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THE TWISTOR SECTIONS ON THE WOLF SPACES

YASUYUKI NAGATOMO

ABSTRACT. Let M be a compact quaternion symmetric space (a Wolf space)
and V' — M an irreducible homogeneous vector bundle on M with its canonical
connection, whose rank is less than or equal to the dimension of M. We classify
the zero loci of the transversal twistor sections with a reality condition. There
exists a bijection between such zero loci and the real representations of simple
compact connected Lie groups with non-trivial principal isotropy subgroups
which are neither tori nor discrete groups. Next we obtain an embedding of
the Wolf space into a real Grassmannian manifold using twistor sections, which
turns out to be a minimal embedding. Finally, we focus our attention on the
norm squared ||s||? of a twistor section s. We identify the subset Sj; where
this function attains the maximum value, under a suitable hypothesis. Such
sets are classified, and determine totally geodesic submanifolds of the Wolf
spaces. Moreover, ||s||? is a Morse function in the sense of Bott and its critical
manifolds consist of the zero locus and Sj;.

1. INTRODUCTION

The main theorems (Theorems 4.2 and 5.1-5.3) of the present paper concern
the zero loci of sections of vector bundles over quaternion-Kéhler (QK) manifolds.
These are Riemannian manifolds whose linear holonomy groups can be reduced
to Sp(n) - Sp(1). All known examples of compact quaternion-Kéhler manifolds
of positive scalar curvature are Riemannian symmetric spaces and Wolf classified
compact quaternion symmmetric spaces [23], which are called the Wolf spaces.

The section s in the main theorem satisfies a linear field equation, the twistor
equation Ds = 0. The higher dimensional twistor operator D is a generalization of
the twistor operator in 4-dimensional Riemannian geometry [I], and was defined
by Salamon [19] (see Definition 2.1). We also have a generalization of the notion
of the anti-self-dual connection, which is called a quaternion ASD connection (Def-
inition 2.2). These can also be defined on a hyper-Kéhler (HK) manifold, which,
by definition, is a Riemannian manifold of which the linear holonomy group can be
reduced to Sp(n). Both QK and HK manifolds have the canonical quaternion line
bundles H with the induced connections. A section of V' ® H that satisfies Ds = 0
is called a twistor section, where the vector bundle V has an ASD connection. In
general, a twistor section s corresponds to a holomorphic section § on the twistor
space under the Penrose transform (see for example [7] and [13]).
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Since the zero locus of a holomorphic section is a complex submanifold, it is
natural to expect that the zero locus of a twistor section has an inherent rich
geometrical structure reflecting the quaternion structure of the ambient space. In
fact, the author showed that the zero locus of a twistor section is a QK or an HK
submanifold ([I6], Theorem 3.2). Then we shall discuss the relation between the
zero locus of a twistor section and the zero locus of the corresponding holomorphic
section on the twistor space. Naively, one may expect that the inverse image of the
zero locus of a twistor section by the twistor fibration would be the same as the
zero locus of the corresponding section. Although this fails in general, it does hold
if we adopt the notion of a real section (Definition 3.6). This reality condition for a
section is one of the usual “reality conditions” in the context of the twistor geometry
and relates the zero locus of a real twistor section of a homogeneous vector bundle
to the real representation of the (covering of the) isometry group. A criterion for
the zero locus of a twistor section to be connected is given in cohomological terms
(Proposition 3.9). This criterion is exploited in section 4.

In section 4, we are concerned with an irreducible homogeneous vector bundle
of the form V ® H on the Wolf space whose rank is less than the dimension of the
base manifold. First of all, such vector bundles which admit non-trivial twistor
sections are determined (Theorem 4.1). We show that such a bundle necessarily
has a twistor section which is transverse to the zero section. Then the zero loci
of real and transversal twistor sections of irreducible homogeneous vector bundles
on the Wolf spaces are classified (Theorem 4.2). Since the twistor space of the
Wolf space is also homogeneous, the Bott-Borel-Weil (BBW) theory implies that
the space of the twistor sections is a representation of the isometry group, and the
zero locus of a transversal twistor section is connected, together with Proposition
3.9. Combined with Table A in W.C. Hsiang and W.Y. Hsiang [§], we can identify
the isometry group of the zero locus, which turns out to be the principal isotropy
subgroup of the space of the real twistor sections.

In section 5, our concern is an irreducible homogeneous vector bundle of the form
V @ H on the Wolf space whose rank equals the dimension of the base manifold.
The cotangent bundle of the Wolf space provides such an example, but it does
not admit any non-trivial twistor sections except the cotangent bundle of quater-
nion projective space HP™ [II]. We can find the other four vector bundles on the
complex Grassmannian manifold Gry(C"*?) and the real Grassmannian manifold
Gry(R'?) which admit non-trivial twistor sections (see Remark after Theorem 4.1).
We classify all the zero loci of real twistor sections of the first three bundles on HP™
and Gro(C"*2) (Theorems 5.1 and 5.2) and describe the zero locus of a transversal
twistor section of the last two bundles on Gry(R'?) (Theorem 5.3).

As a result of §§4 and 5, there exists a bijection between the zero loci of real and
transversal twistor sections of irreducible homogeneous vector bundles on the Wolf
spaces and the real representations of simple compact connected Lie groups with
non-trivial principal isotropy subgroups which are neither tori nor discrete groups
(see “Final conclusion for zero loci” in §5).

In section 6, we consider a mapping from the Wolf space into a real Grassman-
nian. This mapping is inspired by the well-known Kodaira embedding, which is
obtained by holomorphic sections of a (positive) holomorphic line bundle over a
Kéhler manifold. We may substitute a holomorphic section, a holomorphic bundle
and a Kéahler manifold into a twistor section, an ASD bundle and a QK manifold,
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respectively. It turns out that a mapping is really an embedding (Theorem 6.1),
which we call twistor embedding. Hsiang-Lawson’s result [9] implies that a twistor
embedding from the Wolf space is a minimal embedding (Theorem 6.2).

In the last section, we focus our attention on a function which is defined by the
norm squared of a twistor section. We identify the subset Sy; where the function
attains the maximum value. Here we restrict ourselves to the case that the set
of the twistor sections of an irreducible homogeneous vector bundle over the Wolf
space is a representation of spherical type (see §7, for the definition). We can
explicitly describe such a subset Sj; of the function, which is also a totally geodesic
submanifold of the Wolf space (Theorem 7.9). In some sense, Sy is farthest from
the zero locus of the twistor section, both literally and conceptually. Moreover, we
can show that the critical submanifolds of the function are only the zero locus and
the subset Sys (Lemma 7.3). The function turns out to be a Morse function in the
sense of Bott (Lemma 7.10).

2. PRELIMINARIES

Throughout the paper, all vector bundles are supposed to be complex vector
bundles with Hermitian metrics unless otherwise stated.

2.1. Differential operators. We shall define differential operators and an ASD
connection on a QK and an HK manifold. By definition, a QK manifold M has a
reduced Sp(n) - Sp(1) principal bundle P of the orthonormal frame bundle of M.
Let H be the standard representation of Sp(1). In general, a QK manifold M has no
lift of P to an Sp(n) x Sp(1) bundle, and so H does not define an associated vector
bundle to P on M. Nevertheless, we denote a locally defined associated vector
bundle of H by the same symbol H. In the case of the HK manifold, we obtain H
by considering a lift of a principal Sp(r) bundle to a principal Sp(n) x Sp(1) bundle,
which is the associated bundle of the trivial vector bundle whose global frame is
{I, J, K}. Since the definitions are given in a parallel way for a QK and an HK
manifold, we refer to only the case of a QK manifold.

In a similar way, a (locally defined) vector bundle associated with P is denoted
by E of which the typical fibre is the standard representation of Sp(n). Let S™H
be the mth symmetric power of H and A’E be the ith skew-symmetric power of
E. From the Clebsch-Gordan formula S™H @ H = S™ 'H ¢ S™+!'H, the tensor
product S™H ® A'E ® H ® E involves the two components S™ 'H @ A*H'E and
S™HIH @ A“HLE. The projections p: STHR ANEQH®E — S™1H @ A“LE and
q: S"THRANEQH®E — S™H ® A“E determine two types of differential
operators on M [19]:

Definition 2.1. The quaternionic operators D and D are defined by
D,, =pV:S"H® AN'E — S TH® AR,
Dy, =qV : STHR A'E — S™HH @ ATE.

Remark. In the case n = 1, these are the usual Dirac and twistor operators. We
shall omit the subscript m when no confusion arises.

2.2. ASD connections. Next, we define an ASD connection.

Definition 2.2 (for example, [I3] and [22]). Let M be a QK manifold or an HK
manifold and V' be a vector bundle with a connection V. Then, V is called a
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TABLE 2.1
G || SU(n) Spin(n) Sp(n)
K || U(1)SU(n —2) | Spin(n —4) Sp(1) | Sp(n — 1)
G || Es D Eg | Iy Ga

K || SU(6) | Spin(12) | B~ | Sp(3) | Sp(1)

quaternion ASD connection if the curvature tensor RV satisfies
RY(IX,IY)=RY(JX,JY)=RY(KX,KY)=RY(X,Y).

We call V an ASD bundle or instanton bundle if V' has a quaternion ASD connec-
tion.

Remark. From Galicki-Poon [5], the curvature tensor RV of a quaternion ASD
connection satisfies *RY = (Qn_—_ll)!Rv A Q"1 where ( is the fundamental 4-form

on M by Bonan [2]. Consequently, a quaternion ASD connection gives an example
of the anti-self-dual instanton in the sense of Tian [2I]. In the case of an HK
manifold, a quaternion ASD bundle is called a hyperholomorphic vector bundle in
Verbitsky [22].

For brevity, a quaternion ASD connection is simply called an ASD connection
in this paper.

We can define the coupled quaternion Dirac operator D and the twistor operator
D to sections of a vector bundle V @ S™H ® A'E, where V is an ASD bundle. Note
that it may happen that there exists a vector bundle F' with a connection, which
is locally gauge equivalent to a bundle V ® H, even if neither an ASD bundle V'
nor H is defined globally (e.g., the complexified cotangent bundle T*M = E ® H of
a QK manifold). In this paper, such a vector bundle F' is also denoted by V ® H
with abuse of notation.

2.3. Wolf spaces. The only known examples of compact QK manifolds of posi-
tive scalar curvature (positive QK manifolds in the sense of LeBrun and Salamon
[12]) are symmetric spaces. Such a symmetric space is called a Wolf space. Wolf
classified compact quaternion symmetric spaces [23]. As a result, the (universal
covering of the) isometry group of a Wolf space is a maximal compact subgroup
of a complex simple connected Lie group and every complex simple connected Lie
group corresponds to a Wolf space whose isometry group is the maximal compact
subgroup. Hence we use the terminology “the Wolf space of type A,,, By, -+, G27,
taking into account the isometry group. (For example, the Wolf space of type C,, 11
is the quaternion projective space HP™.)

Let GC be one of the complex simple connected Lie groups and G be the max-
imal compact subgroup. The corresponding Lie algebras are denoted by g€ and
g, respectively. Let sp(1) be the subalgebra of g generated by the maximal root
vector (after we fix a Cartan subalgebra and choose simple roots of g©). Then, we
put p = £ @ sp(1), where ¢ is the centraliser of sp(1) in g. The corresponding Lie
subgroup to p is denoted by P. Then, the Wolf space is expressed as G/P. If we
denote by K the corresponding Lie subgroup to €, then K is concretely written in
Table 2.1.
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3. ZERO LOCUS

3.1. Known results. We review the results about the zero loci of the twistor
sections [16] and present the reason why we consider twistor sections on Wolf spaces.

Definition 3.1. Let V be a vector bundle on a manifold M and let s be a section
of V. We call a section s non-degenerate if S = s71(0) is a submanifold of M and
the tangent space of S coincides with Ker ds, where we regard a section s as a map
from an open set U of M to a vector space under a trivialization of V' over U.

Theorem 3.2. Let V be a (locally defined) ASD bundle over an HK or a QK
manifold M. If a section s of V ® H is non-degenerate and satisfies the twistor
equation Ds = 0, then S is an HK or a QK submanifold, respectively.

If a section of a vector bundle is transverse to the zero section, then the section
is non-degenerate. Hence we obtain

Corollary 3.3. Let V be an ASD bundle over an HK or a QK manifold M. If a
section s of VM is transverse to the zero section and satisfies the twistor equation,
then S is an HK or a QK submanifold, respectively.

3.2. Non-existence. From the theorem of Gray [0], a quaternion submanifold is
a totally geodesic submanifold. This implies

Corollary 3.4. Let V be an ASD bundle over an HK or a QK manifold M. If a
section s of V ® H is non-degenerate and satisfies the twistor equation, then S is a
totally geodesic submanifold of M.

We write down the second derivative explicitly.

Theorem 3.5. Let V be an ASD bundle over an HK or a QK manifold M. If a
section s of V. ® H satisfies the twistor equation, then we have

1 1
Vis = —icts + Sym°V2s + §Rs,

where ¢ is a positive constant depending only on the dimension of the manifold M,
t is the scalar curvature [18], and Sym°V2s is the traceless symmetric part of V2s
which can be regarded as a section of H® S?E® V.

Proof. Now, the section V2s can be considered as a section of H® (A2E® S?E)®V,
because s satisfies the twistor equation, and so Vs can be regarded as Ds, which is
a section of E® V. When we divide V2s into a (vector bundle valued) symmetric
2-tensor and a 2-form, the symmetric 2-tensor is denoted by SymV?2s. Since the
skew-symmetric part of V2s is the curvature, we obtain

1
V2s = SymV?s + ERS,

where R is the curvature 2-form of V®@H. The H® A2E®V part of Vs is identified
with wyg ® VDs. This corresponds to wy ® DDs, by the definition of the twistor
operator. Then the formula DD + %DD = 6¢t - Qug [17] and the twistor equation
imply that DDs = 4cts ® wg.

However, if we adopt the orthogonal projection when defining the quaternion
Dirac operator and the twistor operator, then the coefficient 4ct must be changed.
Here the orthogonal projection of hy ® hy to A?H should be hq Aha, where {h, ha}
is the standard basis. Similar care is needed when considering the orthogonal
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projection of E® E to A2E. Hence the coefficient must be multiplied by %, and so
the H® A2E ® V part of V2s is equal to cts ® wy @ wg.

Next, we divide the H ® S?E ® V part of V2s into a symmetric 2-tensor and a
2-form. Then the symmetric 2-tensor is trace-free and we denote it by Sym°’VZs.
We would like to specify SymV?2s — Sym®V2s, which is the H® A2E ® V compo-
nent of SymV?2s. The curvature of H has no component of S?E. Consequently,
%(RV ® Idy)s is the H® S?E ® V component of the skew-symmetric part of V2s,
where Ry is the curvature 2-form of V' and Idy is the identity transformation of
H. Combining this observation with the above result, we obtain

1
(SymV2s — Sym0V2s) + §(Idv ® Ry)s = cts ® wg,

where Ry is the curvature 2-form of H and Idy is the identity transformation of
V. From Proposition 3.2 of [I8], we know that (Idy ® Ru)s = 3cts. Therefore, we
obtain

1
SymV?2s — Sym’V?2s = —§ct5. O
Theorem imposes a restriction on the existence of a twistor section.

Theorem 3.6. On a compact HK manifold, a twistor section is equivalent to a
parallel section. On a compact QK manifold of negative scalar curvature, only a
zero section s a twistor section.

Proof. We denote the rough Laplacian for a section s of V @ H by As =
—>"V2s(E;, E;), where {E1,...,Ey,} is an orthonormal basis. If s is a twistor
section, then Theorem implies that As = 2ncts. Let h be a Hermitian metric
on V®@H. From the formula h(As, s)+h(s, As) = A|s|?+2|Vs|? and the divergence
theorem, we obtain

(1) 4nct/|8|2 :2/\vs|2.

On a compact HK manifold, since the scalar curvature vanishes, the left-hand
side (LHS) of () vanishes.

On a compact QK manifold of negative scalar curvature, the LHS of (IJ) is non-
positive and the RHS is non-negative, and so both must be zero. (I

Remark. The above theorem reveals the reason why we consider twistor sections
on Wolf spaces.

Next we would like to consider a section of a vector bundle on the twistor space
7. The pull-back bundle on the twistor space has a holomorphic structure induced
by the pull-back connection if the original connection is ASD. Hence we do not
distinguish ASD bundles on an HK or a QK manifold from the pull-back bundles
on the twistor space, and we use the same symbol for both. Using the Penrose
transform, we can identify the solution space of the twistor equation with the space
of holomorphic sections on the twistor space. In our notation, {s € I'(V @ H)|
Ds = 0} = H%(Z,V ® O(1)), where V in the right-hand side is the pull-back
bundle and the line bundle O(1) corresponds to Salamon’s L [18].

Definition 3.7. Let V be an ASD bundle with a quaternion structure over an HK
or a QK manifold. The real structure 7 of V' ® H is induced by the quaternion
structures of V and H. Then a section s of V@ H is called a real section if s can be
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regarded as a section of the real vector bundle (V ® H)R, which is the T-invariant
(real) subbundle of V' @ H. If a holomorphic section § of V' ® O(1) corresponds to
a real section of V ® H under the Penrose transform, s is also called a real section.

Proposition 3.8 ([I6]). Let V be an ASD bundle with a quaternion structure over
an HK or a QK manifold M. If a holomorphic section 5 of V®O(1) is real and non-
degenerate, then S is the twistor space of an HK or a QK submanifold S := s71(0)
of M, respectively, where s is the section of V. ® H corresponding to § under the
Penrose transform.

If a holomorphic section § of V @ O(1) is real and transverse to the zero section,
then the corresponding twistor section s is transverse to the zero section of the real
vector bundle (V @ H)® over M.

Proposition 3.9 ([I6]). Let V be an ASD bundle of rank 2r with a quaternion
structure over a compact QK manifold M. Suppose that a holomorphic section §
of V@ O(1) on the twistor space Z is real and transverse to the zero section. The
zero locus s~1(0) is denoted by S where s is the section of V@H corresponding to 3
under the Penrose transform. If all the cohomology groups HY (Z, ANV ® O(fk))
vanish forq=0,1,....2n+1 and k =1,2,...,2r, then S is connected.

We also need to consider an ASD bundle V over an HK or a QK manifold which
has no quaternion structure. Though, in general, we cannot expect that V @ H
has an appropriate real structure, the vector bundle (V @ V*) @ H does have a real
structure induced by the canonical quaternion structure of V& V* arising from the
hermitian structure on V. Note that the real vector bundle {(V @ V*) ® H}R has
a complex structure and is then isomorphic to V ® H as a complex vector bundle.
Hence a section s of V @ H is identified with a section (s, o(s)) of {(V @ V*) @ H}",
where o is the induced real structure. From now on, the section s of V' ® H may
be regarded as a real section under the identification.

Proposition 3.10 ([I6]). Let V be an ASD bundle over an HK or a QK manifold

M. If a holomorphic section § = (51,;(;5) of (Ve V*)®O(1) is real and non-
degenerate, then S := §71(0) is the twistor space of an HK or a QK submanifold
S1 = 51_1(0) of M, respectively, where s1 is the corresponding section of V ® H to

31 under the Penrose transform.

Remark. We can also obtain a similar result to Proposition about connectivity
of the zero locus of the real and transversal twistor section of V' ® H. In short, if
H? (Z, ANV oV e O(—k)) vanish for ¢ = 0,1,...,2n+ 1 and k = 1,2,...,2r,
then the zero locus is connected, where r is the (complex) rank of V. We shall also
refer to the result as Proposition 3.9

4. APPLICATION I

Since any Wolf space is homogeneous, we can consider a homogeneous vector
bundle with the canonical connection. To express a complex homogeneous vector
bundle F' which is of the form V ® H on the Wolf space G/P, we identify such
a vector bundle F' = G' X gp1) Vo ® H with the representation space Vo @ H of
K Sp(1). In particular, if F is supposed to be irreducible, then Vj is irreducible as
a representation space of K. Moreover, if Vi has an invariant quaternion structure,
then Vo ® H has an induced invariant real structure and so we obtain the real vector
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TABLE 4.1

G || SU(n) | Spin(n) | Spin(7) | Spin(9) | Sp(n)
W || C, C* C3 Su S C

G || Spin(8) | Spin(10) | Eg | Er | Fy | Ga
Vo || Si, Sy | St,8— €8 C% |C'2|Cg|Cy

bundle (Vp ® H)R. In such a case, we adopt the convention that Vy ® H represents
a real vector bundle (Vo ® H).

We can find all irreducible homogeneous vector bundles of the form Vy ® H
whose (real) ranks are less than the dimension of the base spaces using Lemma 3.3
in [T5]. In particular, irreducible homogeneous vector bundles which are of the form
Vo ® H on all the Wolf spaces can be determined by the specified highest weights.
Applying the Bott-Borel-Weil (BBW) theorem ([3] and [I0]) on the twistor space,
we can classify such vector bundles which admit non-trivial twistor sections.

Theorem 4.1. Let F be an irreducible homogeneous vector bundle identified with
Vo @ H on a Wolf space. If the (real) rank of F is less than the dimension of the
Wolf space and admits a non-trivial twistor section, then F is one of the entries
in Table 4.1, where, for example, C% means that the representation C? with an
nvariant quaternion structure.

More precisely, in the cases of SU(n) and Spin(n), F is nothing but the tau-
tological vector bundle (and its dual) on Gro(C™) and Gra(R™), respectively. In
the case of Sp(n), C is the trivial representation and F' is the tautological quater-
nion line bundle H on the quaternion projective space HP" 1. The representation
S (ST, S7) is the (half) spin representation of the K factor. In the exceptional
cases, the representations are the standard representations of K.

Remark. If a vector bundle whose rank equals the dimension of the base manifold
is taken into account, the cotangent vector bundle of each Wolf space provides an
example, which is of the form E®QH. However, it is shown that the cotangent vector
bundles have no non-trivial twistor sections on positive QK manifolds except for
HP™ (see LeBrun [11]).

Apart from the cotangent bundle of HP™, the other four irreducible homogeneous
vector bundles V) @ H whose (real) ranks are the same as the dimension of the base
manifolds admit non-trivial twistor sections.

Let S be the tautological vector bundle on the complex Grassmannian manifold
Gra(C"*2). (In Theorem 4.1, S corresponds to C ® H.) Since S is a subbundle of
the trivial vector bundle C"*2 of rank n+2, we can consider the quotient bundle Q.
The canonical connection on @ is ASD [I4]. Consequently, @ ® S is an irreducible
homogeneous vector bundle of the form V; ® H and is of complex rank 2n. Of
course, its dual Q* ® S* is also such a vector bundle. It follows from BBW that
both Q ® S and Q* ® S* admit non-trivial twistor sections.

The remaining two examples are constructed on the Wolf space of type Spin(12),
where K is Spin(8)Sp(1). Let ST be the half spin representation of Spin(8). Then
the vector bundle ST ® H is of (complex) rank 16, which is half of the dimension
of the base manifold. Of course, using the other half spin representation S—, we
obtain the desired vector bundle S~ ® H. We can also check that both ST @ H and
S~ ® H admit non-trivial twistor sections by BBW.
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TABLE 4.2

G SU(n) Spin(n) | Spin(7) | Spin(9) | Sp(n)

S || SU(n —1) | Spin(n — 1) Go Spin(7) | Sp(n — 1)
Spin(8) Spin(10) Es Er Fy Go

Spin(7), Spin(7) | Spin(6) | Spin(8) | Spin(8) | Spin(8) | SU(3)

©® Q

Next, we introduce the main theorem:

Theorem 4.2. Let F' be an irreducible homogeneous vector bundle on a Wolf space
arising from Theorem 4.1. Then F has a transversal twistor section. The zero loci
of such sections are classified in Table 4.2. Here, the zero loci S are also Wolf
spaces and so, for example, S = SU(n — 1) means that S is the Wolf space of type
SU(n —1).

Proof. When V, has a quaternion structure, s € I’ ((Vo ® H)R) is a real and
transversal twistor section if and only if the corresponding holomorphic section
§e HY (Vo O(1))" under the Penrose transform is transverse to the zero section.
In our cases, since every holomorphic vector bundle of the form V5 ® O(1) is gen-
erated by global sections by the Bott-Borel-Weil (BBW) Theorem ([3] and [I0]),
W = H° (Vo ® O(1)) — Vo ® O(1) is surjective, where W is a trivial bundle with
a fibre H® (Vo ® O(1)) on the twistor space. Combined with the Sp(1)-action and
the Penrose transform, we obtain that W — V; ® H is also surjective, where W is a
trivial bundle on a Wolf space whose fiber is considered as the space of all twistor
sections. Then, W& — (1} ®H)]R is also surjective, because the real structures
of W and Vy ® H are G-invariant and W — V3 ® H preserves the real structures.
Hence, by Sard’s theorem, the subset consisting of transversal sections is open and
dense in the space of all real twistor sections of F = (Vy @ H).

When V does not have any quaternion structures, we consider the vector bundle
(Vo ® V§) ® H which has an induced real structure o (Proposition 3.9). Then
s €' (Vo ® H) is a transversal twistor section if and only if the corresponding real
twistor section (s, o (s)) of {(Vo ® V) ® H}™ is transverse to the zero section. Using
the previous argument again, we deduce that the subset consisting of transversal
sections is open and dense in the space of all twistor sections of F' = V5 ® H. By
symmetry, the zero locus of a transversal twistor section of V ® H is isomorphic as
a submanifold to the zero locus of a transversal twistor section of V" @ H.

The BBW theorem implies that H® (Vo ® O(1)) is an irreducible representa-
tion of G. We need to consider real representations. When Vj has a quater-
nion sturucture, we put W¥* = {H(V ®O(1))}R. Otherwise, we put W& =

{H*(Vo® V§) ® (9(1))}R. (See Table 4.3.) (Here we use Lie algebra terminology.
The fundamental weight w; represents the complex representation space with the
highest weight ;. We number the fundamental weights as in Bourbaki [4].)

In all cases, the real representations WX of G are irreducible. It is known that
the union of all principal orbits is open and dense in the representation space.
Therefore a point in the principal orbit of W& corresponds to a transversal twistor
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TABLE 4.3
G SU(n) Spin(n) | Spin(7) | Spin(9) Sp(n)
Vo C, C* CZ Su Sw C
WR | (CrecCt)R | R® SR SR | (H" @ HM)R
G Spln(S) Spln(lO) EG E7 F4 G2
Vo Sy, Sy St, 8~ Cs, % C'? C§ | C%
W[5+, 57 [ (ST @5 | (@it @e)* | (@r +wn)* | =} | wf

section, because the transversality is invariant under the G-action. We pick up
such a real and transversal twistor section s in W= and denote by H the isotropy
subgroup of G at s. Then H is determined by W.C. Hsiang and W.Y. Hsiang [8]
Table A]. Let S be the zero locus of s. Since s is a transversal section, Corollary
3.3 yields that S is a compact QK submanifold on which H acts, and we can know
the dimension of S.

Finally, we use Proposition 3.9 to show the connectivity of S. Since F is ho-
mogeneous, the vector bundles A*Vy ® O(—k) and A* (Vo @ Vi) ® O(—k) are also
homogeneous but usually not irreducible. Then the BBW theorem with involved
irreducible decompositions of the homogeneous bundles implies that all relevant co-
homology groups vanish (though the procedure is tedious and long). Consequently,
S is connected and so, S is also a Wolf space, because S is a totally geodesic sub-
manifold of the original Wolf space (Corollary 3.4). We can check that H acts
non-trivially on S . Wolf’s classification implies that S is the Wolf space of type
H. O

Remark. The Wolf space of type Spin(7) (Gr4(R7)) appears three times in Table
4.2 as a submanifold of the Wolf space of type Spin(8) (Gry(R®)). In our situa-
tion, we can compute the Poincaré dual of the homology class represented by the
submanifold Gr4(R7) as the top Chern class of the vector bundle. As a result,
three copies of Gry(R”) represent different homology classes (Tasaki showed this
fact from the viewpoint of calibrated geometry [20]).

5. APPLICATION II

In this section, we identify the zero loci of non-trivial twistor sections of irre-
ducible homogeneous vector bundles of which the ranks are equal to the dimension
of the base spaces. Such vector bundles are classified in the Remark after Theorem
4.1.

First, we determine zero loci of all (real) twistor 1-forms on HP™. From our
definition of a real section, a real 1-form is a 1-form that is real in the usual sense,
and so the term “real” is omitted.

Theorem 5.1. The zero locus of a twistor 1-form on HP™ 1is of the form
H;ZlHPkP, where HP*» = P(HF»+1), @;:1 HF» 1 = H"*! and @ means the
orthogonal direct sum of quaternion vector subspaces H*»*1 (p =1,...,1) of H"*1.
The numbers k, and | depend on the twistor 1-form.

Proof. By the Bott-Borel-Weil theorem ([3] and [10]), H°(CP?"*1,E ® O(1)) is
identified with the Sp(n + 1) representation space AZC?"2  where A3C?"*2 is the
orthogonal complement of w in A2C?"+2, which is the invariant symplectic form on
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the standard representation C2"*2 of Sp(n+1). Since the real structure is Sp(n+1)-
invariant from our definition, Schur’s lemma implies that the set of real sections
corresponds to the real subspace (A2C?"*2)R invariant by the standard Sp(n + 1)-
invariant real structure . Note that o is induced by the restriction of j ® j, where
j is the quaternion structure of C2"*+2. Using w, (A2C?"*+2)R is identified with the
space of quaternion Hermitian matrices. If we fix ¢ € AZ(C?"*+2)® and regard ¢
as a quaternion Hermitian matrix, then we obtain an orthogonal decomposition of
(C2n+2 o HnJrl:
l
HnJrl _ @Hkp+1,

p=1
where H*»+1 (p =1,...,1) are the eigenspaces of ¢.
We take a compatible unitary basis ey, €a, . . ., €2y, 12 of C?"*2 with the quaternion

structure (w = e;Aea+- - -+eapr1Aean12). To express HP™ as a homogeneous space,
the isotropy subgroup of Sp(n + 1) at the quaternion line He; C C?"*+2 is denoted
by Sp(1) x Sp(n). The twistor space CP?"*! is written as Sp(n +1)/U(1) x Sp(n),
where U(1) is the standard subgroup of Sp(1). Let mp : AZC?"*t2 — C2" be
the orthogonal projection, where C?" is spanned by elements es A e, € AFC?" T2,
q=3,4,...,2n+ 2. Then the homogeneous holomorphic vector bundle E® (’)( ) is
expressed as Sp(n+1) Xu(1)xSp(n) C2". The BBW theorem yields that [g, w2 (g~ -1))]
is a holomorphic section of E ® O(1), where g € Sp(n + 1) and ¢ € AZC?"+2.

Let 71 : A3C?" 2 — C2"" be the orthogonal projection, where C2*" is spanned
by elements e; A e, € AZC?" 12, ¢ =3,4,...,2n + 2. When h denotes an invariant
Hermitian inner product on A3C?"*2 h satisfies

(2) h(o(¥1),0(¥2)) = h(¥1,2),

for any vy, ¥o € AZC2"+2. If ¢ € (A2C?"+2)R then (@) implies that the condition
ma(g~! - ¢) = 0 is equivalent to m; (g~ ! - ¢) = 0. Hence, we define the orthogonal
projection 7 : A2C?"*2 — C2? ® C?", where C? ® C?" is spanned by elements
e; Neg € N3C*2 i = 1,2 and ¢ = 3,4,...,2n + 2. Then the zero locus of the
section defined by ¢ is

S ={[g] = [ge1] € CP* |n(g™ - ¢) =0} .

On the other hand, it is easy to show that m o 0 = o o w. Consequently, if
¢ € (N3C 2R then (g1 ¢) € (C2@C?")E, where (C2®@C?")® is the o-invariant
real subspace of C? ® C2". When we regard an element of A2C?"*2 as a matrix,
we have that h(£,n) = trace({n*) = 1247:12 hc(€ea,nea), where he is an invariant
Hermitian inner product on C2"*2. Hence 7(g~! - ¢) = 0 if and only if there exist
complex numbers « and 3 such that (g71-¢)e; = ae; +Bes. Here note that (g1 -¢)
can be regarded as a quaternion matrix, so the condition that (g~1-¢)e; = ae;+fBes
implies that (g~! - ¢)ea = —Be; + @ea. Then we obtain 3 = 0, because (g~ ! - ¢)
is Hermitian, and so 8 = hc ((g_1 . (b)el,eg) = h¢ (61, (g7t ~¢)62) = —f3. Since
an eigenvalue of a Hermitian matrix is real, a is a real number. Consequently we
obtain

§ = {lg) = lgex] € CP**1 (g7 )er = aer amd (97" - 9)es = aes

for some real number a}.
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When ¢ is regarded as a matrix, the action is defined by g=!-¢ = g~ 1¢g. It follows
that

S = {[g] = [ge1] € CP*™ 1 | ge; € H* ™! for some p}.

Propositon yields the desired result. O

Remark. Theorem 5.1 implies that the zero locus of the transversal section is
{pt.}U{pt.}U---U{pt.} (n+1 times).
From Hsiang and Hsiang [§], we know that the principal isotropy subgroup is
Sp(1) x Sp(1) x -+ x Sp(1) (n+ 1 times).

Theorem 5.2. The zero set of a twistor section of Q®S — Gra(C"2) (n > 2) isa
disjoint union of submanifolds <]_[;”:1 ]HIP’%) I Gry(CY), where HPF» = P(HF»+1),

(@;:1 HkPH) & (ClaC) =C2aCnt? = H"*? and @ means the orthogonal

direct sum of quaternion vector subspaces H*»*1 (p = 1,...,m) and C' @ Cl of
H™+2. When | < 1, Gra(C') means the empty subset. The numbers k,, m and
depend on the twistor section.

Remark. In the case that n = 2, in other words, on Gro(C*), the vector bundle Q®S
has an invariant real structure and the isomorphism between Spin(6) and SU(4)
enables us to identify (Q ® S)® with the tautological vector bundle on Gry(RS).
Hence the statement reduces to Theorem 4.2. We can easily show that all orbits
except the zero orbit corresponds to transversal sections in this case, so only HP!
appears as the zero locus.

Proof. The vector bundle Q ® S can be expressed as Vj ® H. Then Vj has no
invariant quaternion structure. Consequently, we consider (Vo @ V) ® H (Proposi-
tion 3.12). By BBW, H (Z, (Vo @ V') ® O(1)) is identified with the representation
space A2C"+2 @ A2C"*2" | which has an invariant real structure induced from the
real structure of (Vo @ V) ® H.

We introduce an invariant quaternion structure j of C**2@C"*+2". Then we can
obtain the invariant real structure of A2 (C"+2 &) C"“*) induced from the quater-
nion structure j of C"*2@C"+2", It is easy to show that the induced real structure
can be restricted to the subspace A2C"+2 @ A2C"+2" of A2 (C"*? o (C”+2*). Since
A2C"+2 and A2C"™+2" have no invariant real structures, a variant of Schur’s lemma
implies that the two real structures of A2C" 2@ A2C"*+2" coincide with each other.

Next, if A2C"F2@A2C" 2" is regarded as a subspace of endomorphisms of C" 2@
C"+2" = H"*2, then a real twistor section s € H?(Z, (Vo @ Vg) ® O(1)) can be
expressed as an endomorphism:

0O -A
S“I’_(A 0)’

where A is a skew-symmetric matrix under a unitary basis ej,...,e,12 of Ccnt2?
and the dual basis €', ..., "2 of C"*2" satisfying e¥ = je, when C**2 and C"*+?"
are regarded as subspaces of the direct sum. Hence ® is a quaternion Hermitian
matrix, and we obtain the orthogonal decomposition of C"t2 & C**+2" = H"*2,
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Since @ is of a particular form, the orthogonal decomposition has some features. If
we write the corresponding eigenspace to the eigenvalue a € R as H(a), then

H"* = (P {H(ap) © H(~a,)} @ H(0),

p=1

where the a,,’s are positive numbers. Moreover, as a complex vector space, we have
other decompositions:

{H(ap) ® H(—ap)} = C(ap) ® C(ap)”
where C(a,) (resp. C(ap)*) is a subspace of C"*? (resp. C"*27), and
H(0) = C(0) & C(0)*

where C(0) (resp. C(0)*) is a subspace of C"*2 (resp. C"*?"). In both cases, we
have jC(a) = C(a)* (@ = a1,...,am,0). Finally, C(a,) and C(a,)* have quater-
nion structures induced from ® (or A) respectively which are compatible with the
Hermitian structures up to scale.

We describe the twistor space Zp of Gra(CnT2):

Zp = {([gel] , [9€*]) € P(C™™2) x P(C"**") | g € SU(n + 2)} :

The subspace spanned by es, ..., e, o (resp. €,...,e"t?) of C"*2 (resp. C"+?")
is denoted by C" (resp. C"). Let m : A2C"*t? — Cey ® C" be the orthogonal
projection and 7y : A2C"1t2" — Ce! @ C" be the orthogonal projection. We use
m1 and 7o to define the orthogonal projection m = 7 @ mo : A2C" 12 @ A2CH2T
(Cey ® C") @ (Ce* ® C™) Then the corresponding section § to ® is expressed as

5 (lged], [9€®]) = [g.m(g7" - @)].

The zero locus S of the section 3 is

S ={lgl = ([ger] . [9€?]) Im(g~" - @) =0} .

When we regard e1,...,e, 12 and el ..., e"2 as vectors of the direct sum C"*2? @
C™*2", the definition of ® implies that 7(g~! - ®) = 0 if and only if

(g1 - ®)e; =ae? and (¢! ®)e? =aey
for some complex number «. Applying j, we also obtain
(g1 - ®)e! = —@ey and (g7 P)ey = —ael.
This is equivalent to the condition:
ger, gea, ge', ge? € H(|al) © H(—|al),
(961,962,961,962 € H(0),if a = 0)

or equivalently,
ger,gez € Clal), ge', ge* € C(|al)".

Consequently, we can determine the zero locus S. If dimg H(0) = 0 or 1, then

S:

p

(P(C(ap)) x P (Clap)*)) N Z.

l
=1
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If dimy H(0) = 2, then

l
§= <H (P (C(ap)) x P(C(ap)")) I (P (C(0)) x P(@(O)*») NZp.

p=1

The twistor fibration p : Zr — Gr(C"*2) is given by
p ([9e1], [9¢?]) = Cger @ Cges.

If ([ge1], [ge?]) € P(C(ap)) xP(C(ay)*), then Cge; ® Cges is a quaternion subspace
of C(ap), because (Pge1)(ge2) = a # 0, where ® is regarded as the induced
symplectic form of C(a,). Therefore we obtain the desired result. O

Remark. Theorem 5.2 implies that the zero locus of the transversal section is

{pt.yu{pt.u---U{pt.} (%2 times) n even,
{pt.yu{ptyuU---U{pt.} (%! times) n odd.

From Hsiang and Hsiang [§], we know that the principal isotropy subgroup is

SU(2) x SU(2) x -+ x SU(2) (%2 times) n even,
SU(2) x SU(2) x --- x SU(2) (% times) n odd.

Theorem 5.3. The zero locus of a transversal twistor section of ST @ H on
Gry(R2) (the Wolf space of type Spin(12)) consists of three points.

Proof. Since St has no invariant quaternion structure, we deal with (St ® St ) ®
H = (ST ® S') ® H and the induced real structure (Proposition 3.10). Using
the same argument as in the proof of Theorem 4.2, we deduce that ST @ H has a
transversal twistor section.

We can use the BBW theorem to compute related cohomology groups
HP (Z,N*(ST® ST) @ O(—k)), p=0,1,...,17 and k = 1,2,...,16. As a result,
we obtain

H*(Z,N* (ST @ ST) ® O(-4)) 2 C,

H® (Z,n3(ST @ 5T) ® O(-8)) = C,
and the other cohomology groups vanish. Let S be the zero locus of a transversal
section of (ST@®ST)®O(1). Proposition 3.7 yields that S consists of several twistor

fibres or real lines. In the same way as in the proof of [16] Proposition 3.8], we can
show that there exists a spectral sequence such that

By’ =H°(S,05), EY’=H%(2,05) =C, E;/*=E**=C
and the other Fi-terms vanish. Applying the spectral sequence, we have three maps
a:HYZ 05)=C— H(S, O3),
B:C — Cokerar, ~7:C — Cokera/Imp
and
ELY = (Coker a/Tm B) /Tm~y, E%° =Kera,
EO_O4’4 = Ker g3, EO_O&8 = Ker~.
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The spectral sequence abuts to 0, because of transversality. Consequently, we have
H°(S,04) = C3.
Hence S consists of three connected components and so, three real lines. O

Remark. The BBW theorem implies that

H (Z,(ST®ST)®@0(1)) =St &St
as Spin(12) modules, where ST denotes the half-spin representation of Spin(12). In
a similar argument in the proof of Theorem 4.1, we show that a point in the principal
orbit of (ST@ST)® corresponds to a real and transversal section of (ST®ST)®0O(1).

Hsiang and Hsiang show that the isotropy group of the principal orbit of (ST ®S*)R
is SU(2) x SU(2) x SU(2) [8, Table A].

Final conclusion for zero loci. Compared with Table A in [8], we conclude that
the zero loci of real and transversal twistor sections of irreducible homogeneous
vector bundles on the Wolf spaces G/P correspond in a one-to-one fashion to the
real representations with non-trivial principal isotropy subgroups which are neither
toral subgroups nor discrete subgroups of G. The principal isotropy subgroups are
the isometry groups of the zero loci.

6. TWISTOR EMBEDDING

Let F' be an irreducible homogeneous vector bundle identified with V5 ® H on a
Wolf space G/P which admits a non-trivial twistor section.

As in the proof of Theorem 4.2, W& denotes the irreducible representation space
of G consisting of real twistor sections of F. More explicitly, W® is defined to be

{s eT ((Vo ®H)?) |Ds =0} ifVjhas a quaternion structure,
{sel (Vo®Vy) @ H)¥)|Ds =0} otherwise.
If the real rank of F is denoted by 4k, then we can define a mapping f from G/P
into a real Grassmannian manifold Gr4y (WR*). To do so, note that the evaluation
mapping
wE— F
is surjective by BBW, so we obtain an exact sequence of vector bundles:
0= Vi —WE—F—0,
where W® is a trivial vector bundle G/P x W® — G/P. Then, since any fiber
Vi, of Vi — G/P can be considered as a 4k-codimensional subspace of WR, the
subspace Vi, determines a 4k-dimensional subspace of WR". Hence a mapping
f:G/P — Gry, (W) can be defined by

F(lg) =Wy, = {s € WF¥|s[g] = 0}.
Theorem 6.1. A mapping [ : G/P — Gryy (W]R*) is an embedding.

Proof. By definition, f is (G-equivariant and the image of f is a G-orbit in
Gryy, (WR*). We fix Vi, and denote the isotropy subgroup by Hi. Then the
image of f can be identified with a homogeneous space G/H;. Since P acts on
Vi, we have P C Hy. On the other hand, P is a maximal connected subgroup
of G, because G/P is a symmetric space. Hence H; must be a finite covering of
P. (It is clear that f is not a constant mapping and so, H; # G.) In particular,
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G/H; has an induced quaternion-Kéhler structure with a positive Ricci curvature.
The property of a positive quaternion-Kéahler manifold of being simply connected
implies that H, = P. O

Using metrics, we can also define an embedding from G/P into Gry (WR).
This mapping is denoted by the same symbol f : G/P — Gry (WR). We call
f:G/P — Gry (W®) the twistor embedding associated with F — G /P.

A twistor embedding associated with an irreducible homogeneous vector bundle
F — G/P is G-equivariant, and the image of f, denoted by Imf, is one orbit in
Gryy (WR). Since WR has a G-invariant inner product, a Grassmannian Gr4 (WR)
has a natural G-invariant metric, which makes the Lie group G be an isometry group
of Gryy, (WR). Hence, if Im f is a non-principal orbit, then Hsiang-Lawson’s theorem
[9, Corollary 1.1] can be applied to show that the twistor embedding associated with
F' is minimal. To know whether Imf is a principal orbit or not, we may only check
the slice representation, which is a P-representation to the normal space of Imf in
the tangent space of Gry (WR) at one point. Indeed, if the slice representation is
not trivial, then Imf is a non-principal orbit. Fortunately, it is easy to obtain the
slice representation. First, we divide W® into P-representation spaces:

WZVE)@H@VI;

where V; is a representation of K and we omit the symbol ®. Then the tangent
space of Gryy (WR) is identified with

Vo) @V = (Vo V) ®H.

The tangent space of G/P can be expressed as V ® H, where V is an irreducible
representation of K. Consequently, Schur’s lemma yields that the normal space is
also expressed as Vi ® H, where Vx is an appropriate representation of K such
that V@& Vy = Vy ® V5. Since at least Sp(l) acts non-trivially on H, the slice
representation is not trivial as a representation of P.

Theorem 6.2. Let F' be an irreducible homogeneous vector bundle identified with
Vo®H on the Wolf space G/P. Then the twistor embedding f : G/P — Gry (WF®)
is a minimal embedding.

We list examples of twistor embeddings associated with vector bundles in The-
orem 4.1. Choosing an orthogonal basis of W&, we identify W with RV,

Example.
oG (C"2) — Gry(R?"*2), oG (R4 — Gry(R™H4),
oG4 (RT) — Gry(R?®), oG4 (R®) — Gry(R?®),
.G4(R9) — GTg(RIG), .G4(R10) — GTlG(RSZ),

oHP" — Gry(Ri+4),
0Es/Sp(1)SU(6) — Grag(R*), eE;/Sp(1)Spin(12) — Grag(R12),
o, /Sp(1)Sp(3) — Gr12(R?®),  #G5/SO(4) — Gry(R7).

We list examples of twistor embeddings associated with vector bundles in section
5. Choosing an orthogonal basis of W&, we identify W& with RV,

Example.
oHP" — Gry, (R¥+31),
0Gry(CMH2) — Gy, (R H30+2),
.GT4(R12) — GT32 (R64).
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TABLE 7.1
G SU(n) Spin(n) | Spin(7) | Spin(9) Sp(n)
Vo C cC C3 Sh Su C
WR (Cn D (Cn*)]R R"™ SR SR (Hn o Hn)R

G Spin(8) | G»
Vo S, Sy | Ch
WE [ 5+ 5 | oF

7. MAXIMUM OF THE NORM SQUARED OF THE TWISTOR SECTION

Let F' be an irreducible homogeneous vector bundle in Theorem 4.1. In this
section, we consider a function ||s||?> : M := G/P — R, where ||s|| is the pointwise
norm of a twistor section. We denote by Sj; the subset of M on which the function
||s||? attains the maximum value.

Lemma 7.1. Under the decompositions WE = Vo @H® V; and g = p ®m, m acts
off-diagonally on W=; in other words, m(Vo ® H) C Vi and mV; C Vo @ H.

Proof. As a representation of p = ¢ @ sp(1), m is expressed as
m=V@H.
The Clebsch—Gordan formula yields that (V ® H)® (Vo ® H) cannot have Vo @ H
as an irreducible component; thus for an arbitrary X € m and vo ® h € Vy ® H,
Xvg® h € V7.
In a similar manner, we have for an arbitrary v, € V1,
Xv, e Vy @ H,

because (V @ H) ® V; cannot have V; as an irreducible component. O

From now on, we restrict our attention to the case that a principal G-orbit
in W® is a maximal dimensional sphere, and such a representation is called a
representation of spherical type. From Table 4.3, all bundles F' = V; ® H which
have representations W® of spherical types arising from real twistor sections can
be classified as in Table 7.1.

Our restriction to representations of spherical types, combined with Theorem
4.2, yields that any w € W®\{0} corresponds to a transversal twistor section of
F. To describe a corresponding section s to w € W&, let 7 : WF — Vj @ H be
the orthogonal projection and 7+ : W® — V; be the complementary orthogonal
projection. Then we have

s([g]) = [g:7(g"'w)] .

We fix the notation w € W®\{0} and the twistor section s € I'(F) corresponding
to w throughout this section.

Lemma 7.2. The covariant derivative of a twisotr section s is expressed as
Vxus = [g,—mm (Ad(g™")X) 7 (g7 w)] ,
where X € g and XM is the Killing vector field on M generated by X .
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Proof. If the twistor section s is identified with the corresponding function 7 (g~ w)
on G with values in V) ® H, then we have
— 7 (Ad(g™ 1) X g™ w) +me(Ad(g™ ) X) (9 w)
=—m (Ad(g ) X) (g7 'w) — mwm (Ad(g™ ") X) 7t (g w)
+me (Ad(g™ ") X)) m(g'w)
=— (Ad(g_l)X) 7t (g7 w).
Here we use Lemma [T.1] to obtain
7 (Ad(g~ ") Xg 'w)
=7 (me (Ad(g_l)X) g_lw) + 7 (Tm (Ad(g_l)X) g_lw)
=me (Ad(g™ 1) X) m(g~w) + 7 (Ad(g™H)X) 7 (97 ),
as required. (I

Using the covariant derivative of s, we can obtain the critical sets of the function
||s||?: M :=G/P — R.

Lemma 7.3. The critical sets of the function ||s||? consists of S and Syy.
Proof. Tt follows from Lemma [7.2] that
dl|s|[*(X™) = 2(Vxus,s)
= —2{mm (Ad(g™ ") X) 7" (g w), 7(g7 w)).
Lemma [Z.1] yields that
dllsIF(XM) = —2 (Ad(g™H) X (g7 w), 7(g ™ w))

Now we suppose that [g] € G/P is a critical point of the function ||s||?; in other
words, d||s||>(X™) = 0 for all X € g. Since a representation W is of spherical type,
the subspace of W¥ spanned by vectors of the form Ad(g~1)X7t(g7 w) (X € g)
can be identified with the tangent space of a sphere Gr*(g~'w) C W¥ at a point
(g7 w) if (g~ 1w) # 0. Tt follows that 7(g~'w) is parallel to 71 (g~ 'w), so we
have

(g w) = in a similar manner, or (g7 'w) = 0.
When (g~ 'w) = 0, we get [ lesS. Ifr (g’lw) =0, then 7(¢~'w) = g~ tw. The
inequality ||s||*([g]) = |lm (g~ w)[|* < [lg~ w||* = [[w]|* gives [g] € S O
Remark. We also know that
(3) Su = {lg) € G/P|n* (9" w) = 0}.

Lemma 7.4. The covariant derivative Vs vanishes on Sy.

Proof. Lemma [(2] and (@) yield that Vs =0 on Syy. O

Definition 7.5. For the same w € WR as in the definition of the twistor section
s(lg]) = [g, (g7 'w)] of F = Vy ® H, we define a section s* of V; as

st (lg) = [, 7" (g7 w)] € T(VA).
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Since W is a representation of spherical type, the zero locus Sy of st is not
an empty set. Then, Sard’s theorem yields that generic sections are transverse to
the zero section and our assumption for W® implies that s* is also a transversal
section of V.

Lemma 7.6. In our notation, we have
Sy = Sd‘.

In particular, the subset Sy is a submanifold of M and the dimension of Sy is
equal to dim M — rank V;.

Proof. Sy can be written as
Sy ={lg] € G/P |t (g™ w) = 0},
which is the same set as Sj;. The transversality of s+ yields the result. O

The tangent space of Sy, is expressed as
TS, ={X" € TMig) | Vs =0}
={X" € TM, | mw (Ad(g™")X) 7(g'w) = 0},

where V! is the canonical connection of Vj.
Obviously, we have

Lemma 7.7. Let H be the isotropy subgroup of G at w € W® as in Theorem 4.2.
Then H acts on Syy.

Using again Hsiang-Hsiang’s result [8], we can know the isotropy subgroup H.
In particular, H is connected. This implies the connectivity of Sy;.

Lemma 7.8. The submanifold Sy is connected. Moreover, H acts on Sy; transi-
tively.

Proof. We do not have any convenient criterion such as that in Proposition 3.9
for a similar result on S. However, case by case, we can check that V5 ® H is a
representation of spherical type, as a representation of P. Hence, if [g1] and [go] are
in Sy, in other words, gflw,gglw € Vo ® H, then we can find an element k € P
such that

kgflw = g;lw = ggkgfl e H
This means that a point [g2] € M is in the H-orbit H[gi] C M. O

From Lemma [[.8] we know that Sy, is also an H-orbit in M. Consequently,
Spyr can be expressed as H/H N P, and H N P can be obtained as the isotropy
subgroup of P at a point in Vp ® H\{0}. In this case, Sp(1) C P acts non-trivially
on Vo ® H. Since Sp(1) C P acts trivially on Vj, the zero locus S is a quaternion
submanifold. In this sense, S, is conceptually far from a quaternion submanifold.
(In particular, Hsiang-Lawson’s result [0, Corollary 1.1] also yields that Sy is a
minimal submanifold, because the normal bundle of Sj; can be identified with V;
(Lemma 7.6 and transversality) and so, the slice representation is not trivial. We
can now list Sj; in each Wolf space.

Theorem 7.9. The subsets Sy; are classified in Table 7.2. One consequence is that
S is a totally geodesic submanifold of M.
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TABLE 7.2

G SU(n) | Spin(n) Spin(7) | Spin(9) | Sp(n)
Sy || CP*2 | Gr3(R™™1) | G2/SO(4) | Gra(R7) | 1pt.
G Spin(8) Gy

Sy | Gra(R7), Gra(R7) | SU(3)/S0(3)

Finally, we are interested in relating our theory to the topology of Wolf spaces.
Using the function ||s||?, for instance, we can know the topology of M from those
of S and Sjp; up to homotopy.

Lemma 7.10. Under the hypothesis that W is a representation of spherical type,
||s]|? is a Morse function in the sense of Bott.

Proof. First of all, we compute V2s on Sp;. From Lemma [74] we have
V2s(XM, Y M) = Vyu (Vyws) = Vo, yws = Vxu (Vyws),
for an arbitrary X,Y € g on Sy;. Then a direct computation implies that
Vxu(Vyws) = [g,mm (Ad(g™")Y) 1w (Ad(g™1)X) 7(g™ )],
and we obatin
V2s(XM Y M) = [g, 7 (Ad(g™)Y) T (Ad(g ) X) (g w)] .
Since Vs = 0 on Sy and Vd||s||?> = 2 {(V?s,s) + (Vs, Vs) }, we get
vd|ls|[*(x ™, YM)
=2 <7Tm (Ad(g_l)Y) Tm (Ad(g_l)X) 7r(g_1w)7 W(g_lw)>VO®H
= =2 (mm (Ad(g™H)X) (g™ 'w), mm (Ad(g™1)Y) 79~ w)) e
on Sys. In particular, we have
Vd|s| [2(x M, xM)
=—2(mm (Ad(g™)X) 7(g " w), T (Ad(g™ ") X) m(g™ W) )y
on Sj;. Hence
vd|[s|P (XM, XM) = 0 <= 7 (Ad(g™ ") X) (g~ w) = 0.
The latter condition is equivalent to XM € T'Sy;, because
TSn,, = {XM € TMyg | mw (Ad(g™ ") X) 7(g'w) = 0}

On the zero locus S, we have Vd||s||* = 2(Vs, Vs). It follows from Lemma
that

Vd|ls|[*(x ™, X*)
=2(m (Ad(g_l)X) (g7 w), T (Ad(g_l)X) 7Tl(g_1w)>Wug .
Hence
vd|[s||P (XM, XM) = 0 <= m (Ad(g™ 1) X) 7 (g7 w) = 0.
The latter condition is equivalent to X™ € T'Sy, because, as we have already seen,

S={lg) € G/P|n(g~'w) =0},
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and the tangent space of S is expressed as

as

TS[g] = {XM S TM[g] |VXMS = 0}
={XM e TMy) | mm (Ad(g~ ") X) 7t (g7 'w) = 0},
required. [l
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