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APPROXIMATION THEOREMS FOR THE PROPAGATORS
OF HIGHER ORDER ABSTRACT CAUCHY PROBLEMS

JIN LIANG, RAINER NAGEL, AND TI-JUN XIAO

Abstract. In this paper, we present two quite general approximation theo-
rems for the propagators of higher order (in time) abstract Cauchy problems,
which extend largely the classical Trotter-Kato type approximation theorems
for strongly continuous operator semigroups and cosine operator functions.
Then, we apply the approximation theorems to deal with the second order
dynamical boundary value problems.

1. Introduction and general approximation theorems

In 1958, H. F. Trotter [33] treated the question of convergence of strongly contin-
uous operator semigroups in Banach spaces and gave an approximation theorem. A
gap in the proof of the theorem was pointed out and corrected by T. Kato [19]. This
theorem is just the well-known Trotter-Kato approximation theorem. Convergence
results of a similar nature can be found in T. Kato [20], T. Kurtz [22, 23], A. Pazy
[30], T. I. Seidman [32], and K. Yosida [39]. Also, there have been some Trotter-
Kato type approximation theorems for various operator families such as for cosine
operator functions (cf. [15], [16, Sect.7] and [31]), for integrated semigroups (cf.
[29, 35]), and for resolvent families of operators (cf. [27, 28]). Such approximation
theorems have proved to be very useful in showing the convergence of solutions of
difference equations as well as partial differential equations.

On the other hand, dynamic boundary value problems (DBPs for short) in Ba-
nach spaces have been attracting more and more attention (cf., e.g., [1, 3, 4, 5, 6,
8, 10, 11, 12, 14, 17, 21, 25, 36, 38] and references therein) due to their applica-
bility to a lot of practical problems such as those in control theory. There have
been a number of developments in the study of many aspects of DBPs, but not
yet in the investigation of the approximation problem (among others) for second
order (in time) DBPs. Actually, whenever the second order equations involve first
order derivatives (damping terms), cosine operator functions will no longer suit
the DBPs, and furthermore, without certain strong restrictions on the operators
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in the state equations and on the boundary conditions, it is hard to find appro-
priate phase spaces on which the operator matrices, corresponding to the second
order DBPs, do generate strongly continuous semigroups (cf., e.g., Example 2.5 in
the last section and [34, 37, 38]) so that the classical Trotter-Kato approximation
theorem can be applied. Thus it is really meaningful to establish corresponding ap-
proximation theorems, especially for the solution operators, i.e. the propagators, of
second order DBPs. This stimulates us to consider further another and much more
general issue of how to treat the question of convergence of the solution operators
(the propagators) for general higher order (in time) abstract Cauchy problems.

In this paper, we devote ourselves to dealing with these two problems. By
using general wellposedness concepts from [34, 37], we first obtain two quite general
approximation theorems (in Section 1), which extend largely the classical Trotter-
Kato approximation theorems for strongly continuous operator semigroups and
cosine operator functions. Then, we investigate (in Section 2) approximation issues
for second order DBPs as an application of our general results.

For the basic theory on second order and higher order abstract Cauchy problems,
we refer the reader to, e.g., [9, 34] (see also [13]).

Consider now the higher order abstract Cauchy problem

(ACPn)

⎧⎪⎨
⎪⎩

u(n)(t) +
n−1∑
i=0

Aiu
(i)(t) = 0, t ≥ 0,

u(j)(0) = uj , 0 ≤ j ≤ n − 1,

and the approximating problems

(ACPn)m

⎧⎪⎨
⎪⎩

u
(n)
m (t) +

n−1∑
i=0

Ai,mu(i)
m (t) = 0, t ≥ 0,

u
(j)
m (0) = uj,m, 0 ≤ j ≤ n − 1,

m ∈ N , where Ai, Ai,m (m ∈ N, i = 0, . . . , n − 1) are closed linear operators with
domains D(Ai), D(Ai,m) in a Banach space E. We consider the operator-valued
polynomials

P (λ) := λn +
n−1∑
i=0

λiAi, Pm(λ) := λn +
n−1∑
i=0

λiAi,m,

and their inverses R(λ) := P (λ)−1, Rm(λ) := Pm(λ)−1, wherever they exist as
bounded operators. A core for [A0, . . . , An−1] is a subspace of

⋂n−1
i=0 D(Ai), being

dense in
⋂n−1

i=0 D(Ai) for the norm

|u| := ‖u‖ +
n−1∑
i=0

‖Aiu‖.

By
[⋂i

j=0 D(Aj)
]
, we mean the space

⋂i
j=0 D(Aj) endowed with the norm

‖ · ‖⎡⎢⎢⎣
i⋂

j=0

D(Aj)

⎤
⎥⎥⎦

= ‖ · ‖ +
i∑

j=0

‖Aju‖.
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By C(R+;Ls(E)), we denote the space of all strongly continuous L(E)-valued func-
tions on R+. The set of complex numbers

ρ(A0, . . . , An−1) := {λ ∈ C; P (λ)−1 exists and R(λ) ∈ L(E)}
is called the resolvent set of (A0, . . . , An−1).

By a (strict) solution of (ACPn), we mean a function u ∈ Cn(R+; E) such that
for 0 ≤ i ≤ n−1, t ≥ 0, we have u(i)(t) ∈ D(Ai), Aiu

(i)(·) ∈ C(R+; E), and (ACPn)
is satisfied. The (strict) solution of an inhomogeneous higher order abstract Cauchy
problem is defined in the same way.

The following definition of strong quasi-wellposedness is a higher order version
of [37, Definition 2.6].

Definition 1.1. Let
⋂n−1

i=0 D(Ai) be dense in E. (ACPn) is called strongly quasi-
wellposed if

(i) (ACPn) has a (strict) solution for every uj ∈
⋂j

i=0 D(Ai), j = 0, . . . , n−1;
(ii) there exist n propagators

Sk(·) ∈ C

⎛
⎝R+;Ls

⎛
⎝
⎡
⎣ k⋂

j=0

D(Aj)

⎤
⎦
⎞
⎠
⎞
⎠ , k = 0, . . . , n − 2,(1.1)

Sn−1(·) ∈ C(R+;Ls(E)),(1.2)

satisfying, for every k = 1, . . . , n − 1,

Sk(·)u ∈ Ck(R+; E), u ∈
k⋂

j=0

D(Aj),(1.3)

Sn−1(·)u ∈ Ck−1(R+; [D(Ak)]), u ∈ E,∥∥∥S
(k−1)
k−1 (t)

∥∥∥
L([⋂k−1

j=0 D(Aj)])
≤ Meωt, t ≥ 0,(1.4) ∥∥∥S

(n−1)
n−1 (t)

∥∥∥
L(E)

,
∥∥∥AkS

(k−1)
n−1 (t)

∥∥∥
L(E)

≤ Meωt, t ≥ 0,

for some constants M , ω ≥ 0, such that any (strict) solution to (ACPn)
can be expressed as

u(t) =
n−1∑
k=0

Sk(t)u(k)(0), t ≥ 0.

Remark 1.2. The propagator S0(·) reduces to a strongly continuous semigroup when
n = 1, and to a cosine operator function when n = 2 and the term A1u

′ vanishes.

The vector-valued Laplace transform will be our main tool (see [2, 34]) and we
use the following terminology from [34].

Definition 1.3. A function F : (a, ∞) → L(E) is in the class LT −L(E) if there
exists a strongly continuous function H(·) : R+ → L(E) such that {e−atH(t); t ≥ 0}
is uniformly bounded for some a > 0 with

F(λ)u =
∫ ∞

0

e−λtH(t)udt for all λ > a, u ∈ E.

Arguing as in the proof of [37, Proposition 2.8] we can characterize the strong
quasi-wellposedness using the Laplace transform.
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Lemma 1.4. (ACPn) is strongly quasi-wellposed if and only if
⋂n−1

i=0 D(Ai) is dense
in E, (ω, ∞) ⊂ ρ(A0, . . . , An−1) for some ω > 0, and

λ �→ λn−1R(λ), λ �→ λk−1AkR(λ) ∈ LT − L(E), k = 1, . . . , n − 1.

In this case, we have for u ∈ E and λ large enough,

λn−1R(λ)u =
∫ ∞

0

e−λtS
(n−1)
n−1 (t)udt,

λk−1AkR(λ) =
∫ ∞

0

e−λtAkS
(k−1)
n−1 (t)udt, k = 1, . . . , n − 1.

For our approximation problem the following lemma from [35] will be crucial.

Lemma 1.5. For each m ∈ N , let fm ∈ C(R+, E) satisfy

‖fm(t)‖ ≤ Meωt, for all t ≥ 0,

and let Fm be defined by

Fm(λ) =
∫ ∞

0

e−λtfm(t)dt, λ > ω.

Then the following assertions are equivalent.

(i) {fm; m∈N} is equicontinuous at each point t∈ [0,∞), and limm→∞ Fm(λ)
exists for λ > ω.

(ii) limm→∞ fm(t) exists for t ≥ 0 and the convergence is uniform on bounded
t-intervals.

We are now in a position to give our main result.

Theorem 1.6. Let each (ACPn)m be strongly quasi-wellposed such that

(1.5)
∥∥∥S

(n−1)
n−1,m(t)

∥∥∥ ,
∥∥∥AkS

(k−1)
n−1,m(t)

∥∥∥ ≤ Meωt, t ≥ 0, 1 ≤ k ≤ n − 1,

where M , ω are constants independent of m. Let D be a core for [A0, . . . , An−1].
Assume that

⋂n−1
i=0 D(Ai) is dense in E, and (ω,∞) ⊂ ρ(A0, . . . , An−1). Then the

following statements are equivalent.

(i) For each u ∈ D, there exists um ∈
⋂n−1

i=0 D(Ai,m) such that

(1.6) lim
m→∞

um = u, lim
m→∞

Ak,mum = Aku, 0 ≤ k ≤ n − 1.

(ii) For each u ∈ E, λ > ω, 1 ≤ k ≤ n − 1,

(1.7) lim
m→∞

Rm(λ)u = R(λ)u, lim
m→∞

Ak,mRm(λ)u = AkR(λ)u.

(iii) (ACPn) is strongly quasi-wellposed, and for all u ∈ E, t ≥ 0,

lim
m→∞

S
(n−1)
n−1,m(t)u = S

(n−1)
n−1 (t)u,(1.8)

lim
m→∞

Ak,mS
(k−1)
n−1,m(t)u = AkS

(k−1)
n−1 (t)u, 1 ≤ k ≤ n − 1.(1.9)

Moreover, the convergence in statement (iii) is uniform on bounded t-intervals.
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Proof. (i) =⇒(ii).
By Lemma 1.4, we have, for m ∈ N , λ > ω, u ∈ E,

λn−1Rm(λ)u =
∫ ∞

0

e−λtS
(n−1)
n−1,m(t)udt,(1.10)

λk−1Ak,mRm(λ)u =
∫ ∞

0

e−λtAk,mS
(k−1)
n−1,m(t)udt, 1 ≤ k ≤ n − 1.(1.11)

Therefore

(1.12)

∥∥λn−1Rm(λ)
∥∥ ,

∥∥λk−1Ak,mRm(λ)
∥∥ ≤ M

λ − ω
,

m ∈ N, λ > ω, 1 ≤ k ≤ n − 1.

Fix λ > ω. Let u ∈ P (λ)D; then R(λ)u ∈ D. By hypothesis there exists vm ∈⋂n−1
i=0 D(Ai,m) such that

lim
m→∞

vm = R(λ)u, lim
m→∞

Ak,mvm = AkR(λ)u, 0 ≤ k ≤ n − 1.

This combined with (1.12) yields that
(1.13)

Rm(λ)u = Rm(λ)P (λ)R(λ)u

= Rm(λ) (P (λ)R(λ)u − Pm(λ)vm) + vm

= vm − Rm(λ)

{
λn(vm − R(λ)u) +

n−1∑
i=0

λi [Ai,mvm − AiR(λ)u]

}

−→ R(λ)u as m → ∞.

Notice that P (λ)D is dense in P (λ)
(⋂n−1

i=0 D(Ai)
)
, and P (λ)

(⋂n−1
i=0 D(Ai)

)
= E.

We infer that P (λ)D is dense in E. By (1.12), the first equality of (1.7) follows
immediately from (1.13).

Similarly, we obtain the other equalities of (1.7) by noting that (1.12) and the
identity

(1.14) A0,mRm(λ) = I − λnRm(λ) −
n−1∑
i=1

λiAi,mRm(λ)

imply that
‖A0,mRm(λ)‖ ≤ const for all m ∈ N .

(ii) =⇒(i).
Take u ∈ D. We choose λ ∈ (ω,∞) and set

um = Rm(λ) (P (λ)u) .

Then, by (1.7) we obtain

lim
m→∞

um = R(λ) (P (λ)u) = u,

lim
m→∞

Ak,mum = AkR(λ) (P (λ)u) = Aku,

valid for 0 ≤ k ≤ n − 1, noting (1.14).
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(i) =⇒(iii).
Clearly D is dense in E since

⋂n−1
i=0 D(Ai) is dense in E. Let u ∈ D. By assump-

tion, there exists um ∈
⋂n−1

i=0 D(Ai,m) such that (1.6) holds. From (1.10) we see
that for m ∈ N , λ > ω,

λn−1Rm(λ)um =
∫ ∞

0

e−λtS
(n−1)
n−1,m(t)umdt,

λn−1Rm(λ)um = λ−1um −
n−1∑
i=0

λi−1Rm(λ)Ai,mum

=
∫ ∞

0

e−λt

[
um −

n−1∑
i=0

∫ t

0

(t − σ)n−i−1

(n − i − 1)!
S

(n−1)
n−1,m(σ)Ai,mumdσ

]
dt.

Therefore for t ≥ 0, m ∈ N ,

(1.15) S
(n−1)
n−1,m(t)um = um −

n−1∑
i=0

∫ t

0

(t − σ)n−i−1

(n − i − 1)!
S

(n−1)
n−1,m(σ)Ai,mumdσ,

by the uniqueness theorem for Laplace transforms. By (1.11) we deduce that for
m ∈ N , λ > ω, 1 ≤ k ≤ n − 1,

λk−1Ak,mRm(λ)um =
∫ ∞

0

e−λtAk,mS
(k−1)
n−1,m(t)umdt,

λk−1Ak,mRm(λ)u = λk−n−1Ak,mum −
n−1∑
i=0

λk+i−n−1Ak,mRm(λ)Ai,mum

=
∫ ∞

0

e−λt

[
tn−k

(n − k)!
Ak,mum

−
n−1∑
i=0

∫ t

0

(t − σ)n−i−1

(n − i − 1)!
Ak,mS

(k−1)
n−1,m(σ)Ai,mumdσ

]
dt.

So for t ≥ 0, m ∈ N , 1 ≤ k ≤ n − 1,

Ak,mS
(k−1)
n−1,m(t)um =

tn−k

(n − k)!
Ak,mum(1.16)

−
n−1∑
i=0

∫ t

0

(t − σ)n−i−1

(n − i − 1)!
Ak,mS

(k−1)
n−1,m(σ)Ai,mumdσ.

Just writing S
(n−1)
n−1,m(t)u as S

(n−1)
n−1,m(t)(u−um)+S

(n−1)
n−1,m(t)um, we see by (1.5), (1.6)

and (1.15) that{
S

(n−1)
n−1,m(·)u; m ∈ N

}
is equicontinuous at each point t ∈ [0,∞).

Likewise, for every 1 ≤ k ≤ n − 1,{
Ak,mS

(k−1)
n−1,m(·)u; m ∈ N

}
is equicontinuous at each point t ∈ [0,∞),
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due to (1.16). Thus recalling (i) implies (1.7) and we can apply Lemma 1.5 to
(1.10), (1.11). This yields that for each t ≥ 0, the following limits exist:

U(t)u := lim
m→∞

S
(n−1)
n−1,m(t)u,(1.17)

Vk(t)u := lim
m→∞

Ak,mS
(k−1)
n−1,m(t)u, 1 ≤ k ≤ n − 1,(1.18)

and the convergence is uniform on bounded t-intervals. Now, combining (1.5)–(1.7),
(1.10), (1.11), (1.17) and (1.18) yields that for u ∈ D, 1 ≤ k ≤ n − 1,

‖U(t)u‖, ‖Vk(t)u‖ ≤ 2Meωt‖u‖, t ≥ 0,(1.19)

λn−1R(λ)u =
∫ ∞

0

e−λtU(t)udt, λ > ω,(1.20)

λk−1AkR(λ)u =
∫ ∞

0

e−λtVk(t)udt, λ > ω.(1.21)

The density of D indicates that U(t) and Vk(t) can be extended to all of E as
bounded linear operators, which we denote by the same symbols, and that (1.17)–
(1.21) hold for all u ∈ E. Thus, making use of Lemma 1.4 we conclude that (ACPn)
is strongly quasi-wellposed. Comparing (1.20), (1.21) with the corresponding equa-
tions in Lemma 1.4, we see that for t ≥ 0, 1 ≤ k ≤ n − 1,

(1.22) S
(n−1)
n−1 (t) = U(t), AkS

(k−1)
n−1 (t) = Vk(t).

This and (1.17), (1.18) together lead to (1.8) and (1.9).
(iii) =⇒(ii). From (1.1), (1.10) and (1.11), we have

lim
m→∞

λn−1Rm(λ)u =
∫ ∞

0

e−λtS
(n−1)
n−1 (t)udt = λn−1R(λ)u,

lim
m→∞

λk−1Ak,mRm(λ)u =
∫ ∞

0

e−λtAk,mS
(k−1)
n−1,m(t)udt = λk−1AkR(λ)u,

for u ∈ E, λ > ω, 1 ≤ k ≤ n − 1. So, (1.7) follows immediately. The proof is then
complete. �

Next, we consider a slightly different concept of wellposedness.

Definition 1.7. Let
⋂n−1

i=0 D(Ai) be dense in E. (ACPn) is said to be strongly
wellposed if (i) and (ii) of Definition (1.1) are satisfied with (1.1) and (1.2) replaced
by

Sk(·) ∈ C
(
R+;Ls(E)

)
, k = 0, . . . , n − 1,

(1.3) replaced by
Sk(·)u ∈ Ck(R+; E), u ∈ E,

and (1.4) replaced by ∥∥∥S
(k−1)
k−1 (t)

∥∥∥
L(E)

≤ Meωt, t ≥ 0,

respectively.

Remark 1.8. By [34, Theorem 1.4 (p.47) and Theorem 1.6 (p.52)], the definition of
strong wellposedness is equivalent to that in [34, Definition 1.3, p.46], and strong
wellposedness implies strong quasi-wellposedness.
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Theorem 1.9. For m ∈ N, let (ACPn)m be strongly wellposed such that

(1.23) ‖S0,m(t)‖,
∥∥∥S

(k)
k,m(t)

∥∥∥ ,
∥∥∥AkS

(k−1)
n−1,m(t)

∥∥∥ ≤ Meωt, t ≥ 0, 1 ≤ k ≤ n − 1,

where M , ω are constants independent of m. Let D be a core for [A0, . . . , An−1].
Assume that

⋂n−1
i=0 D(Ai) is dense in E and (ω,∞) ⊂ ρ(A0, . . . , An−1). Then

statement (i) or (ii) in Theorem 1.6 is equivalent to
(iii)′ (ACPn) is strongly wellposed, and for any u ∈ E, t ≥ 0,

lim
m→∞

S
(k)
k,m(t)u = S

(k)
k (t)u, 0 ≤ k ≤ n − 1,

lim
m→∞

Ak,mS
(k−1)
n−1,m(t)u = AkS

(k−1)
n−1 (t)u, 1 ≤ k ≤ n − 1.

(1.24)

Moreover, the convergence in statement (iii)′ is uniform on bounded intervals of
t ≥ 0.

Proof. (i) =⇒ (iii)′.
First, we proceed as in the proof of the implication (i) =⇒(iii) of Theorem 1.6.

Then in view of [34, Remark 2.5, p.65] and (1.10), we obtain, for m ∈ N , λ > ω,
and 1 ≤ k ≤ n − 1,

λk−1Rm(λ)Ak,mum =
∫ ∞

0

e−λt
[
S

(k−1)
k−1,m(t) − S

(k)
k,m(t)

]
umdt,

λk−1Rm(λ)Ak,mum =
∫ ∞

0

e−λt

[∫ t

0

(t − σ)n−k−1

(n − k − 1)!
S

(n−1)
n−1,m(σ)Ak,mumdσ

]
dt;

hence for t ≥ 0, m ∈ N , 1 ≤ k ≤ n − 1,[
S

(k−1)
k−1,m(t) − S

(k)
k,m(t)

]
um =

∫ t

0

(t − σ)n−k−1

(n − k − 1)!
S

(n−1)
n−1,m(σ)Ak,mumdσ.

Moreover,

lim
m→∞

λk−1Rm(λ)Ak,mum = λk−1R(λ)Aku, λ > ω, 1 ≤ k ≤ n − 1,

by (1.12) and (1.6). Accordingly, an application of Lemma 1.5 yields that for any
1 ≤ k ≤ n − 1,

(1.25) Wk(t)u := lim
m→∞

[
S

(k−1)
k−1,m(t) − S

(k)
k,m(t)

]
um

exists, uniformly on bounded intervals of t ≥ 0. Therefore, for u ∈ D, 1 ≤ k ≤ n−1,

‖Wk(t)u‖ ≤ 2Meωt‖u‖, t ≥ 0,(1.26)

λk−1R(λ)Aku =
∫ ∞

0

e−λtWk(t)udt, λ > ω.(1.27)

Since D is dense in E, Wk(t) can be extended to all of E as a bounded linear
operator, which we denote by the same symbol, (1.26) holds for all u ∈ E, and
(1.27) holds for all u ∈

⋂n−1
i=0 D(Ai). Thus (1.15)–(1.17), (1.26) and (1.27) enable

us to apply [34, Theorem 2.3, p.57], and deduce that (ACPn) is strongly wellposed.
Comparing (1.27) with the corresponding equation in [34, Remark 2.5, p.65], we
see that for t ≥ 0, 1 ≤ k ≤ n − 1,

S
(k−1)
k−1 (t) − S

(k)
k (t) = Wk(t),
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and so

(1.28) S
(k)
k (t) = S

(n−1)
n−1 (t) +

n−1∑
i=k+1

Wi(t), 0 ≤ k ≤ n − 2, t ≥ 0.

Note from (1.25) and (1.23) that as m → ∞,(
S

(k−1)
k−1,m(t) − S

(k)
k,m(t)

)
u −→ Wk(t)u, 1 ≤ k ≤ n − 1,

uniformly on bounded intervals of t ≥ 0, valid for all u ∈ E. Accordingly, (1.24)
follows from (1.28). �

2. Approximation of dynamic boundary value problems

Let E and X be Banach spaces. We study the following mixed initial boundary
value problem:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′(t) + Au(t) + Bu′(t) = 0, t ≥ 0,

x′′(t) + F0x(t) + F1x
′(t) = G0u(t) + G1u

′(t), t ≥ 0,

x(t) = Pu(t), t ≥ 0,

u(0) = u0, x(0) = x0, u′(0) = u1, x′(0) = x1.

Here and in the sequel,

A : D(A) ⊂ E → E, B : D(B) ⊂ E → E,

F0 : D(F0) ⊂ X → X, F1 : D(F1) ⊂ X → X,

G0 : D(G0) ⊂ E → X, G1 : D(G1) ⊂ E → X,

P : D(A) → X

are all linear operators. Note that the boundary condition (i.e., the second equation
in (2.1)) is of dynamical type.

As a companion of the boundary operator P, we introduce a linear operator PB

from D(B) to the quotient space X/X0 (X0 a closed linear subspace of X) satisfying
the following relation with P:

(2.2) Pu ∈ PBu, u ∈ D(A) ∩ D(B).

Setting

A :=
(

A 0
−G0 F0

)
, D (A) :=

{(
u

x

)
∈ (D(A) ∩ D(G0)) ×D(F0); x = Pu

}
,

B :=
(

B 0
−G1 F1

)
, D (B) :=

{(
u

x

)
∈ (D(B) ∩ D(G1)) ×D(F1); x ∈ PBu

}
,

y(t) :=
(

u(t)
x(t)

)
, y0 :=

(
u0

x0

)
, y1 :=

(
u1

x1

)
,
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we then transform (2.1) (with (2.2)) into an abstract Cauchy problem in E :=
E × X :

(ACP2; A, B)

{
y′′(t) + Ay(t) + By′(t) = 0, t ≥ 0,

y(0) = y0, y′(0) = y1.

We introduce below two special spaces and two operators (corresponding to A and
B):

[D(A)]P : the space D(A) equipped with the norm

‖u‖A,P := ‖u‖ + ‖Au‖ + ‖Pu‖;

[D(B)]PB
: the space D(B) equipped with the norm

‖u‖B,PB
:= ‖u‖ + ‖Bu‖ + ‖PBu‖X/X0 ;

and
A0 := A

∣∣∣
kerP

, B0 := B
∣∣∣
kerPB

.

We will use the following hypotheses:

(H1) The spaces [D(A)]P and [D(B)]PB
are complete, and P(D(A)∩D(B)) = X.

(H2) (ACP2; A0, B0) is strongly quasi-wellposed.

Lemma 2.1 ([37]). Suppose that (H1) and (H2) hold. Let E1 be a Banach space
such that

[D(A)]P ↪→ E1 ↪→ E and λ �→ (λ2 + A0 + λB0)−1 ∈ LT − L(E, E1).

If
G0 ∈ L(E1, X), G1 ∈ L(E, X), F0, F1 ∈ L(X),

then (ACP2; A, B) is strongly quasi-wellposed.

Next, we consider the inhomogeneous problem:

(2.3)

{
y′′(t) + Ay(t) + By′(t) = h(t), t ∈ [0, T ],

y(0) = y0, y′(0) = y1.

Lemma 2.2 ([37]). Suppose that the hypotheses of Lemma 2.1 hold. Let h ∈
C1([0, T ]; E), y0 ∈ D(A), and y1 ∈ D(A) ∩ D(B). Then

(1) problem (2.3) has a unique strict solution y(·) given by

(2.4) y(t) = C(t)y0 + S(t)y1 +
∫ t

0

S(t − s)h(s)ds, t ∈ [0, T ],

where C(·) and S(·) are the two propagators of (ACP2; A, B);
(2) the solution y(·) satisfies

y′(·) ∈ C([0, T ]; E1 × X),

‖y′′(t)‖ + ‖y(t)‖[D(A)] + ‖y′(t)‖[D(B)] + ‖y′(t)‖E1×X

≤ M
(
‖h‖C1([0,T ];E) + ‖y0‖[D(A)] + ‖y1‖[D(A)] + ‖y1‖[D(B)]

)
, t ∈ [0, T ],

for some constant M > 0.
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Suppose that

Am : D(A) → E, Bm : D(Bm) → E, m ∈ N,

F0,m : D(F0) → X, F1,m : D(F1) → X, m ∈ N,

G0,m : D(G0) → X, G1,m : D(G1) → X, m ∈ N

are six sequences of linear operators, where D(Bm) is independent of m ∈ N . In the
case of B �∈ L(E), we assume for simplicity that D(B1) = D(B) and let PB1 = PB .
When B ∈ L(E), we let PB1 be a linear operator from D(B1) to the quotient space
X/X1 (X1 a closed linear subspace of X) such that

Pu ∈ PB1u (u ∈ D(A) ∩ D(B1)).

For m = 1, 2, 3, . . . , we put

Am :=
(

Am 0
−G0,m F0,m

)
, D (Am) := D(A),

Bm :=
(

Bm 0
−G1,m F1,m

)
,

D (Bm) :=
{(

u

x

)
∈ (D(B1) ∩ D(G1)) ×D(F1); x ∈ PB1u

}
,

A0,m = Am

∣∣∣
kerP

, B0,m = Bm

∣∣∣
kerPB1

.

By Sm(·) (resp. S(·), SE,m(·), SX,m(·)) we denote the second propagator (if it exists)
of (ACP2; Am, Bm) (resp. (ACP2; A, B), (ACP2; A0,m, B0,m), (ACP2; F0,m, F1,m)).

Theorem 2.3. Let the conditions of Lemma 2.1 hold. Assume that

(i) for m ∈ N , [D(Am)]P and [D(Bm)]PB1
are complete, and P(D(A)∩D(B1))

= X;
(ii) for m ∈ N , ((ACP2)m; A0,m, B0,m) is strongly quasi-wellposed such that

(2.5)
∥∥S′

E,m(t)
∥∥
L(E)

, ‖B0,mSE,m(t)‖L(E) , ‖SE,m(t)‖L(E,E1) ≤ Meωt, t ≥ 0,

M , ω being constants independent of m;
(iii) for m ∈ N , [D(Am)]P ↪→ E1, and

F0,m, F1,m ∈ L(X), G0,m ∈ L(E1, X), G1,m ∈ L(E, X);

(iv) as m → ∞,

Amu → Au (u ∈ D(A)), Bmu → Bu (u ∈ D(B1)),

F0,mx → F0x (x ∈ X), F1,mx → F1x (x ∈ X),

G0,mu → G0u (u ∈ E1), G1,mu → G1u (u ∈ E).
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Then, for all y ∈ E,

S
′
m(t)y → S

′(t)y, BmSm(t)y → BS(t)y,

Am

∫ t

0

S(σ)ydσ → A

∫ t

0

S(σ)ydσ,

as m → ∞, uniformly on bounded intervals of t ≥ 0.

Proof. By the third estimate in (2.5), one knows that for m ∈ N ,

λ �→ RE,m := (λ2 + A0,m + λB0,m)−1 ∈ LT − L(E, E1).

It follows from Lemma 2.1 that (ACP2; A, B) and (ACP2; Am, Bm) (m ∈ N) are
strongly quasi-wellposed.

Take µ = ω + 1. For each x ∈ X and m = 2, 3, 4, . . . , we have

Dµ,mx − Dµ,1x ∈ ker(P),

where Dµ,m :=
(
P
∣∣∣
ker(µ2+A+µB)

)−1

. This implies that

(µ2 + Am + µBm)Dµ,1x

= (µ2 + Am + µBm)(Dµ,mx − Dµ,1x)

= (µ2 + A0,m + µB0,m)(Dµ,mx − Dµ,1x).

Therefore, for x ∈ X, m = 2, 3, 4, . . . ,

(2.6) Dµ,mx = Dµ,1x + RE,m(µ)(µ2 + Am + µBm)Dµ,1x.

It is clear from hypothesis (iv) and (2.5) that

‖F0,m‖L(X), ‖F1,m‖L(X), ‖G0,m‖L(E1,X), ‖G1,m‖L(E,X) ≤ const,(2.7)

‖AmDµ,1‖L(X,E), ‖BmDµ,1‖L(X,E), ‖G0,mDµ,1‖L(X,E) ≤ const,(2.8)

‖RE,m(µ)‖L(E), ‖B0,mRE,m(µ)‖L(E), ‖G0,mRE,m(µ)‖L(E) ≤ const,(2.9)

for all m ∈ N . Combining (2.6), (2.8) and (2.9) yields that for m ∈ N ,

(2.10) ‖Dµ,m‖L(X,E), ‖BmDµ,m‖L(X,E), ‖G0,mDµ,m‖L(X,E) ≤ const.

Moreover, it is not hard to verify by (2.7) that

(2.11) ‖S′′
X,m(t)‖ ≤ M1e

ω1t, t ≥ 0, m ∈ N,

where M1, ω1 are constants.
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We know from the proof of [37, Theorem 3.5] that for λ large enough,∫ ∞

0

S
′
m(t)ydt =

(
λRE,m(λ) λDλ,mRX,m(λ)

0 λRX,m(λ)

)

[
I −

(
0 0

(G0,m + λG1,m)RE,m(λ) (G0,m + λG1,m)Dλ,mRX,m(λ)

)]−1

y

=
∫ ∞

0

e−λt

⎡
⎣H0,m(t) + H1,m(t) ∗

⎛
⎝ ∞∑

j=1

[H0,m(t)]∗j

⎞
⎠
⎤
⎦ ydt,

y ∈ E, m ∈ N,(2.12)

where ∗j indicates the j-th convolution power, RX,m(λ) := (λ2 + F0 + λF1)−1, and
for t ≥ 0,

H0,m(t) :=

(
S′

E,m(t) J ′
m(t)

0 S′
X,m(t)

)
,

H1,m(t) :=

(
0 0

G0,mSE,m(t) + G1,mS′
E,m(t) G0,mJm(t) + G1,mJ ′

m(t)

)
,

Jm(t) := Dµ,mSX,m(t) − SE,m(t)Dµ,m

+ µ

∫ t

0

SE,m(t − s)(Bm + µ)Dµ,mSX,m(s)ds

−
∫ t

0

SE,m(t − s)BmDµ,mSX,m(s)ds

−
∫ t

0

SE,m(t − s)Dµ,mS′′
X,m(s)ds.

According to (2.5), (2.7), (2.10) and (2.11), there exist constants M2 > M + M1,
ω2 > ω + ω1 such that

‖Hi,m(t)‖ ≤ M2e
ω2t, t ≥ 0, m ∈ N.

This implies the existence of constants M3 > M2, ω3 > ω2 such that for all m ∈ N,

(2.13) ‖S′
m(t)‖ ≤ M3e

ω3t, t ≥ 0

due to (2.12). Similarly, we obtain

(2.14) ‖BmSm(t)‖ ≤ M4e
ω4t, t ≥ 0, m ∈ N,

with some constants M4, ω4 > 0. Finally, hypothesis (iv) ensures that

(2.15) lim
m→∞

Amy = Ay, lim
m→∞

Bmy = By

for y ∈ D(A) ∩ D(B1). Note that for m ∈ N ,

(2.16) D(Am) ∩ D(Bm) = D(A) ∩ D(B1) = D(A) ∩ D(B),
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since

D(B1)

⎧⎨
⎩

= D(B) if B �∈ L(E),

⊃ D(A) if B ∈ L(E) (which implies D(B) = E).

Moreover, we have

(2.17) Am

∫ t

0

Sm(σ)ydσ = y − S
′
m(t)y − BmSm(t)y, t ≥ 0, y ∈ E,

for m ∈ N . Thus, according to (2.13)–(2.17) we obtain the conclusions by an
application of Theorem 1.6. �

As a consequence of Theorem 2.3 and Lemma 2.2 we have the following result.

Theorem 2.4. Assume that the conditions of Theorem 2.3 are satisfied. For m ∈
N , let h, hm ∈ C1([0, t0]; E), y0, y0,m ∈ D(A), y1, y1,m ∈ D(A) ∩ D(B) such that

(2.18) ‖hm − h‖L1((0,t0);E) → 0, y0,m → y0, y1,m → y1,

as m → ∞. Then, the solution sequence ym(t) of⎧⎨
⎩

y′′
m(t) + Amym(t) + Bmy′

m(t) = hm(t), t > 0,

ym(0) = y0,m, y′
m(0) = y1,m

converges to the solution y(t) of (2.3) uniformly for t ∈ [0, t0].

To illustrate Theorem 2.4, we present the following example.

Example 2.5. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω.
We consider a sequence of mixed initial-boundary value problems for structurally
damped plate-like equations whose boundary conditions are of dynamic natures:

(2.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t um + ∆2um − ρm∆∂tum = fm, in [0, t0] × Ω,

∂2
t um =

〈
∂um

∂ν
, vm

〉
L2(∂Ω)

wm, in [0, t0] × ∂Ω,

∆um

∣∣∣
∂Ω

= 0, in [0, t0] × ∂Ω,

um(0, ·) = ϕ0, ∂tum(0, ·) = ϕ1, in Ω,

where m ∈ N ∪ {0}, ∂
∂ν is the outward normal derivative on ∂Ω,

ϕi ∈ H2(Ω) with ∆ϕi ∈ H2(Ω) and ∆ϕi

∣∣∣
∂Ω

= 0 (i = 0, 1),

{vm}m∈N0 ⊂ L2(∂Ω), {wm}m∈N0 ⊂ H2(∂Ω),

{fm}m∈N0 ⊂ C1([0, t0]; L2(Ω)), {ρm}m∈N ⊂ (0,∞)

such that

lim
m→∞

‖vm − v0‖L2(∂Ω) = 0, lim
m→∞

‖wm − w0‖H2(∂Ω) = 0,

lim
m→∞

‖fm − f0‖L2((0,t0);H2(Ω)) = 0, lim
m→∞

ρm = ρ0 := 0.

Take

E = L2(Ω), E1 = H2(Ω), X = X0 = H
3
2 (∂Ω), B = 0,
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and for m ∈ N ,

Bm = −ρm∆ with D(Bm) = H2(Ω),

A = Am = ∆2 with D(A) = D(Am)

= {ϕ ∈ H2(Ω); ∆ϕ ∈ H2(Ω), ∆ϕ
∣∣∣
∂Ω

= 0},

G0ϕ =
〈

∂ϕ

∂ν
, v0

〉
L2(∂Ω)

w0,

G0,mϕ =
〈

∂ϕ

∂ν
, vm

〉
L2(∂Ω)

wm for ϕ ∈ D(G0) = D(G0,m) := D(A),

Pϕ = ϕ
∣∣∣
∂Ω

for ϕ ∈ D(P) := D(A),

PBϕ = X for ϕ ∈ D(PB) := E,

PB1 = P, F0 = 0, F1 = 0, G1 = 0, F0,m = 0, F1,m = 0, G1,m = 0.

From [34, p.232] one can see that for t ≥ 1, m ∈ N ,

‖S′
E,m(t)‖L(E), ‖B0,mSE,m(t)‖L(E), ‖SE,m(t)‖L(E) ≤ 1.

Also the other conditions of Theorem 2.4 are satisfied (cf. [37, Example 5.5]).
Therefore, if um(·) (m ∈ N ∪ {0}) is the solution of (2.19), then

lim
m→∞

sup
t∈[0,t0]

‖um(t) − u0(t)‖L2(Ω) = 0.
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