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MAXIMAL MULTILINEAR OPERATORS

CIPRIAN DEMETER, TERENCE TAO, AND CHRISTOPH THIELE

Abstract. We establish multilinear Lp bounds for a class of maximal mul-
tilinear averages of functions of one variable, reproving and generalizing the
bilinear maximal function bounds of Lacey (2000). As an application we obtain
almost everywhere convergence results for these averages, and in some cases
we also obtain almost everywhere convergence for their ergodic counterparts
on a dynamical system.

1. Introduction

Let n > 1, m ≥ 1 and consider an (n−1)×m real-valued matrix A = (ai,j)
n−1 m
i=1 j=1.

This naturally gives rise to the multilinear averages:

(1) TA,R,r(f1, . . . , fn−1)(x) :=
1

(2r)m

∫
|t1|,...,|tm|≤r

n−1∏
i=1

fi(x +
m∑

j=1

ai,jtj)d�t,

where r > 0 and f1, . . . , fn−1 are arbitrary measurable functions on R. Part of
the motivation for considering such averages comes from ergodic theory. Let X =
(X, Σ, m, S) be a dynamical system, i.e. a complete probability space (X, Σ, m)
endowed with an invertible bimeasurable transformation S : X → X such that
mS−1 = m. We define the iterates Sn : X → X for n ∈ Z in the usual manner.
In case the matrix A has integer entries, one can consider the following ergodic
averages:

(2) TA,X,L(f1, . . . , fn−1)(x) :=
1

(2L + 1)m

∑
|l1|,...,|lm|≤L

n−1∏
i=1

fi(S
∑m

j=1 ai,j lj x).

We use Lp(R) to denote the usual Lebesgue spaces on R, and Lp(X) to denote the
Lebesgue spaces on the dynamical system X.

In this paper we shall be primarily concerned with the problem of almost every-
where convergence of these averages as r → 0 or L → ∞ in the case that the fi

obey some Lpi type integrability condition. As is well known, such problems are
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related to the boundedness properties of the maximal operator
T ∗

A,R(f1, . . . , fn−1)(x) := sup
r>0

|TA,R,r(f1, . . . , fn−1)(x)|

= sup
r>0

| 1
(2r)m

∫
|t1|,...,|tm|≤r

n−1∏
i=1

fi(x +
m∑

j=1

ai,jtj)d�t|
(3)

or the closely related maximal operator
T ∗

A,X(f1, . . . , fn−1)(x) := sup
L>0

|TA,X,L(f1, . . . , fn−1)(x)|

= sup
L>0

| 1
(2L + 1)m

∑
|l1|,...,|lm|≤L

n−1∏
i=1

fi(S
∑m

j=1 ai,j lj x)|.
(4)

It turns out that standard transference arguments allow one to convert any positive
or negative boundedness result for T ∗

A,R to one for T ∗
A,X and vice versa; see Propo-

sition 14.1. Thus we shall view the boundedness problems for these two maximal
operators as being equivalent.

Since one can easily establish convergence for (1) in any reasonable topology
when the f1, . . . , fn−1 are smooth, compactly supported functions, a standard
density argument then shows that as soon as the maximal operator T ∗

A,R maps
Lp1(R) × . . . × Lpn−1(R) to weak Lq(R) for some 0 < q < ∞, then the averages
(1) will converge pointwise almost everywhere when fi ∈ Lpi(R) for 1 ≤ i ≤ n− 1,
at least in the case when all the p1, . . . , pn−1 are finite.1 In fact these averages will
converge almost everywhere to the pointwise product f1 . . . fn−1. In the converse
direction, Stein’s maximal principle [21] shows that in many cases, almost every-
where convergence of (1) can only be established via such weak Lq bounds on the
maximal operator T ∗

A,R.
For the ergodic averages (2), the situation is more difficult because there is no

obvious counterpart of the class C∞
c (R) of smooth, compactly supported functions

on which the convergence is easy to establish.2 However, one can use the class
L∞(X) as a substitute, in the sense that once almost everywhere convergence for
TA,X,L is established for f1, . . . , fn−1 ∈ L∞(X), one can extend this convergence
result to the case when fi ∈ Lpi(X) provided that one knows that the maximal
operator T ∗

A,R maps Lp1(R)× . . .×Lpn−1(R) to weak Lq(R) for some 0 < q < ∞,
since transference arguments then give an analogous boundedness statement for
T ∗

A,X. Thus the problem of almost everywhere convergence of TA,X,L for functions
fi ∈ Lpi(X) factors into two rather distinct problems, namely establishing conver-
gence for L∞(X) functions (which is a problem in ergodic theory), and establishing
a bound for T ∗

A (which is a problem in multilinear harmonic analysis). In this pa-
per we shall focus almost exclusively on the latter problem. The former problem is
quite difficult, except when n = 2; the n = 3 case already requires a deep result of
Bourgain [5], and convergence for higher n is only proven for very special averages

1When one or more of the exponents is ∞ one can proceed by localization arguments, exploiting
the fact that an L∞ function is locally in Lp for any p < ∞. This costs us an epsilon in the
exponents but in most of our results the range of exponents will be open and so this will not make
any difference.

2An alternate approach would be to establish either a V q variational estimate on TA,X,L in L
for some q < ∞, or an oscillation inequality, since any of these automatically implies convergence
as L → ∞, in the spirit of Doob’s inequality or Lepingle’s inequality. We will not pursue such an
approach here, but see for instance [8], [10].
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(see e.g. [1]) or with additional spectral assumptions on the shift S (see [2], [16],
[17]), and we will not make progress on these issues here.

Let us now discuss some important special cases of the above general setup.

1.1. Linear averages. If n = 2, m = 1, and A = (a) for some nonzero integer a,
then we have

TA,R,rf1(x) =
1
2r

∫ r

−r

f1(x + at) dt

and

TA,X,Lf1(x) =
1

2L + 1

L∑
l=−L

f1(Salx).

If f1 is in Lp(R) (resp. Lp(X)) for some 1 ≤ p ≤ ∞, then the Lebesgue differ-
entiation theorem (resp. the Birkhoff ergodic theorem) shows that TA,R,rf1 (resp.
TA,X,L) are almost everywhere convergent. Both of these results require the Hardy-
Littlewood maximal inequality, which asserts that the Hardy-Littlewood maximal
operator

Mf1(x) := sup
r>0

1
r

∫ r

−r

|f1|(x + t) dt

maps L1 to weak L1. The Lebesgue differentiation theorem follows immediately
from the maximal inequality, whereas the Birkhoff ergodic theorem requires that
one first establish almost everywhere convergence for a dense class such as L∞(X).

1.2. Bilinear averages. Let n = 3, m = 1, and A =
(

a1

a2

)
for some distinct

nonzero integers a1, a2; thus

TA,R,r(f1, f2)(x) =
1
2r

∫ r

−r

f1(x + a1t)f2(x + a2t) dt

and

TA,X,L(f1, f2)(x) =
1

2L + 1

L∑
l=−L

f1(Sa1lx)f2(Sa2lx).

As a consequence of a deep theorem of Bourgain [5] (relying on Fourier analysis on
the torus), it is known that the averages TA,X,L(f1, f2) converge almost everywhere
whenever f1, f2 ∈ L∞(X). Almost everywhere convergence in other classes then
pivots on understanding the bilinear maximal operator

T ∗
A,R(f1, f2)(x) = sup

r>0
| 1
2r

∫ r

−r

f1(x + a1t)f2(x + a2t) dt|.

This operator clearly maps L∞(R) × L∞(R) → L∞(R), and from the Hardy-
Littlewood maximal inequality it also maps L∞(R) × L1(R) or L1(R) × L∞(R)
to weak L1. This, combined with bilinear interpolation, is enough to establish
almost everywhere convergence of the ergodic averages TA,X,L for f1 ∈ Lp1(X), f2 ∈
Lp2(X) when 1/p1 + 1/p2 < 1 (one also obtains the edge 1/p1 + 1/p2 = 1 from this
argument as long as p1, p2 < ∞). It was shown by Lacey [15], using time-frequency
analysis, that T ∗

A,R in fact maps Lp1(R)×Lp2(R) to Lq(R) whenever 1
q = 1

p1
+ 1

p2

and q > 2
3 . This allows one to extend the almost everywhere convergence result to

the larger range 1/p1 + 1/p2 < 3/2. It is an interesting question as to whether this
is the true limit for these results. Certainly one has boundedness for a single-scale
operator TA,R,r or TA,X,L all the way up to the range 1/p1+1/p2 ≤ 2. On the other
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hand, the time-frequency approach is known to break down at 1/p1 + 1/p2 = 3/2
(see [15]).

1.3. Furstenberg averages. Let n ≥ 2, m = 1, and let A be the matrix

A :=

⎛
⎜⎜⎜⎝

1
2
...
n − 1

⎞
⎟⎟⎟⎠ .

Then (1) becomes the multilinear average

TA,R,r(f1, . . . , fn−1)(x) =
1
2r

∫ r

−r

n−1∏
i=1

fi(x + it) dt

and (2) becomes the Furstenberg average

TA,X,L(f1, . . . , fn−1)(x) =
1

2L + 1

L∑
l=−L

fi(Silx).

Note the cases n = 2, n = 3 are special cases of the linear and bilinear aver-
ages considered earlier. These averages are related to the Furstenberg recurrence
theorem [12] and to Szemerédi’s theorem on arithmetic progressions [22], and are
also connected to the recent result in [13] that the primes contain arbitrarily long
progressions. For instance, the Furstenberg recurrence theorem is essentially the
assertion that

lim inf
L→∞

∫
X

TA,X,L(f, . . . , f)f dm > 0

whenever f is nonnegative and does not vanish almost everywhere. The question
of norm convergence of TA,X,L is more difficult and has only recently been treated
in the independent works of Host and Kra [14] and Ziegler [23]. They showed that
if f1, . . . , fn−1 ∈ L∞(X), then TA,X,L(f1, . . . , fn−1) converges in the L2(X) norm
(and hence in the Lp(X) norm for any 1 ≤ p < ∞). Their approach relies on
the reduction to convergence for functions in a sub-σ-algebra Zn−1 of Σ, known
as a characteristic factor, on which T can be represented as an inverse limit of
translations on nilmanifolds. The advantage of such a concrete representation is
that this particular type of translation is quite well understood. In particular, Z0

is the σ-algebra spanned by the invariant sets of powers of T , while the action of T
on the Kronecker factor Z1 is isomorphic with a rotation on some abelian group.
The σ-algebras Zk with k ≥ 2 give rise to noncommutative factors which require a
more delicate analysis. The work in this paper will however proceed in a different
direction, focusing on the quantitative bounds of various operators associated with
these averages rather than analyzing characteristic factors. It is of course possible
to extend these norm convergence results to functions fi in other spaces Lpi(X)
by exploiting boundedness properties TA,X,L or TA,R,r, but we will not pursue this
issue here, though we will mention that some surprising subtleties in this problem
in the case 1/p1 + . . . + 1/pn > 1 have been uncovered by Christ [6].

The problem of almost everywhere convergence, as opposed to norm convergence,
for the Furstenberg averages remains open even for n = 4. One can obtain some
bounds of the corresponding maximal operators in Lp spaces by leveraging the
corresponding bounds in the bilinear setting. For instance one can extend Lacey’s
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bilinear estimates mentioned earlier to the multilinear setting by estimating all
but two of the functions in L∞. This ultimately leads to a bound on T ∗

A,R from
Lp1(R) × . . . × Lpn(R) to Lq(R) whenever 1 < p1, . . . , pn ≤ ∞ and 1/q = 1/p1 +
· · · + 1/pn < 3/2.

1.4. Averages along cubes. The work of Host and Kra [14] related the norm
convergence of the above Furstenberg averages to the norm convergence of averages
of cubes, which is a special case of (2) with n = 2m. To define them, let Vm be the
index set Vm := {0, 1}m \ {0}m. The averages on the m-dimensional cubes are

(5)
1

(2L + 1)m

∑
�i∈{−L,...,L}m

∏
ε∈Vm

fε(S
�i·εx).

For example, when m = 1 (so n = 2) we just have a linear averaging operator.
When m = 2 (and so n = 4), this averaging operator along squares is essentially
the same as TA,X,L with

A :=

⎛
⎝ 0 1

1 0
1 1

⎞
⎠

while when m = 3 (and n = 8) the averaging operator along cubes is essentially
TA,X,L with

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is proved in [14] that the averages3 in (5) have Zm−1 as a characteristic factor
for L2-norm convergence, and as a consequence that these averages converge in
L2(X) whenever fε ∈ L∞(X). Using these characteristic factors, Assani [1] showed
that these averages also converged pointwise almost everywhere when fε ∈ L∞(X).
It is somehow peculiar that these techniques do not seem to be able to give an
alternative (nonFourier analytical) proof to Bourgain’s pointwise result mentioned
earlier.

To extend the latter L∞(X) convergence result to an Lp(X) convergence result
requires control of a maximal function. For the sake of concreteness let us just
focus on the case m = 2, where the relevant maximal function is

sup
r>0

| 1
(2r)2

∫ r

−r

∫ r

−r

f10(x + t1)f01(x + t2)f11(x + t1 + t2) dt1dt2|.

One can deduce a certain number of bounds on this maximal function from the
Hardy-Littlewood maximal inequality and multilinear interpolation. Indeed, the
maximal inequality and Hölder’s inequality imply that this maximal function lies
in weak L1/2 whenever two of f10, f01, f11 lie in L1 and the other one lies in L∞,
while this maximal operator is trivially in L∞ when all three of f10, f01, f11 lie in
L∞. Interpolation then gives bounds (and hence almost everywhere convergence of

3Actually, a more general class of averages is shown in [14] to have Zm−1 as a characteristic
factor; we refer the reader to [14] for the details.
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the associated averages along squares) when f01 ∈ Lp01 , f10 ∈ Lp10 , f11 ∈ Lp11 with
1/p01+1/p10+1/p11 < 2, with an extension to the boundary 1/p01+1/p10+1/p11 =
2 when all of the exponents are finite. As a corollary of our main result (which is
proven using time-frequency techniques) we shall be able to extend this range to
1/p01 + 1/p10 + 1/p11 < 5/2, in analogy with the situation for bilinear averages
discussed earlier (see Corollaries 1.6, 1.7 below).

1.5. Main results. We now study the maximal operator T ∗
A,R defined in (3) for a

general (n − 1) × m matrix A = (ai,j); we will allow the ai,j here to be noninteger
as one can still define T ∗

A,R in this case. To state the main result we need some
notation. We introduce the extended matrix E(A), which is the n× (m+1) matrix

E(A) :=

⎛
⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,m 1
a2,1 a2,2 . . . a2,m 1

. . . . . . . . . . . . . . . . . . . . .
an−1,1 an−1,2 . . . an−1,m 1

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠ .

Note that the range of this matrix consists of all n-tuples of the form

(x +
m∑

j=1

a1,jtj , . . . , x +
m∑

j=1

an−1,jtj , x)

for x, t1, . . . , tm ∈ R.
A set of row indices i is said to be a set of linear independence for a matrix B if the

set of corresponding rows of B is linearly independent. Given a matrix A, let SA,ε

for 0 < ε < 1/4 be the set of all tuples (x1, . . . , xn−1) where xi ∈ {0, 1/2 + ε, 1− ε}
for all i, there is at most one index i with xi = 1/2+ ε, the indices i with xi = 1− ε
form a set of linear independence for A, and the indices i with xi ∈ {1/2 + ε, 1− ε}
form a set of linear independence for E(A). Let HA,ε be the convex hull of SA,ε

and let HA be the union of all HA,ε with 0 < ε < 1/4.
The following is our main theorem:

Theorem 1.1. Assume n ≥ 3 and let A be a matrix as above. Let (p1, . . . , pn−1)
be a tuple of real numbers with

(6) 1 < pi ≤ ∞

for 1 ≤ i ≤ n − 1 and set

(7)
1

pn
′ =

n−1∑
i=1

1
pi

.

If
(1/p1, . . . 1/pn−1) ∈ HA,

then the operator T ∗
A,R,

T ∗
A,R : Lp1 × · · · × Lpn−1 → Lp′

n ,

is bounded.

Remark 1.1. The condition (7) is mandated by scaling considerations (i.e. dimen-
sional analysis). As we shall see shortly, the theorem is trivial if one restricts the
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tuples (1/pi) to the convex hull of those points in SA,ε which do not have a compo-
nent equal to 1/2 + ε. This happens in particular when n = 2. Thus, in a nutshell,
we are gaining 1/2 − ε over the trivial estimates.

Remark 1.2. For some matrices A we can obtain a better range of exponents than
stated in the theorem. Namely, when the matrix A is a diagonal block matrix, we
may gain 1/2 for every block. More precisely, the argument works for A upper-block
triangular and E(A), modulo the last column and restricted to the rows other than
the last row, is block diagonal. The argument involves only separation of variables
and Hölder’s inequality, so we shall not elaborate on this.

The following corollary is weaker than the theorem, but has the advantage of
an easy description of the range of exponents and covers many of the cases of
interest. Define the nondegeneracy rank of the matrix A, denoted by rank∗(A), to
be the largest integer r such that any r rows of A are linearly independent. It is
an immediate observation that rank∗(A) + 1 ≥ rank∗(E(A)) ≥ rank∗(A).

Corollary 1.2. Assume n ≥ 2 and let A be a matrix as above. Define the com-
plexity parameter k = n − rank∗(E(A)). Let (p1, . . . , pn−1) be a tuple with

1 < pi ≤ ∞
for 1 ≤ i ≤ n − 1 and set

1
pn

′ =
n−1∑
i=1

1
pi

.

If

(8)
1
p1

+ · · · + 1
pn−1

< n − k − 1
2
,

then the operator T ∗
A,R,

T ∗
A,R : Lp1 × · · · × Lpn−1 → Lp′

n ,

is bounded.

Proof. The closure of the region of tuples (1/pi) in the corollary is the intersection
of the cube [0, 1]n−1 with a half space. All extremal points of this set are on an
edge of the cube and thus have all but at most one coordinate in {0, 1}. The only
possible value for the exceptional coordinate is 1/2 as the right-hand side of (8) is
equal to 1/2 modulo the integers. Thus the region in the corollary is the convex
hull of all tuples (x1, . . . , x2) with at most n− k − 1 components equal to 1− ε, at
most one component equal to 1/2 + ε and the remaining components equal to 0.
The corollary then follows from the rank conditions on A and E(A) and the fact
that rank∗(A) ≥ n − k − 1. �
Remark 1.3. As discussed earlier, the boundedness results in Theorem 1.1 and
Corollary 1.2 immediately imply almost everywhere convergence for TA,R,ε(f1, . . . ,
fn−1) as ε → 0 when fi ∈ Lpi(R) if all the pi are finite, since this convergence
is trivial for fi in the dense class C∞

c (R). The pi = ∞ cases can also be handled
by a localization argument and exploiting some openness properties of HA. The
situation for the ergodic averages is however substantially more difficult.

Remark 1.4. If rank∗(E(A)) = rank(E(A)), then the regions described in Theorem
1.1 and Corollary 1.2 are equal.
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Remark 1.5. It is worth noting that p′n can be less than 1; indeed it is less than
1 in all nontrivial cases. In some cases one can get below 1 by using just Hölder’s
inequality and interpolation; see for instance the discussion in Section 1.4.

Remark 1.6. Theorem 1.1 is a direct analog of the singular integral version in [18,
Theorem 1.1], which roughly speaking replaces T ∗

A,R with the related expression

p.v.

∫
Rm

n−1∏
i=1

fi(x +
m∑

j=1

ai,jtj)K(�t)d�t

for some Calderón-Zygmund kernel K. As a consequence the methods of proof are
quite similar. The parameter k in Corollary 1.2 plays the same role as the parameter
k appearing in [18, Theorem 1.1], measuring the complexity of the averages under
investigation. The case k = 0 for the singular integral version can be solved with
classical methods, namely Littlewood-Paley theory or wavelets, just as the case
k = 0 for the maximal version can be solved using the classical Hardy-Littlewood
maximal inequality.

Readers familiar with [18] will observe that the range of exponents in Theorem
1.1 is somewhat more permissive than that in [18]. More precisely, the restriction
k < n

2 as well as several restrictions on the exponents pi from [18] are not needed
in Theorem 1.1. This is a consequence of the fact that there are trivial reductions
in the maximal operator case if there are exponents pi = ∞, while in the singular
integral setting there are no such trivial reductions. This explains why for instance
we can obtain nontrivial estimates for the trilinear maximal operator (n = 4, k = 2)

(9) T ∗
�a (f1, f2, f3) := sup

ε>0

1
ε

∫
|t|≤ε

|f1(x + a1t)f2(x + a2t)f3(x + a3t)| dt

with a1, a2, a3, 0 pairwise different (see Example 1.5 below), despite the fact that
no Lp bounds of any sort are known for the trilinear Hilbert transform

p.v.

∫
R

f1(x + a1t)f2(x + a2t)f3(x + a3t)
dt

t
.

Remark 1.7. It should be emphasized that the nontrivial estimates from the k > 1
cases are all obtained by such trivial reductions to the case k = 1 and multilinear
interpolation. In other words, there is no special theory developed yet to address the
case k > 2. It is quite probable that more sophisticated techniques will extend the
range of the exponents in this case. An interesting connection concerns the fact that
averages corresponding to some k ≥ 0 appear to have Zk as a characteristic factor
for L2-norm convergence. In particular, it is an exercise based on the techniques
from [1] and from [5] to show that Zk is the characteristic factor even for a.e.
convergence, when k = 0, 1. This would support the evidence that, as in the case
of norm convergence, k is the only parameter which dictates the complexity of the
averages and of the techniques needed for the proof.

Similar difficulties are encountered when dealing with polynomial maximal op-
erators such as P ∗(f1, f2)(x) := supε>0

1
ε

∫
|t|≤ε

|f1(x + t)f2(x + t2)| dt. In all these
instances, the decomposition of the maximal operator, as explained in the third sec-
tion below, gives rise to a summation over a larger family of multidimensional cubes,
each of which is indexed by more than just one parameter. Curiously, the bounded-
ness of the maximal operator associated with polynomial averages, unlike the multi-
linear averages studied here (see Proposition 14.1), does not in general transfer from
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harmonic analysis to ergodic theory. It is really that the results in these two con-
texts have different meaning and most probably distinct ideas behind their proofs.
An illuminating contrast comes from the fact that supε>0

1
ε

∫
|t|≤ε

|f(x+t2)|dt can be
easily bounded by the Hardy-Littlewood maximal function, while Bourgain showed
that the convergence of the ergodic averages along squares needs completely new
ideas [4].

Let us illustrate Theorem 1.1 and Corollary 1.2 with some examples.

Example 1.3. Consider the bilinear averages from Section 1.2. Here the extended
matrix is

E(A) =

⎛
⎝a1 1

a2 1
0 1

⎞
⎠ .

One can check that rank(A) = 1 and rank∗(E(A)) = rank(E(A)) = 2, and

SA,ε = {(0, 0), (0, 1/2+ε), (1/2+ε, 0), (0, 1−ε), (1−ε, 0), (1/2+ε, 1−ε), (1−ε, 1/2+ε)}

and hence
HA = {(a, b) : 0 ≤ a, b < 1; a + b < 3/2}.

In this case Theorem 1.1 and Corollary 1.2 give the same results, namely recovering
the bilinear maximal function estimates of Lacey [15] described earlier. Indeed we
give a reasonably self-contained4 proof of the main results from [15] here, following
Lacey’s approach.

Example 1.4. Consider the n = 4 Furstenberg average from Section 1.3. Here the
extended matrix is

E(A) :=

⎛
⎜⎜⎝

1 1
2 1
3 1
0 1

⎞
⎟⎟⎠ .

One can check that rank(A) = 1 and rank∗(E(A)) = rank(E(A)) = 2, and SA,ε

consists of those triples (a, b, c) with a, b, c ∈ {0, 1/2+ ε, 1− ε}, at most one of a, b, c
equal to 1/2 + ε, and at most one of a, b, c equal to 1 − ε. This gives

HA = {(a, b, c) : 0 ≤ a, b, c < 1; a + b < 3/2}.

In this case, Theorem 1.1 and Corollary 1.2 recover the multilinear estimates men-
tioned at the end of Section 1.3 that can be trivially obtained from Lacey’s bilinear
result. Similar considerations apply to higher values of n.

Example 1.5. Consider the m = 2 average along squares from Section 1.4. Here
the extended matrix is

E(A) :=

⎛
⎜⎜⎝

0 1 1
1 0 1
1 1 1
0 0 1

⎞
⎟⎟⎠ .

4We will require some results from other papers, notably the multilinear interpolation theory
from [18], the weak Bessel inequality for forests (see e.g. [20]), a maximal Fourier inequality of
Bourgain [4], and an interval selection lemma of Lacey [15].
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One can check that rank(A) = 2 and rank∗(E(A)) = rank(E(A)) = 3, and SA,ε

consists of those triples (a, b, c) with a, b, c ∈ {0, 1/2+ ε, 1− ε}, at most one of a, b, c
equal to 1/2 + ε, and at most two of a, b, c equal to r 1 − ε. This gives

HA = {(a, b, c) : 0 ≤ a, b, c < 1; a + b < 5/2}.

Combining the above example with Proposition 14.1 from Appendix 14, and the
result of Assani [1], we obtain the following corollary.

Corollary 1.6. Let 1 < p1, p2, p3 ≤ ∞ be such that 1
p1

+ 1
p2

+ 1
p3

< 5
2 . For every

dynamical system X = (X, Σ, m, S), the averages on squares

1
N2

N∑
i=−N

N∑
j=−N

f1(Six)f2(Sjx)f3(Si+jx)

converge a.e. x, for each fi ∈ Lpi(X).

Remark 1.8. A version of Corollary 1.6 holds for all averages with k = 1. The
convergence for L∞ functions follows by using the aforementioned fact that these
averages have characteristic factor Z1 for pointwise convergence. We omit the
details.

Remark 1.9. In [9] we use combinatorial methods involving sum set estimates to
get nontrivial positive results in Corollary 1.6. This completely different approach
gives the result only in a small range, p′4 > 1

2+ε for some unspecified ε, and does
not seem to extend to the case when p′4 is smaller than or even close to 2

5 .

Remark 1.10. An interesting contrast to the results of Theorem 1.1 is provided by
the constructions from [7], showing that some maximal operators fail to be bounded
when the indices pi, 1 ≤ i ≤ n − 1 are sufficiently close to 1. As a consequence,
both Furstenberg’s averages with n ≥ 4 and the averages on cubes with m ≥ 3 are
proved to diverge a.e. in some range of Lp spaces. The trilinear maximal operator
from (9) has been proved in [6] to be unbounded for p1 = p2 = p3 = p, 1 ≤ p < 3

2 ,
for appropriate choices of �a depending on p. The main ingredient behind these
negative results is the fact that the polynomials x +

∑m
j=1 ai,jtj , 1 ≤ i ≤ n − 1 are

linearly dependent in R[x, t1, . . . , tl] and hence rank∗(E(A)) ≤ n− 2 and k ≥ 2. In
other words, our tools provide negative results only when k ≥ 2, and all positive
results are trivially deduced from positive results when k = 0, 1. Further progress
would require breaking this barrier in the complexity k either for positive or for
negative results.

The following is the straightforward application of Corollary 1.2 to averages on
cubes. In this case, while rank(A) is the dimension of the cube, we have rank∗(A) =
2, an obstruction for higher nondegeneracy rank being the linear dependence of the
polynomials t1, t2, and t1 + t2. On the other hand, rank∗(E(A)) = 3, and hence:

Corollary 1.7. Let 1 < pε ≤ ∞, ε ∈ Vm, be such that

(10)
∑

ε∈Vm

1
pε

<
5
2
.

For every dynamical system X = (X, Σ, m, S), the averages on m-dimensional
cubes (5) converge a.e. for each fε ∈ Lpε(X).
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This of course generalizes Corollary 1.6. It would be interesting to know whether
one can improve upon the 5/2 on the right-hand side of (10). Certainly the methods
of this paper do not yield such an improvement, and [7] provides an upper bound
of 28/5 for the right-hand side of (10) for three-dimensional cubes.

Theorem 1.1 is proven using standard time-frequency strategies, and in particular
follows the approach of Lacey [15], though it is more self-contained and employs
some technical simplifications over that in [15]. In Section 2 we use the theory
of multilinear interpolation to reduce Theorem 1.1 to a model case, Theorem 2.3,
in which the matrix A is in a simplified normal form, the functions f1, . . . , fn−1

have become L2-normalized functions adapted to certain sets E1, . . . , En−1, and the
output is being measured in another set E′

n which excludes a certain exceptional set
determined by the Hardy-Littlewood maximal function. In Sections 3, 4 we use the
Fourier transform and wave packet decomposition to reduce matters to bounding
a certain model sum (Theorem 4.4) involving the inner product of the functions
f1, . . . , fn with various wave packets (and maximal wave packets) associated with
a certain “rank one” collection of multitiles. To estimate this model sum, we
organize the collection of multitiles into trees; after obtaining an upper bound
for the contribution of a single tree (see Proposition 6.2 and Section 7) one quickly
reduces (essentially by summing a geometric series; see Section 6) to that of proving
estimates for a tree selection algorithm (Lemma 6.3), which in turn reduces to a
certain maximal Bessel inequality concerning wave packets in a forest (Theorem 9.1,
slightly improving and simplifying a similar result from [15]). This Bessel inequality
will involve a certain logarithmic-type loss involving the size parameter 2m, but by
some “good-λ” type reductions in Section 9 we can replace this factor with another
logarithmic factor involving instead the multiplicity ‖NF‖L∞ of the forest (Theorem
9.2). After some sparsification of the tile set, some elimination of exceptional tiles,
and duality, one reduces to establishing a certain maximal Bessel inequality on
two families of tiles (see (60) and (61)). These inequalities are proven by using
the time localization properties of wave packets, a nonmaximal Bessel inequality
(proven in Section 13), and the Rademacher-Menshov inequality. In the case of
one of these inequalities (61), one also needs a maximal inequality of Bourgain
[4]. Finally, in an Appendix (Section 14) we present a standard correspondence
principle equating boundedness of maximal functions on R with maximal functions
on measure-preserving systems.

2. Interpolation reductions

The rest of the paper is devoted to the proof of Theorem 1.1. We shall use the
methods of multilinear time-frequency analysis and work entirely on R; thus we
will not make any further reference to the dynamical system X.

In this section we use some multilinear interpolation techniques to reduce the
operator T ∗

A,R and the exponents p1, . . . , pn to a standard form, and then to also re-
duce the input functions f1, . . . , fn−1 (and an additional output function fn arising
from duality) to another standard form.

We first introduce some basic notation. If E is a measurable subset of R, we
use 1E to denote the indicator function of E and |E| to denote the Lebesgue
measure. Also Mf(x) := supr>0

1
2r

∫ x+r

x−r
|f |(y)dy denotes the classical Hardy-

Littlewood maximal function. The notation a � b or a = O(b) means that a ≤ cb
for some universal constant C (which will be allowed to depend on parameters such
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as n and p1, . . . , pn), and a ∼ b means that a � b and b � a. In some cases we will
subscript the � notation by a parameter to emphasize the fact that the constant
C involved can depend on that parameter; thus for instance a �µ b means that C
can depend on µ. If x ∈ Rn we use ‖x‖ to denote the Euclidean norm of x.

Now we can reduce the operator T ∗
A,R and the exponents p1, . . . , pn to a standard

form.

Theorem 2.1 (First reduction). Let n ≥ 3, let Σ be a hyperplane in Rn−1 contain-
ing the origin but not containing any of the n − 1 coordinate vectors e1, . . . , en−1

or the vector (1, . . . , 1). Then the (n − 1)-linear operator T ∗ defined by

T ∗(f1, . . . , fn−1)(x)

= sup
r>0

1
rn−2

∫
�t∈Σ:‖�t‖≤r

|f1(x + t1) · . . . · fn−1(x + tn−1)|d�t
(11)

is bounded from Lp1(R)× . . .×Lpn−1(R) to Lp′
n(R) whenever 1 < p1, . . . , pn−1 < 2,

5
2 − n < 1

pn
< 3 − n, and

1
p′n

=
1
p1

+ . . . +
1

pn−1
.

The bound of course depends on p1, . . . , pn and the λi.

Remark 2.1. Note that rank(E(A)) = rank∗(E(A)) = n − 1. Hence we are in the
case k = 1 of Corollary 1.2 and the corollary is equivalent to Theorem 1.1 in this
case. The condition that Σ does not contain e1, . . . , en−1 or (1, . . . , 1) corresponds
to the nondegeneracy condition in [18].

Proof of Theorem 1.1 assuming Theorem 2.1. By multilinear interpolation as in
[18] it suffices to prove the estimate for tuples (1/pi) in SA,ε for some 0 < ε < 1/2,
so in particular 1/pi = {1/2 + ε, 1− ε, 0} for all i. We may of course assume the fi

are nonnegative. For each index i with pi = ∞ we can trivially estimate fi by its
supremum norm and remove it from the maximal operator:

sup
r>0

1
(2r)m

∫
|t1|,...,|tm|≤r

n−1∏
i=1

fi(x +
m∑

j=1

ai,jtj) d�t

� ‖fj‖L∞ sup
r>0

1
(2r)m

∫
|t1|,...,|tm|≤r

∏
i �=j

fi(x +
m∑

j=1

ai,jtj) d�t.

Doing this to each such exponent, we may assume without loss of generality that
1/pi ∈ {1/2 + ε, 1 − ε} for all i.

If 1/pi = 1 − ε for all i, then by definition of SA,ε the rows of the matrix A
are linearly independent and we may do a change of variables so that ai,j is the
Kronecker delta for 1 ≤ i, j ≤ n − 1. Of course the cube of integration in the
parameter space {(t1, . . . , tn)} will be a parallelepiped in the new variables, but
we may use the positivity of the fi and estimate the characteristic function of the
parallelepiped by that of a cube, conceding a bounded loss in the estimates. We
may also assume that A is a square matrix of dimension m = n − 1, since in the
case m > n − 1 we may fix the variables tj with j > n − 1 and apply the result
in the square matrix case to fixed translates of the function fi obtaining an Lp(R)
bound independently of the translation. Then we perform a dummy average in the
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variable tj with j > n−1 to obtain the desired estimate. In the square matrix case
we estimate

sup
r>0

1
(2r)m

∫
|t1|,...,|tn−1|≤r

n−1∏
i=1

|fi(x + ti)|d�t

≤
n−1∏
i=1

sup
ε>0

1
ε

∫
|t|≤ε

|fi(x + t)| dt

and then apply the Hardy-Littlewood maximal theorem for L1+ε and Hölder’s in-
equality to obtain the desired estimate.

It remains to consider the case when 1/pj = 1/2 + ε for one index j and
1/pi = 1 − ε for i �= j; note that this places these exponents in the situation
of Theorem 2.1. We may assume that n ≥ 3 since the n = 2 case follows from
the Hardy-Littlewood maximal inequality. By symmetry we may assume that
j = n − 1. The first n − 2 rows of A are linearly independent, and we may as-
sume that (ai,j)1≤i,j,≤n−2 is the Kronecker delta. We may assume that the last
row of A is a linear combination of the other rows, or otherwise we can apply the
reasoning of the previous paragraph. By a reasoning as in the previous paragraph
we may also assume that m ≤ n − 2. Thus after a change of variables if necessary
(and covering the resulting parallelepiped by a ball) the operator T ∗

A,R takes the
form (11) for some hyperplane Σ. If Σ contains ei, then we perform the ti average
first, estimate the average using the Hardy-Littlewood maximal function of fi, and
use Hölder’s inequality to reduce matters to the case with one fewer function. We
may thus assume that Σ does not contain any of the ei. Finally, the hypothesis
that the first n − 1 rows of E(A) are linearly independent implies that Σ does not
contain (1, . . . , 1), and the claim now follows from Theorem 2.1. �
Remark 2.2. If the hypothesis 5

2 −n < 1
pn

< 3−n is replaced by 1 < pn < ∞, then
Theorem 2.1 is easy to prove. Indeed, in this case we can use Hölder’s inequality
to obtain the pointwise estimate

T ∗(f1, . . . , fn−1)(x) � (
n−1∏
i=1

M|fi|pi/p′
n)p′

n/pi(x),

at which point the claim follows from the Hardy-Littlewood maximal inequality.

To prove Theorem 2.1, it suffices to prove the following “restricted weak-type”
analogue. For any measurable E ⊂ R, let X(E) denote the space of functions
supported on E which are bounded in magnitude by 1.

Theorem 2.2 (Second reduction). Let n ≥ 3, and let Σ and T ∗ be as in Theorem
2.1. Let E1, . . . , En be subsets of R of positive finite measure. Let p1, . . . , pn be
such that 1 < p1, . . . , pn−1 < 2, 5

2 − n < 1/pn < 3 − n, and
1
p′n

=
1
p1

+ · · · + 1
pn−1

.

Then there exists a subset E′
n of En with |E′

n| ≥ 1
2 |En| such that one has

|
∫

T ∗(g1, . . . , gn−1)gn| � |E1|1/p1 . . . |En|1/pn

for all g1 ∈ X(E1), . . . , gn−1 ∈ X(En−1), gn ∈ X(E′
n). Here the implied constant is

allowed to depend on n, p1, . . . , pn and Σ.
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In the notation of [18], Theorem 2.2 asserts that the n-sublinear form∫
T ∗(f1, . . . , fn−1)fn is of restricted type (1/p1, . . . , 1/pn) with n as the bad in-

dex. The deduction of Theorem 2.1 from Theorem 2.2 follows from a variant of the
Marcinkiewicz interpolation theorem and is a minor modification of the argument
in [18, Lemma 3.11]; the details will be omitted here. The point of Theorem 2.2 is
that the functions g1, . . . , gn have been normalized; indeed gj can be thought of as
essentially the indicator function of Ej (or E′

n when j = n).
By a limiting argument we may take E1, . . . , En to be finite unions of intervals,

and g1, . . . , gn to be smooth; this allows us to justify a number of formal com-
putations in the sequel without difficulty, and we shall do so without any further
comment.

To prove Theorem 2.2, we may apply a rescaling argument to normalize |En| = 1.
From the Hardy-Littlewood maximal inequality we may then set

(12) E′
n := En\Ω

where Ω is the exceptional set

(13) Ω :=
n⋃

i=1

{M1Ei
≥ C|Ei|}

for a sufficiently large absolute constant C, so that |E′
n| ∼ 1. It is convenient to

renormalize for each i < n, αi := 1/pi − 1/2 and fi := gi/|Ei|1/2; thus fi lives
in the L2-normalized space X2(Ei) of functions supported on Ei and bounded in
magnitude by 1/|Ei|1/2. We also set αn := n−2

2 −α1−· · ·−αn−1; thus 0 < αn < 1/2.
Theorem 2.2 now reduces to

Theorem 2.3 (Third reduction). Let n ≥ 3, and let Σ and T ∗ be as in Theorem
2.1. Let E1, . . . , En be finite unions of intervals with |En| = 1, and let E′

n be defined
by (12), (13), so that |E′

n| ∼ 1. Then one has

|
∫

T ∗(f1, . . . , fn−1)fn| � |E1|α1 . . . |En−1|αn−1

for all smooth f1 ∈ X2(E1), . . . , fn−1 ∈ X2(En−1), fn ∈ X2(E′
n) and any 0 <

α1, . . . , αn < 1/2 with α1 + · · · + αn = n−2
2 . The implied constant can depend on

n, α1, . . . , αn, Σ.

This reduction is slightly more convenient to work in as the L2 normalization of
f1, . . . , fn will be useful for a certain “(maximal) Bessel inequality” which is crucial
to a later stage of the argument.

3. Fourier representation

Our task is now to prove Theorem 2.3. As in [15], we begin by replacing the
rather rough truncation in (11) by a smoother one which has a more tractable
Fourier representation. As is customary, for any f ∈ L1(R), we define the Fourier
transform

f̂(ξ) :=
∫
R

e−2π
√
−1xξf(x) dx

and the inverse Fourier transform

f̌(x) :=
∫
R

e2π
√
−1xξf(ξ) dξ;
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we use
√
−1 here instead of i in order to free up the letter i for use as an integer-

valued index.
Let us fix the hyperplane Σ. We view the hyperplane Σ as an (n−2)-dimensional

Euclidean space with Lebesgue measure d�t, and thus endowed with its own Fourier
transform; thus if θ is a Schwartz function on Σ we have the inverse Fourier trans-
form

θ̌(�t) :=
∫

Σ

e2π
√
−1�t·�ξθ(�ξ) dξ.

We now introduce the multilinear operator

Tθ(f1, . . . , fn−1)(x) :=
∫

Σ

(
n−1∏
j=1

fj(x + ti))θ̌(�t)d�t;

this operator can also be written in Fourier space as

Tθ(f1, . . . , fn−1) = CΣ

∫
Rn−1

(
n−1∏
j=1

f̂j(ξj))θ(π(ξ))e2π
√
−1x(ξ1+···+ξn−1)d�ξ,

where π : Rn−1 → Σ is the orthogonal projection onto Σ and CΣ > 0 is a normal-
ization constant depending only on Σ. For any integer k, write θk(ξ) := θ(2kξ).
We define the associated maximal function T ∗

θ as

T ∗
θ (f1, . . . , fn−1)(x) := sup

k∈Z
|Tθk

(f1, . . . , fn−1)(x)|.

We shall deduce Theorem 2.3 from

Theorem 3.1 (Fourth reduction). Let n ≥ 3, and let Σ be as in Theorem 2.1. Let
0 < α1, . . . , αn < 1/2 with α1+· · ·+αn = n−2

2 . Let θ be a smooth function supported
on a ball {ξ ∈ Σ : ‖ξ‖ ≤ 4} which is constant on a ball {ξ ∈ Σ : ‖ξ‖ ≤ 1/4}, and
obeys the estimate

(14) |θ̌(t)| � 1
(1 + ‖t‖)N3 for all t ∈ Σ

for some large integer N depending on α1, . . . , αn. Let E1, . . . , En be finite unions
of intervals with |En| = 1, and let E′

n be defined by (12), (13). Then one has

|
∫

T ∗
θ (f1, . . . , fn−1)fn| � |E1|α1 . . . |En−1|αn−1

for all smooth f1 ∈ X2(E1), . . . , fn−1 ∈ X2(En−1), fn ∈ X2(E′
n). The implied

constant can depend on Σ, α1, . . . , αn−1, N and on the implicit constant in (14).

Proof of Theorem 2.3 assuming Theorem 3.1. We may take f1, . . . , fn−1 nonnega-
tive.

Let η be a fixed real-valued symmetric Schwartz function5 on Σ supported on
the ball {‖ξ‖ ≤ 1} whose Fourier transform is nonnegative and η̌(0) = 1. Observe
that

Tηk
(f1, . . . , fn−1)(x) :=

1
2k(n−2)

∫
Σ

(
n−1∏
j=1

fj(x + ti))η̌(�t/2k)d�t.

From this, the positivity of the fi and η̌, it is easy to establish the pointwise estimate

T ∗(f1, . . . , fn−1)(x) � T ∗
η (f1, . . . , fn−1)(x)

5Such a function can be constructed by starting with a real-valued symmetric function on the
ball {‖ξ‖ ≤ 1/2}, then convolving it with itself and normalizing it.
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(where the implied constant depends on η), so it suffices to show that

|
∫

T ∗
η (f1, . . . , fn−1)fn| � |E1|α1 . . . |En−1|αn−1 .

We cannot yet apply Theorem 3.1, because η is not constant near the origin. Indeed
the requirement that η̌ be nonnegative forces η to have a negative Laplacian at the
origin. Fortunately, we can rectify this by a a further dyadic decomposition. More
precisely, we split

η(ξ) = η2(ξ) +
0∑

l=−∞
φl(ξ)

with η2 smooth, symmetric, supported in ‖ξ‖ ≤ 11/10 and equal to 1 on ‖ξ‖ ≤ 1,
while φl(ξ) := (η − η2)(ξ)(η2(ξ/2l) − η2(ξ/2l−1)). One can easily verify that the
function η2 is already of the form required for Theorem 3.1 and so T ∗

η2
gives an

acceptable contribution to T ∗
η . As for the tail terms φl, we observe the Fourier

estimates

| 1
2l

φ̌l(
ξ

2l
)| � 2−|l| 1

(1 + ‖ξ‖)N3

uniformly in l. Also, φl is constant on ‖ξ‖ ≤ 2l/4 and zero when ‖ξ‖ ≥ 4 × 2l. A
simple rescaling argument using Theorem 3.1 (noting that T ∗

φ is unchanged if one
replaces φ by φ(2l·)) then shows that

|
∫

T ∗
φl

(f1, . . . , fn−1)fn| � 2−|l||E1|α1 . . . |En−1|αn−1 .

The claim now follows from the triangle inequality. �

4. Discretization

It remains to prove Theorem 3.1. We now perform the usual dyadic decompo-
sitions to reduce matters to estimating a certain sum over dyadic objects, namely
a collection of “multitiles”, after first doing some additional refinements to ensure
that these multitiles obey some good geometrical properties (specifically, a rank
one condition).

We introduce two large constants 1 � C0 � C1 (depending on Σ, and C1

assumed to be large compared to C0) that will be used to sparsify the time-frequency
geometry. We will take some care to specify how the implied constants in the �
notation depend on C0 and C1; however we will allow these constants to depend
freely on n, α1, . . . , αn, N, Σ.

It will be convenient to dilate θ by C0, so that θ is now supported on {ξ ∈ Σ :
‖ξ‖ ≤ 4C0}, which is constant on a ball {ξ ∈ Σ : ‖ξ‖ ≤ C0/4}; this affects our final
bounds by some factor depending on C0, but as we shall eventually choose C0 to be
a quantity depending only on existing parameters such as n, α1, . . . , αn, N, Σ, this
shall be of no consequence. We perform the dyadic decomposition

θk(ξ) =
∑
i≥k

ϕi(ξ)

where ϕ(ξ) := θ(ξ)−θ(2ξ) is a smooth function supported on an annulus ‖ξ‖ ∼ C0,
and ϕi(ξ) := ϕ(2iξ). Thus

Tθk
=

∑
i≥k

Tϕi
,
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and hence for any f1, . . . , fn we have∫
T ∗

θ (f1, . . . , fn−1)fn =
∑

i

∫
Tϕi

(f1, . . . , fn−1)(x)fn(x)1i≥k(x) dx

for some integer-valued measurable function k : R → Z. Thus it suffices to establish
the multilinearized estimate

(15) |
∑

i

∫
Tϕi

(f1, . . . , fn−1)(x)fn(x)1i≥k(x) dx| �C0,C1 |E1|α1 . . . |En−1|αn−1

for each such function k : R → Z, which we now fix. Note that we can write the
left-hand side as

(16)
∫
R

∫
Σ

(
n∏

j=1

fj,i(x + ti))ϕ̌i(�t)d�t dx

where fj,i := fj for 1 ≤ j ≤ n − 1 and fn,i(x) := fn(x)1i≥k(x), and we adopt the
convention that tn = 0. One should think of i as a scale parameter, corresponding
to the terms with frequency uncertainty ∼ 2−i and time uncertainty ∼ 2i. Note that
the annulus that ϕi is supported in has thickness ∼ C02−i and can thus tolerate
the frequency uncertainty associated with the scale i.

The next (standard) step is wave packet decomposition. We shall adopt the
usual trick of covering the time domain R by three overlapping dyadic grids to
eliminate some artificial boundary effects caused by dyadicity.

For each 1 ≤ j ≤ n, let us pick a Schwartz function ψj such that ψ̂j is supported
in [0.1, 0.9], and that ψj is rapidly decreasing; in particular we have the bounds

(17) |ψj(x)| � (1 + |x|)−10N for all x ∈ R

and we have the following property for every ξ ∈ R:

∑
l∈Z

∣∣∣∣ψ̂j

(
ξ − l

3

)∣∣∣∣
2

= 1.

This is possible because the translates of [0.1, 0.9] by integer multiples of 1
3 cover

the real line R with some room to spare for smooth cutoffs. For each scale i ∈ Z
we can then decompose

fi,j =
∑

m,l∈Z

〈fi,j , ψj,i,m, l
3
〉ψj,i,m, l

3
,

where
ψj,i,m,l(x) := 2−

i
2 ψj(2−ix − m)e2π

√
−12−ixl

and 〈f, g〉 :=
∫

fg is the usual inner product. Inserting this decomposition into
(15), (16) and using the triangle inequality, we reduce to showing that

(18)
∑
i∈Z

∑
�m,�l∈Zn

C�m,�l,i2
i(1−n

2 )
n∏

j=1

|〈fj,i, ψj,i,mj ,lj 〉| �C0,C1 |E1|α1 . . . |En−1|αn−1

where �m = (m1, . . . , mn), �l = (l1, . . . , ln), and C�m,�l,i are the operator coefficients

(19) C�m,�l,i :=
1

2i(1−n
2 )
|
∫
R

∫
Σ

n∏
j=1

ψj,i,mj ,lj (x + tj)θ̌i(�t)d�tdx|.



5006 CIPRIAN DEMETER, TERENCE TAO, AND CHRISTOPH THIELE

One should think of �m as containing the time location, and �l as containing the
frequency location information; roughly speaking, the summand in (18) is the con-
tribution when fj is localized in space to 2imj + O(2i) and localized in frequency
to 2−ilj + O(2−i).

We now use the geometry of the hyperplane Σ to obtain localization estimates
on the coefficients C�m,�l,i. We let Γ ⊂ Rn denote the hyperplane Γ := {(ξ1, . . . , ξn) :
ξ1 + · · · + ξn = 0}.

Lemma 4.1. We have the estimate

(20) C�m,�l,i �C0,C1 (1 + diam{m1, . . . , mn})−N2
.

Furthermore, if C�m,�l,i is nonzero, then

(21) l1 + · · · + ln = O(1)

and

(22) ‖π(l1, . . . , ln−1)‖ ∼ C0.

Remark 4.1. In the notation of [18], these conditions are essentially asserting that
the tuples (�m,�l, i) with a sizeable coefficient C�m,�l,i form a collection of multitiles of
rank one (which is also the situation with the bilinear Hilbert transform). See also
Definition 4.3 below.

Proof. We first observe that by rescaling by 2i that C�m,�l,i is actually independent
of i. Thus we may assume i = 0 throughout the proof.

To prove (20), we then use the physical space representation (19) of C�m,�l,0,
followed by the triangle inequality, to obtain

C�m,�l,0 �
∫
R

∫
Σ

∣∣∣∣∣∣(
n∏

j=1

ψj(x + tj − mj))θ̌0(�t)

∣∣∣∣∣∣ d�tdx.

Now as ψ is rapidly decreasing, we conclude from (14) that

C�m,�l,0 �C0,C1

∫
R

∫
Σ

(1 + ‖t‖)−2N2
n∏

j=1

(1 + |x + tj − mj |)−2N2
d�tdx

(say), and the claim (20) follows from the pointwise estimate
n∏

j=1

(1 + |x + tj − mj |)−N2 � (1 + diam{m1, . . . , mn})−N2
(1 + ‖t‖)N2

.

Now suppose that C�m,�l,i is nonzero. To exploit this we use the Fourier represen-
tation, converting (19) to

C�m,�l,0 ∼ |
∫

Γ

(
n∏

j=1

ψ̂(ξj − lj))θ(π(ξ1, . . . , ξn−1)) d�ξ|.

Thus there exists �ξ ∈ Γ such that ξj − lj lies in the support of ψ̂ for all 1 ≤ j ≤ n
and π(ξ1, . . . , ξn−1) lies in the support of θ. From the former property we have
lj = ξj + O(1), and (21) follows from the definition of Γ. From the latter property
we have ‖π(ξ1, . . . , ξn−1)‖ ∼ C0, and the claim follows by using the approximation
lj = ξj + O(1) and the homogeneity of π. �
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In view of the above lemma, it now suffices to show that

(23)
∑

(�m,�l,i)∈Ω

(1 + diam{m1, . . . , mn})−100n2
2i(1−n

2 )
n∏

j=1

|〈fj,i, ψj,i,mj ,lj 〉|

�C0,C1 |E1|α1 . . . |En−1|αn−1

where Ω is a collection of triples (�m,�l, i) ∈ Zn × Zn × Z obeying (21) and (22).
We now perform a number of refinements to improve the nesting properties of

the set Ω. First we observe that for each (�m,�l, i) ∈ Ω and 1 ≤ j ≤ n, the Fourier
transform of ψj,i,mj ,lj is contained in the interval [2−i lj

3 , 2−i( lj
3 + 1)] (in fact they

are contained in the slightly smaller interval [2−i( lj
3 + 0.1), 2−i( lj

3 + 0.9)]). These
intervals are almost dyadic, but for the denominator of 3. However this factor of 3
can be eliminated in the following standard manner. Let D0,D1,D2 be the dyadic
grids

D0 := {[2−il, 2−i(l + 1)] : i, l ∈ Z},
D1 := {[2−i(l + (−1)i/3), 2−i(l + 1 + (−1)i/3)] : i, l ∈ Z},
D2 := {[2−i(l − (−1)i/3), 2−i(l + 1 − (−1)i/3)] : i, l ∈ Z}.

(24)

Thus D0 is the standard dyadic grid, and the other two grids are essentially similar
(one can view the latter two grids as translates of the first by the nonterminating
2-adic ±1/3). In particular, within a single grid we have the nesting property
that if two intervals intersect, then the shorter one is contained by the longer one.
Observe that every interval [2−i lj

3 , 2−i( lj
3 + 1)] belongs to one of these three grids.

By pigeonholing once for each j (conceding a factor of 3n in the estimates), we can
assume that for fixed j, the intervals [2−i lj

3 , 2−i( lj
3 + 1)] belong to a single dyadic

grid. For ease of exposition we shall assume that these intervals always lie in the
standard dyadic grid D0; thus the intervals [2−i lj

3 , 2−i( lj
3 + 1)] are genuine dyadic

intervals. The other cases are handled similarly but with some minor changes in
notation.

Morally speaking, the localizing factor (1 + diam{m1, . . . , mn})−N2
in (23) im-

plies that the diagonal contribution m1 = . . . = mn is the dominant contribu-
tion. Again to simplify the exposition, we shall focus entirely on this diagonal case
m1 = . . . = mn. We now briefly sketch how to pass from the diagonal case to the
general case. Write mj = m1+rj . For each fixed (n−1)-tuple of integers r2, . . . , rn,
one can convert the case mj = m1+rj to the diagonal case mj = m1 by shifting the
function ψj by rj . This affects the bounds (17) but only by (1 + |rj |)10N at worst.
This gives a total loss of

∏n
j=1(1 + |rj |)10nN for this contribution, but one is also

gaining a factor of (1 + diam(0, r2, . . . , rn))−N2
, and the product is then summable

in r if N is large enough. Thus it suffices to treat the diagonal case.
Another application of the pigeonhole principle (giving up a constant factor of

C1 in the estimates) allows one to refine the scale parameter i to not take values in
the integers, but to instead take values in a residue class {i = c mod C1} for some
residue c. This “sparsification” of the scales will be useful in obtaining a certain
rank separation condition in the frequencies below.

Finally, we analyze the conditions (21) and (22). Observe that if we instead had
the exact constraints l1 + · · · + ln = 0 and π(l1, . . . , ln−1) = 0, then (l1, . . . , ln)
would be restricted to a one-dimensional subspace of Rn. Since Σ did not contain
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e1, . . . , en−1 or (1, . . . , 1), it is easy to see that the nonzero vectors in this one-
dimensional subspace have no zero coordinates; thus we have lj = cj,j′ lj′ for all
1 ≤ j, j′ ≤ n and some explicit nonzero finite constants cj,j′ depending only on Σ;
furthermore we have cj,j = 1, c1,j′ + · · · + cn,j′ = 0 and π(c1,j′ , . . . , cn−1,j′) = 0.
Returning now to the inexact constraints (21), (22), we conclude that

lj = cj,j′ lj′ + O(C0)

for all 1 ≤ j, j′ ≤ n. By pigeonholing (and conceding a factor of Cn2

0 at worst) we
may thus assume that

(25) lj = �cj,j′ lj′� + aj,j′

on Ω for all 1 ≤ j, j′ ≤ n and some fixed integers aj,j′ = O(C0); note that aj,j is
necessarily zero. Thus each frequency lj is now uniquely determined by any of the
other frequencies lj′ . Furthermore, from (21), (22) we have

a1,j′ + · · · + an,j′ = O(1) and ‖π(a1,j′ , . . . , an−1,j′)‖ ∼ C0.

If C0 is large enough, this implies the following basic fact:

Lemma 4.2. For each j′, there exist at least two j distinct from j′ such that
|aj,j′ | ∼ C0.

The upshot of this lemma is that whenever we fix one of the frequencies of
f1, . . . , fn, at least two other frequencies depend in a “lacunary” manner on the
scale parameter i. This fact will be crucial in controlling the geometry of certain
“trees” which will appear later.

The estimate (23) has now been reduced to

(26)
∑

(�m,�l,i)∈Ω

2i(1−n
2 )

n∏
j=1

|〈fj,i, ψj,i,mj ,lj 〉| � |E1|α1 . . . |En−1|αn−1 .

We now convert (26) into the more traditional language of multitiles and wave
packets.

Definition 4.2 (Tiles). A tile P is a rectangle P = IP × ωP with both IP and ωP

dyadic intervals, obeying the Heisenberg relation |IP | · |ωP | = 1; we refer to IP as
the time interval of P and ωP as the frequency interval. A multitile s is an n-tuple
s = (s1, . . . , sn) of tiles with the same time interval Is := Is1 = . . . = Isn

. If I is
an interval and C > 0 is a number, we let CI denote the interval with the same
center as I but C times the length (note that this interval will most likely not be
dyadic). Let us say that a function ψP is a wave packet adapted to a tile P if ψ̂P is
supported in 0.8ωP and we have the pointwise estimate

(27) |ψP (x)| � |IP |−1/2χ10N
IP

(x) for all x ∈ R

where for any interval I, χI is the weight function

χI(x) := (1 +
(x − c(I))2

|I|2 )−1/2

and c(I) is the center of I; in particular observe that ψP is normalized to have an
L2 norm of O(1).
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Note that because of all the reductions we have already achieved, every triple
(�m,�l, i) in Ω gives rise to a multitile s with sj := [2imj , 2i(mj + 1)] × ωsj

:=
[2−i lj

3 , 2−i( lj
3 + 1)]. In particular we have |Is| = 2i. Let Smax denote the collection

of all multitiles obtained this way. For each multitile s ∈ Smax arising from a triple
(�m,�l, i), define the functions ψs,j for 1 ≤ j ≤ n by setting

ψs,j(x) := ψj,i,mj ,lj (x).

Observe that for each 1 ≤ j ≤ n, ψs,j is a wave packet adapted to sj . We also
observe the following important consequence of Lemma 4.2.

Definition 4.3 (Rank one). A collection S of multitiles is said to have rank one if
for every j ∈ {1, . . . , n} there exist distinct j1(j), j2(j) ∈ {1, . . . , n}\{j} and signs
ε1(j), ε2(j) ∈ {−1, +1} (not necessarily distinct) with the following properties.

• (Scale separation) If s, s′ ∈ S are such that |ωsj
| > |ωs′

j
|, then |ωsj

| ≥
2C1 |ωs′,j |.

• (One independent frequency parameter) If s, s′ ∈ S are such that ωsj
= ωs′

j
,

then ωsj′ = ωs′
j′

for all 1 ≤ j′ ≤ n.
• (Nearby j-frequencies implies nearby j′-frequencies) If s, s′ ∈ S are such

that 10ωs,j ∩ 10ωs′,j �= ∅ and |Is| ≥ |Is′ |, then dist(ωs,j′ , ωs′,j′) � C0|Is′ |−1

for all 1 ≤ j′ ≤ n.
• (Lacunarity property) If s, s′ ∈ S are such that 10ωsj

∩ 10ωs′,j �= ∅ and
|Is| > |Is′ |, then dist(ωs,jt

, ωs′,jt
) ∼ C0|Is′ |−1 for t = 1, 2. In particular

10ωsjt
and 10ωs′

jt
are disjoint. Furthermore we require εt(j)(ξ′− ξ) ≥ 0 for

all ξ ∈ 10ωs,jt
and ξ′ ∈ 10ωs′,jt

.

Remark 4.4. For the definition of higher order rank (which we will not need here),
see [18]. Actually our definition of rank one is slightly stronger than that in [18]
in that we require the indices j1, j2, ε1(j), ε2(j) to depend only on j, and not be
dependent on s, s′, but this is only a minor technical change.

Lemma 4.3 (Rank one property). Smax has rank one.

This lemma shows, among other things, that the multitiles in Smax have essen-
tially one independent frequency parameter. Note that if Smax has rank one, then
so does any subset S of Smax.

Proof. The scale separation property follows since for each multitile s ∈ Smax, we
have |ωsj

| = |Is|−1 = 2−i for all 1 ≤ j ≤ n and some integer i = C mod C1.
The remaining properties follow from (25) and Lemma 4.2, setting j1, j2 to be the
indices distinct from j such that |aj1,j |, |aj2,j | ∼ C0, and εt(j) to be the sign of
ajt,j . �

We also define the modified wave packets φs,j by setting

(28) φs,j := ψs,j for 1 ≤ j ≤ n − 1

and

(29) φs,n(x) := ψs,n(x)1|Is|>2k(x) .

The estimate (26) can now be rewritten as∑
s∈Smax

|Is|(1−
n
2 )

n∏
j=1

|〈fj , φs,j〉| � |E1|α1 . . . |En−1|αn−1 .
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By the monotone convergence theorem we can replace Smax by a finite subset S
of Smax, so long as our estimates are uniform in S. Note that the properties in
Lemma 4.3 will be preserved if we pass from Smax to S. We can now deduce (26)
(and hence Theorem 1.1) from the following more abstract result.

Theorem 4.4 (Fifth reduction). Let n ≥ 3, let 0 < α1, . . . , αn < 1/2 with α1 +
· · · + αn = n−2

2 , and let N be a sufficiently large integer depending on α1, . . . , αn.
Let S be a finite collection of multitiles which is rank one. For each s ∈ S and
1 ≤ j ≤ n, let ψs,j be a wave packet adapted to sj. Let k : R → Z be an arbitrary
measurable function, and let φs,j be defined by (28), (29). Let E1, . . . , En be finite
unions of intervals with |En| = 1, and let E′

n be defined by (12), (13). Then one
has ∑

s∈S

|Is|(1−
n
2 )

n∏
j=1

|〈fj , φs,j〉| � |E1|α1 . . . |En|αn

for all smooth f1 ∈ X2(E1), . . . , fn−1 ∈ X2(En−1), fn ∈ X2(E′
n). The implied

constant can depend on α1, . . . , αn−1, N and on the bounds in the rank one condition
and (27) but is uniform in S.

Remark 4.5. If the φs,j were replaced by ψs,j (i.e. if the cutoff |Is| > 2k(x) were not
present), then this result would follow from the results in [18]. Thus the novelty
(which is also present in [15]) is the cutoff |Is| > 2k(x), which ultimately arises from
the maximal function nature of T ∗

A,R.

5. Trees

It remains to prove Theorem 4.4. To do this we use the standard strategy of
organizing the multitiles into trees, estimating the contribution of each tree sepa-
rately, controlling the total number of trees of a certain “size”, and then summing
up.

Henceforth we fix the tile collection S and the functions f1, . . . , fn and sets
E1, . . . , En, as well as the exponents α1, . . . , αn and N , the function k(x) and the
wave packet functions ψs,j (which of course determine φs,j). We now recall a
standard notion of tile order.

Definition 5.1 (Tile order). For any two tiles P and P ′, we write P < P ′ if
IP � IP ′ and 3ωP � 3ωP ′ , and P ≤ P ′ if P < P ′ or P = P ′.

Note that this is a partial order on tiles. The factor of 3 is convenient for
technical reasons to provide a little more frequency separation; the presence of the
large constants C0 and C1 in the rank condition will allow us to have this additional
factor.

Definition 5.2 (Trees). A multitile tree, or tree for short, is a triplet (T, T, i) where
1 ≤ i ≤ n is the index of the tree, T ∈ S is a multitile, and T ⊂ S is a collection
of multitiles such that si ≤ Ti for all s ∈ T. We shall often abuse notation and
abbreviate a tree (T, T, i) as T. We refer to IT := IT as the time interval of the
tree. If 1 ≤ j ≤ n and ε ∈ {−1, +1}, we say that a tree (T, T, i) is (j, ε)-separated
if j = jt(i) and ε = εt(i) for some t ∈ {1, 2}. We say that a tree is j-separated if it
is (j, ε)-separated for some ε ∈ {−1, +1}.

Example 5.1. For any tile T and 1 ≤ i ≤ n, the singleton tree ({T}, T, i) is a
multitile tree.
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Remark 5.3. We use the rather clumsy terminology multitile tree to distinguish
from the notion of a lacunary tree, which consists of tiles rather than multitiles,
that we will introduce in Section 9. Note that we do not require that the tree T
contains its top T , although this is often the case; also note that if (T, T, i) is a tree,
then so is (T ∪ {T}, T, i) and (T\{T}, T, i) (so one can always add or remove the
top from a tree). This additional flexibility in our definition of a tree (not present
in some other literature) is convenient because it makes the notion of a tree more
stable with respect to the passage to subsets. In particular, if (T, T, i) is a (j, ε)-
separated tree and T′ ⊂ T, then (T′, T, i) is also a j-separated tree. Furthermore,
if T′ takes the form T′ := {s ∈ T : si ≤ T ′

i} for some multitile T ′, then (T′, T ′, i)
is also a j-separated tree.

The rank one condition implies certain geometric facts about trees, which we
collect below for the reader’s convenience.

Lemma 5.2. Let (T, T, i) and (T′, T ′, i) be (j, ε)-separated multitile trees.
(i) The frequency intervals of a multitile in T are determined entirely by the

size of the spatial interval. In other words, if s, s′ ∈ T and |Is| = |Is′ |, then
ωsk

= ωs′
k

for all 1 ≤ k ≤ n.
(ii) Each multitile in T has a distinct time interval: if s, s′ ∈ T and s �= s′,

then Is �= Is′ .
(iii) If s ∈ T and s �= T , then dist(10ωsj

, 10ωTj
) ∼ C0|Is|−1; in particular,

10ωsj
and 10ωTj

are disjoint.
(iv) Suppose that s ∈ T and s′ ∈ T′ are such that ωsj

� ωs′
j

and Is′ ∩ IT �= ∅.
Then s′j < Tj, and furthermore we have ε(ξ− ξ′) > 0 whenever ξ ∈ ωTi

and
ξ′ ∈ ωT ′

i
.

Proof. If |Is| = |Is′ |, then |ωsj
| = |ωs′

j
|; since these intervals intersect, we must

have ωsj
= ωs′

j
and then (i) follows from the rank one condition. Property (ii)

follows immediately from (i). Now we show (iii). From (ii) we see that Is is strictly
smaller than IT, and so ωsi

strictly contains ωTi
. The claim then follows from

the lacunarity property of the rank condition. Finally, we show (iv). We have
|ωsj

| < |ωs′
j
| and |Is| ≤ |IT | and hence |Is′ | < |IT |. By dyadic nesting this means

that Is′ � IT , and to show that s′j < Tj it will suffice to show that 3ωs′
j

intersects
3ωTj

. But ωTj
lies within � C0|ωsj

|−1 of ωsj
, which is contained inside ωs′

j
. Since

|ωs′
j
| ≥ 2C1 |ωsj

| by scale separation, the claim s′j < Tj follows if C1 is sufficiently
large depending on C0. To show the remaining claim in (iv), we observe from the
rank separation condition that dist(ωs′

j
, ωT ′

j
) ∼ C0|ωs′

j
|, with ωT ′

j
lying below ωs′

j

if ε = +1 and above if ε = −1. The claim follows. �

We can now introduce the concept of size. There will be one size for each of the
functions f1, . . . , fn.

Definition 5.4 (Size). For a set of multitiles S′ ⊂ S and 1 ≤ j ≤ n define its j-size
as

sizej(S′) := sup
T

(
1

|IT|
∑
s∈T

|〈fj , φs,j〉|2
) 1

2

where the supremum is taken over all the j-separated trees (T, T, i) with T ⊂ S′.
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Remark 5.5. In the above definition the trees T are not required to contain their top
T . However it is easy to see that a tree without a top can be partitioned into trees
with tops that have disjoint time intervals, and because of this one could replace
the supremum in the definition of size by a supremum over trees that contain their
tops without affecting the size. However we will not need to do this in this paper.

6. High-level overview of proof

Following the usual time-frequency approach, we can now reduce the task of
proving Theorem 4.4 to that of verifying a number of lemmas concerning trees.

The first lemma is easy to state and prove:

Lemma 6.1 (Contribution of a single tree). If (T, T, i0) is a tree, then
∑
s∈T

|Is|1−
n
2

n∏
i=1

|〈fi, φs,i〉| ≤ |IT|
n∏

i=1

sizei(T).

Proof. By definition of size we have

(
∑
s∈T

|〈fi, φs,i〉|2)1/2 ≤ |IT|1/2sizei(T)

when i = j1(i0) or i = j2(i0). Also, since a singleton multitile is always a tree, we
also have

|〈fi, φs,i〉| ≤ |Is|1/2sizei(T)
for the other n− 2 values of i. The claim then follows from Hölder’s inequality. �

In light of this lemma, the task is now to subdivide the collection S into distinct
trees T for which one has the bound

(30)
∑
T

|IT|
n∏

i=1

sizei(T) � |E1|α1 . . . |En−1|αn−1 .

This will be accomplished via a number of propositions. First we need a basic
upper bound on the size of a tree, which we prove in Section 7.

Proposition 6.2 (Size estimate). Let 1 ≤ j ≤ n, let S′ be a collection of multitiles
in S, and let

PS′ := {I dyadic : Is ⊆ I ⊆ Is′ for some s, s′ ∈ S′}
be the time convexification of S′. Then

sizej(S′) � |Ej |−1/2 sup
I∈PS′

1
|I|

∫
Ej

χN
I .

Note that this bound is consistent with the hypothesis fj ∈ X2(Ej) and the
intuition that the j-size is something like a BMO average of fj .

To decompose the collection of multitiles S into trees, we need the following
result.

Lemma 6.3 (Splitting lemma). Let S′ be a finite collection of multitiles, 1 ≤ j ≤ n
and suppose that sizej(S′) ≤ 2m+1. Let µ > 0 and suppose that N is sufficiently
large depending on µ. Then S′ can be written as a disjoint union

(31) S′ = (
⋃

T∈F
T) ∪ S2
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where F is a collection of trees such that

(32)
∑
T∈F

|IT | �µ 2−2m

(
1

|Ej |1/22m

) 2
µ

,

while

(33) sizej(S2) ≤ 2m.

This lemma is quite difficult and will be proven in Sections 8-13. Assuming the
lemma for the moment, we may iterate it in the standard way (see e.g. [20]) and
conclude

Corollary 6.4 (Tree selection algorithm). Let S′ be a finite collection of multitiles
and 1 ≤ j ≤ n. Let µ > 0 and suppose that N is sufficiently large depending on µ.
Then, after discarding tiles s of j-size zero (in the sense that 〈fj , φs,j〉 = 0), there
exists a partition

S′ =
⋃

m:2m≤sizej(S′)

⋃
T∈Fm,j

T

where for each m, Fm,j is a collection of trees such that sizej(T) ≤ 2m+1 and

(34)
∑

T∈Fm,j

|IT | �µ 2−2m

(
1

|Ej |1/22m

) 2
µ

.

Now we prove (30). It will suffice for each l ≥ 0 to prove the stronger estimate

(35)
∑
T

|IT|
n∏

i=1

sizei(T) � 2−l|E1|α1 . . . |En|αn

under the additional assumption that

(36) 2l ≤ 1 +
dist(Is,R \ Ω)

|Is|
< 2l+1

for all tiles s ∈ S, since the original claim (30) then follows by dyadic decomposition
of S.

From (36) and Proposition 6.2 we have

(37) sizei(S) � |Ei|
1
2 2l for 1 ≤ i < n

and

(38) sizen(S) � 2(1−N)l.

Now use the selection algorithm in Theorem 6.4 for S to get for each i the collections
of trees Fm,i; the tiles of i-size zero can be safely discarded (viewing them as
singleton trees) as they make no contribution to (35). We can then partition

S =
⋃

m1,...,mn

Sm1,1 ∩ . . . ∩ Smn,n

where Sm,i :=
⋃

T∈Fm,i T and we implicitly assume that

(39) 2mi ≤ sizei(S).
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By pigeonholing we can restrict to the case when mj = max(m1, . . . , mn) for some
fixed 1 ≤ j ≤ n. We then have the partition

S =
⋃

m1,...,mn:mj=max(m1,...,mn)

⋃
T∈Fmj,j

(T ∩ Sm1,1 ∩ . . . ∩ Smn,n).

Note that T∩Sm1,1 ∩ . . .∩Smn,n is a tree with the same top as T, and with j-size
at most 2mj+1; this tree need not contain its top, but this is of no consequence for
us. To verify (35) it thus suffices to show that

(40)
∑

m1,...,mn:mj=max(m1,...,mn)

∑
T∈Fmj,j

|IT|2m1 . . . 2mn � 2−l|E1|α1 . . . |En|αn .

Meanwhile, from (34) we have

∑
T∈Fmj ,j

|IT | �µ 2−2mj

(
1

|Ej |1/22mj

) 2
µ

where µ is a large parameter to be chosen later. Also, from (39) we have

2m1 . . . 2mn ≤ 2mj

∏
i �=j

sizei(S)2αi2(1−2αi)mi .

From these bounds and summing the geometric series in all the mi for i �= j, we
have ∑

m1,...,mn:mj=max(m1,...,mn)

∑
T∈Fmj,j

|IT|2m1 . . . 2mn

�µ

∏
i �=j

sizei(S)2αi

∑
mj

2mj (
∏
i �=j

2(1−2αi)mj )2−2mj

(
1

|Ej |1/22mj

) 2
µ

.

Since α1 + . . . + αn = (n − 2)/2, we can rewrite the right-hand side as

∏
i �=j

sizei(S)2αi

∑
mj

22αjmj

(
1

|Ej |1/22mj

) 2
µ

.

Summing the geometric series, we can bound this (for µ sufficiently large) by

�µ

∏
i

sizei(S)2αi

(
1

|Ej |1/2sizej(S)

) 2
µ

.

Applying (37), (38) we obtain (40) as desired if N and µ are chosen sufficiently
large. This proves Theorem 4.4 and hence Theorem 1.1.

It remains to prove Theorem 6.2 and Lemma 6.3. This will occupy the remainder
of the paper.

7. Single tree size estimate

In this section we prove Theorem 6.2. This estimate is well known in the case
j ≤ n− 1, when the cutoff |Is| > 2k(x) has no effect; see [20, Lemma 6.8]. Thus we
shall focus instead on the more difficult case j = n.
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Our task is to show that∑
s∈T

|〈f, φs,n〉|2 � |IT|( sup
I∈PT

1
|I|

∫
E

χN
I )2

for each n-separated multitile tree (T, T, i), and each f ∈ X(E).
Fix (T, T, i). By frequency translation invariance we may assume that 0 ∈ ωT,n.

If f is supported outside 2IT, then from the decay of φs,n we get

|〈f, φs,n〉| �
(
|Is|
|IT|

)N

|IT|−
1
2

∫
E

χN
Is

for all s ∈ T, which proves the result in this case. Thus we may assume without
loss of generality that f is supported on 2IT.

Using duality it hence suffices to prove that
1

|IT |
1
2
|
∫

f
∑
s∈T

asφs,n| � sup
I∈PT

1
|I|

∫
E

χN
I

for all (as)s∈T with ‖(as)‖l2(T) ≤ 1.
Fix the as. We can estimate

|
∑
s∈T

asφs,n(x)| ≤ sup
k

|
∑
s∈T

|Is|>2k

asψs,n(x)|.

Since T is n-separated, we see from Lemma 5.2 that the tiles s ∈ T with |Is| > 2k

have a disjoint frequency support from the tiles s ∈ T with |Is| ≤ 2k. Indeed
we can write

∑
s∈T

|Is|>2k
asψs,n(x) as a Fourier multiplier applied to the function

F :=
∑

s∈T asψs,n(x), where the symbol of the multiplier is a cutoff smoothly
adapted to an interval of length ∼ C02−k. From this and standard kernel estimates,
we conclude that

sup
k

|
∑
s∈T

|Is|>2k

asψs,n(x)| � MF,

and so it will suffice to show that

(41)
1

|IT |
1
2

∫
fM(F ) � sup

I∈PT

1
|I|

∫
E

χN
I .

For a dyadic interval J denote by J1, J2, J3 the three dyadic intervals of the same
length with J , sitting at the left of J , with J3 being adjacent to J . Similarly let
J5, J6, J7 be the three dyadic intervals of the same length with J , sitting at the
right of J , with J5 being adjacent to J . Also define J4 := J . Let J be the set of
all dyadic intervals J with the following properties:

(a) J ∩ 2IT �= ∅,
(b) � I ∈ PT : |I| < |J | and I ⊂ 3J ,
(c) Ji ∈ PT for some 1 ≤ i ≤ 7.

We claim that 2IT ⊂
⋃

J∈J J . Indeed, assume by contradiction that there
exists some x ∈ 2IT \

⋃
J∈J J . Let J (0) ⊂ J (1) ⊂ J (2) ⊂ . . . be the sequence

of dyadic intervals of consecutive lengths containing x, with |J (0)| = minI∈PT
|I|.

Since J (0) /∈ J and since (a) and (b) are certainly satisfied for J (0), it follows that
J

(0)
i /∈ PT for each 1 ≤ i ≤ 7. Moreover, note that for each 1 ≤ i ≤ 7 there is

no I ∈ PT with I ⊂ J
(0)
i . We proceed now by induction. Assume that for some
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j ≥ 0 we proved that for each 1 ≤ i ≤ 7 we have J
(j)
i /∈ PT and also that there is

no I ∈ PT with I ⊂ J
(j)
i . Note that this implies the same for j + 1. Indeed, since

3J (j+1) ⊂ 7J (j) and by the induction hypothesis, it follows that (b) is satisfied for
J (j+1). Hence J

(j+1)
i /∈ PT for each 1 ≤ i ≤ 7. We verify now the second statement

of the induction. Note that if there was an I ∈ PT with I ⊂ J
(j+1)
i , then the

hypothesis of the induction and the fact that 3J (j+1) ⊂ 7J (j) would imply that
i ∈ {1, 2, 6, 7}. Hence I ⊂ J

(j+1)
i ⊂ IT , and by convexity of PT it would follow that

J
(j+1)
i ∈ PT, which is impossible. This closes the induction. To see how the claim

follows from here, observe that IT = J
(j)
i for some i, j, which certainly contradicts

the fact that IT ∈ PT.
The next thing we prove is that on each interval 2J with J ∈ J , the oscillation

of F is well controlled. More exactly we will show that for each x, y ∈ 2J , |F (x) −
F (y)| � 1

|J|
1
2
. We have

|F (x) − F (y)| � |J |
∑
s∈T

sup
z∈2J

|ψ′
s,n(z)||as|

� |J |
∑
s∈T

1
|Is|

3
2
χM

Is
(c(J))|as|,

since by definition there exists no Is ⊂ 3J . Now

|J |
∑
s∈T

|Is|≥|J|

1
|Is|

3
2
χM

Is
(c(J))|as| � |J |(

∑
s∈T

|Is|≥|J|

|as|2)
1
2 (

∑
2k≥|J|

∑
i≥1

1
iM23k

)
1
2

� 1
|J | 12

and also

|J |
∑
s∈T

|Is|<|J|

1
|Is|

3
2
χM

Is
(c(J))|as| � (

∑
s∈T

|Is|<|J|

|as|2)
1
2 (

∑
2k<|J|

∑
i≥ |J|

2k

1
iM23k

)
1
2

� 1
|J | 12

,

due to the fact that there exists no Is ⊂ 3J with |Is| < |J |.
Define now the measure space X =

⋃
J∈J J and its σ-algebra Υ generated by

the maximal intervals J ∈ J . Recall that 2IT ⊂
⋃

J∈J J = X ⊂ 10IT . We will see
that for each x ∈ J ,

(42) M(F )(x) � 1
|J |

∫
J

M(F )(z)dz +
1

|J | 12
.

Indeed, if r > 1
2 |J |,

1
2r

∫ x+r

x−r

|F |(z)dz � inf
y∈J

M(F )(y)

� 1
|J |

∫
J

M(F )(z)dz.
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On the other hand, if r ≤ 1
2 |J |,

1
2r

∫ x+r

x−r

|F |(z)dz � sup
y∈2J

|F |(y)

� inf
y∈J

|F |(y) +
1

|J | 12

� 1
|J |

∫
J

M(F )(z)dz +
1

|J | 12
.

From (42) we can write

1
|IT |

1
2

∫
fM(F ) � 1

|IT |
1
2

∫
X

fE(M(F )|Υ) + sup
J∈J

1
|J |

∫
J

f

=
1

|IT |
1
2

∫
X

E(f |Υ)E(M(F )|Υ) + sup
J∈J

1
|J |

∫
J

f

≤ 1
|IT |

1
2
‖E(f |Υ)‖L∞

∫
X

E(M(F )|Υ) + sup
J∈J

1
|J |

∫
E

χN
J

�
(

1 +
[∫

X

E(M(F )|Υ)2
] 1

2
)

sup
J∈J

1
|J |

∫
E

χN
J

� sup
J∈J

1
|J |

∫
E

χN
J ,

where E(·|Υ) denotes the conditional expectation relative to Υ. Finally, note that
since for each J ∈ J , Ji ∈ PT for some i, we have that

sup
J∈J

1
|J |

∫
E

χN
J � sup

I∈PT

1
|I|

∫
E

χN
I ,

which yields (41). This concludes the proof of Theorem 6.2. �

8. Reduction to Bessel inequality

We still have to prove Lemma 6.3. This will be achieved by means of a cer-
tain maximal Bessel inequality and a stopping time argument. We first recall a
definition.

Definition 8.1 ([18]). Let j ∈ {1, 2, . . . , n}. Two j-separated multitile trees
(T, T, i) and (T′, T ′, i) with the same index are said to be strongly j-disjoint if
T ∩ T′ = ∅, and furthermore whenever s ∈ T, s′ ∈ T′ are such that ωsj

� ωs′
j
,

then one has IT ∩ Is′ = ∅, and similarly with T and T′ reversed. A collection of
j-separated multitile trees is called mutually strongly j-disjoint if each two multitile
trees in the collection are strongly j-disjoint.

Remark 8.2. If two j-separated multitile trees (T, T, i) and (T′, T ′, i) are strongly
j-disjoint, then one has sj ∩s′j = ∅ for each s ∈ T, s′ ∈ T′. This is because if sj and
s′j intersect, then since T ∩ T′ = ∅, we must have either ωsj

� ωs′
j

or ωs′
j

� ωsj
,

and the claim then follows from the definition of strong j-disjointness. This may
help explain the terminology “strong j-disjointness”.

The next estimate controls the extent to which disjoint trees can each absorb a
lot of L2 energy. It is the main technical estimate used in the proof, and the core
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of Lacey’s original argument in [15]. The proof is rather difficult and will occupy
the remainder of this paper.

Theorem 8.1 (Maximal Bessel inequality, multitile version). Let F be a finite
collection of strongly j-disjoint, j-separated multitile trees. Let µ > 0 and suppose
that N is sufficiently large depending on µ (recall the definition of N from (14)).
Assume also that

(43) 2m ≤
(

1
|IT|

∑
s∈T

|〈fj , φs,j〉|2
) 1

2

≤ 2m+1

and

(44)

⎛
⎜⎝ 1
|IT ′ |

∑
s∈T

Is⊂I
T ′

|〈fj , φs,j〉|2

⎞
⎟⎠

1
2

≤ 2m+1

for each T ′ ∈ T ∈ F . Then if µ > 0 we have

(45)
∑
T∈F

|IT| �µ 2−2m

(
1

|Ej |1/22m

) 2
µ

.

Remark 8.3. The factor
(

1
|Ej |1/22m

) 2
µ

in (45) is technical and should be ignored.
Intuitively, the condition (43) asserts that the function fj , when “restricted” to a
tree T in F , has L2 norm roughly comparable to 2m|IT |1/2. The strong disjoint-
ness of the trees is an assertion that these restrictions are in some sense “almost
orthogonal”. Since fj has an L2 norm of O(1), we see that (45) is indeed a kind
of Bessel inequality. This estimate is standard (and fairly straightforward) when
j �= n, but when j = n the presence of the cutoff 1|Is|>2k(x) in the modified wave
packet φs,n presents some significant difficulties (already encountered in [15]).

Let us now show how Lemma 6.3 follows from Theorem 8.1. This will be a
standard stopping time argument of the type which has been commonly used in
time-frequency analysis, see for instance [18], but for the sake of completeness we
present the argument here.

We perform the following algorithm to construct S2 and F .
• Step 0. Initialize F to be empty, and S2 to equal S′.
• Step 1. If sizej(S2) ≤ 2m, then we terminate the algorithm. Otherwise, we

have
2m < sizej(S2) ≤ sizej(S′) ≤ 2m+1.

By definition of size, we can find a j-separated multitile tree T = (T, T, i)
in S2 obeying (44).

• Step 2. The multitile tree (T, T, i) mentioned above is a (j, ε)-separated
tree for some ε = ±1. For fixed i and ε, we may assume that this tree
maximizes the quantity εξTi

, where ξTi
is the center of the frequency tile

Ti, subject to the constraints (44) and T ⊆ S2.
• Step 3. Clearly the multitile tree T is nonempty, since it has positive size.

Add the multitile tree T to the collection F , and delete the multitiles in T
from S2. Note that this removes at least one multitile from S2.
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• Step 4. Next, define the (possibly empty) companion tree (T̃, T, j) where
T̃ := {s ∈ S2 : sj ≤ Tj}, add this tree T̃ to F also, and delete the multitiles
in T̃ from S2. Then return to Step 1.

This algorithm terminates in finite time since S2 was initially finite, and every
iteration of the algorithm removes at least one multitile from S2. It is also clear that
this algorithm will obtain a decomposition (31) obeying (33). The only remaining
task is to verify the bound (32). It suffices to do this for each fixed 1 ≤ i ≤ n, thus
restricting the summation to those trees T = (T, T, i) in F with index i. This in
turn fixes the quantity ε appearing in Step 2 above, so if one indexes the trees T
in the order that they are added to F , then εξTj

will be nonincreasing. We also
only need to focus on those trees selected using Step 3 rather than Step 4, since the
trees in Step 4 have the same time interval as those in Step 3 and so we are only
giving up a factor of 2 by doing this.

To prove (32), it suffices by Theorem 8.1 to show that the trees in F with fixed i
and ε arising from Step 3 are mutually strongly j-disjoint. Suppose for contradiction
that there were two trees T,T′ in F of this type which were not strongly j-disjoint.
Since these trees have distinct multitiles by construction, the only way that strong
j-disjointness can fail (up to swapping T and T′) is if there exist s ∈ T, s′ ∈ T′

with ωs,j � ωs′,j and IT ∩ Is′ �= ∅. From Lemma 5.2 we conclude that s′j ≤ Tj and
ε(ξTi

− ξT ′
i
) ≥ 0. The latter condition, combined with the nonincreasing nature of

the εξTj
, ensures that T was selected earlier in the algorithm than T ′. But then s′

would have been selected in the companion tree T̃ and could not have remained in S2

by the time T ′ was selected, a contradiction. This ensures the strong j-disjointness
and concludes the deduction of Lemma 6.3 from Theorem 8.1.

It remains to prove Theorem 8.1. This will occupy the remainder of the paper.

9. Good-λ reduction

The only remaining task in the proof of Theorem 1.1 is to show the maximal
Bessel inequality in Theorem 8.1. This will be accomplished in stages. In this
section we rephrase the inequality as an inequality concerning tiles rather than

multitiles, and use some “BMO theory” for tiles to replace the
(

|Ej |1/2

2m

) 2
µ

factor in
(45) by a factor which depends instead on the counting function NF . This BMO
theory is quite elementary and may have some independent interest.

We will focus on the hardest case j = n, in which one must deal with the
presence of the cutoff 1|Is|>2k(x) in the modified wave packet φs,n. The cases j �= n

are significantly simpler (see for instance [18]) and in any event can be handled by
the argument here (e.g. by the artificial expedient of setting k(x) to be so low that
the cutoff 1|Is|>2k(x) disappears).

The Bessel inequality is now really only a statement about the n-tiles of the
multitiles in S, and so we shall introduce new notation to focus only on these tiles
rather than on the multitiles.

Definition 9.1 (Lacunary tree). A lacunary tree T = (T, IT, ξT) is a collection
T of tiles, together with a dyadic time interval IT ∈ D0 and a center frequency
ξT ∈ R, such that for all P ∈ T we have IP ⊆ IT and dist(ωP , ξT) ∼ C0|ωP |, and
such that the frequency interval ωP of a tile is determined entirely by the length of
the time interval; thus if P, P ′ ∈ T and |IP | = |IP ′ |, then ωP = ωP ′ . (In particular,
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this means that distinct tiles in T have distinct time intervals.) We say that one
lacunary tree (T′, IT′ , ξT) is a subtree of another (T, IT′ , ξT′) if T′ ⊆ T (thus we
allow subtrees to have a different time interval and center than the supertree).
We say that two lacunary trees (T, IT, ξT), (T′, IT′ , ξT′) are strongly disjoint if
T ∩ T′ = ∅, and whenever P ∈ T, P ′ ∈ T′ are such that ωP � ωP ′ , then one
has IT ∩ IP ′ = ∅, and similarly with T and T′ reversed. We define a forest to be
any collection F of lacunary trees such that any two distinct trees T,T′ in F are
strongly disjoint.

Observe from Lemma 5.2 that if (T, T, i) is an n-separated multitile tree, then
(Tn, ITn

, ξTn,n) is a lacunary tree, where Tn := {sn : s ∈ T} is the set of n-tiles
of the multitile tree T, and ξTn,n is a frequency such that dist(ωTn,n, ξTn,n) ∼
C0|ωTn,n|. Furthermore, if (T, T, i) and (T′, T ′, i) are strongly n-disjoint, then
(Tn, ITn

, ξTn,n) and (T′
n, T ′

n, ξT ′
n,n) are strongly disjoint. Thus, we can deduce

Theorem 8.1 from

Theorem 9.1 (Maximal Bessel inequality, first reduction). Let F be a forest. Let
µ > 0 and suppose that N is sufficiently large depending on µ. For each tile P in⋃

T∈F T, let ψP be a wave packet adapted to P , and let φP be the function

φP (x) := 1|Is|>2k(x)ψP (x).

Let E be a finite union of intervals, and let f ∈ X2(E) be such that

2m ≤
(

1
|IT|

∑
P∈T

|〈f, φP 〉|2
) 1

2

≤ 2m+1

and ⎛
⎜⎝ 1
|IT ′ |

∑
P∈T

IP ⊂I
T ′

|〈f, φP 〉|2

⎞
⎟⎠

1
2

≤ 2m+1

for each T ′ ∈ T ∈ F . Then we have

∑
T∈F

|IT| �µ 2−2m

(
1

|E|1/22m

) 2
µ

,

for all µ > 0.

We will now eliminate the role of the set E, replacing it with a certain counting
function multiplicity, and also eliminate the role of the size parameter 2m. More
precisely, in this section we shall deduce Theorem 9.1 from

Theorem 9.2 (Maximal Bessel inequality, second reduction). Let F be a forest.
Let µ > 0 and suppose that N is sufficiently large depending on µ. Let ψP , φP be
as in Theorem 9.1. Let f ∈ L2(R) be such that

(46) 1 ≤
(

1
|IT|

∑
P∈T

|〈f, φP 〉|2
) 1

2

≤ 2
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for each T ∈ F , and

(47)

⎛
⎜⎝ 1
|IT ′ |

∑
P∈T

IP ⊂I
T ′

|〈f, φP 〉|2

⎞
⎟⎠

1
2

≤ 2

for each T ′ ∈ T. Let NF be the counting function

(48) NF :=
∑
T∈F

1IT ,

and let I0 be any interval which contains the support of NF . Then we have the
Bessel-type inequality

(49)
∑

P∈
⋃

T∈F T

|〈f, φP 〉|2 �µ ‖NF‖
1
µ

L∞

∫
|f |2χ10

I0
.

We shall prove Theorem 9.2 in later sections. For now, we show how it implies
Theorem 8.1. The argument is similar to the “good-λ” type estimates used to prove
John-Nirenberg BMO inequalities, and to emphasize this connection (and because
this theory may be of some independent interest) we shall proceed in a somewhat
abstract manner.

The following observation is trivial, but is still worth recording.

Lemma 9.3 (Forest refinement). Let F be a forest. For each tree T in F , let FT

be a collection of subtrees of T with disjoint time intervals. Then
⋃

T∈F FT is also
a forest.

Let F be any forest. The quantity ‖NF‖L∞ measures the maximum possible
overlap of the time intervals IT of the trees T in F . We shall introduce a closely
related quantity ‖F‖BMO, defined as

‖F‖BMO := sup
I

1
|I|

∑
T∈F :IT⊆I

|IT|,

where the supremum is taken over all the dyadic intervals I.

Remark 9.2. One can relate this BMO-type norm to the genuine (dyadic,
vector-valued) BMO norm by the formula ‖F‖BMO = ‖ �NF‖2

BMO, where �NF :=∑
T∈F 1ITeT is a vector-valued counting function, with the eT being orthonormal

vectors in an abstract Hilbert space. However, we will not adopt this approach
since the theory of vector-valued BMO is not as familiar as that of ordinary BMO,
preferring instead a more direct and elementary approach.

It is clear that ‖F‖BMO ≤ ‖NF‖L∞ . Indeed,
1
|I|

∑
T∈F :IT⊆I

|IT| =
1
|I|

∫
I

∑
T∈F :IT⊆I

1IT

≤ ‖
∑

T∈F :IT ⊆I

1IT‖L∞

≤ ‖NF‖L∞ .

While the converse is not quite true, we do expect the L∞ norm and BMO norm
to be very close.
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Now we obtain some good-lambda inequalities for the BMO norm. We first
observe that to control the BMO norm of a collection F of trees, it suffices to
control the BMO norm of subcollections of trees which are already controlled in
L∞.

Lemma 9.4. Let F be a forest such that

‖F ′‖BMO ≤ B

whenever F ′ ⊂ F is such that ‖NF ′‖L∞ ≤ 2B. Then we have

‖F‖BMO ≤ 2B.

Proof. Let I0 be a dyadic interval. Call a dyadic interval J ⊆ I0 heavy if |{T ∈
F : J ⊆ IT ⊆ I0}| > 2B, and let F ′ be the collection of those trees T ∈ F
such that IT ⊆ I0 and such that IT is not heavy. Then by construction we have
‖F ′‖L∞ ≤ 2B, and hence by hypothesis ‖F ′‖BMO ≤ B. In particular∑

T∈F :IT⊆I0;IT not heavy
|IT| ≤ B|I0|.

Now we deal with the heavy intervals. If we let J denote the set of maximal
dyadic heavy intervals, then we have∑

T∈F :IT⊆I0;IT heavy
|IT| ≤

∑
J∈J

∑
T∈F :IT⊆J

|IT|

≤
∑
J∈J

‖F‖BMO|J |

=
‖F‖BMO

2B

∫
⋃

J∈J J

2B

≤ ‖F‖BMO

2B

∫
⋃

J∈J J

∑
T∈F ′

1IT

≤ ‖F‖BMO

2B

∫
I0

∑
T∈F ′

1IT

≤ ‖F‖BMO

2B
|I0|‖F ′‖BMO

≤ ‖F‖BMO

2
|I0|.

Summing these two estimates, we obtain

1
|I0|

∑
T∈F :IT⊆I0

|IT| ≤ B +
‖F‖BMO

2
,

and then taking the supremum over I0 we obtain

‖F‖BMO ≤ B +
‖F‖BMO

2
.

The claim follows. �
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Similarly, to control the L1 norm of NF , it suffices to control the L1 norm of
subcollections F ′ which are controlled in L∞ by the BMO norm of F :

Lemma 9.5. Let F be a forest such that

‖NF ′‖L1 ≤ A

whenever F ′ ⊂ F is such that ‖NF ′‖L∞ ≤ ‖F‖BMO. Then we have

‖NF‖1 ≤ 2A.

Proof. Set B := ‖F‖BMO. As before, we call a dyadic interval J ⊆ I0 heavy
if |{T ∈ F : J ⊆ IT ⊆ I0}| > B, and let F ′ be the collection of those trees
T ∈ F such that IT ⊆ I0 and that IT is not heavy. Then by construction we
have ‖NF ′‖L∞ ≤ B and hence by hypothesis ‖NF ′‖1 ≤ A. Now if we let J be the
collection of maximal heavy intervals, then we have

‖NF\F ′‖1 =
∑
J∈J

∑
T∈F :IT⊆J

|IT|

≤
∑
J∈J

‖F‖BMO|J |

=
∫

⋃
J∈J J

B

≤
∫

⋃
J∈J J

∑
T∈F ′

1IT

≤ ‖NF ′‖1

≤ A

and the claim follows. �

We can of course combine these two lemmas to obtain

Corollary 9.6. Let F be a forest such that

‖NF ′‖1 ≤ A and ‖F ′‖BMO ≤ B

whenever F ′ ⊂ F is such that ‖NF ′‖L∞ ≤ 2B. Then we have

‖NF‖1 ≤ 2A and ‖F‖BMO ≤ 2B.

A specific case of this is

Corollary 9.7. Let F be a forest such that for some µ > 1,

‖NF ′‖1 ≤ A‖NF ′‖
1
µ

L∞ and ‖F ′‖BMO ≤ B‖NF ′‖
1
µ

L∞

for all F ′ ⊆ F . Then we have

‖NF‖1 �µ AB
1

µ−1 and ‖F‖BMO �µ BB
1

µ−1 .

Thus to prove a counting function estimate on ‖NF‖1, we are permitted to lose
a small power of the ‖NF‖L∞ as long as the argument also works for all subtrees
and localizes to a BMO version as well (with a different constant B).

Now we can finally prove Theorem 9.1.
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Proof of Theorem 9.1. Let F ′ ⊂ F be arbitrary. From Theorem 9.2 with f replaced
by f/2m, and I0 chosen to be so large as to contain all the time intervals arising
from F ′, we have

‖NF ′‖1 =
∑

T∈F ′

|IT|

�
∑

P∈
⋃

T∈F′ T

|〈f/2m, φP 〉|2

�µ ‖NF ′‖
1
µ

L∞

∫
|f/2m|2

� 2−2m‖NF ′‖
1
µ

L∞

thanks to the L2 normalization of f ∈ X2(E). If we let I0 be an arbitrary dyadic
interval, then by replacing F ′ by {T ∈ F ′ : IT ⊆ I0} in the above argument we see
that

1
|I0|

∑
T∈F ′:IT⊆I0

|IT| �µ
1
|I0|

‖NF ′‖
1
µ

L∞

∫
|f/2m|2χ10

I0

� ‖NF ′‖
1
µ

L∞2−2m|E|−1

thanks to the uniform bound of |E|−1/2 on f ∈ X2(E). Taking suprema over I0

we conclude that ‖F ′‖BMO �µ ‖NF ′‖
1
µ

L∞2−2m|E|−1. Applying Corollary 9.7 we
conclude that ∑

T∈F
|IT| = ‖NF‖1 �µ 2−2m(2−2m|E|−1)

1
µ−1 .

Replacing µ by µ + 1 we obtain Theorem 9.1. �

10. Tileset refinements

It remains to prove Theorem 9.2. In this section we perform some additional
elementary reductions. First we eliminate the localizing weight χ10

I0
and we permit

the deletion of those tiles which lie inside a small exceptional set. Then we sparsify
the tile set and remove some logarithmic pileups of time interval multiplicity.

We begin with the first reduction. We assert that to prove Theorem 9.2 it suffices
to prove the same assertion with the weight χ10

I0
not present in (49). The reason for

this is that χ−10
I0

is a polynomial, and because of this (and the hypothesis that all
the tiles have time interval contained in I0) χ−10

I0
ψP is a wave packet adapted to

P , except for the trivial change that the exponent of 10N in (27) must be reduced
slightly to 10(N −1). But this clearly makes no essential difference to the argument
since we are free to take N as large as we wish. Since 〈f, φP 〉 = 〈fχ10

I0
, χ−10

I0
φP 〉,

we thus see that Theorem 9.2 with the localizing weight χ10
I0

follows more or less
automatically from Theorem 9.2 without the localizing weight.

The next step is to eliminate the hypotheses (46), (47) and also give the ability
to delete a small exceptional collection of tiles.

Theorem 10.1 (Maximal Bessel inequality, third reduction). Let F be a forest.
Let µ > 0 and suppose that N is sufficiently large depending on µ. Let ψP , φP be
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as in Theorem 9.1, and let NF be the counting function (48). Then there exists an
exceptional set P∗ ⊂

⋃
T∈F T of tiles with

(50) |
⋃

P∈P∗

IP | ≤
1
10

‖NF‖L1

‖NF‖L∞

such that we have the Bessel-type inequality

(51)
∑

P∈
⋃

T∈F T\P∗

|〈f, φP 〉|2 �µ ‖NF‖
1
µ

L∞‖f‖2
L2

for all f ∈ L2(R).

Proof of Theorem 9.2 assuming Theorem 10.1. Write Ω :=
⋃

P∈P∗
IP . Then∑

P∈
⋃

T∈F T:IP �⊆Ω

|〈f, φP 〉|2 ≤
∑

P∈
⋃

T∈F T\P∗

|〈f, φP 〉|2.

To prove (49), it thus suffices in view of (51) to show that∑
P∈

⋃
T∈F T:IP ⊆Ω

|〈f, φP 〉|2 ≤ 1
2

∑
P∈

⋃
T∈F T

|〈f, φP 〉|2.

From (46), it thus suffices to show that∑
P∈

⋃
T∈F T:IP ⊆Ω

|〈f, φP 〉|2 ≤ 1
2
‖NF‖L1 .

For each tree T in F , consider the tile set {P ∈ T : IP ⊆ Ω}. If Q is any tile in
this set with IQ maximal with respect to set inclusion, then IQ ⊆ Ω and from (47)
we have ∑

P∈T:IP ⊆IQ⊆Ω

|〈f, φP 〉|2 ≤ 4|IQ|.

Summing this over all such Q (noting that the IQ are disjoint by dyadicity and
maximality) we conclude∑

P∈T:IP ⊆Ω

|〈f, φP 〉|2 ≤ 4|IT ∩ Ω| = 4
∫

Ω

1IT .

Summing this over all T ∈ F we obtain∑
P∈

⋃
T∈F T:IP ⊆Ω

|〈f, φP 〉|2 ≤ 4
∫

Ω

NF ≤ 4|Ω|‖NF‖L∞

and the claim follows from (50). �

We still have to prove Theorem 10.1. The next step will be to sparsify the
collection of tiles. Recall the three dyadic grids D0, D1, D2 from (24). One can easily
verify that for every interval J (not necessarily dyadic) there exists a d ∈ {0, 1, 2}
and a shifted dyadic interval J ′ ∈ Dd such that J ⊆ J ′ ⊆ 3J ; we will say that J is
d-regular.

Let A ≥ 1, and let d ∈ {0, 1, 2}. We shall say that a collection of I ⊂ D0 of time
intervals is (A, d)-sparse if we have the following properties:

(i) If I, I ′ ∈ I are such that |I| > |I ′|, then |I| ≥ 2100A|I ′|.
(ii) If I, I ′ ∈ I are such that |I| = |I ′| and I �= I ′, then dist(I, I ′) ≥ 100A|I ′|.
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(iii) If I ∈ I, then AI is d-regular; thus there exists an interval IA ∈ Dd such
that AI ⊆ IA ⊆ 3AI. We refer to IA as the A-enlargement of I.

If I is an (A, d)-sparse set of time intervals and P is a tile whose time interval
IP lies in I, we write IP,A for the A-enlargement of IP . Similarly if T is a tree
whose time interval IT lies in I, we write IT,A for the A-enlargement of IT.

To prove Theorem 10.1, it suffices to prove a variant for (A, d)-sparse sets of
tiles. More precisely, we can reduce to

Theorem 10.2 (Maximal Bessel inequality, fourth reduction). Let A, D, ν > 1,
and suppose that N is sufficiently large depending on ν. Let F be a forest with
‖NF‖L∞ ≤ D. Let P :=

⋃
T∈F T, and suppose that the time intervals

{IP : P ∈ P} ∪ {IT : T ∈ F}
are (A, d)-sparse. Let ψP , φP be as in Theorem 9.1. Then there exists an excep-
tional set P∗ ⊂

⋃
T∈F T of tiles with

(52) |
⋃

P∈P∗

IP | �ν (A−ν + D−ν)
∑
T∈F

|IT|

such that we have the Bessel-type inequality∑
P∈P\P∗

|〈f, φP 〉|2 �ν ((log(2 + AD))10 + A10−νD10)‖f‖2
L2

for all f ∈ L2(R).

Proof of Theorem 10.1 assuming Theorem 10.2. Let A, ν be chosen later, and set
D := ‖NF‖L∞ . We need the following lemma:

Lemma 10.3 (Sparsification). Let I be a collection of time intervals. Then we
can split I = I1 ∪ . . . ∪ IL with L = O(A2) such that each Il for 1 ≤ l ≤ L is
(A, d)-sparse for some d = 0, 1, 2.

Proof. By pigeonholing the scale parameter into cosets of 100AZ, we can partition I
into 100A subcollections, such that on each subcollection we have the scale separa-
tion property (i) from the definition of (A, d)-sparseness. Similarly if we partition
the position parameter at each fixed scale into cosets of 100A, we can partition
further into (100A)2 subcollections on which we also have the position separation
property (ii). Finally, we make the elementary observation that for each dyadic
I ∈ D0 there exists d = 0, 1, 2 such that there exists IA ∈ Dd with AI ⊆ IA ⊆ 3AI.
A final pigeonholing based on the d parameter concludes the claim. �

We apply this lemma to the set I := {IP : P ∈ P} to split I into I1, . . . , IL

for some L = O(A2). Then we have P = P1 ∪ . . . ∪ PL, where Pl := {P ∈
P : IP ∈ Il}. Observe that if T is a lacunary tree in F , then T ∩ Pl is also a
lacunary tree. The time interval IT of this tree need not lie in Il; however, one can
partition T∩Pl into subtrees with this property. More precisely, if we let I be any
interval in {IP : P ∈ T ∩ Pl} which is maximal with respect to set inclusion, then
({P ∈ T ∩ Pl : IP ⊆ I}, I, ξT) is a lacunary tree whose time interval I also lies
in Il. Let Fl be the collection of all the trees obtained in this manner for fixed l,
as T varies over F and I varies over the maximal intervals in {IP : P ∈ T ∩ Pl};
thus Pl =

⋃
T∈Fl

T. Since for each fixed T the intervals I are disjoint, one easily
verifies the pointwise estimate NFl

≤ NF , and hence ‖NFl
‖L∞ ≤ D. Applying
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Theorem 10.2 (if N is large depending on ν), one can then obtain an exceptional
set Pl,∗ ⊂ Pl obeying (52) such that∑

P∈Pl\Pl,∗

|〈f, φP 〉|2 �ν ((log(1 + AD))10 + A10−νD10)‖f‖2
L2 .

Setting P∗ :=
⋃

1≤l≤L Pl,∗ we thus conclude

|
⋃

P∈P∗

IP | �ν A2(A−ν + D−ν)
∑
T∈F

|IT|

and ∑
P∈P\P∗

|〈f, φP 〉|2 �ν A2((log(2 + AD))10 + A10−νD10)‖f‖2
L2 .

If we then set ν := 100+400µ and A := CµD1/4µ for a large constant Cµ we obtain
the claim.

The hypothesis in Theorem 10.2 is currently assuming some control on the quan-
tity ‖NF‖L∞ = ‖

∑
T∈F 1IT‖L∞ . In the arguments which follow, it is more conve-

nient to assume control on the larger quantity ‖
∑

T∈F M1IT‖L∞ , where of course
M is the Hardy-Littlewood maximal function. It is not necessarily the case that
control of the former implies control of the latter, due to “logarithmic pile-ups”
such as those where the intervals IT are lacunary around a fixed origin; this is also
related to the failure of the Fefferman-Stein vector-valued maximal inequality [11]
at this endpoint. Nevertheless, by removing all the tiles in a small set it is possible
to control the latter from the former. More precisely, we have

Lemma 10.4. Let I be a finite set of intervals in Dd for some d = 0, 1, 2 such that
‖

∑
I∈I 1I‖L∞ ≤ D for some D. Then I can be split into two collections I = I�∪I

such that
‖

∑
I∈I�

(M1I)2‖L∞ �ν D3

and

(53) |
⋃

I∈I�

I| �ν D−ν
∑
I∈I

|I|.

Proof. See [15, Lemma 3.14]. �

As a consequence, we can reduce Theorem 10.2 to

Theorem 10.5 (Maximal Bessel inequality, fifth reduction). Let A, M, ν > 1, and
suppose that N is sufficiently large depending on ν. Let F be a forest with

(54) ‖
∑
T∈F

M1IT‖L∞ ≤ M.

Let P :=
⋃

T∈F T, and suppose that the time intervals

{IP : P ∈ P} ∪ {IT : T ∈ F}

are (A, d)-sparse. Suppose also that we have the technical condition

(55) sup
x∈IP

dist(x, ∂IT) ≥ A−ν |IT|
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for all P ∈ P and T ∈ F (this ensures that tiles do not cluster near the edges of
trees). Let ψP , φP be as in Theorem 9.1. Then we have the Bessel-type inequality

(56)
∑
P∈P

|〈f, φP 〉|2 �ν ((log(2 + AM))10 + A1−νM2)‖f‖2
L2

for all f ∈ L2(R).

Proof of Theorem 10.2 assuming Theorem 10.5. Apply Lemma 10.4 to the collec-
tion I := {IT : T ∈ F} to create the partition I = I� ∪ I with the desired
properties. Set

P∗ :=
⋃

T∈F :IT∈I�

T ∪
⋃

T∈F
{P ∈ P : sup

x∈IP

dist(x, ∂IT) < A−ν |IT|}.

Observe that ⋃
P∈P∗

IP ⊆
⋃

I∈I�

I ∪
⋃

T∈F
{x ∈ IP : dist(x, ∂IT) < A−ν |IT|}

and hence by (53), ⋃
P∈P∗

IP �ν (D−ν + A−ν)
∑

T∈IT

|IT|.

Now since the intervals IT have multiplicity at most D, we have

‖
∑

T∈F :IT �∈I�

M1IT‖L∞ ≤ D‖
∑
I∈I�

M1I‖L∞ �ν D4.

Applying Theorem 10.2 with M ∼ν D4 (and all the trees with spatial interval in
I have been completely removed from P\P∗) we obtain∑

P∈P\P∗

|〈f, φP 〉|2 �ν ((log(2 + AD4))10 + A1−νD8)‖f‖2
L2

and the claim follows. �

It remains to prove Theorem 10.5. We may dualize (56), observing that it is
equivalent to the estimate

‖
∑
P∈P

aP φP ‖2
L2 �ν ((log(2 + AM))10 + A1−νM2)‖a‖l2

for any sequence a = (aP )P∈P of complex numbers. By definition of φP , it thus
suffices to show the maximal Bessel-type inequality

(57) ‖ sup
k

|
∑

P∈P:|IP |>2k

aP ψP |‖L2 �ν ((log(2 + AM))10 + A1−νM2)‖a‖l2 .

At this point we shall pause to sketch the general strategy we shall employ
to prove (57), following [15]. First we shall split the tile set P into layers P =
P1 ∪ . . . ∪ PJ . Roughly speaking, the idea is to arrange these layers so that the
time intervals of Pj′ tend to be (locally) wider than those of Pj when j′ < j. Since
ψP is essentially concentrated in IP (or more accurately IP,A), this heuristically
gives rise to an estimate of the form

sup
k

|
∑

P∈P:|IP |>2k

aP ψP | ≤ sup
j

[|
∑

P∈
⋃

j′<j Pj′

aP ψP | + sup
k

|
∑

P∈Pj :|IP |>2k

aP ψP |].
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To deal with the former expression we shall use the Rademacher-Menshov inequality
and a nonmaximal Bessel inequality (which is essentially (57) without the supre-
mum in k, and with somewhat fewer logarithmic losses on the right-hand side). To
deal with the second term we replace the supremum in j by a square function, and
reduce to controlling the contribution of a localized expression over a single gener-
ation Pj (which will ultimately reduce to a certain maximal inequality of Bourgain
[4]).

For technical reasons it turns out that one needs to treat the “boundary” of the
layers Pj separately from the rest of the Pj , in order to improve the separation
properties between layers. As such we will have to execute the above strategy twice,
once for the boundary tiles and once for the interior tiles.

We now turn to the details, beginning with the selection of the layers. Introduce
the sets I ⊂ D0 and IA ⊂ Dd by

I := {IT : T ∈ F}; IA := {IT,A : T ∈ F}.

Observe that the (A, d)-sparseness of I ensures that the map I �→ IA is a bijection
from I to IA which preserves the set inclusion relation. Since AIT ⊆ IT,A ⊆ 3AIT
we see that

1T,A ⊆ 10A1T,

and hence by (54) we have the multiplicity bound

(58) ‖
∑

I∈IA

1I‖L∞ ≤ 10AM.

We then partition

IA = I(1)
A ∪ I(2)

A ∪ . . . ∪ I(10AM)
A

recursively by defining I(j)
A to be those intervals in IA\

⋃
i<j I

(i)
A which are maximal

with respect to set inclusion; thus I(j)
A is a collection of disjoint intervals in the

dyadic grid Dd. Observe that for 1 < j ≤ 10AM , each interval in I(j)
A is contained

in exactly one interval in I(j−1)
A ; since ‖

∑
I∈I 1I‖L∞ ≤ 10AM , we conclude that

I(1)
A , . . . , I(10AM)

A do indeed partition IA. Using the bijection between I and IA,
we thus induce a partition I = I(1) ∪ . . . ∪ I(10AM) of I.

Let 1 ≤ j ≤ 10AM . For each I ∈ I(j), let PI denote the tiles with time interval
I:

PI := {P ∈ P : IP = I}.
Observe that each tree T in F contributes at most one tile to PI , by definition of a
lacunary tree, and if T does contribute a tile, then 1I ≤ 1T. By (54) we thus have

(59) #PI ≤ M for all I ∈ I.

We also introduce the tileset P<I for I ∈ I(j) by

P<I := {P ∈ P : IP � I; IP �⊆ J for all J ∈
⋃
i>j

I(i)};

thus P<I is the collection of tiles whose time interval is strictly contained in the
interval I ∈ I(j), but is not contained in any interval from a later layer of I. Since
every tile P ∈ P has its time interval IP contained in some interval in I (because
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P is contained in some tree T ∈ F , and hence IP ⊆ IT ∈ I) we see that we have
the partition

P =
⋃

1≤j≤10AM

⋃
I∈I(j)

(PI ∪P<I).

To prove (57), it thus suffices by the triangle inequality to prove the estimates

(60) ‖ sup
k

|
∑

j

∑
I∈I(j)

∑
P∈PI :|IP |>2k

aP ψP |‖L2 �ν ((log(2+AM))10+A1−νM2)‖a‖l2

and
(61)
‖ sup

k
|
∑

j

∑
I∈I(j)

∑
P∈P<I :|IP |>2k

aP ψP |‖L2 �ν ((log(2 + AM))10 + A1−νM2)‖a‖l2 .

The estimate (60) is easier and is proven in Section 11. The estimate (61) is more
difficult, relying in particular on a certain inequality of Bourgain, and is proven in
Section 12. To conclude this section, we present two tools which will be used to
prove both (60) and (61). The first is a nonmaximal Bessel inequality, and more
precisely the bound

(62) ‖
∑
P∈P

aP ψP ‖2
L2 � log(1 + M)‖a‖l2 .

This inequality may be of some independent interest and is proven in Section 13.
Secondly, we will rely on the following form of the standard Rademacher-Menshov
inequality, whose proof we include for the sake of completeness. We observe first
the trivial bound

(63) ‖ sup
i

|fi|‖L2 ≤ ‖(
∑

i

|fi|2)1/2‖L2 = (
∑

i

‖fi‖2
L2)1/2

valid for any finite collection of L2 functions fi. This bound is usually too crude
for applications, as the summation in i usually creates an undesirable polynomial
loss in the estimates; however, one can refine this polynomial loss to a logarithmic
loss in the following way.

Theorem 10.6 (Rademacher-Menshov). Let (fl)L
l=1 be a sequence of functions in

L2(R) which are almost orthogonal in the sense that there exists a constant B such
that for each finite sequence ε1, . . . , εL ∈ {−1, +1} of signs we have∥∥∥∥∥

L∑
l=1

εlfl

∥∥∥∥∥
L2

≤ B.

Then we have the maximal inequality∥∥∥∥∥∥ sup
L′≤L

|
L′∑
l=1

fl|

∥∥∥∥∥∥
L2

� B log(2 + L).

Proof. We may take the fl to be real-valued. By adding dummy fl if necessary, we
may assume that L = 2m for some integer m ≥ 1. For each set I ⊆ {1, . . . , L} let
fI :=

∑
l∈I fl. For each 0 ≤ m′ ≤ m let Im′ denote the collection of sets of the
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form {2m′
j + 1, . . . , 2m′

j + 2m′} for j = 0, . . . , 2m−m′ − 1. For each fixed m′, the
sets in Im′ partition {1, . . . , L}, and thus by hypothesis we have

‖
∑

I∈Im′

εIfI‖L2 ≤ B

for all signs εI = ±1. If we square this inequality we obtain∑
I∈Im′

‖fI‖2
L2 +

∑
I,J∈Im′ :I �=J

εIεJ 〈fI , fJ 〉 ≤ B2.

If we then set εI to be independent random signs and take expectations, we conclude∑
I∈Im′

‖fI‖2
L2 ≤ B2.

By (63) this implies that
‖ sup

I∈Im′
|fI |‖L2 ≤ B.

By representing L′ in binary and using the triangle inequality we have the pointwise
estimate

|
L′∑
l=1

fl| ≤
∑

0≤m′≤m

sup
I∈Im′

|fI |

for all L′ ≤ L. Taking suprema over all L′, taking L2 norms, and applying the
triangle inequality, the claim follows. �

11. Proof of (60)

We first prove the estimate (60), which is relatively easy and serves as a model
for the more complicated estimate (61).

Intuitively, the contribution of the wave packets ψP for P ∈ PI should be local-
ized to the time interval IA. To exploit this we introduce the tail error

E(x) :=
∑

j

∑
I∈I(j):x�∈IA

∑
P∈PI

|aP ||ψP (x)|.

This error is small:

Lemma 11.1 (Tail estimate). We have

‖E‖L2 �ν A−νM1/2‖a‖l2 .

Proof. From (27) one easily verifies the pointwise estimates

|ψP | � |I|−1/2M1I

and the L1 bound
‖|ψP |(1 − 1IA

)‖L1 � A−10N+10|I|1/2

whenever P ∈ PI . The former bound and (54) imply the estimate

‖
∑

j

∑
I∈I(j):x�∈IA

∑
P∈PI

|I|1/2|aP ||ψP (x)|‖L∞ � M‖a‖l∞

while the latter bound and the triangle inequality imply the bound

‖
∑

j

∑
I∈I(j):x�∈IA

∑
P∈PI

|I|−1/2|aP ||ψP (x)|‖L1 � A−10N+10‖a‖l1 .
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The claim then follows from interpolation (or from Cauchy-Schwarz), since we as-
sume N sufficiently large depending on ν. �

To exploit this tail estimate we use the following pointwise inequality:

Lemma 11.2. For almost every x we have

sup
k

|
∑

j

∑
I∈I(j)

∑
P∈PI :|IP |>2k

aP ψP (x)| � sup
j0

|
∑
j≤j0

∑
I∈I(j)

∑
P∈PI

aP ψP (x)| + E(x).

Proof. We may assume that x is not the endpoint of any dyadic interval. It suffices
to show that for every k and x there exists a j0 such that

|
∑

j

∑
I∈I(j)

∑
P∈PI :|IP |>2k

aP ψP (x)| � |
∑
j≤j0

∑
I∈I(j)

∑
P∈PI

aP ψP (x)| + O(E(x)).

Since IP = I, we can write the left-hand side as

|
∑

j

∑
I∈I(j):|I|>2k

∑
P∈PI

aP ψP (x)|.

By definition of E and the triangle inequality, we can bound this by

|
∑

j

∑
I∈I(j):|I|>2k;x∈IA

∑
P∈PI

aP ψP (x)| + O(E(x)).

For each 1 ≤ j ≤ 10AM , we know that there is at most one interval Ij ∈ I(j) whose
dilate Ij,A contains x, and furthermore these intervals are decreasing in j (adopting
the convention that Ij = ∅ if no interval in I(j) contains x). Thus if we let j0 be
the largest j for which |Ij0 | > 2k(x) (with j0 = 0 if no such j exists), then we see
that if 1 ≤ j ≤ 10AM and I ∈ I(j) are such that x ∈ IA, then |I| > 2k(x) if and
only if j ≤ j(x). Thus we can bound the preceding expression by

|
∑
j≤j0

∑
I∈I(j):x∈IA

∑
P∈PI

aP ψP (x)| + O(E(x)).

One can then remove the constraint x ∈ IA by definition of E(x) and the triangle
inequality. �

In light of the above two lemmas, we see that to prove (60) it suffices to show
that

(64) ‖ sup
j0

|
∑
j≤j0

∑
I∈I(j)

∑
P∈PI

aP ψP |‖L2 � (log(2 + AM))10‖a‖l2 .

Applying the Rademacher-Menshov inequality (Theorem 10.6), it suffices to show
that

‖
∑

j

εj

∑
I∈I(j)

∑
P∈PI

aP ψP ‖L2 � (log(2 + AM))9‖a‖l2

for all choices ε1, . . . , ε10AM ∈ {−1, +1} of signs. But this follows from the non-
maximal Bessel inequality (62) (with some room to spare), since the PI are disjoint
in P. This concludes the proof of (60).
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12. Proof of (61)

Now we prove (61). We shall argue as in the proof of (60), although the details
shall be more technical, and we shall also rely crucially on a maximal inequality of
Bourgain.

In the previous section we localized the contribution of PI to the interval IA.
It turns out (because of the (A, d)-sparseness hypothesis) that the contribution of
P<I can be localized even further, to the interval I itself. To formalize this we
again introduce a tail error

Ẽ(x) :=
∑

I∈I(j):x�∈I

∑
P∈P<I

|aP ||ψP (x)|.

Lemma 12.1 (Tail estimate). We have

‖Ẽ‖L2 �ν A1−νM2‖a‖l2 .

Proof. Since there are only 10AM values of j, it suffices by the triangle inequality
to show that

(65) ‖
∑

I∈I(j):x�∈I

∑
P∈P<I

|aP ||ψP (x)|‖L2 �ν A−νM‖a‖l2

for each j, which we now fix. Suppose for the moment that we could show the
pointwise estimate

(66)
∑

P∈P<I

|aP ||ψP (x)| �ν A−νMcI |I|−1/2M1I(x)2

for each I and x �∈ I, where cI := (
∑

P∈P<I
|aP |2)1/2. Then the left-hand side of

(65) is bounded by

�ν A−νM‖
∑

I∈I(j)

cI |I|−1/2M1I(x)2‖L2 .

Applying the Fefferman-Stein maximal inequality [11], which among other things
asserts that

‖
∑

i

Mf2
i ‖L2 = ‖(

∑
i

Mf2
i )1/2‖2

L4 � ‖(
∑

i

|fi|2)1/2‖L4 = ‖
∑

i

|fi|2‖L2 ,

we can bound the left-hand side of (65) by

�ν A−νM‖
∑

I∈I(j)

cI |I|−1/21I(x)2‖L2 .

Since the intervals in I(j) are disjoint, this expression is bounded by

A−νM(
∑

I∈I(j)

|cI |2)1/2 ≤ A−νM‖a‖l2

as desired.
It remains to prove (66). By Cauchy-Schwarz it suffices to verify the estimates

(67)
∑

P∈P<I

|IP ||ψP (x)| � M2|I|1/2

and

(68)
∑

P∈P<I

|aP |2|IP |−1|ψP (x)| �ν A−2νc2
I |I|−3/2M1I(x)4.
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To prove (67), we break P<I up into P<I ∪ T, where T ranges over the forest F .
Observe that P<I ∪ T is empty unless I ⊆ IT; by (54) we thus see that there are
at most M trees T for which P<I ∪ T is nonempty. Thus it suffices to show that∑

P∈P<I∩T

|IP ||ψP (x)| � |I|1/2.

But from (27) we have |IP ||ψP (x)| � |IP |1/2(M1IP
(x))100 (say). Since the IP are

dyadic subintervals of I and each interval can occur at most once in T, the claim
follows.

It remains to prove (68). From the definition of cI and the triangle inequality it
suffices to prove that

|IP |−1|ψP (x)| �ν A−2ν |I|−3/2M1I(x)4

for each P ∈ P<I and x �∈ I. But from the (A, d)-sparseness hypothesis we see that
IP � I and |IP | ≤ 2−100A|I|, while from (55) (recalling that I is the time interval
of some tree T) we have supx∈IP

dist(x, ∂I) ≥ A−ν |I|. The claim now follows
from (27), the exponential gain of |I|/|IP | ≥ 2100A being more than sufficient to
compensate for any polynomial losses in A or in |I|/|IP |. �

The analog of Lemma 11.2 is

Lemma 12.2. For almost every x we have

sup
k

|
∑

j

∑
I∈I(j)

∑
P∈P<I :|IP |>2k

aP ψP (x)| � sup
j0

|
∑
j<j0

∑
I∈I(j)

∑
P∈P<I

aP ψP (x)|

+ sup
I∈I

sup
k

|
∑

P∈P<I :|IP |>2k

aP ψP (x)|

+ Ẽ(x).

Proof. We again may assume that x is not the endpoint of a dyadic interval. We
fix k; it would suffice to find a j0 and an I0 ∈ I such that

|
∑

j

∑
I∈I(j)

∑
P∈P<I :|IP |>2k

aP ψP (x)| ≤ |
∑
j<j0

∑
I∈I(j)

∑
P∈P<I

aP ψP (x)|

+ |
∑

P∈P<I0 :|IP |>2k

aP ψP (x)|(69)

+ O(Ẽ(x)).

By definition of Ẽ(x), we have

|
∑

j

∑
I∈I(j)

∑
P∈P<I :|IP |>2k

aP ψP (x)|

≤ |
∑

j

∑
I∈I(j);x∈I

∑
P∈P<I :|IP |>2k

aP ψP (x)| + O(Ẽ(x)).

Let j0 be the largest j for which there exists an interval in I(j0) which contains x
and has length greater than 2k. There is only one such interval; call it I0. We can
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thus estimate the contribution of the j = j0 term by (69) and reduce to showing
that

|
∑
j<j0

∑
I∈I(j);x∈I

∑
P∈P<I :|IP |>2k

aP ψP (x)| � |
∑
j<j0

∑
I∈I(j)

∑
P∈P<I

aP ψP (x)| + O(Ẽ(x)).

But if I ∈ I(j) and x ∈ I, then I and I0 overlap. Since I0 belongs to a later layer
I(j0) than I we must have I0 � I, and thus |I| > |I0| > 2k. Hence the constraint
|IP | > 2k is redundant and can be removed. The claim now follows from the triangle
inequality. �

In light of the above two lemmas, to prove (61) it would suffice to show that

‖ sup
j0

|
∑
j<j0

∑
I∈I(j)

∑
P∈P<I

aP ψP |‖L2 � (log(2 + AM))10‖a‖l2

and
‖ sup

I∈I
sup

k
|

∑
P∈P<I :|IP |>2k

aP ψP (x)|‖L2 � (log(2 + AM))10‖a‖l2 .

The first inequality is proven in exactly the same way as (64) and is omitted, so we
now turn to the second inequality. By (63) it would suffice to show that

(
∑
I∈I

‖ sup
k

|
∑

P∈P<I :|IP |>2k

aP ψP (x)|‖2
L2)1/2 � (log(2 + AM))10‖a‖l2 ,

which in turn would follow from the estimate

‖ sup
k

|
∑

P∈P<I :|IP |>2k

aP ψP (x)|‖L2 � (log(2 + AM))10(
∑

P∈P<I

|aP |2)1/2

for each fixed I.
Let T1,T2, . . . ,TJ be all the trees in F which intersect P<I ; the time interval

of such trees must contain I, and so from (54) we have J ≤ M . We can then write

∑
P∈P<I :|IP |>2k

aP ψP (x) =
J∑

j=1

∑
P∈P<I∩Tj :|IP |>2k

aP ψP (x).

Let ξ1, . . . , ξJ be the base frequencies of T1, . . . ,TJ . Since Tj is a lacunary tree,
we see that if P ∈ P<I ∩ Tj , then ψP has Fourier support in an interval of width
|IP |−1 and distance ∼ C0|IP |−1 from ξj . By the strong disjointness of the Tj we
see that these intervals must be disjoint. This implies that

J∑
j=1

∑
P∈P<I∩Tj :|IP |>2k

aP ψP (x) = Pik

J∑
j=1

∑
P∈P<I∩Tj

aP ψP (x)

where Pik is a Fourier projection to the union of J intervals centered at ξ1, . . . , ξJ ,
each of radius ∼ C02−k. We now invoke a deep maximal inequality of Bourgain [4,
Lemma 4.11], which asserts in our notation that

‖ sup
k

|Pikf |‖L2 � log(2 + J)2‖f‖L2 .

Using this, we reduce to showing that

‖
J∑

j=1

∑
P∈P<I∩Tj

aP ψP |‖L2 � (log(2 + AM))8(
∑

P∈P<I

|aP |2)1/2.
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But this follows from the nonmaximal Bessel inequality (62). This concludes the
proof of (61).

13. Proof of (62)

We now prove (62). We shall in fact prove the slightly more general statement,
which may have some independent interest:

Proposition 13.1 (Nonmaximal Bessel inequality). Let F be a forest, let P :=⋃
T∈F T, and for each tile P ∈ P let ψP be a wave packet adapted to P . Suppose

also that ‖
∑

T∈F 1T‖L∞ ≤ M . Then we have

‖
∑
P∈P

aP ψP ‖L2 � log(2 + M)‖a‖l2

for any sequence a = (aP )P∈P of complex numbers.

Remark 13.1. By duality and the TT ∗ method, this inequality is also equivalent to
the assertion that

(
∑
P∈P

|〈f, ψP 〉|2)1/2 � log(2 + M)‖f‖L2

or that
‖

∑
P∈P

〈f, ψP 〉ψP ‖L2 � log(2 + M)2‖f‖L2

for all f ∈ L2. The logarithmic loss can probably be lowered to log(2 + M)1/2 but
cannot be removed entirely; see [3].

We prove Proposition 13.1 in stages. The most important step is to establish a
restricted version of the proposition without the logarithmic loss in M .

Proposition 13.2 (Restricted Bessel inequality). Let F ,P, ψP , M be as in Propo-
sition 13.1. Suppose that a = (aP )P∈P obeys the Carleson condition

∑
P∈T′ |aP |2 �

22m|IT′ | for all T ∈ F and all subtrees T′ of T, where m is a fixed integer. Then
we have

‖
∑
P∈P

aP ψP ‖L2 � 2m(
∑
T∈F

|IT|)1/2.

Proof. See [20, Lemma 6.6]. The main idea is to square both sides, use standard
estimates on the inner products |〈ψP , ψQ〉|, and exploit the strong disjointness of
the trees T in the forest F . �

Next, we establish restricted Lp-type estimates with a polynomial loss in M .

Proposition 13.3 (Crude Bessel inequality). Let F ,P, ψP , M, m, a be as in Propo-
sition 13.2. Then for any 1 < p < ∞ we have

‖
∑
P∈P

aP ψP ‖Lp �p 2mM(
∑
T∈F

|IT|)1/p.

Remark 13.2. One can improve the factor of M here by interpolation with Proposi-
tion 13.2, and at the endpoint p = 1 one can remove the loss in M entirely. However
for our purposes any polynomial factor in M will suffice.
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Proof. First observe that we can partition the forest F into forests F1 ∪ . . . ∪ FM ,
with each Fj having multiplicity one in the sense that ‖

∑
T∈Fj

1T‖L∞ ≤ 1. Indeed
one could set FM to be a maximal collection of trees in F whose time intervals
are distinct and are maximal with respect to set inclusion, remove FM from F
(dropping the multiplicity by 1), and induct; we leave the details to the reader.
From the triangle inequality we see that it thus suffices to verify the claim when
M = 1. We may also normalize m = 0.

Let T be a tree in F . We can partition the dyadic interval IT into four equally
sized dyadic subintervals IT,1, IT,2, IT,3, IT,4, from left to right. Let Tl,Tr ⊂ T
be the trees Tl := {P ∈ T : IP ⊆ IT,1} and Tr := {P ∈ T : IP ⊆ IT,4} with
spatial intervals IT,1 and IT,4 respectively, and let F ′ be the forest formed by these
trees Tl and Tr, and P′ :=

⋃
T∈F ′ T. Observe that this forest also has multiplicity

one and that
∑

T∈F ′ |IT| = 1
2

∑
T∈F |IT|. It thus suffices by the obvious recursion

argument to prove the Bessel inequality with P replaced by P\P′ (conceding a
factor of 1

1−2−p ∼ p in the implicit constant). The practical upshot of this reduction
is that for any tree T in the forest F , we may assume without loss of generality
that none of the tiles in T have time interval contained in the left quarter IT,l or
right quarter IT,r of the tree.

From the Carleson condition we have the crude bound |aP | � |IP |1/2 for all
P ∈ P. From this, (27), and the above reduction on the trees T one easily verifies
the pointwise estimate

(1 − 1IT(x))|
∑
P∈T

aP ψP (x)| � M1IT(x)10

(say) for all T ∈ F and x ∈ R. From the Fefferman-Stein maximal inequality [11]
and the multiplicity one nature of F we thus have

‖
∑
T∈F

(1 − 1IT(x))|
∑
P∈T

aP ψP (x)|‖Lp � ‖
∑
T∈F

M1IT(x)10‖Lp �p (
∑
T∈F

|IT|)1/p,

and hence by the triangle inequality it will suffice to show that

‖
∑
T∈F

1IT |
∑
P∈T

aP ψP |‖Lp �p (
∑
T∈F

|IT|)1/p.

From the disjointness of the intervals IT it thus suffices to show that

‖
∑
P∈T

aP ψP ‖Lp(IT) �p |IT|1/p

for each tree T. By shifting the frequency dyadic grid if necessary we may assume
that ξT = 0; this essentially turns the wave packets ψP into wavelets. The Carleson
condition on the aP and standard almost orthogonality estimates then give the L2

estimate
‖

∑
P∈T

aP ψP ‖L2 � |IT|1/2

and the BMO estimate
‖

∑
P∈T

aP ψP ‖BMO � 1

from which the claim follows by the John-Nirenberg inequality. �
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The idea is now to combine the above two propositions via some sort of real
interpolation method to obtain Proposition 13.1. It may well be possible to use one
of the existing real interpolation theorems in the literature to obtain this conclusion,
but we will use a more explicit argument, based on the following decomposition of
an arbitrary l2 sequence a into Carleson sequences.

Lemma 13.4 (Stopping time algorithm). Let F ,P, ψP , M be as in Proposition
13.1. Suppose that a = (aP )P∈P obeys the Carleson condition

∑
P∈T′ |aP |2 ≤

22m|IT′ | for all T ∈ F and all subtrees T′ of T, where m is a fixed integer. Then
we can partition P =

⋃
T∈F1

T ∪
⋃

T∈F2
T, where F1 is a collection of subtrees of

trees in F such that

(70) 22m
∑

T∈F1

|IT| ∼
∑

T∈F1

∑
P∈T

|aP |2

and F2 is a collection of subtrees of trees in F such that
∑

P∈T′ |aP |2 ≤ 22(m−1)|IT′ |
for all T ∈ F2 and all subtrees T′ of T. Furthermore we have ‖

∑
T∈Fj

1IT‖L∞ ≤
M for j = 1, 2.

Proof. It suffices to establish this lemma in the case when the forest F consists of a
single tree, F = {T}, with M = 1, since the general case then follows by applying
the lemma to each tree separately and taking unions, using Lemma 9.3, as well as
the observation that the contribution to

∑
T∈Fj

1IT arising from a single tree T0

in F will be bounded pointwise by 1T0 .
Let I be the set of all dyadic intervals I in IT such that

∑
P∈T:IP ⊆I |aP |2 >

22(m−1)|I|, and such that I is maximal with respect to set inclusion among all
such intervals with the property; thus the intervals in I are disjoint and lie inside
IT. We then let F1 be the forest consisting of trees TI = (TI , I, ξT ) of the form
TI := {P ∈ T : IP ⊆ I}, where I ranges over I. By construction it is clear that
F1 is indeed a forest, and that

∑
P∈T′ |aP |2 ∼ 22m|IT′ | for all T′ ∈ F1; summing

over all T′ we obtain (70). If we let F2 consist of the single tree T2 = (T2, IT, ξT)
consisting of all the tiles not covered by F1, thus T2 := T\

⋃
T′∈F1

T′, then we see
from construction that

∑
P∈T′ |aP |2 ≤ 22(m−1)|IT′ | for all subtrees T′ of T2. The

claim follows. �

Iterating this lemma in the usual manner, starting with m extremely large and
exploiting the fact that the forest F contains only finitely many tiles, we obtain

Corollary 13.5 (Iterated stopping time algorithm). Let F ,P, ψP , M be as in
Proposition 13.1. Then there exist forests Fm for each integer m, together with
a tile set P−∞, such that we have the partition

P =
⋃
m

⋃
T∈Fm

T ∪ P−∞,

such that we have the Carleson condition
∑

P∈T′ |aP |2 ≤ 22m|IT′ | for all m, all
T ∈ Fm and all subtrees T′ of T, we have the bound

(71)
∑
m

22m
∑

T∈Fm

|IT| ∼
∑
P∈P

|aP |2

and such that aP = 0 for all P ∈ P−∞. Finally we have ‖
∑

T∈Fm
1IT‖L∞ ≤ M

for all m.
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Of course, all but finitely many of the Fm will be empty.
We can now prove Proposition 13.1. We apply Corollary 13.5. The tiles in P−∞

yield no contribution and can be discarded. We are reduced to establishing that

‖
∑
m

Fm‖L2 � log(2 + M)‖a‖l2

where Fm :=
∑

T∈Fm

∑
P∈T aP ψP . If we let L be the first integer greater than

100 log(2 + M), it suffices by the triangle inequality to show that

‖
∑

m:m=l mod L

Fm‖L2 � ‖a‖l2

for all residue classes l mod L. Squaring this and using symmetry it suffices to
show that ∑

m:m=l mod L

‖Fm‖2
L2 +

∑
m,m′:m,m′=l mod L;m′>m

|〈Fm, Fm′〉| � ‖a‖2
l2 .

Note that if m, m′ = l mod L and m′ > m, then m′ ≥ m + L. Introduce the
quantities Am := 2−2m

∑
T∈Fm

|IT|; from (71) it suffices to show that

∑
m

‖Fm‖2
L2 +

∑
m,m′:m′>m+L

|〈Fm, Fm′〉| �
∑
m

Am.

From (13.3) we have ‖Fm‖L2 � A
1/2
m , and so we are reduced to showing that∑

m,m′:m′>m+L

|〈Fm, Fm′〉| �
∑
m

Am.

We now use Proposition 13.3 to obtain

‖Fm‖L4 � 2mM(
∑

T∈Fm

|IT|)1/4 = 2m/2MA1/4
m

and

‖Fm′‖L4/3 � 2m′
M(

∑
T∈Fm

|IT|)3/4 = 2−m′/2MA
3/4
m′

and hence by Hölder’s inequality,

|〈Fm, Fm′〉| � 2−(m′−m)/2M2A1/4
m A

3/4
m′ � 2−(m′−m)/2M2(Am + Am′).

Summing this and using the geometric series formula we conclude∑
m,m′:m′>m+L

|〈Fm, Fm′〉| � 2−L/2M2
∑
m

Am,

and the claim follows from the definition of L. This concludes the proof of Propo-
sition 13.1, and (62) follows. The proof of Theorem 1.1 (and hence Corollary 1.2)
is now complete. �
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14. Appendix: A correspondence principle

The purpose of this appendix is to prove the following correspondence principle.

Proposition 14.1. Let A be an (n−1)×m matrix with integer entries. In addition
to the operators T ∗

A,R and T ∗
A,X defined in (3) and (4), we introduce the operator

T ∗
A,Z defined on functions φi : Z → R of compact support:

T ∗
A,Z(φ1, . . . , φn−1)(l) := sup

N>0

1
(2N + 1)m

∑
|n1|,...,|nm|≤N

n−1∏
i=1

|φi(l +
m∑

j=1

ai,jnj)|.

Let 1 < p1, . . . , pn−1 ≤ ∞ and p′n be such that 1/p1 + . . . + 1/pn−1 = 1/p′n. Then
the following claims are equivalent.

(i) T ∗
A,R maps Lp1(R) × . . . × Lpn−1(R) to Lp′

n(R).
(ii) T ∗

A,Z maps lp1(Z) × . . . × lpn−1(Z) to lp
′
n(Z).

(iii) For every dynamical system X, T ∗
A,X maps Lp1(X) × . . . × Lpn−1(X) to

Lp′
n(X), with a bound uniform in X.

Proof. We first show that (i) implies (ii). Let φ1, . . . , φn−1 : Z → R have finite
support. For each such φi define fi : R → R in such a way that fi(x) = φi(l) if
x ∈ [l− 1

3 , l+ 1
3 ] for some l ∈ Z, and 0 otherwise. Note that for each x ∈ [l− 1

6 , l+ 1
6 ]

and N ≥ 1,

1
(2N + 1)m

∑
|n1|,...,|nm|≤N

n−1∏
i=1

|φi(l +
m∑

j=1

ai,jnj)|

� 1
(2N + 1)m

∫
|t1|,...,|tm|≤N+1

n−1∏
i=1

|fi(x +
m∑

j=1

ai,jtj)|d�t

� T ∗
A(f1, . . . , fn−1)(x).

From the hypothesis (i) we thus conclude (ii).
Now we show that (ii) implies (i). Without loss of generality we may take

f1, . . . , fn−1 to be smooth, positive and compactly supported. Approximating an
integral by the Riemann sum, we obtain

‖TA,R(f1, . . . , fn−1)‖Lp′
n (R)

= lim
ε→0

ε−1/p′
n‖ sup

N>0

1
(2N + 1)m

∑
|n1|,...,|nm−1|≤N

n−1∏
i=1

fi(ε(l +
m∑

j=1

ai,jnj))‖lp
′
n (Z)

.

Applying the hypothesis (ii) we obtain

‖TA,R(f1, . . . , fn−1)‖Lp′
n (R)

� lim sup
ε→0

ε−1/p′
n

n−1∏
i=1

‖fi(ε·)‖lpi (Z).

Approximating integrals by Riemann sums again and using the scaling hypothesis
1/p1 + . . . + 1/pn−1 = 1/p′n we obtain (i) as desired.

Now we show that (ii) implies (iii). Define M := max{
∑m

j=1 |ai,j | : 1 ≤ i ≤
n − 1}. Let fi ∈ Lpi(X), let L ≥ 1 be an arbitrary number and let x ∈ X
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also be arbitrary. By applying the hypothesis (ii) to the functions φi defined by
φi(l) = fi(Slx) if |l| ≤ (M + 1)L and φi(l) = 0 otherwise, we get that

∑
|l|≤L

(
T ∗

A,X,L(f1, . . . , fn−1)(Slx)
)p′

n �
n−1∏
i=1

⎛
⎝ ∑

|l|≤L

|fi|pi(Slx)

⎞
⎠

p′
n

pi

,

with an implicit constant independent of x and L. The quantity T ∗
A,X,L(f1, . . . ,

fn−1)(x) denotes the maximal operator over averages with N ≤ L. Integration
with respect to x and Hölder’s inequality imply that

‖T ∗
A,X,L(f1, . . . , fn−1)‖Lp′

n (X)
�

n−1∏
i=1

‖fi‖Lpi (X).

By letting L → ∞ we obtain (iii).
To show that (iii) implies (ii), we specialize (iii) to the finitary dynamical system

X = Z/NZ with the standard shift Sx := x + 1 and the uniform probability
measure. Letting N → ∞ (taking advantage of the uniformity of the bounds
in (iii) in N) and renormalizing the probability measure to be counting measure
(taking advantage of the scaling condition) we obtain (ii); we omit the details. �
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