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FROBENIUS DISTRIBUTIONS OF DRINFELD MODULES
OVER FINITE FIELDS

ERNST-ULRICH GEKELER

Abstract. We express the weighted class number of Drinfeld A-modules of
rank two with given characteristic polynomial over the finite field Fp = A/p

(p ∈ Spec A, where A = Fq [T ]) as an infinite product of local terms. Some
auxiliary results of independent interest about characteristic polynomials of
Drinfeld modules are given.

0. Introduction

The topic of this article is the variation of characteristic polynomials of Drinfeld
modules of rank two over finite fields.

Let F = Fq be the finite field with q elements, A the polynomial ring F[T ] and
L a finite field provided with a structure of an A-algebra. Any Drinfeld A-module
φ over L (we always suppose that the rank equals two) gives rise to a Frobenius
endomorphism F = FL, which satisfies a quadratic equation F 2 − aF + b = 0 with
a, b ∈ A. The coefficients of the characteristic polynomial Pφ,L(X) = X2−aX+b of
F (or φ) are subject to restrictions similar to those of the characteristic polynomials
of Frobenius endomorphisms of elliptic curves over finite fields. For example, Pφ is
a square or irreducible, in which case its splitting field is “imaginary quadratic”,
i.e., inert or ramified at the place at infinity of K = quot(A).

As for elliptic curves, natural questions arise, e.g.:
(A) Which polynomials of the given shape actually come from Drinfeld mod-

ules?
(B) How many φ over L are there such that Pφ,L(X) = X2 − aX + b, a and b

being given?
Whereas (A) is implicitly or explicitly answered in [5], [9], [19], the situation is more
involved for (B). On the one hand, (B) is related to class numbers in imaginary
quadratic orders over A, and an explicit formula may be given via the analytic
class number formula. This is worked out in the case where L is an A-prime field
Fp = A/p with a prime ideal p of A; see (6.19), which allows fast calculation of the
number in question. On the other hand, that formula fails to explain the variation
of the corresponding class numbers with the coefficients a, b.

Our main result is Theorem 8.17, which expresses the weighted class number
h∗(a, b, p) of Drinfeld modules φ over Fp with Pφ,Fp

(X) = X2−aX +b as a product
of l-local contributions vl(a, b), where l runs through the places of K. For l finite,
vl(a, b) has an intuitive description as a continuous local density function on Al×Al
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(Definition 7.1). We may thus state that h∗(a, b, p) is “explained” by the frequencies
of matrices M ∈ Mat(2, Al) with the given characteristic polynomial X2 − aX + b,
l ranging through the finite places. The factor v∞(a, b) (which corresponds to the
Sato-Tate function 2

π

√
1 − a2/4b) is of a different nature; its shape distinguishes

the cases where char(F) is odd or even.
Theorem 8.17 is analogous with Theorem 5.5 of [11], a similar result for elliptic

curves over finite prime fields Fp. It is worth noting that the result for elliptic curves
was motivated by observations from extensive calculations with Drinfeld modules
(see [14]). On the other hand, the results of [11] led to considering the present
factors vl(a, b), and to the precise shape of the formula in Theorem 8.17.

Besides the intrinsic interest of these problems and, once again, the flow of infor-
mation (in both directions) between “Drinfeld modules of rank two” and “elliptic
curves”, there are connections to Sato-Tate-like questions, and to the construction
of curves over finite fields with many rational points, in that the quantities that
appear in our formulas also govern the geometry of certain Drinfeld modular curves
(see [7], [17]).

It is obvious that most of the questions addressed (and some of the methods
used and results obtained) in this paper may be generalized to arbitrary Drinfeld
modules without any restriction on the rank or the nature of the base ring A. We
restricted our approach to the present setting, rich enough to show all facets of
the general problem, in order to avoid technical difficulties that would obscure the
overall picture.

We now briefly describe the contents of the different sections. After assembling
the framework in section 1, we study in section 2 the behavior of Pφ,L under twists
of φ and automorphisms of A, and present formulas for the absolute term b of Pφ,L

(Theorem 2.11) and the leading coefficient of the Frobenius trace a (Proposition
2.14, due to F. Jung [14]). Theorem 2.11 appears, in much greater generality, in
[13]; we fill a gap in the argument loc. cit. In section 3 we describe how Pφ,L can
be calculated in practice, which is more involved than the corresponding problem
for elliptic curves. A highly efficient procedure, based on a Deligne-like congru-
ence between Hasse invariants and Eisenstein series, is given in (3.7). It works
for prime fields L = Fp only, an assumption maintained from now on. In sec-
tion 4 we determine the ratio between the numbers of φ/L with Frobenius traces
of maximal/non-maximal degree (Theorem 4.2). We show in Theorem 5.2: For
d = deg p ≤ 3, the numbers d(a, p) (resp. h(a, p)) of Drinfeld modules (resp. of
isomorphism classes of Drinfeld modules) over Fp with Frobenius trace a depend
only on d and the degree of a.

In section 6, we relate h∗(a, b, p) with class numbers of imaginary quadratic orders
over A. Section 7 is devoted to the study of vl(a, b) for finite l. We give an explicit
expression in Theorem 7.8 and Corollary 7.9 and restrict the proof to the (more
elaborate) case of char(F) = 2, since the proof given in [11] for a similar assertion
about elliptic curves easily adapts to the present case of odd characteristics. In
section 8 we determine some ingredients of earlier formulas that are associated
with the polynomial X2 − aX + b, which leads to the final result, Theorem 8.17.
As usual, the case of characteristic 2 is the most involved.

Parts of this paper are motivated from the calculations performed in [14]. Along
with the author of that thesis, I would like to express my gratitude to Max Gebhardt
and Andreas Schweizer for helpful discussions.
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1. Background

1.1. Throughout, we use the following notation:

F = Fq, a finite field with q elements, of characteristic p,

A = F[T ], the polynomial ring over F in an indeterminate T,
with degree function “deg”,

K = F(T ), the quotient field of A,

K∞ = F((T−1)), the completion of K at the infinite place,
provided with its normalized absolute value “| . |”,
where |T | = q.

We write sgn(a) ∈ F for the leading coefficient of an element a of A, and extend
this notation to 0 �= a ∈ K∞.

L = a field provided with a structure γ : A → L as
an A-algebra; thus L is an extension either of K or of
some Fp, in which case we write
p = charA(L) for its A-characteristic. Here

Fp = A/p with a (maximal) prime ideal p of A,
of degree d = deg p.

By abuse of notation, we also write p for the monic irreducible polynomial that
generates p. We identify the copies of F inside A and Fp through the natural map.
Places l of K either correspond to prime ideals of A, in which case we call l finite
and use the same symbol l for “place” and “prime ideal”, or l = ∞, the infinite
place. The symbol τ = τq denotes the additive polynomial Xq, regarded as an
F-linear endomorphism of the additive group scheme Ga over L. Hence the ring

EndL,F(Ga) = {
∑

aiX
qi

| ai ∈ L}

of all F-linear endomorphisms of Ga/L will be regarded as the skew polynomial
ring L{τ} = {

∑
aiτ

i | ai ∈ L} in the non-commutative indeterminate τ with
commutation rule τc = cqτ (c ∈ L).

1.2. A Drinfeld A-module over L (see e.g. [12], [21], [16]) is the A-module structure
on Ga/L given through a ring homomorphism

φ : A −→ EndL,F(Ga)
a �−→ φa

subject to
(i) φ is F-linear,
(ii) φa = γ(a) +

∑
i≥1 �i(a)τ i for a ∈ A.

It is uniquely determined through

φT = γ(T ) +
∑

1≤i≤r

�i(T )τ i,

which may be prescribed arbitrarily. We always assume that �r(T ) �= 0, where r
is the rank of φ. In case r = rank(φ) = 2 (essentially the only case treated in this
article), we write φT = γ(T ) + gτ + ∆τ2, ∆ �= 0, and briefly φ = (g, ∆).
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A morphism from the Drinfeld module φ/L to the Drinfeld module ψ/L is some
u ∈ L{T} such that uφa = ψau for a ∈ A (it suffices to require this for a =
T ). Similarly, we define endo-, iso-, and automorphisms. The endomorphism ring
EndL(φ) of a Drinfeld module φ over L of rank r > 0 has the following properties.

1.3. Properties.

(i) It contains the subring A
∼=−→ φ(A) ↪→ L{T}.

(ii) It is a free A-module of dimension a divisor of r2 ([4], [2]).
(iii) EndL(φ) ⊗A K∞ is a division algebra over K∞ (loc. cit.).

We define the absolute invariant j = j(φ) of a rank-two Drinfeld module φ = (g, ∆)
as j = gq+1/∆. Then we have the following easily proved criterion.

1.4. Two rank-two Drinfeld modules φ = (g, ∆) and φ′ = (g′, ∆′) over L are iso-
morphic if and only if there exists c ∈ L∗ such that g′ = cq−1g, ∆′ = cq2−1∆. This
is also equivalent with

(i) j(φ) = j(φ′) and
(ii) g′/g is a (q − 1)-th power in L (if j = j(φ) = j(φ′) �= 0) and

∆′/∆ is a (q2 − 1)-th power in L (if j = 0).

Further, the automorphism group of φ = (g, ∆) over L is

(1.5) AutL(φ) =

⎧⎨
⎩

F∗ if j �= 0 or L doesn’t contain F(2),

F(2)∗ otherwise.

Here F(2) is the unique quadratic extension of F contained in the algebraic closure
L of L.

From now on, if not stated otherwise, we assume that L is an extension of degree
m of Fp, and Drinfeld modules have rank two. Thus

[L : F] = [L : Fp] · [Fp : F] = m · d =: n.

From (1.4) and (1.5) we get:

1.6. Proposition. (i) The number of (rank-two) Drinfeld modules over L is
qn(qn − 1).

(ii) The number of isomorphism classes of such modules is
(qn − 1)(q − 1) + #(L∗/L∗q2−1). �

Since #(L∗/L∗q2−1) = q2 − 1 (resp. q − 1) if n is even (resp. odd), we also find:

1.7. Corollary.
∑

1
#AutL(φ) = qn = #(L), where the sum is over the isomorphism

classes of φ/L. �

As φ = (g, ∆) is defined over L, the polynomials φa commute with the Frobenius
element F = FL = τn of L, i.e., F ∈ EndL(φ). In view of (1.3), F must satisfy
a polynomial equation over A, so it has a uniquely determined monic minimal
polynomial Mφ,L(X) ∈ A[X].

(Note that we have identified the subring φ(A) of L{τ} with A.) We have the
following result, which is part of the far-reaching analogy between elliptic curves
and Drinfeld modules of rank two.
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1.8. Theorem ([9]). Let φ be a rank-two Drinfeld module over L, where
[L : Fp] = m, with Frobenius endomorphism F = FL. There exists a polyno-
mial Pφ,L(X) = X2 − aX + b ∈ A[X], the characteristic polynomial of φ, with the
following properties:

(i) Pφ,L(X) = Mφ,L(X) or Mφ,L(X)2. In particular, Pφ,L(F ) = 0.
(ii) The ideal (b) equals pm; thus b = ε(φ)pm with ε(φ) = sgn(b) ∈ F∗.
(iii) Mφ,L is irreducible over K∞. In particular, 2 deg a ≤ deg b = n.

Note that Pφ,L(F ) = 0 means that we have the equation

(1.9) F 2 − φaF + φb = 0

in L{τ}. The quantities a = a(φ) and b = b(φ) are called the Frobenius trace and
norm, respectively, of φ. Two Drinfeld modules φ and ψ are isogeneous if they are
connected through a non-zero morphism. Being isogeneous is in fact symmetric
and therefore an equivalence relation.

1.10. Theorem ([9]). Let φ and ψ be (rank-two) Drinfeld modules over L. The
following are equivalent:

(i) φ and ψ are isogeneous;
(ii) EndL(φ) ⊗A K and EndL(ψ) ⊗A K are isomorphic K-algebras;
(iii) Mφ,L = Mψ,L;
(iv) Pφ,L = Pψ,L.

We aim to study

(1.11) h(a, b, L) =

⎧⎪⎨
⎪⎩

number of isomorphism classes of
Drinfeld modules φ over L with
Pφ,L(X) = X2 − aX + b

and its variation with a and b ∈ A subject to the conditions given by (1.8). Theorem
8.17 yields a satisfactory description at least in the case where L = Fp, a “prime
A-field”.

1.12. Remarks. (i) (1.8) and (1.10) are mere special cases of much more general
results, valid for arbitrary ranks r and Drinfeld rings A not necessarily
polynomial; see [9].

(ii) Pφ,L(X) is the characteristic polynomial of F in the representations of
EndL(φ) in the various v-adic Tate modules Tv(φ) of φ, which explains the
name (loc. cit.).

(iii) Pφ,L = Mφ,L is the generic case, Pφ,L = M2
φ,L occurs only if φ is supersin-

gular (loc. cit) and m = [L : Fp] is even.

2. Properties of the characteristic polynomial

As before, φ = (g, ∆) is a rank-two Drinfeld module over the finite A-field L,
[L : Fp] = m, #(L) = qn, n = md. We let N = NL

F
be the norm map from L to

F = Fq. As results from (1.4), the L-forms of φ (i.e., Drinfeld modules φ′/L which
become isomorphic with φ over the algebraic closure L) are the modules

(2.1) φ(c) = (cg, cq+1∆) if j �= 0, i.e., g �= 0,
φ(c) = (0, c∆) if j = 0
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with c ∈ L∗, where the L-isomorphism type of φ(c) depends on c (mod L∗q−1) or
c (mod L∗q2−1), respectively.

2.2. Proposition. Let φ have characteristic polynomial Pφ,L(X) = X2 − aX + b
and invariant j(φ) �= 0. Then

Pφ(c),L(X) = X2 − ν−1aX + ν−2b,

where ν = N(c).

Proof. Choose a (q − 1)-th root ζ of c and put L′ = L(ζ). Then φT ζ = ζφ
(c)
T , so

ζ is an isomorphism, defined over L′, from φ(c) to φ. In particular, φaζ = ζφ
(c)
a

for arbitrary a ∈ A. The ring isomorphism φa �−→ φ
(c)
a = ζ−1φaζ from φ(A) to

φ(c)(A) extends to an isomorphism ( )(c) : f �−→ f (c) = ζ−1fζ from EndL(φ) =
centralizer of φ(A) in L{τ} to End(φ(c)), and maps the Frobenius F = τn to
ζ−1Fζ = ζqn−1F = νF . Applying ( )(c) to (1.9) yields (νF )2−φ

(c)
a +φ

(c)
b = 0; thus

F 2 − φ
(c)
a/νF + φ

(c)
b/ν2 = 0. �

The behavior of Pφ,L under twists φ −→ φ(c) is slightly more complicated if
j(φ) = 0. Since it is inessential for our purposes, its elementary study will be
omitted.

An element σ of Gal(L|Fp) may be applied to the coefficients of φ and thereby
yields a new Drinfeld module φ(σ) over L. It is obvious that

(2.3) Pφ(σ),L = Pφ,L

holds. Another invariance property of Pφ,L results from the existence of non-trivial
F-automorphisms on A. Viz, let G = {

(
u v
0 1

)
| u, v ∈ F, u �= 0} be the affine group

over F. It acts on A through substitutions:

fα(T ) = f(α(T )), f ∈ A, α =
(
u v
0 1

)
,

α(T ) = uT +v. Let L be an extension of Fp, and for α ∈ G, choose an isomorphism
αL : L −→ L′ of F-algebras which makes the diagram

(2.4)
A −→ Fp ↪→ L

α ↓ ↓ αL ↓
A −→ Fp′ ↪→ L′

commutative. Here p′ is the prime pα, and the middle vertical arrow is a (mod
p) �−→ aα(mod pα). Via αL we may push forward a Drinfeld module φ = (g, ∆)
from L to a module φα = (gαL , ∆αL) on L′. Now αL is not unique (given m =
[L : Fp], there are m choices of αL), but the characteristic polynomial of φα will be
independent of the choice made, due to (2.3). In fact:

2.5. Proposition. If Pφ,L(X) = X2 − aX + b, then Pφα,L(X) = X2 − aαX + bα.

Proof. We extend αL to an isomorphism of L{τ} with L′{τ} by αL(τ ) = τ and find
the identity φα ◦ α = αL ◦ φ of ring homomorphisms. Applying αL to (1.9) we get

0 = αL ◦ F 2 − αL ◦ φaF + αL ◦ φb

= F 2 − (φα ◦ α)aF + (φα ◦ α)b

= F 2 − φα
aαF + φα

bα .

�
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2.6. We next want to describe the coefficient ε(φ) = sgn(b) ∈ F∗ that determines
the absolute term of PL,φ(X). We need some preparations. For w1, . . . , wk in the
algebraic closure L of L, the Moore determinant (see [12] sect. 1.3) is defined as

M(w1, . . . , wk) = det

⎛
⎜⎜⎜⎝

w1 . . . wk

wq
1 . . . wq

k
...

wqk−1

1 . . . wqk−1

k

⎞
⎟⎟⎟⎠ .

Its crucial properties are:

(2.7) M(C

⎛
⎜⎝

w1

...
wk

⎞
⎟⎠) = det(C)M(w1, . . . , wk)

for each k × k-matrix C over F = Fq.

2.8. Let W be an F-subspace of dimension k of L, with basis {w1, . . . , wk}. Then

δ(W ) :=
∏

0�=w∈W

w = (−1)kM(w1, . . . , wk)q−1.

Here (2.7) is obvious since w �−→ wq is F-linear, and (2.8) is Corollary 1.3.8 of [12].

2.9. Proposition. Let L have degree n over F, and let W be a finite-dimensional
F-subspace of L stable under the map F : x �−→ xqn

given by the Frobenius of L.
With δ(W ) as in (2.8), we have

detF(F |W ) = NL
F

((−1)dim W δ(W )).

Proof. Let C be the matrix of F |W w.r.t. a basis {w1, . . . , wk} of W . Then on the
one hand,

M(F

⎛
⎜⎝

w1

...
wk

⎞
⎟⎠) = M(C

⎛
⎜⎝

w1

...
wk

⎞
⎟⎠) = det(C)M(w1, . . . , wk)

= detF(F |W )M(w1, . . . , wk);

on the other hand, that expression equals M(w1, . . . , wk)qn

. Therefore, and by
(2.8),

detF(F |W ) = M(w1, . . . , wk)qn−1 = N((−1)kδ(W )). �

2.10. Recall that the (q − 1)-th power residue symbol {a
p
} for a ∈ A is defined as

the unique element of F that satisfies the congruence

{a

p
} ≡ a(qd−1)/(q−1)(mod p),

where d = deg p. It is extended by linearity to arbitrary ideals b instead of b = p

prime. If b is a generator of b, we also write {a
b } for {a

b
}; note that {a

b } ignores
sgn(b). Then for two coprime elements a and b of A, the following reciprocity law
holds:

{a

b
}{ b

a
}−1 = (−1)deg a·deg bsgn(a)deg bsgn(b)−deg a.

See [16, Ch. 3] for a proof, or [15, Theorems 9.3 and 5.4] for a generalization to
arbitrary function fields K.
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2.11. Theorem (see also [13]). With notation as before, the absolute term b of
Pφ,L(X) is b = ε(φ)pm with

ε(φ) = (−1)nN(∆)−1.

Proof. Without restriction, p �= (T ); otherwise we replace T by T ′ = T + 1. Then
W := {x ∈ L | φT (x) = 0} is a two-dimensional F-space stable under F = τn, and

(1) detF(F |W ) = { b

T
}.

To prove the assertion, we calculate the determinant in a different manner. The
polynomial

∆−1φT (X) = Xq2
+ (g/∆)Xq + (γ(T ))/∆)X

equals
∏

w∈W (X − w), so δ(W ) = γ(T )/∆. Referring to (2.9), we have

(2) detF(F |W ) = N(γ(T )/∆).

Since γ(T ) ∈ Fp, its norm N(γ(T )) is

(3)
NL

F
(γ(T )) = N

Fp

F
(γ(T ))m = γ(T (qd−1)/(q−1))m

= {T
p
}m = {T

b },
as pm = (b). Combining (1), (2), and (3) yields

(4) { b

T
}{T

b
}−1 = N(∆)−1.

Together with (2.10), and taking deg b = n into account, we find N(∆)−1 =
(−1)n sgn(b). �

We conclude this section with some results about the term of maximal possible
degree in the Frobenius trace a of φ/L.

Given φ = (g, ∆), we write the polynomial φT i as

(2.12) φT i =
∑

0≤j≤2i

fi,jτ
j , fi,j ∈ L.

Then fi,0 = γ(T i), f1,1 = g, f1,2 = ∆, and from φT i+1 = φT iφT = φT φT i we derive
the recursions

fi+1,j = γ(T )qj

fi,j + gqj−1
fi,j−1 + ∆qj−2

fi,j−2

= γ(T )fi,j + gfq
i,j−1 + ∆fq2

i,j−2,

where fi,j = 0 if j < 0. It is straightforward to show that fi,j is an isobaric
expression of weight qj −1 in g and ∆ (with weights q−1 and q2−1, respectively),
and that

(2.13)
fi,2i = ∆(q2i−1)/(q2−1),

fi,2i−1 = ∆(q2i−1)/(q2−1)
∑

0≤j≤i−1 gq2j

∆−(q2i−1+q2j)/(q+1)

hold.

2.14. Proposition (see [14]). Let a =
∑

0≤i≤[n/2] aiT
i be the Frobenius trace of

φ/L, φ = (g, ∆).
(i) For n even, let F(2) be the unique quadratic extension of F in L. Then

an/2 = TrF
(2)

F
(NL

F(2)(∆)−1).
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(ii) For n odd, we have

a(n−1)/2 = −N(g)−1TrL
F
(j(φ)(q

n−q)/(q2−1)+1) if g �= 0, and
a = 0 if g = 0.

Proof. (i) Equating the coefficients of τ2n in (1.9), we find

1 − an/2fn/2,n + ε(φ)fn,2n = 0.

With the values for fi,2i and ε(φ) provided by (2.13) and (2.11), we solve for an/2,
which yields the stated result.

(ii) a = 0 for g = 0 is obvious, since F 2 and φb involve only even terms in τ ,
whereas φaF is an “odd” polynomial in τ if a �= 0. Let g �= 0. By (2.2), it suffices to
prove the assertion for g = 1 or, equivalently, j = ∆−1. We equate the coefficients
of τ2n−1 in (1.9), which gives

−a(n−1)/2f(n−1)/2,n−1 + ε(φ)fn,2n−1 = 0.

Solving for a(n−1)/2 and taking into account that

∆(q2n−1)/(q2−1) = ∆(qn−1)/(q−1) = N(∆)

since n is odd, we first find

a(n−1)/2 = −∆−(qn−1−1)/(q2−1)
∑

0≤i≤n−1

∆−(q2n−1+q2i)/(q+1).

Let ei := qn−1−1
q2−1 + q2n−1+q2i

q+1 be the exponent of the i-th term in the above sum of
∆−1 = j(φ), and let e′i = [(qn − q)(q2 − 1) + 1]qi be the exponent of

TrL
F
(j(φ)(q

n−q)/(q2−1)+1) = −
∑

0≤i<n

j(φ)[(q
n−q)/(q2−1)+1]qi

,

0 ≤ i < n.
Note that e′i is defined by the same formula for each i ≥ 0 and is periodic

(mod qn) with period n. A straightforward calculation reveals the congruence

ei ≡ e′2i−1+n(mod qn − 1),

valid for 0 ≤ i < n, which yields the assertion in view of the oddness of n. �

2.15. Remarks. (i) Like (1.8) and (1.10), the formula (2.11) for ε(φ) holds in much
greater generality; see [13, Thm. 3.1]. Our proof follows essentially Hsia and Yu’s,
except for the use of the Moore determinant, which replaces the argument loc. cit.
p. 266.

(ii) Closed formulas similar to (2.14), but of increasing complexity, may be
worked out for other coefficients ai of the Frobenius trace a. Also, (2.14)(i) is
a special case of [13, Thm. 5.1], whereas (2.14)(ii) has first been given in [14].

3. How to find Pφ,L

Keeping the setting and notation of the last section, we sketch how to deter-
mine Pφ,L(X) in practice. Recall that finding the characteristic polynomial of the
Frobenius of an elliptic curve over a finite field L amounts to finding the number of
solutions of a defining equation over L. This is very simple theoretically and also
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algorithmically, provided L is not too large. In the absence of simplifying assump-
tions (as e.g. in (3.7)), the calculation of Pφ,L(X) is much more involved. Viz, the
equation (1.9), i.e.,

(3.1) τ2n − φaτn + ε(φ)φpn = 0

is equivalent with the system of linear equations for the [n/2] + 1 unknown coeffi-
cients ai ∈ F of a =

∑
aiT

i described below. Write∑
0≤i≤n=dm

piT
i (pi ∈ F, pn = 1)

for the monic generator pm(T ) of the ideal pm. With fi,j ∈ L as in (2.12), (3.1)
becomes

(3.2) τ2n −
∑

i≤n/2

ai

∑
j≤2i

fi,jτ
j+n + ε(φ)

∑
i≤n

∑
j≤2i

pifi,jτ
j = 0.

Note that the left hand side is divisible by τn, and so (3.1) is equivalent with the
system of n + 1 equations

(3.3) −
∑

0≤i≤n/2

aifi,j−n + ε(φ)
∑

j/2≤i≤n

pifi,j =
{

−1, j = 2n
0, j < 2n

for the unknowns a0, . . . , a[n/2], for n ≤ j ≤ 2n. Re-indexing the coefficients of the
ai shows that

• the j-th equation in (3.3) is redundant, where

j = 2n − 1, 2n − 3 , . . . , n + 1 if n is even,
j = 2n, 2n − 2 , . . . , n + 1 if n is odd;

• the remaining system (which consists of [n
2 ] + 1 equations) is triangular

with diagonal coefficients fi,2i, i = [n/2], [n/2] − 1, . . . , 1, 0.
As all the fi,2i are different from zero, we may recursively solve for the ai, in

decreasing order. Although the solutions ai belong to F, calculations must be
performed in the larger field L. To conclude, calculating the polynomial Pφ,L(X)
requires:

• the determination of ε(φ) ∈ F, which is achieved by (2.11);
• the determination of the coefficients pi ∈ F of pm(T ) (which are independent

of φ);
• the determination of the fi,j ∈ L (which do depend on φ);
• the solution of a triangular system of [n/2] + 1 linear equations over L,

where n = d · m = [L : F].

3.4. In what follows, we describe a much simpler procedure, which however only
works if φ is defined over the “prime field” Fp.

Let φ be a Drinfeld module over L, of A-characteristic p, and write

φp =
∑

0≤i≤2d

hi(φ)τ i.

Then hi vanishes for i < d (as can be seen e.g. from (1.9)). The Hasse invariant
H(φ) := hd(φ) of φ satisfies

(3.5) γ(a) = ε(φ)NL
Fp

(H(φ));
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see [6, Lemma 5.2]. As a consequence, the Frobenius trace a of φ is fully determined
through H(φ) if L = Fp, since then deg a ≤ n/2 = d/2, and a is determined by its
residue class γ(a) modulo p. On the other hand, the Hasse invariant satisfies the
“Deligne congruence”

(3.6) H(φ) ≡ gd(φ) (mod p),

where gk(φ) is the value of the normalized Eisenstein series of weight qk − 1 on φ
(see [8, sect. 12] for details). Given the known recursion for the gk (loc. cit. (6.9)),
we get the following simple procedure.

3.7. Proposition. Let φ = (g, ∆) be a Drinfeld module over Fp. For k ∈ N, put
[k] := T qk − T , regarded as an element of Fp, and define g0 = 1, g1 = g,

gk = −[k − 1]gk−2∆qk−2
+ gk−1g

qk−1
(k ≥ 2).

Then the Hasse invariant H(φ) of φ equals gd, d = [Fp : F]. �

Hence the Frobenius trace a(φ) ∈ A of φ/Fp is determined through a ≡ εFp
(φ) ·

gd ( mod p) and deg a ≤ d/2. Note that, apart from the raising to q-th powers (i.e.,
applying the Frobenius of F), the recursion for the gk is linear and easy to evaluate.

3.8. Example. Let q = 2, p(T ) = T 3 + T + 1, and let φ be the Drinfeld module
over Fp given by (g, ∆) = (T, 1). We regard the quantities T and 1, like those
to follow, as elements of Fp. Then g0 = 1, g1 = T , g2 = T 2 + 1, g3 = 0; thus
Pφ,Fp

(X) = X2 + p(T ).

Similarly, we get for ψ = (g, ∆) = (T, T ): g0 = 1, g1 = T , g2 = T 2, g3 = T , so
Pψ,Fp

(X) = X2 − TX + p(T ).
The fact that H(φ) vanishes means that φ is supersingular; this has similar

significance as supersingularity of elliptic curves [9].

4. Frobenius traces of maximal size

We fix a prime p of A of degree d and consider Drinfeld modules φ over L = Fp.
For such φ, the Frobenius trace a(φ) ∈ A has degree ≤ [d/2]. Put

(4.1) D+(p) = {φ/L | deg a(φ) = [d/2]},
D−(p) = {φ/L | deg a(φ) < [d/2]}.

We further let H+(p) and H−(p) be the set of L-isomorphism classes in D+(p),
D−(p), respectively. That is, H+(p) (H−(p)) is the orbit space of D+(p) (D−(p))
under the action of L∗ through c · (g, ∆) = (cq−1g, cq2−1∆). We finally write d±(p),
h±(p) for the cardinalities of these sets. The principal result of this section is:

4.2. Theorem. (i) Let d be even. Then

d+(p) = qd+1( qd−1
q+1 ),

d−(p) = qd( qd−1
q+1 ),

h+(p) = (q2 − q)( qd−1
q+1 + 1),

h−(p) = (q − 1)( qd−1
q+1 + 1).
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(ii) For d odd we have

d+(p) = (q − 1)qd−1(qd − 1),

d−(p) = qd−1(qd − 1),

h+(p) = (q − 1)2qd−1,

h−(p) = (q − 1)qd−1.

Before proving the theorem we establish some preparatory results.

4.3. Proposition. Let L = F(d) be the field extension of degree d of F = Fq and
χ : L∗ −→ L∗ a multiplicative character (i.e., some power of the identity map) of
order (qd − 1)/g, where g is a divisor of q − 1 coprime with (qd − 1)/(q − 1). If V
is an F-subspace of L, then

#((V − {0}) ∩ image(χ)) = (qdim(V ) − 1)/g

holds.

Proof. (i) Without restriction, we may assume that dim(V ) = 1.
(ii) Let χ = (x �−→ xk). We have #image(χ) = ord(χ) = (qd − 1)/g, where

g = gcd(qd − 1, k) = gcd(q − 1, k) by our assumption on g.
(iii) Write q − 1 = a · g, k = b · g with (a, b) = 1. Then qd − 1 = qd−1

q−1 ag and also

(a qd−1
q−1 , b) = 1. Hence (k, qd−1

q−1 ) = 1 as well.
(iv) Consider the commutative diagram

1 −→ F∗ −→ L∗ −→ L∗/F∗ −→ 1
↓ ↓ ↓

1 −→ F∗ −→ L∗ −→ L∗/F∗ −→ 1,

where vertical arrows are the k-th power maps. From (iii), the right arrow is
bijective, so

(∗) F∗/(F∗)k ∼=−→ L∗/(L∗)k

by the snake lemma. Both groups have order g.
(v) Now let the class of v ∈ L∗ under (∗) be represented by v0 ∈ F∗. There

are precisely (q − 1)/g elements c of F∗ with cv0 ∈ (F∗)k, and these are also the
elements c of F∗ with cv ∈ (L∗)k = image(χ). �

4.4. Corollary. With notation and assumptions as in (4.3), and putting χ(0) = 0,

#{x ∈ L | TrL
F
(χ(x)) = 0} = qd−1.

Proof. Let H be the kernel of TrL
F
. Then

H ∩ image(χ) = {0} ∪ {0 �= x ∈ H | ∃ y ∈ L s.t. x = χ(y)}.
By (4.3),

#((H − {0}) ∩ image(χ)) = (qd−1 − 1)/g,

and for each x in that set there are precisely g solutions y of x = χ(y), which yields
the result. �

4.5. Corollary. Let d be odd. Then

#{x ∈ L | TrL
F
(x(qd−q)/(q2−1)+1) = 0} = qd−1.
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Proof. An elementary calculation yields

g := gcd((qd − 1), qd−q
q2−1 + 1) = gcd(d+1

2 , q − 1),

i.e., a divisor of q − 1. Let � be a divisor of gcd(g, qd−1
q−1 ) = gcd(d+1

2 , q − 1, qd−1
q−1 ).

Modulo �, the following congruences hold:
q ≡ 1; thus 0 ≡ qd−1

q−1 = 1 + q + · · · + qd−1 ≡ d and d + 1 ≡ 0.
Therefore � = 1, and the assertion follows from (4.4). �

Proof of Theorem 4.2. Let d be even and φ = (g, ∆) a Drinfeld module over L.
With notation as in sections 2 and 3,

φ ∈ D−(p) ⇔ TrF
(2)

F
(∆−(qd−1)/(q2−1)) = 0 (see (2.14))

⇔ (∆−(qd−1)/(q2−1))q−1 = −1 (since ∆ �= 0)
⇔ ∆(qd−1)/(q+1) = −1.

That condition is fulfilled for qd−1
q+1 of the qd − 1 elements ∆ of L∗. Together with

the qd possible values of g, we get the asserted values of d±(p).
Now let d be odd. For φ = (g, ∆) and g = 0, we have a(φ) = 0 by (2.14), so

φ ∈ D−(p). If g �= 0, then

a[d/2] = a(d−1)/2 = −g−(qd−1)/(q−1)TrL
F
(j(qd−q)/(q2−1)+1),

where j = j(φ). Hence

φ ∈ D−(p) ⇔ TrL
F
(j(qd−q)/(q2−1)+1) = 0,

which by (4.5) holds for precisely qd−1 values of j (including j = 0). Since for each
j there are qd − 1 pairs (g, ∆) with j = gq+1/∆, we find the stated values of d±(p).

It remains to show the formulas for h±(p). The isomorphism class of φ = (g, ∆)
contains (qd − 1)/#AutL(φ) elements, where #AutL(φ) = q − 1 except for (d even
and j = 0), in which case #AutL(φ) = q2 − 1 (see (1.5)). The result now follows
by counting. �

4.6. Remark. By the theorem, the ratios d+(p)/d−(p) = h+(p)/h−(p) equal q in
the even and q − 1 in the odd degree case, respectively. For d odd, this is the ratio
expected from an equidistribution hypothesis, whereas for even d, large Frobenius
traces a(φ) occur with higher frequency than expected from equidistribution. There
are other deviations from a naive equidistribution expectance for the pairs (a, b) =
(a(φ), ε(φ)p(T )) appearing as coefficients of Pφ,Fp

(X). Since EndL(φ) ⊗ K∞ is a
division algebra, Pφ,Fp

(X) must be irreducible over K∞. E.g., for d = deg p even,
we find the restriction that the polynomial X2 − ad/2X + ε(φ) cannot have two
different roots in F.

5. Primes of small degree

We show that the number of Drinfeld modules (resp. of isomorphism classes of
Drinfeld modules) over L = Fp with a fixed Froebenius trace a depends only on
deg a and d = deg p if d is less than or equal to 3.
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Let for the moment d(a, p) (resp. h(a, p)) be the number of φ = (g, ∆) (resp. of
isomorphism classes of φ) over Fp with trace a. We see from (2.2) that

(5.1) d(ca, p) = d(a, p) and h(ca, p) = h(a, p)

for c ∈ F∗.

5.2. Theorem. For d ≤ 3, the numbers d(a, p) and h(a, p) depend only on deg a
and d = deg p. They are given by the table:

a d = 1 d = 2 d = 3

0 q − 1 q − 1 q2 − 1 q − 1 (q3 − 1)(q + 1) q2 − 1

a ∈ F
∗ q − 1 q − 1 q2 − q − 1 q − 1 q4 − (q + 1)2 q2 − q − 1

deg a = 1 0 0 q2 q q4 − q q(q − 1)

(The first entry is d(a, p), the second h(a, p).)

Proof. We first determine d(a, p). We have a(φ) = 0 if and only if φ is supersin-
gular. It is known ([6], Satz 5.9) that for d = 1, 2, 3 there are precisely 1, 1, q + 1
supersingular j-invariants in A-characteristic p, and all of them lie in the prime
field Fp ([7], Korollar 5.5). Since each of them gives rise to qd − 1 different modules
φ = (g, ∆), the line “a = 0” results. (Here we used that AutFp

(φ) always equals F∗

since j = 0 is not supersingular if d = 2.) The line “a ∈ F∗” follows from (5.1) and
(4.2). Thus it remains to verify the entries d(a, p) for deg a = 1, which is trivial for
d = 1.

In what follows, we use Proposition 3.7 and the notation introduced there. Fur-
ther, since the Frobenius trace a(φ) ∈ A is determined through its class (mod p),
we regard it as an element of Fp. Then (3.7) combined with (2.11) gives the fol-
lowing values for a(φ) = a(g, ∆):

d = 2 : a(g, ∆) = −[1]∆+gq+1

∆q+1 ;

d = 3 : a(g, ∆) = −[2]g∆q−[1]gq2
∆+gq2+q+1

∆q2+q+1 .

Let d = 2 . We have to show that for each u ∈ Fp − F there are precisely q2

solutions (g, ∆) ∈ Fp × F∗
p of

(1) a(g, ∆) = u.

Let u ∈ Fp − F be given. Since [1] �= 0 in Fp, there exists a unique ∆ ∈ Fp such
that u = a(0, ∆) = −[1]∆−q, viz., ∆ = (−[1]u−1)q = [1]u−q. Similarly, for each
fixed value r ∈ F∗

p of g/∆, rq+1 = (g/∆)q+1 ∈ F∗, and the equation a(g, ∆) = u is
equivalent with

[1]/(rq+1 − u) = ∆q,

which has a unique solution ∆. This gives another q2 − 1 solutions of equation (1),
one for each r = g/∆ ∈ F∗

p.
(2) Note that among our q2 solutions φ = (g, ∆) of (1), there is precisely one

that satisfies j(φ) = 0.
Now consider the case d = 3 . Let N : Fp −→ F denote the norm map. The

following facts are immediate:
(3) a(cg, cq+1∆) = N(c)−1a(g, ∆) if c ∈ F∗

p; thus

a(g, ∆) = N(g)−1a(1, ∆
gq+1 ) if g �= 0;

(4) the polynomial [2]Xq + [1]X ∈ F[X] is q-additive with kernel U := F[2] and
range V := F + FT ↪→ Fp on Fp.
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(The fastest way to see the last assertion is to compare with the formula for a(g, ∆),
which a priori belongs to V .)

Hence, putting f(X) = 1 − [1]X − [2]Xq, the equation f(x) = u has precisely q
solutions x if u ∈ V , which are all non-zero if u �∈ F. Given u ∈ V −F, the equation

(1) a(g, ∆) = u

can hold only for g �= 0, and is in view of (3) and (4) equivalent with u =
N(g)−1a(1, ∆

gq+1 ) = N(g−1)f( ∆
gq+1 )N( gq+1

∆ ), i.e., with

f( ∆
gg+1 ) = N(∆

g )u.

Therefore, we find precisely q4 − q = (q3 − 1)q solutions (g, ∆) of (1), which may
be enumerated as follows. Choose y := ∆

g arbitrary in F∗
p (q3 − 1 choices), and

let x run through the q solutions of f(x) = N(y)u. From y = ∆
g and x = ∆

gq+1

we find the corresponding solutions g(y/x)q2
, ∆ = (y/x)q2 · y. This completes the

calculation of d(a, p) as stated in the table.
The h(a, p) are immediate for d = 1 and d = 3, since then all the isomorphism

classes have length (qd−1)/(q−1), and so h(a, p) = d(a, p)/ qd−1
q−1 . For d = 2 all the

isomorphism classes have length (qd − 1)/(q − 1) = q + 1 except for q2 − 1 classes
of length one, and the result follows from counting and the remark (2). �

5.3. Remark. The assertion of Theorem 5.2 becomes definitely wrong if applied to
prime A-fields Fp of degree > 3. For example, let q = 2 and p = (T 4 + T 3 + 1).
The numbers d(a, p) and h(a, p) are given by the table below. It shows that d(a, p)
and h(a, p) differ even on the two elements a = T, T + 1 of degree one.

5.4. Example. q = 2, p = (T 4 + T 3 + 1)

a d(a, p) h(a, p)
0 45 3
1 15 1
T 0 0

T + 1 20 2
T 2 50 4

T 2 + 1 30 2
T 2 + T 60 4

T 2 + T + 1 20 2

6. Class number formulas

6.1. Let H(a, b, p) = H(a, b, Fp) be the set of isomorphism classes of rank-two
Drinfeld modules over Fp with characteristic polynomial P (X) = X2 −aX + b. We
relate its cardinality h(a, b, p) and the weighted number

h∗(a, b, p) =
∑

φ∈H(a,b,p)

w−1(φ),

where w(φ) = (q − 1)−1#AutFp
(φ), with class numbers of “imaginary quadratic

orders” over A and express them through the analytic class number formula.



1710 ERNST-ULRICH GEKELER

6.2. A quadratic field extension E of K is imaginary quadratic if the place ∞ of K
doesn’t split in E, in which case it has a unique extension, also labelled by ∞, to
E. Put B for the integral closure of A in E. An order in B or E is a subring C of
B containing A and free of rank two over A. It necessarily has the form

C = Bf = A + fB

with some monic f ∈ A, the index of C in B. We have Bf ⊂ Bf ′ ⇔ f ′|f . A finitely
generated C-submodule c �= 0 of E = quot(B) = quot(C) is a fractional ideal
(“ideal” for short) of C, and is proper if its multiplier ring M(c) = {x ∈ B | xc ⊂ c}
agrees with C. Two ideals c, c′ are equivalent iff they are related by c′ = g · c with
some g ∈ E∗. We let H(C) be the set of equivalence classes of (not necessarily
proper) ideals of C, and h(C) its (finite) cardinality. As with Dedekind rings, the
set of proper fractional ideals of C forms a group under multiplication. The order
hprop(C) of the associated ideal class group is related to h(B) = hprop(B) by

(6.3) hprop(C) =
|f |

[B∗ : C∗]

∏
p|f

(1 − χE(p)|p|−1)h(B),

where C = Bf , p runs through the prime divisors of f , “| . |” is the absolute value
qdeg(.), and χE is the Dirichlet character associated with E. That is, for primes p

of K (i.e., p is a prime of A, or p = ∞ is the prime at infinity),

(6.4) χE(p) =

⎧⎨
⎩

1
0

−1

⎫⎬
⎭ if p is

⎧⎨
⎩

split
ramified
inert

⎫⎬
⎭ in E.

We point out the following special cases:
(E1) if E = Fq2(T ), then B = Fq2 [T ] and

χE(p) = (−1)deg p;

(E2) if char(F) = 2 and E = F(
√

T ), then

B = F[
√

T ] and χE(p) = 0 for each p.

The proofs of the above statements are essentially identical to those in the number
field case ([18], sect. 4.4); in the two exceptional cases (E1) and (E2), (6.3) is easily
proved directly. The unit group C∗ has order q − 1 except for C = Fq2 [T ], which
has a unit group of order q2 − 1. Putting

w(C) = (q − 1)−1#C∗ and h∗
prop(C) = w(C)−1hprop(C),

we have

(6.5) h∗
prop(C) = |f |

∏
p|f

(1 − χE(p)|p|−1)h∗
prop(B).

Since ideals for orders C ′ containing C are also ideals for C and each ideal c of C
has some C ′ ⊃ C as its multiplier ring, we get for C = Bf :

(6.6) h(C) = h(Bf ) =
∑
f ′|f

hprop(Bf ′),
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which we call the unweighted Gauß class number of C. Counting each ideal c of C
with w−1, where w = w(M(c)), we get the weighted Gauß class number

(6.7) h∗(C) =
∑
f ′|f

h∗
prop(Bf ′).

Now let φ be a rank-two Drinfeld module over Fp, with characteristic polynomial
P (X) = X2 − aX + b. Consider the A-algebra C generated by the Frobenius
endomorphism F of φ over Fp. Since F is a zero of P , (1.8) shows that C is
an order in the imaginary quadratic extension E = quot(C) of K. Let B be the
maximal order of E and C = Bf as above.

6.8. Proposition (see [19], Corollary to Prop. 7). The number h(a, b, p) of isomor-
phism classes of rank-two Drinfeld modules over Fp with characteristic polynomial
P (X) = X2 − aX + b equals the Gauß class number h(C) of C = A[F ], where F is
a zero of P (X). Similarly, the weighted number h∗(a, b, p) equals h∗(C).

This is analogous with a similar statement, due to Deuring [3], for elliptic curves
over Fp. Its proof uses the fact that Drinfeld modules φ and φ′ are isogeneous
if and only if their characteristic polynomials agree, i.e., Theorem 1.10, and then
constructs an explicit bijection of the class set H(C) with H(a, b, p) compatible
with respective weights. The assumption of characteristic different from 2 made in
[19, p. 168], is irrelevant for the proposition as given above, and may be suppressed.

Fix p, a and b as before, let C be the A-algebra generated by a root of P (X) =
X2 − aX + b, with C = Bf , where B is the maximal order in E = quot(C), and
let χ = χE be the Dirichlet character corresponding to E (see (6.4)). From (6.5),
(6.7) and (6.8) we get

(6.9) h∗(a, b, p) = S(f, B)h∗(B)

with

(6.10) S(f, B) :=
∑
f ′|f

|f ′|
∏

l prime of A
l|f′

(1 − χ(l)|l|−1).

The quantity S(f, B) also satisfies (see [11], Lemmata 5.1 + 5.2):

6.11. Proposition. (i) If f, f ′ are coprime, then S(ff ′, B) = S(f, B)S(f ′, B).
(ii) If f = lm is a power of a prime l, then

S(f, B) = 1 + (|l| − χ(l))(|l|m − 1)(|l| − 1)−1.

(Recall that we use “ l” both for a prime ideal and for its monic generator.)

Exclude for the moment the two exceptional cases (E1) and (E2). Then the
genus of E (i.e., of the associated algebraic curve) is given by

(6.12) g = g(E) =
1
2

deg cond(χ) − 1,

where cond(χ) is the conductor of χ. Further, putting η = η(E/K) = 2 (resp. 1)
if ∞ is inert (resp. ramified) in E/K, the analytic class number formula reads

(6.13) h∗(B) = h(B) = ηqgL(1, χ).
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Here L(s, χ) is the L-function defined for Re(s) > 1 by the absolutely convergent
product

(6.14) L(s, χ) =
∏

l prime of K

(1 − χ(l)|l|−s)−1.

Formulas (6.12) and (6.13) are well-known consequences of properties of the re-
spective zeta functions of K and E (see e.g. [16]). Note that the product (6.14)
for s = 1 still converges conditionally (in an order compatible with the degree of
primes) towards L(1, χ).

Now consider the exceptional case (E1), B = Fq2 [T ]. We formally put g =
g(E/Fq) := −1. Then

L(s, χ) = ((1 + q−s)(1 + q1−s))−1

and

(6.15) h∗(B) = (q + 1)−1 = ηqgL(1, χ).

Finally, in case (E2) we have g = 0, h(B) = 1, and

(6.16) h∗(B) = h(B) = ηqgL(1, χ)

holds trivially. Combining (6.13)–(6.16) with (6.9), we find the expression

(6.17) h∗(a, b, p) = ηqgS(f, B)L(1, χ),

which is valid in all cases. We point out that all the ingredients of the right-hand
side are determined by a and b.

For later use, we write this formula as a product of l-local terms, where l runs
through the places of K. Namely, let Ll(s, χ) = (1− χ(l)|l|−s)−1 be the l-th factor
in (6.14), and for l finite,

(6.18) Vl(a, b) := S(lml(f), B)Ll(1, χ),

where f =
∏

l
lml(f). Due to (6.11), (6.17) reads

(6.19) h∗(a, b, p) = ηqgL∞(1, χ)
∏

l prime of A

Vl(a, b).

Note that the infinite product up to a finite number of factors agrees with L(1, χ)
and is therefore conditionally convergent too.

7. The local density

We now want to give a local analytic interpretation of the factors Vl(a, b) in
(6.18). Throughout the entire section, l is a fixed prime of A, of absolute value
|l| = qdeg l, a and b are elements of the l-adic completion Al of A, and P (X) =
X2 − aX + b ∈ Al[X].

We define

(7.1) vl(a, b) := lim
k→∞

#{M ∈ Mat(2, A/lk) | tr(M) = a, det(M) = b}
|l|2k−2(|l|2 − 1)

,

provided the limit exists. Here and in what follows, we use simplifying notation and
write e.g. tr(M) = a for tr(M) ≡ a(mod lk). It will turn out that the following
properties hold.

7.2. The limit in (7.1) exists; in fact, it is attained for all k ≥ k0(a, b) provided that
P (X) is not a square in Al[X].
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7.3. vl(a, b) defines a continuous function on the compact group Al × Al, which
averages to 1 on Al × A∗

l .

7.4. If P (X) is a possible characteristic polynomial for φ ∈ H(a, b, p) as in section
6, then vl(a, b) essentially agrees with Vl(a, b) (see Proposition 8.3 for the precise
statement).

Intuitively, vl(a, b) quantifies the frequency of characteristic polynomials of 2×2-
matrices over Al. In other words, letting µ and ν be the normalized Haar measures
on Mat(2, Al) and Al × Al, respectively, and

TD : Mat(2, Al) −→ Al × Al

M �−→ (tr(M), det(M))

the trace-determinant map, then

(7.5) (TD∗µ)(a, b) = clvl(a, b)ν(a, b)

with some constant cl > 0.
Before studying vl(a, b), we make some definitions.

7.6. The Kronecker symbol is

(
a, b

l
) := 1, 0,−1

if the reduced polynomial P (X) = X2 − aX + b ∈ Fl[X] has 2, 1, 0 different roots
in Fl, respectively. Thus if char(F) is different from 2 and D = D(a, b) = a2 − 4b is
the discriminant of P , then

(
a, b

l
) = (

D

l
) = (

D

Fl

) = quadratic symbol.

7.7. We define a number δ = δ(a, b) ∈ N0 ∪ {∞} and a symbol χa,b(l) ∈ {0,±1},
distinguishing the cases:
char(F) �= 2: Here we put

δ(a, b) := sup{i ∈ N0 | l2i divides D(a, b)},

χa,b(l) = (D(a,b)/l
2δ

Fl
) if δ < ∞ and χa,b(l) = 0 otherwise.

char(F) = 2 : Given (a, b) ∈ Al × Al, let s ∈ Fl be the unique solution of s2 ≡
b(mod l) and b′ := s2 + as + b. (Here we regard s as an element of Al. Instead of
Fl ↪→ Al, we could use another system of representatives for Al/lAl; see Remark
7.11.) If

(∗) a ≡ 0(mod l) and b′ ≡ 0(mod l
2)

holds, put (a1, b1) = (a/l, b′/l2). Define a series of pairs (ai, bi) ∈ Al × Al by

(a0, b0) := (a, b), (ai+1, bi+1) := ((ai)1, (bi)1)

as long as (∗) holds for (ai, bi). Finally, we put

δ(a, b) := sup{i ∈ N0 | (ai, bi) is defined},

χa,b(l) = (aδ,bδ

l
) if δ < ∞ and χa,b(l) = 0 otherwise.

In all characteristics, δ = ∞ if and only if P (X) is a square in Al[X], and the
function δ is locally constant on Al × Al off the locus of δ = ∞.
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Now (7.2)–(7.5) will be consequences of the main result of this section:

7.8. Theorem. Put α(k)(a, b) for the numerator

#{M ∈ Mat(2, A/l
k) | tr(M) = a, det(M) = b} in (7.1).

(a) Suppose that δ = δ(a, b) < ∞ and k ≥ 2δ + 2. Then

α(k)(a, b) = |l|2k + |l|2k−1 + γ(k)(a, b)

with γ(k)(a, b) = 0,−(|l| + 1)|l|2k−δ−2,−2|l|2k−δ−1 according to the values
1, 0,−1 of χa,b(l).

(b) Suppose that δ(a, b) = ∞. Then

α(k)(a, b) = |l|2k − |l|2k−2 + (|l| − 1)2|l|2k−2
∑

1≤i<k/2(2i − 1)|l|−i

+ |l|k−1+[k/2]((k − 1)(|l| − 1) + 1).

Before proving the theorem, we draw some easy conclusions.

7.9. Corollary. The limit in (7.1) exists and is given by

vl(a, b) = (1 − |l|−2)−1(1 + |l|−1 +

⎧⎨
⎩

0
−(|l| + 1)|l|−δ−2

−2|l|−δ−1

⎫⎬
⎭),

with δ = δ(a, b) and according to the values 1, 0,−1 of χa,b(l). It defines a contin-
uous function vl on Al × Al, which is locally constant off the locus of δ = ∞.

Proof. The assertion is immediate from 7.8(a) and the properties of δ, as long as
δ < ∞. For δ −→ ∞, vl(a, b) converges to (1 + |l|−1)/ (1− |l|−2) = |l|/(|l| − 1). On
the other hand, if δ = ∞, then

vl(a, b) = lim
k→∞

α(k)(a, b)
|l|2k−2(|l|2 − 1)

=
|l|

|l| − 1
,

as results from 7.8(b), taking into account that

lim
k→∞

∑
1≤i<k/2

(2i − 1)|l|−i =
|l| + 1

(|l| − 1)2
.

�

7.10. Corollary. The function vl averages to 1 on Al × A∗
l and satisfies equation

(7.5) with cl = 1 − |l|−2.

Proof. The first assertion follows from the continuity of vl and the fact that

|l|2k−2(|l|2 − 1) = #SL(2, A/lk)/|l|k

= average over all a ∈ A/lk, with
b ∈ (A/lk)∗ fixed, of α(k)(a, b).

The second assertion results from vol(cl · vl · ν) = 1 and an elementary calculation,
which we omit. �

Proof of Theorem 7.8. (a) In [11, sect. 4], the proof of an analogous statement for
the �-adic integers Z� with a natural prime � instead of Al is given. It applies
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without essential changes to the case of Al of characteristic different from 2. We
therefore assume from now on that char(F) = 2. To simplify notation, let:

Rk := A/lk, Mk := Mat(2, Rk), I = I2 = unit 2× 2-matrix; for any 2× 2-matrix
M , TD(M) = (tr(M), det(M)), and “reduction mod l” of scalars or matrices will
be denoted by a “( )”. We consider Fl both as a quotient and a subfield of Rk.

(i) For given (a, b) ∈ Al × Al (or Rk × Rk), put

β(k)(a, b) = |l|2k + |l|2k−1, |l|2k − |l|2k−2, |l|2k − |l|2k−1

if (a,b
l

) = 1, 0,−1, respectively.

There are precisely β(k)(a, b) matrices M ∈ Mk such that TD(M) = (a, b) ∈ Rk×Rk

and M ∈ M1 is non-scalar, and all these M are conjugate in Mk. This is immediate
for k = 1 (since we then work over a field) and follows by a straightforward induction
for general k; loc. cit., Lemma 4.1. In particular we have

α(1)(a, b) = |l|2 + (
a, b

l
)|l|.

(ii) From now on, assume k ≥ 2. We must determine the number of M ∈ Mk

with M scalar and TD(M) = (a, b), which can only exist if a = 0. Then, writing

M = sI + M ′

with s ∈ Fl ↪→ Rk, M ′ = 0 and tr(M ′) = a, we have

det(M ′) + tr(M ′)s + s2 = b

in Rk. Such an s is uniquely determined through s2 = b. Given M and s as above,
let b′ = det(M ′) = s2 + as + b, which necessarily satisfies b′ ≡ 0(mod l2).

(iii) Conversely, suppose that

(∗) a = 0 (i.e., a ≡ 0(mod l)) and b′ = s2 + as + b ≡ 0(mod l2),
where s ∈ Fl, s2 = b.

The solutions M ′ as in (ii) correspond bijectively to solutions N ∈ Mk−1 of tr(N) =
l−1a, det(N) ≡ l−2b′(mod lk−2). This holds since N �−→ lN is a bijection from
Mk−1 to lMk and det(lN) = l2 det(N).

(iv) If thus (∗) holds and (a1, b1) = (a/l, b′/l2) as defined in (7.7),

α(k)(a, b) = β(k)(a, b) +
∑

c∈lk−2Rk−1

α(k−1)(a1, b1 + c).

(The summation is over a system of representatives c of lk−2Al modulo lk−1Al.)
Otherwise (if (∗) fails), α(k)(a, b) = β(k)(a, b).

(v) Now we prove the assertion by induction on δ = δ(a, b). Note that δ(a, b) =
δ(a, b + c) for c ≡ 0(mod l2δ+2). If δ = 0, then α(k)(a, b) = β(k)(a, b), and the
formula results from (i). Thus let δ = δ(a, b) > 0. Then δ(a1, b1) = δ − 1. In view
of k ≥ 2δ+2, we have k−2 ≥ 2(δ−1)+2 and hence δ(a1, b1 +c) = δ(a1, b1) = δ−1
for each c ∈ lk−2Rk−1. The induction hypothesis applies to the α(k−1)(a1, b1 +c) in
(iv), which all have the same value α(k−1)(a1, b1). Plugging in, the result follows.

(b) Here we allow all characteristics, but use the same notation as introduced in
the proof of (a).

(i) We have δ(a, b) = ∞ ⇔ (a, b) = (2c, c2), some c ∈ Al and α(k)(2c, c2) =
α(k)(0, 0); hence we may assume (a, b) = (0, 0). We thus have to determine the
matrices M = ( u v

w −u ) ∈ Mk such that u2 + vw = 0.
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(ii) There are precisely |l|2k−2(|l|2 − 1) such M with M �= 0. This is obvious for
k = 1 and follows for arbitrary k by induction.

(iii) We are now reduced to counting the number of M with M = 0, i.e., of
solutions u, v, w ∈ lRk of u2 + vw = 0. This is somewhat laborious but elementary,
and will be omitted. Suffice it to say that the term (|l|2−1)|l|2k−2(2i−1)|l|−i in the
stated formula gives the number of (u, v, w) where u has l-adic valuation i, and the
last term |l|k−1+[k/2]((k− 1)(|l| − 1) + 1) counts the (u, v, w) where u has valuation
greater than or equal to k/2. �

7.11. Remark. In (7.7), case char(F) = 2, definition of the series (ai, bi) and of
δ(a, b), we used Fl ↪→ Al as a system of representatives S for Al/lAl. (We did so in
selecting the unique solution s ∈ Fl of s2 ≡ b(mod l).)

It is an easy consequence of the properties of the Kronecker symbol (and also
results from the proof of (7.8)(a)) that neither δ = δ(a, b) nor the value χa,b(l) =
(aδ,bδ

l
) depends on that choice, although the arising (ai, bi) change if another system

of representatives S is used.

8. The class number formula: final version

We come back to the situation of section 6 and describe the ingredients of formula
(6.19), notably, the factors Vl(a, b), the character χ, and the genus g, which are all
determined by a and b. Thus let p and l be primes of A (p = l allowed), d = deg p,
and let P (X) = X2 − aX + b be a possible characteristic polynomial for some
Drinfeld module φ over Fp. That is, a, b ∈ A, (b) = p, and P generates an imaginary
quadratic extension E of K (which in particular implies 2 deg a ≤ d). Further, we
let B be the maximal A-order in E and C = Bf the ring extension of A generated
by (the zeroes of) P . Recall this means that C = A + fB with f ∈ A monic.

8.1. Proposition. (i) The exponent m = ml(f) agrees with δ = δl(a, b) as
defined in (7.7).

(ii) Let χ be the Dirichlet character χE associated to E (see (6.4)). Then
χ(l) = χa,b(l) as in (7.7).

Proof. Suppose that char(F) is odd. Then both m and δ are described as max{i ∈
N0 | l2i divides a2 − 4b}, so the order A[

√
D/l2δ] ⊃ C is l-maximal, and the result

follows.
Thus let char(F) = 2. According to Remark 7.11, we use {a ∈ A | deg a < deg l}

as a system of representatives for Al/lAl and perform the construction (7.7). This
has the advantage that all the (ai, bi) that arise belong to A. Then (i) follows by
induction on m (or on δ), applying Lemma 8.2 below. Increasing i by one, the
index fi of the order Ci = Bfi

generated by the zeroes of Pi(X) = X2 + aiX + bi

is divided by l. Thus Cδ is l-maximal and contains C, which shows (ii) also in this
case. �

8.2. Lemma. Suppose that char(F) = 2, let a, b be any elements of A such that
P (X) = X2 + aX + b generates an imaginary quadratic order C = Bf , and let
m = ml(f). Then the following three conditions are equivalent:

(a) m > 0;
(b) a ≡ 0(mod l), and there exists s ∈ A such that

(∗) s2 + as + b ≡ 0(mod l
2);
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(c) a ≡ 0(mod l), and for each s ∈ A such that s2 ≡ b(mod l),
condition (∗) holds.

Proof. (a) ⇒ (b): Let z be a root of P (X), z = s + lt with s ∈ A, t ∈ B. Then
z − s = z + s is divisible by l and has minimal polynomial X2 + aX + s2 + as + b.
(b) ⇒ (c) is trivial. (c) ⇒ (a): Choose any s with s2 ≡ b(mod l). Then P1(X) =
X2 + a1X + b1 with (a1, b1) = (a/l, (s2 + as + b)/l) generates an order which at l

is strictly larger than C. �

8.3. Proposition. The quantities Vl(a, b) and vl(a, b) are related by

Vl(a, b) = |l|ml(f)vl(a, b).

Both sides equal Ll(1, χ) = (1 − χ(l)|l|−1)−1 if ml(f) = 0.

Proof. This follows from comparing the left hand side, given by (6.18) and (6.11)(ii),
with the formula (7.9) for vl(a, b), taking both parts of (8.1) into account. �

Therefore, the product in (6.19) equals

(8.4)
∏

l prime of A

Vl(a, b) = |f |v(a, b)

with v(a, b) =
∏

l
vl(a, b).

We still need to express the genus of E or, equivalently, the degree of the con-
ductor cond(χ) of χ, in terms of a and b. This is easy in case

char(F) �= 2 , which we suppose for the moment.
Let D = D(a, b) = a2 − 4b = f2D0 be the discriminant with its maximal monic

quadratic divisor f2. Then C = Bf , and for any finite prime l of A, χ(l) = (D0
l

).
We have χ(∞) ∈ {0,−1}, with

χ(∞) = 0 ⇔ ∞ ramified in E ⇔ deg D0 odd,

in which case cond(χ) is the divisor (D0) · ∞, since the ramification at ∞ is tame.
Further, cond(χ) = (D0) if χ(∞) = −1. Here we use multiplicative notation for
divisors, and (D0) is the finite part (i.e., the part coprime with ∞) of the divisor
of D0. With (6.12) we find

qg = q−1|D0|1/2 (resp. q−1/2|D0|1/2)

and
|f |qg = q−1|D|1/2 (resp. q−1/2|D|1/2)

in case deg D is even (resp. odd). Combining this with (8.4), formula (6.19) may
be written

(8.5) h∗(a, b, p) = |p|1/2v(a, b)v∞(a, b),

where

v∞(a, b) = |D
b
|1/2

{ 2
q+1

q−1/2

}
if deg D is

{
even
odd

}
.

Note that |D| = |p| = |b| if d = deg p is odd, so v∞(a, b) = q−1/2 in this case.
Now we deal with the more complicated case
char(F) = 2 , that hypothesis being in force until (8.17).
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8.6. Let for the moment L be a local (i.e., complete with finite residue class field)
non-Archimedean field of characteristic 2 with normalized valuation w. We put
HL for the additive subgroup {s2 + s | s ∈ L} of L and call c ∈ L reduced if
w(c) = wred(c) := sup{w(c′) | c′ ∈ c + HL}. We need the following result, a proof
of which may be found in [10, Prop. 1.3].

8.7. Proposition. Let c ∈ L have valuation w(c) = −k ∈ Z, L′ be the splitting
field of X2 + X + c over L, and e the conductor exponent of L′/L.

(i) If k > 0, then x is reduced if and only if k is odd; in this case, e = k + 1.
(ii) If k = 0, then either x is reduced or x ∈ HL.
(iii) If k < 0, then x ∈ HL.

Further, e = 0 in cases (ii) and (iii).

We now return to the general situation of this section, restricted to characteristic
2, and apply the above to determine the conductor cond(χ).

8.8. Proposition. Let a, b subject to our general assumptions be given, with a �= 0.
Then the finite part of cond(χ) is (a/f)2.

Proof. The assertion may be verified locally for each prime l of A. Thus let ml be
the l-adic valuation, and consider the series (a, b) = (a0, b0), . . . , (aδ, bδ) as in the
proof of (8.1), where δ = δl(a, b) = ml(f). We have

l|cond(χ) ⇔ χ(l) = 0 ⇔ aδ ≡ 0 (mod l),

and in this case b′δ = s2 + aδs + bδ (where s ∈ A satisfies s2 = bδ(mod l)) has
valuation ml(b′δ) = 1. The two polynomials X2 + aX + b and X2 + X + c with
c = a−2

δ b′δ = a−2l2δb′δ have the same splitting field. Since ml(c) = −2ml(a)+2δ+1,
Proposition 8.7 yields 2ml(a)−2δ = 2ml(a/f) for the conductor exponent at l. �

It remains to determine the conductor exponent of χ at ∞. We use the notation
introduced in (8.6), with (L, w) = (K∞,− deg). Further, |x|red := qdegred(x) for
x ∈ K∞.

8.9. Proposition. Suppose that a �= 0, put c := b/a2 and |c|red = qk. The conductor
exponent of χ at ∞ is 0 if k = 0 and k + 1 if k > 0.

Proof. The splitting fields of X2 + aX + b and of X2 + X + c agree. Therefore the
result follows from (8.7). �

In the subcase of a �= 0 , the data relevant for the evaluation of (6.19) are thus
given by the following table, where |b/a2|red = qk:

(8.10)
k η χ(∞) deg cond(χ) ηL∞(1, χ)qg|f |
0 2 −1 2 deg a − 2 deg f 2

q+1 |a|
> 0, odd 1 0 2 deg a − 2 deg f + k + 1 q(k−1)/2|a|

We encode this information in the function ψ : K∞ −→ R, defined by

(8.11) ψ(x) =

⎧⎨
⎩

0
2

q+1

q(k−1)/2

⎫⎬
⎭ if |x|red =

⎧⎨
⎩

0
1
qk

⎫⎬
⎭ .

It is locally constant, thus continuous, since HK∞ is open in K∞.
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Let us finally consider the subcase a = 0 , which implies that we are in the
exceptional case (E2) of section 6, i.e., E/K is inseparable and B = F[

√
T ]. Here

ηL∞(1, χ)qg = 1 trivially, so

(8.12) h∗(0, b, p) = |f |v(0, b),

which, by virtue of (6.10), equals S(f, B) =
∑

f ′|f |f ′|. The quantity f may be
determined by the following lemma.

8.13. Lemma. Any element x of K∞ may uniquely be written in the form x =
s2 + Tt2 with s = sx, t = tx ∈ K∞. Then C := F(

√
p) = F(

√
b) is the order

A + tbB in B = F[
√

T ], i.e., f is the monic associated with tb.

Proof. Obvious. �
We may now give the formula that substitutes (8.5) in characteristic 2. Viz,

combining (8.10)–(8.13), we find

(8.14) h∗(a, b, p) = |p|1/2v(a, b)v∞(a, b),

where

v∞(a, b) =
{

|a2/b|1/2ψ(b/a2), if a �= 0,
|t2b/b|1/2, if a = 0.

The following observations are in order:

8.15. As in the case of odd characteristic, we have

v∞(a, b) ≤ q−1/2,

with equality if and only if d = deg p is odd. This results from (8.10) and (8.13).

8.16. Our formulas define v∞(a, b) on {(a, b) ∈ K∞ × K∞ | |a|2 ≤ |b|, b �= 0}, and
it is an amusing exercise to show that the resulting function is continuous on this
set. We leave the details to the reader.

The results of this section are summarized as follows, allowing now arbitrary
characteristics for F.

8.17. Theorem. The weighted class number h∗(a, b, p) of Drinfeld modules of rank
two over Fp with characteristic polynomial X2 − aX + b may be written as

h∗(a, b, p) = |p|1/2v(a, b)v∞(a, b),

where
v(a, b) =

∏
l prime of A

vl(a, b)

is a conditionally convergent product, the vl(a, b) are the continuous local density
functions defined in (7.1) and calculated in (7.9), and the factors v∞(a, b) are given
by (8.5) and (8.14) for the case of odd or even characteristics, respectively.

This should be compared with Theorem 5.5 of [11], where elliptic curves over
the prime field Fp are counted in a similar way. The “classical” counterpart of the
present v∞(a, b) is the Sato-Tate function (a, b) �−→ 2

π

√
1 − a2/4b, where now a

and b > 0 are elements of the infinite completion R of Q.
In view of Theorem 4.2(ii) (see also Remark 4.6), the fact (8.15), the results of

[13, sect. 6] and some numerical evidence in [14], we dare to propose the follow-
ing conjecture, which is a partial analogue for Drinfeld modules of the Sato-Tate
conjecture.
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8.18. Conjecture. Let φ = (g, ∆) be a Drinfeld A-module of rank two defined over
K without complex multiplication, i.e., such that EndK(φ) = A. Suppose that q2−1
is the least number s such that ∆s is a (q2 − 1)-th power in K. For each p of K
where φ has good reduction, let F (p) be the Frobenius endomorphism of the reduced
module φ(p) over Fp, with trace a(φ(p)). For p of degree d put

a(p) :=
{

a(φ(p))T−(d−1)/2

a(φ(p))T−d/2

}
if d is

{
odd
even

}
.

Then the collection {a(p) | deg p odd and φ has good reduction at p} is equidistrib-
uted in the ring O∞ of integers of K∞.

The idea behind this is that the distribution of the normalized traces a(p) in O∞
should be determined by the factor v∞(a, b) alone, which is constant for p of odd
degree.

A similar conjecture, taking the shape of v∞(a, b) into account, could be made
for p of even degree; details still to be worked out. The question is certainly
related to Jiu-Kang Yu’s “Sato-Tate law”, formulated and proved in [20], although
it is difficult to find a direct implication as long as the range H of Yu’s Galois
representation (loc. cit. 3.5) is unknown.

Another possible direction of future research is the average behavior of h∗(a, b, p)
with a fixed, deg p −→ ∞, similar to [11, Theorem 6.4]. For a first approach, see
[1].
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[7] Gekeler, E.-U.: Über Drinfeld’sche Modulkurven vom Hecke-Typ, Comp. Math. 57 (1986),
219–236. MR827352 (87d:11041)

[8] Gekeler, E.-U.: On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988),

667–700. MR952287 (89g:11043)
[9] Gekeler, E.-U.: On finite Drinfeld modules, J. Algebra 141 (1991), 187–203. MR1118323

(92e:11064)
[10] Gekeler, E.-U.: Highly ramified pencils of elliptic curves in characteristic two, Duke Math. J.

89 (1997), 95–107. MR1458973 (99d:11063)
[11] Gekeler, E.-U.: Frobenius distributions of elliptic curves over finite prime fields, Int. Math.

Res. Notes 37 (2003), 1999–2018. MR1995144 (2004d:11048)
[12] Goss, D.: Basic structures of function field arithmetic, Springer-Verlag 1996. MR1423131

(97i:11062)
[13] Hsia, L.-Ch., Yu, J.: On characteristic polynomials of geometric Frobenius associated to

Drinfeld modules, Comp. Math. 122 (2000), 261–280. MR1781330 (2001h:11119)
[14] Jung, F.: Charakteristische Polynome von Drinfeld-Moduln, Diplomarbeit Saarbrücken 2000.
[15] Neukirch, J.: Class field theory, Springer-Verlag, 1986. MR819231 (87i:11005)
[16] Rosen, M.: Number theory in function fields, Springer-Verlag, New York, 2002. MR1876657

(2003d:11171)



FROBENIUS DISTRIBUTIONS 1721

[17] Schweizer, A.: On Drinfeld modular curves with many rational points over finite fields, Finite
Fields Appl. 8 (2002), 434–443. MR1933615 (2004c:11096)

[18] Shimura, G.: Arithmetic theory of automorphic functions, Princeton University Press, 1971.
[19] Yu, J.-K.: Isogenies of Drinfeld modules over finite fields, J. Number Th. 54 (1995), 161–171.

MR1352643 (96i:11060)
[20] Yu, J.-K.: A Sato-Tate law for Drinfeld modules, Comp. Math. 138 (2003), 189–197.

MR2018826 (2005a:11084)

[21] Drinfeld modules, modular schemes and applications, Proc. Alden-Biesen 1996, E.-U. Gekeler
et al. (eds.), World Scientific 1997. MR1630594 (99b:11002)

FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saar-

brücken, Germany

E-mail address: gekeler@math.uni-sb.de


