n + b)B|2. Using (2.10), it is not
hard to see that there exist constants C > 0, c > 0 such that

|(n + k)A(n + k)T | ≈{
(|n| + |ρ|)2 if |n| ≥ C|ρ| or |n| ≤ c |ρ|,

|ρ|
{∣∣|nB| − |ρ|√a1s0

∣∣ + |n1| + 1
}

if c |ρ| < |n| < C ρ.

(2.11)
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Note that the multiplier (n + k)A(n + k)T behaves well in the region {n ∈ Zd :
|n| ≥ C|ρ| or |n| < c |ρ| }. The following two lemmas will be used to deal with the
remaining region {n ∈ Z

d : c |ρ| < |n| < C |ρ| }.

Lemma 2.12. For any p > 1, we have

(2.13)
∑

c|ρ|<|n|<C |ρ|

1
|(n + k)A(n + k)T |p ≤ Cp

⎧⎪⎪⎨⎪⎪⎩
|ρ|d−4 log |ρ| if p = 2,

|ρ|d−2p if p < 2,

|ρ|d−2−p if p > 2.

Proof. It follows from the proof of Lemma 3.2 in [22] (see the estimate of I2 on
pp. 16–17) that

(2.14)
∑

c|ρ|<|n|<C |ρ|

1
|(n + k)A(n + k)T |p ≤ C |ρ|d−2p

∫ C

0

dr

{r + 1
|ρ|}p−1

.

From this, one may deduce estimate (2.13) easily. �

Lemma 2.15. For any p > 1 and 	 ≥ 1, we have

(2.16)
∑

|nB|∈[�,�+1)
c|ρ|<|n|<C |ρ|

1
|(n + k)A(n + k)T |p ≤ Cp |ρ|d−p−2{∣∣	 − |ρ|√a1s0

∣∣ + 1}p−1
.

Proof. We may assume that 	 ≈ |ρ|. Using (2.11), we have∑
|nB|∈[�,�+1)

c|ρ|<|n|<C |ρ|

1
|(n + k)A(n + k)T |p

≤ C |ρ|−p
∑

|nB|∈[�,�+1)

1{∣∣|nB| − |ρ|√a1s0

∣∣ + |n1| + 1
}p

≤ C|ρ|−p

∫
�−2≤|x|≤�+2

dx{∣∣|x| − |ρ|√a1s0

∣∣ + |x1| + 1
}p

≤ C |ρ|d−2p

∫
�−2
|ρ| ≤|y|≤ �+2

|ρ|

dy{∣∣|y| − √
a1s0

∣∣ + |y1| + 1
|ρ|

}p

≤ C|ρ|d−2p

∫
�−2
|ρ| ≤r≤ �+2

|ρ|

dr

∫ π/2

0

(sin θ)d−2dθ{
|r −√

a1s0| + r cos θ + 1
|ρ|

}p

≤ C |ρ|d−2p

∫
�−2
|ρ| ≤r≤ �+2

|ρ|

dr{
|r −√

a1s0| + 1
|ρ|

}p−1

≤ C|ρ|d−2p−1{
| �
|ρ| −

√
a1s0| + 1

|ρ|
}p−1

=
C |ρ|d−p−2{

|	 − |ρ|√a1s0| + 1
}p−1 .

The proof is finished. �
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We now choose η ∈ C∞((0,∞)) such that 0 ≤ η(t) ≤ 1 for any t > 0, η(t) = 1
for c ≤ t ≤ C and supp(η) ⊂ (c/2, 2C). Write {H(k)}−1 = T1 + T2, where

T1ψ =
∑
n∈Zd

η( |n|ρ )ψ̂(n)einx

(n + k)A(n + k)T
,

T2ψ =
∑
n∈Zd

(1 − η( |n|ρ ))ψ̂(n)einx

(n + k)A(n + k)T
.

(2.17)

In view of (2.11), the estimates of operator T2 are standard. Indeed, by Hörmander’s
Multiplier Theorem and the transference theorem (see e.g. [14, Theorem 3.6.7,
p. 221]), one has ‖T2ψ‖p ≤ C |ρ|−2‖ψ‖p, ‖∇T2ψ‖p ≤ C |ρ|−1‖ψ‖p, and ‖∇∇T2ψ‖p

≤ C ‖ψ‖p for any 1 < p < ∞. This, together with Sobolev’s imbedding and the
Riesz-Thorin interpolation theorem, gives the following.

Lemma 2.18. Let 1 < p ≤ q < ∞. Then

‖T2ψ‖q ≤ C |ρ|d( 1
p− 1

q )−2‖ψ‖p if
1
p
− 1

q
≤ 2

d
,

‖∇T2ψ‖q ≤ C |ρ|d( 1
p− 1

q )−1‖ψ‖p if
1
p
− 1

q
≤ 1

d
.

The estimates of operator T1 are much more involved. The approach we use here
is motivated by [37]. It relies on Sogge’s spectral projection estimates for elliptic
operators on compact manifolds.

Let

(2.19) q0 =
2(d + 1)
d − 1

, p0 = q′0 =
2(d + 1)
d + 3

.

Lemma 2.20. Suppose q0 < q < ∞. Then

‖T1ψ‖q ≤ C |ρ|d( 1
p0

− 1
q )−2||ψ||p0 ,

‖∇T1ψ‖q ≤ C|ρ|d( 1
p0

− 1
q )−1‖ψ‖p0 .

(2.21)

Proof. First we write

(2.22) T1ψ =
∞∑

�=0

∑
n∈Z

d

|nB|∈[�,�+1)

η( |n|ρ )ψ̂(n)einx

(n + k)A(n + k)T
.

Next we consider the second order elliptic operator P = DADT on the d-torus
Td. Note that P has a complete set of eigenfunctions {einx,n ∈ Zd} with the
corresponding eigenvalues {nAnT ,n ∈ Zd}. Thus

(2.23) ζ�ψ =
∑
n∈Z

d

nAnT ∈[�2,(�+1)2)

ψ̂(n)einx =
∑
n∈Z

d

|nB|∈[�,�+1)

ψ̂(n)einx

is the projection of ψ to the subspace of L2(Td) spanned by the eigenfunctions of P
with eigenvalues in [	2, (	 + 1)2). It then follows from a general result of C. Sogge
in [31, Theorem 2.2(i), p. 127] that for any ψ ∈ L2(Td),

(2.24) ‖ζ�ψ‖q ≤ C (	 + 1)δ(q)‖ψ‖2,
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where 2 ≤ q ≤ ∞ and

(2.25) δ(q) =

⎧⎪⎪⎨⎪⎪⎩
d
∣∣1
2
− 1

q

∣∣ − 1
2
, if q0 ≤ q ≤ ∞,

(d − 1)
2

∣∣1
2
− 1

q

∣∣, if 2 ≤ q ≤ q0.

By duality, one also has

(2.26) ‖ζ�ψ‖2 ≤ C (	 + 1)δ(p′)‖ψ‖p, 1 ≤ p ≤ 2.

Note that for q0 = 2(d+1)
d−1 , we have δ(q0) = 1

q0
by (2.25). It follows from (2.24) that

(2.27) ‖
∑
n∈Z

d

|nB|∈[�,�+1)

cneinx‖q0 ≤ C (	 + 1)
1

q0

( ∑
n∈Z

d

|nB|∈[�,�+1)

|cn|2
)1/2

.

By complex interpolation, estimate (2.27), together with the trivial estimate

(2.28) ‖
∑
n∈Z

d

|nB|∈[�,�+1)

cneinx‖∞ ≤ C
∑
n∈Z

d

|nB|∈[�,�+1)

|cn|,

gives

(2.29) ‖
∑
n∈Z

d

|nB|∈[�,�+1)

cneinx‖q ≤ C (	 + 1)
1
q

( ∑
n∈Z

d

|nB|∈[�,�+1)

|cn|p
) 1

p

where

(2.30) q0 ≤ q ≤ ∞,
1
p

= 1 − q0

2q
.

Thus, by Minkowski’s inequality, estimate (2.29) and Hölder’s inequality, for any
q ∈ (q0,∞) and p < 2 given by (2.30), we have

‖T1ψ‖q ≤
∑

c|ρ|<�<C |ρ|
‖

∑
n∈Z

d

|nB|∈[�,�+1)

η( |n||ρ| )ψ̂(n)einx

(n + k)A(n + k)T
‖q

≤ C |ρ|
1
q

∑
c|ρ|<�<C|ρ|

{ ∑
n∈Z

d

|nB|∈[�,�+1)

∣∣ |ψ̂(n)|
(n + k)A(n + k)T

∣∣p}1/p

≤ C|ρ|
1
q

∑
c|ρ|<�<C|ρ|

{ ∑
n∈Z

d

|nB|∈[�,�+1)

|ψ̂(n)|2
}1/2

×
{ ∑

n∈Z
d

|nB|∈[�,�+1)

1

|(n + k)A(n + k)T |
2p

2−p

} 2−p
2p

≤ C|ρ|
1
q + 1

q0
+(d−2)( 1

p− 1
2 )−1‖ψ‖p0

∑
c|ρ|<�<C|ρ|

1{
|	 − |ρ|√a1s0| + 1

} 3
2−

1
p

,
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where we also used estimates (2.26) and (2.16) in the last inequality. Note that if
0 ≤ α < 1, ∑

c|ρ|≤�≤C |ρ|

1{∣∣	 − |ρ|√a1s0

∣∣ + 1
}α ≤ C

∫ C |ρ|

c|ρ|

dt{∣∣t − |ρ|√a1s0

∣∣ + 1
}α

≤ C |ρ|1−α

∫ C

0

dt{
t + 1

|ρ|
}α

≤ C |ρ|1−α.

(2.31)

We obtain

‖T1ψ‖q ≤ C |ρ|
1
p + 1

q0
+(d−1)( 1

p− 1
2 )−1‖ψ‖p0

= C|ρ|d( 1
p0

− 1
q )−2‖ψ‖p0 .

The proof of the estimate for ∇T1 in (2.21) is similar. �

Remark 2.32. If we let q = q0 and p = 2 in the proof above, the same argument
would give

‖T1ψ‖q0 ≤ C |ρ|
2

q0
−1 log |ρ| ‖ψ‖p0 ,

‖∇T1ψ‖q0 ≤ C |ρ|
2

q0 log |ρ| ‖ψ‖p0 .
(2.33)

The logarithmic function arises in (2.31) when α = 1.

We need another lemma before we carry out the proof of Theorem 1.8.

Lemma 2.34. For any 1 < p < 2, we have

‖T1ψ‖∞ ≤ C |ρ| d
p−2‖ψ‖p,

‖∇T1ψ‖∞ ≤ C |ρ|
d
p−1‖ψ‖p.

(2.35)

Proof. Let 1 < p < 2. By Hölder’s inequality,

‖T1ψ‖∞ ≤
∑
n∈Z

d

c |ρ|<|n|<C |ρ|

∣∣∣∣ ψ̂(n)
|(n + k)A(n + k)T

∣∣∣∣
≤

( ∑
n∈Zd

|ψ̂(n)|p
′
) 1

p′ ( ∑
n∈Z

d

c |ρ|<|n|<C|ρ|

1∣∣(n + k)A(n + k)T
∣∣p

) 1
p

≤ C |ρ|
d−2p

p ‖ψ‖p,

where we have used the Hausdorff-Young inequality and estimate (2.13) in the last
step. The proof of the second inequality in (2.35) is similar. �

We are now ready to give the proof of Theorems 1.8 and 1.11.

Proof of Theorem 1.8. For j = 1, 2, consider the set Aj of ( 1
p , 1

q ) ∈ [0, 1]× [0, 1] for
which the estimate

(2.36) ‖Tjψ‖q ≤ C |ρ|d( 1
p− 1

q )−2‖ψ‖p

holds uniformly for ρ ∈ R with |ρ| ≥ 2. Recall that T ∗
j may be obtained simply by

replacing the parameter ρ in Tj with −ρ. By duality, this implies that if (t, s) ∈ Aj ,
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then (s, t) ∈ Aj . Also, by the Riesz-Thorin Interpolation Theorem, Aj is a convex
set.

Next we note that by Lemmas 2.20 and 2.34, A1 contains the set {(t, s) : t =
1
p0

and 0 < s < 1
q0
} and the set {(t, s) : 1

2 < t < 1 and s = 0}. It follows that
A1 contains the open polygon with vertices at ( 1

2 , 0), (1, 1), (1, 1
2 ), and ( 1

p0
, 1

q0
). In

view of Lemma 2.18, A2 contains the set {(t, s) ∈ (0, 1) × (0, 1) : 0 ≤ t − s ≤ 2
d}.

Finally it follows from {H(k)}−1 = T1 + T2 that

(2.37) ‖{H(k)}−1ψ‖q ≤ C |ρ|d( 1
p− 1

q )−2‖ψ‖p

holds for any ( 1
p , 1

q ) ∈ A1∩A2. Since A1∩A2 contains the set (1.9), we are done. �

Proof of Theorem 1.11. In view of the stronger estimates for T2 in Lemma 2.18, it
suffices to show that

‖T1ψ‖q ≤ C |ρ|−1+ d−1
2r (log |ρ|) d+1

2r ‖ψ‖p,

‖∇T1ψ‖q ≤ C |ρ| d−1
2r (log |ρ|) d+1

2r ‖ψ‖p,
(2.38)

where 1
p + 1

q = 1 and 0 ≤ 1
r = 1

p − 1
q ≤ 1

d . Clearly, estimate (2.38) holds for
p = q = 2 and r = ∞. By Remark 2.32, it holds for p = p0, q = q0 and r =
(d + 1)/2. Consequently, by complex interpolation, estimate (2.38) holds for p = q′

and (d + 1)/2 ≤ r ≤ ∞. The desired estimate then follows since d ≥ (d + 1)/2 for
d ≥ 2, �

3. An approximation property for the Lipschitz space Λr,∞
α (Td)

In the rest of this paper, we will use the uniform Sobolev inequalities established
in Section 2 to investigate the problem of absolute continuity of periodic operators.
Since our regularity assumption on the coefficients of such operators will be given
in terms of the modulus of continuity, we need an approximation property for the
Lipschitz space Λr,∞

α (Td). Recall that for 0 < α < 1 and 1 ≤ r ≤ ∞, we say
f ∈ Λr,∞

α (Td) if f ∈ Lr(Td) and there exists a constant C > 0 such that

(3.1) ‖f(· + y) − f(·)‖r ≤ C
{
dist(y, (2πZ)d)

}α
,

for any y ∈ T
d. For systematic treatment of the space Λp,q

α (Rd), we refer the reader
to [32, Chapter 5].

Proposition 3.2. Suppose f ∈ Λr,∞
α (Td) for some 0 < α < 1 and 1 ≤ r ≤ ∞.

Then for any ε ∈ (0, 1), there exists fε ∈ C∞(Td) such that

(3.3) ‖fε − f‖r ≤ C εα, ‖∇fε‖r ≤ C εα−1,

where C > 0 depends on the norm of f in Λr,∞
α (Td). Moreover, ‖fε‖q ≤ C if

1
q > 1

r − α
d , and

(3.4) ‖fε‖q ≤ Cδ ε−d( 1
r −

1
q −

α
d )−δ,

for any δ > 0, if 1
q ≤ 1

r − α
d .

Proof. We begin by choosing g ∈ C∞
0 (B(0, 1)) such that g ≥ 0 and∫

Rd

g(x)dx = 1.
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For any ε ∈ (0, 1), let

(3.5) hε(x) =
1
εd

∑
n∈Zd

g(
x− 2πn

ε
).

Clearly hε(x) is periodic with respect to the lattice (2πZ)d and
∫

Td hε(x) dx = 1.
Now, given f ∈ Λr,∞

α (Td), we define

(3.6) fε(x) =
∫

Td

f(y)hε(x− y) dy.

To prove the first inequality in (3.3), we note that

(3.7) |fε(x) − f(x)| ≤
∫

Td

|f(x− y) − f(x)|hε(y) dy.

By Minkowski’s inequality, we have

‖fε − f‖r ≤
∫

Td

‖f(· − y) − f(·)‖rhε(y) dy

≤ C

∫
Td

{
dist(y, (2πZ)d)

}α
hε(y) dy

≤ C

εd

∫
Rd

|y|αg(
y
ε
) dy = C εα.

(3.8)

To see the second inequality in (3.3), we use

(3.9) ∇fε(x) =
∫

Td

(
f(x− y) − f(x)

)
∇hε(y) dy.

The same argument as in (3.8) gives

‖∇fε‖r ≤ C

∫
Td

‖f(· − y) − f(·)‖r|∇hε(y)| dy ≤ C εα−1.

Finally, to estimate ‖fε‖q, we note that for any α′ < α,

(3.10) Λr,∞
α (Td) ⊂ Λr,2

α′ (Td) ⊂ Lr
α′(Td) ⊂ Lq(Td),

where 1
q = 1

r − α′

d [32]. It then follows from Minkowski’s inequality that ‖fε‖q ≤
‖f‖q ≤ Cq if 1

q > 1
r − α

d . The remaining case 1
q ≤ 1

r − α
d follows from Young’s

inequality,
‖fε‖q ≤ ‖f‖p‖hε‖t ≤ C ε−d(1− 1

t )‖f‖p,

where 1
q = 1

p + 1
t − 1 and p is chosen so that 1

p = 1
r − α

d + δ
d . This finishes the

proof. �

Remark 3.11. Letting 0 < α < 1, we say f ∈ Λr,∞
1+α(Td) if f, ∇f ∈ Lr(Td) and

∇f ∈ Λr,∞
α (Td). In this case, if we define fε as in (3.6), then ‖∇f −∇fε‖r ≤ C εα

and ‖∇∇fε‖r ≤ C εα−1. Also ‖∇fε‖q ≤ C if 1
q > 1

r − α
d , and

‖∇fε‖q ≤ Cδ ε−d( 1
r −

1
q −

α
d )−δ,

for any δ > 0, if 1
q ≤ 1

r − α
d . The proof is similar to that of (3.3). Also, note that if

f is a real-valued function, then infTd f ≤ infTd fε and sup
Td fε ≤ sup

Td f . These
facts will be used in Section 5.
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4. The absolute continuity of periodic Dirac operators

Let α1, α2, . . . , αd be Hermitian m×m matrices which satisfy the commutation
relations

(4.1) αjαl + αlαj = 2δjlI,

where I = Im×m is the unit matrix. Let B = (bjl)d×d be a nonsingular matrix with
real constant entries. Consider the Dirac operator

(4.2) D(V ) =
d∑

j,l=1

bjlαlDj + V (x),

acting on L2(Rd; Cm), with real m × m matrix potential V (x). Recall that Dj =
−i∂/∂xj . We assume that V is self-adjoint and periodic with respect to some lattice
of Rd. We also assume that |V | ∈ Ld

loc(R
d) and d ≥ 3. By Sobolev imbedding and

the Kato-Rellich Theorem, these conditions imply that the Dirac operator D(V ) is
self-adjoint on L2(Rd; Cm) with domain H1(Rd; Cm).

By a change of variables, we may assume that V is periodic with respect to
(2πZ)d. This is the main reason that we introduce a constant matrix in (4.2). It is
well known that using the Floquet-Bloch decomposition, one may reduce the study
of the spectrum of a periodic operator on Rd to that of a family of operators on
T

d. To this end, for k = (k1, k2, · · · , kd) ∈ C
d, we consider the operator

(4.3) D(k, V ) =
d∑

j,l=1

bjlαl(Dj + kj) + V (x)

on L2(Td, Cm), with domain H1(Td, Cm). Note that (D(k, V ))∗ = D(k, V ).
Let a, b ∈ Rd such that 〈a,b〉 = 0 and (2.6) holds with A = BBT . Let k =

(δ + iρ)a + b where δ is given by (2.7), ρ ∈ R and |ρ| ≥ 2, as in Section 2. We
denote

(4.4) Dρ(V ) = D(k, V ) = D
(
((δ + iρ)a + b), V

)
.

We will show that under the conditions of Theorem 1.15, there exists p ∈ (1, 2] such
that for any E ∈ R, Dρ(V )−E Im×m is invertible on Lp(Td, Cm) if |ρ| is sufficiently
large. It follows that the operator Dρ(V ) on L2(Td, Cm) has no eigenvalue for |ρ|
sufficiently large. By L. Thomas’s approach or its variant in [17], this implies
that the spectrum of the Dirac operator D(V ) on L2(Rd; Cm) is purely absolutely
continuous, as in the case of periodic Schrödinger operators.

By replacing V with V −EIm×m, it suffices to establish the invertibility of Dρ(V ).
To this end, we follow the previous work in [3] and square the operator.

Proposition 4.5. Assume that V ∈ C1(Td) and α1V α1 = α2V α2 = · · · = αdV αd.
Then

(4.6) D(k, V ) {D(k, V ) − V0} = (D + k)BBT (D + k)T − bjl(DjV )αl − {V α1}2 ,

where V0 = {α1V α1 + V }.

Proof. First we note that by (4.1),

D(k, V )2 = (D + k)BBT (D + k)T + bjl(Dj + kj)(V αl + αlV ) − bjl(DjV )αl + V 2,
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where the repeated indices are summed from 1 to d. Let V0 = α1V α1+V . Using the
condition α1V α1 = α2V α2 = · · · = αdV αd, it is easy to see that αlV +V αl = αlV0.
It follows that

D(k, V )2 = (D + k)BBT (D + k)T + bjl(Dj + kj)αlV0 + V 2 − bjl(DjV )αl

= (D + k)BBT (D + k)T + D(k, V )V0 − bjl(DjV )αl + V 2 − V V0

= (D + k)BBT (D + k)T + D(k, V )V0 − bjl(DjV )αl − (V α1)2.

From this, formula (4.6) follows easily. �

Let Hρ = (D + k)A(D + k)T where A = BBT and k = (δ + iρ)a + b. By (4.6),
one may write

{Dρ(V )}−1 =

{bjlαl(Dj + kj) − α1V α1}H
−1
ρ

{
I − bjl(DjV )αlH

−1
ρ − {V α1}2

H
−1
ρ

}−1(4.7)

if the inverses in the right side of (4.7) exist. It follows that if ‖bjl(DjV )αlH
−1
ρ ‖p→p

+‖{V α1}2
H

−1
ρ ‖p→p ≤ 1/2, then

(4.8) ‖Dρ(V )−1‖p→q ≤ C
{
‖(D + k)H−1

ρ ‖p→q + ‖V α1H
−1
ρ ‖p→q

}
,

where we used ‖ · ‖p→q to denote the operator norm from Lp(Td) to Lq(Td). Note
that by Theorem 1.11,

‖DH
−1
ρ ‖p→q ≤ C |ρ| d−1

2r (log |ρ|) d+1
2r ,

‖H−1
ρ ‖p→q ≤ C |ρ|−1+ d−1

2r (log |ρ|)
d+1
2r ,

(4.9)

where 1
p + 1

q = 1 and 0 ≤ 1
p − 1

q = 1
r ≤ 1

d . This gives

‖bjl(DjV )αlH
−1
ρ ‖p→p + ‖(V α1)2H

−1
ρ ‖p→p

≤ C |ρ|−1+ d−1
2r (log |ρ|) d+1

2r

{
‖DV ‖r + ‖V ‖2

2r

}
.

(4.10)

In view of (4.8) and (4.9), we also obtain

(4.11) ‖Dρ(V )−1‖p→q ≤ C {|ρ| + ‖V ‖∞} |ρ|−1+ d−1
2r (log |ρ|) d+1

2r

if the right side of (4.10) is less than 1/2. Theorem 1.15 will follows from estimates
(4.10) and (4.11) by an approximation argument.

Proof of Theorem 1.15. Suppose V ∈ Λr,∞
α (Td) for some r ≥ d and 1 > α > d−1

2r .
Let 1

p + 1
q = 1 and 1

p − 1
q = 1

r . We will show that if |ρ| is sufficiently large, Dρ(V )
is invertible on Lp(Td; Cm). To do this, we first use Proposition 3.2 to obtain

‖Vε − V ‖r ≤ C εα,

‖∇Vε‖r ≤ C εα−1,
(4.12)

where Vε is an approximation of V constructed in Proposition 3.2, and the constants
in (4.12) depend on V . We will also need ‖Vε‖∞ ≤ C ε−1 and ‖Vε‖2

2r ≤ C εα−1.
This follows from estimate (3.4) as well as the assumptions r ≥ d ≥ 3 and α > d−1

2r .
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Next let ε = ρ−1. Since Vε ∈ C∞(Td) and α1Vεα1 = · · · = αdVεαd, we may
apply estimates (4.10) and (4.11) to Vε. This gives

‖bjl(DjVε)αlH
−1
ρ ‖p→p + ‖(Vεα1)2H

−1
ρ ‖p→p

≤ C |ρ|−1+ d−1
2r (log |ρ|)

d+1
2r · εα−1

≤ C (log |ρ|)
d+1
2r |ρ| d−1

2r −α → 0

as |ρ| → ∞, since α > d−1
2r . By (4.11), this implies that if |ρ| is sufficiently large,

(4.13) ‖Dρ(Vε)−1‖p→q ≤ C |ρ|
d−1
2r (log |ρ|)

d+1
2r .

Finally note that Dρ(V ) = Dρ(Vε) + (V − Vε). Using (4.13) and (4.12), we have

‖(V − Vε)Dρ(Vε)−1‖p→p ≤ ‖V − Vε‖r‖Dρ(Vε)‖p→q

≤ C εα|ρ|
d−1
2r (log |ρ|)

d+1
2r

= C |ρ| d−1
2r −α (log |ρ|)

d+1
2r → 0

(4.14)

as |ρ| → ∞. It follows that if |ρ| is sufficiently large,

Dρ(V )−1 = Dρ(Vε)−1
{
I + (V − Vε)Dρ(Vε)−1

}−1
.

This shows that Dρ(V ) is invertible on Lp(Td; Cm) for sufficiently large |ρ|. The
proof is finished. �

5. The absolute continuity of a second order elliptic operator

Let ω(x) be a periodic real valued function on R
d. Suppose that ω ∈ L∞(Rd)

and ω(x) ≥ c0 for some c0 > 0. Consider the self-adjoint second order elliptic
operator

(5.1) Lω =
∑
j,l

Dj(ω(x)ajlDl)

on L2(Rd), d ≥ 3, where A = (ajl)d×d is a symmetric, positive definite matrix with
real constant entries.

By a change of variables, we may assume that ω is periodic with respect to the
standard lattice (2πZ)d. We will show in this section that if ω ∈ Λr,∞

1+α(Td) for some
r ≥ d and α > d−1

2r , then the spectrum of Lω is absolutely continuous. To this end,
let k = (δ + iρ)a + b ∈ Cd where a,b ∈ Rd, δ ∈ R are fixed as in Section 2 and
ρ ≥ 2 is a parameter. We consider a family of operators

(5.2) Lω(k) =
∑
j,l

(Dj + kj)(ω(x)ajl(Dl + kl)),

on L2(Td). By L. Thomas’s approach, it suffices to show that the family of operators
{Lω(k) : ρ ≥ 2} has no common eigenvalues.

Proof of Theorem 1.22. Suppose that {Lω(k) : ρ ≥ 2} has a common eigenvalue
E. That is, for each ρ ≥ 2, there exists ψρ ∈ Domain(Lw(k)) ⊂ H1(Td) such that

(5.3) ‖ψρ‖2 = 1 and Lω(k)ψρ = Eψρ.

Let

(5.4) ϕρ = ω̃1/2ψρ,
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where ω̃ ≥ c0 is a real valued positive function in C∞(Td) to be determined. Then

(D + k)A(D + k)T ϕρ =
∑
j,l

ajl

{
Dj ω̃

ω̃
− Djω

ω

}
(Dl + kl)ϕρ +

E

ω
ϕρ

+

⎛⎝ 1
2ω̃

∑
j,l

ajlDjDlω̃ +
1

2ωω̃

∑
j,l

ajl(Djω)(Dlω̃)

⎞⎠ ϕρ

−

⎛⎝ 3
4ω̃2

∑
j,l

ajl(Djω̃)(Dlω̃)

⎞⎠ ϕρ.

(5.5)

It follows that for any p > 1, we have

‖(D + k)A(D + k)T ϕρ‖p ≤ C ‖
∑
j,l

∣∣Dj ω̃

ω̃
− Djω

ω

∣∣(Dl + kl)ϕρ‖p + C ‖ϕρ‖p

+ C
{
‖|∇∇ω̃|ϕρ‖p + ‖|∇ω| |∇ω̃|ϕρ‖p

}
+ C ‖|∇ω̃|2ϕρ‖p.

(5.6)

Suppose ω ∈ Λr,∞
1+α(Td) for some r ≥ d and 1 > α > d−1

2r . Choose (p, q) so that
1
p + 1

q = 1 and 1
p − 1

q = 1
r , i.e., p = 2r

r+1 and q = 2r
r−1 . Let Hρ = (D+k)A(D+k)T .

Recall that by Theorem 1.11,

‖ϕ‖q ≤ C |ρ|−1+ d−1
2r (log |ρ|)

d+1
2r ‖Hρϕ‖p,

‖(D + k)ϕ‖q ≤ C |ρ|
d−1
2r (log |ρ|)

d+1
2r ‖Hρϕ‖p.

(5.7)

Let ε = |ρ|−1 and choose ω̃ = ωε ∈ C∞(Td) where ωε is an approximation of ω
constructed in Proposition 3.2. By Remark 3.11, we have ω̃ ≥ c0 and

(5.8) ‖∇ω̃ −∇ω‖r ≤ C εα, ‖∇∇ω̃‖r ≤ C εα−1.

Moreover, ‖∇ω̃‖t ≤ C if 1
t > 1

r − α
d , and

(5.9) ‖∇ω̃‖t ≤ Cδ ε−d( 1
r −

1
t −

α
d )−δ for any δ > 0

if 1
t ≤ 1

r −
α
d . These estimates, together with (5.7), will be used to control the right

side of (5.6).
To do this, we first note that

(5.10)
∣∣∣∣∇ω̃

ω̃
− ∇ω

ω

∣∣∣∣ ≤ C {|∇ω̃ −∇ω| + |∇ω̃| |ω − ω̃|} ,

and ‖ |∇ω̃| |ω−ω̃| ‖r ≤ ‖∇ω̃‖r1‖ω−ω̃‖r2 , where 1
r = 1

r1
+ 1

r2
and r < r1, r2 < ∞. By

Sobolev’s inequality and the observation that
∫

Td(ω−ω̃) dx = 0, for any r < r2 < ∞,

(5.11) ‖ω − ω̃‖r2 ≤ C ‖∇ω −∇ω̃‖d ≤ C ‖∇ω −∇ω̃‖r ≤ C εα.

We then choose r1 > r so close to r that ‖∇ω̃‖r1 ≤ C. We obtain

‖∇ω̃

ω̃
− ∇ω

ω
‖r ≤ C {‖∇ω −∇ω̃‖r + ‖|∇ω̃||ω − ω̃‖r}

≤ C εα.
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It follows that

‖
{

Djω̃

ω̃
− Djω

ω

}
(Dl + kl)ϕρ‖p ≤ ‖Dj ω̃

ω̃
− Djω

ω
‖r ‖(Dl + kl)ϕρ‖q

≤ C εα|ρ|
d−1
2r (log |ρ|)

d+1
2r ‖Hρϕρ‖p

≤ C ρ
d−1
2r −α(log |ρ|) d+1

2r ‖Hρϕρ‖p.

(5.12)

Next we wish to show that

(5.13) ‖∇∇ω̃‖r + ‖ |∇ω| |∇ω̃| ‖r + ‖ |∇ω̃|2‖r ≤ C εα−1.

This, together with (5.6), (5.12) and Hölder’s inequality, implies that

(5.14) ‖Hρϕρ‖p ≤ C |ρ| d−1
2r −α (log |ρ|)

d+1
2r ‖Hρϕρ‖p,

for any ρ ≥ 2. Since α > d−1
2r , estimate (5.14) gives us a contradiction, provided

we can show that Hρϕρ ∈ Lp(Td). But this is not hard to do. Indeed, since ϕρ ∈
H1(Td) and ω̃ ∈ C∞(Td), in view of (5.6), it suffices to prove that |∇ω| |∇ϕρ| ∈
Lp(Td). Furthermore, by Hölder’s inequality, we only need to show that ∇ω ∈
Lt(Td), where 1

t = 1
p − 1

2 = 1
2r . To this end, we use the Sobolev imbedding (3.10).

It shows that ∇ω ∈ Ls(Td) for any s such that 1
s > 1

r − α
d . Using α > d−1

2r , one
may verify that 1

2r > 1
r − α

d .
It remains to prove estimate (5.13). To do this, we note that the estimate

‖∇∇ω̃‖r ≤ C εα−1 is already in (5.8). Also, if 1
r = 1

t1
+ 1

t2
,

‖ |∇ω| |∇ω̃| ‖r + ‖ |∇ω̃|2 ‖r ≤ ‖∇ω‖t1‖∇ω̃‖t2 + ‖∇ω̃‖t1‖∇ω̃‖t2

≤ 2 ‖∇ω‖t1‖∇ω̃‖t2 .
(5.15)

We may assume 1
r − α

d > 0 (for otherwise, we would have ‖∇ω‖t + ‖∇ω‖t ≤ Ct for
any t < ∞, and the desired estimate would follow easily). Choose t1 > r so that
1
t1

> 1
r − α

d . If we also have 1
t2

> 1
r − α

d , then the left side of (5.15) is bounded by
a constant independent of ε.

Finally, suppose 1
t2

≤ 1
r − α

d . Then the right side of (5.15) is bounded by

C ‖∇ω̃‖t2 ≤ C ε−d( 1
r −

1
t2

−α
d )−δ = C ε−d( 1

t1
−α

d )−δ.

We need to find t1 > r and δ > 0 so that 1
t1

> 1
r − α

d and d( 1
t1

− α
d ) + δ ≤ 1 − α.

This is clearly possible since we assume that r ≥ d. The proof is now complete. �
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