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MINIMAL VOLUME ENTROPY FOR GRAPHS

SEONHEE LIM

Abstract. Among the normalized metrics on a graph, we show the existence
and the uniqueness of an entropy-minimizing metric, and give explicit formulas
for the minimal volume entropy and the metric realizing it.

Parmi les distances normalisées sur un graphe, nous montrons l’existence et
l’unicité d’une distance qui minimise l’entropie, et nous donnons des formules
explicites pour l’entropie volumique minimale et la distance qui la réalise.

1. Introduction

Let (X, g) be a compact connected Riemannian manifold of nonpositive curva-
ture. It was shown by A. Manning [Man] that the topological entropy htop(g) of
the geodesic flow is equal to the volume entropy hvol(g) of the manifold

hvol(g) = lim
r→∞

1
r

log(vol(B(x, r))),

where B(x, r) is the ball of radius r centered at some point x in the universal
cover X̃ of X. G. Besson, G. Courtois and S. Gallot [BCG] proved that if X has
dimension at least three and carries a rank one locally symmetric metric g0, then
for every Riemannian metric g such that vol(X, g) = vol(X, g0), the inequality

hvol(g) ≥ hvol(g0)

holds, with equality if and only if g is isometric to g0. This solved a conjecture
mainly due to M. Gromov [Gro], which had been proved earlier by A. Katok [Kat]
for metrics in the conformal class of the hyperbolic metric on a compact orientable
surface.

In this paper, we are interested in the analogous problem for finite graphs, en-
dowed with metrics obtained by varying the length �(e) of the edges e ∈ EX of a
graph X. Regular and biregular trees, as rank one buildings (see [BT]), are non-
archimedian analogs of rank one symmetric spaces, and they carry many lattices
(see [BL] for instance). As in the case of Riemannian manifolds, it is well known
that the volume entropy of a finite metric graph is equal to the topological entropy
of the geodesic flow on its universal cover (see [Gui]) and also equal to the critical
exponent of its fundamental group acting on its universal covering tree ([Bou]).

We show that for any graph, among all (normalized) metrics on it, there exists
a unique metric minimizing the volume entropy. Furthermore, we give explicit
formulas for the minimal volume entropy and the metric realizing it.
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Theorem. Let X be a finite connected graph such that the valency at each vertex
x, which we denote by kx +1, is at least 3. Then there is a unique normalized length
distance minimizing the volume entropy hvol(d). The minimal volume entropy is

hmin =
1
2

∑
x∈V X

(kx + 1) log kx,

and the entropy minimizing length distance d = d� is given by

∀e ∈ EX, �(e) =
log(ki(e)kt(e))∑

x∈V X

(kx + 1) log kx
.

In the special case of a regular graph, which is the analog of a Riemannian
manifold carrying a locally symmetric metric, the volume entropy is minimized by
the metric for which all the edges have the same length. This special case was
independently shown by I. Kapovich and T. Nagnibeda ([KN]).

The above theorem has an analog for graphs of groups (see [Ser]) as well, as in
Proposition 9. Finally, using Proposition 9, we show that for an n-sheeted covering
graph of groups (see for instance [Bas]) φ : (Y, H•) → (X, G•), there holds, for the
proper definition of the volume of a metric graph of groups (see section 4),

hvol(Y, H•, d) vol(Y, H•, d) ≥ n hvol(X, G•, d0) vol(X, G•, d0),

and that the equality holds if and only if the length distance d on (Y, H•) is an
entropy-minimizing length distance among the length distances of the same volume,
and the map φ is a metric covering from (Y, H•, d) to (X, G•, λd0), for some λ > 0.
This can be considered as an analog of the main theorem in [BCG] for graphs.

2. Volume entropy and path growth

Let us consider a nonempty connected unoriented finite graph X without any
terminal vertex. We will denote the set of vertices by VX and the set of oriented
edges of X by EX. We again denote by X the geometric realization of X. For
every edge e, let us denote by i(e) and t(e) the initial and the terminal vertex of e,
respectively. We define a length distance d on X by assigning a positive real number
�(e) = �(ē) for each unoriented edge {e, ē} of X, and by letting d = d� : X × X →
[0,∞[ be the maximal distance which makes each half-edge of an edge e containing
a vertex, isometric to [0, �(e)

2 ]. For a length distance d�, let lmax = max
e∈EX

{�(e)} and

lmin = min
e∈EX

{�(e)}. Define the volume of X by

vol(X, d) =
1
2

∑
e∈EX

�(e),

i.e., the sum of lengths of the unoriented edges. We denote by ∆(X) the set of all
length distances d = d� on X normalized so that vol(X, d) = 1.

For a fixed length distance d, let us consider a universal covering tree X̃ → X

equipped with the lifted distance d̃ of d. For any connected subset S of X̃, let us
denote by �(S) the sum of the lengths of (the maximal pieces of) the edges in S.
We define the volume entropy hvol(d) = hvol(X, d) as

hvol(d) = lim sup
r→∞

1
r

log �(B(x0, r)),
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where B(x0, r) = Bd(x0, r) is the ball of radius r with center a fixed vertex x0 in
(X̃, d̃). The entropy hvol(d) does not depend on the base point x0, and we may
sum either on the oriented or on the nonoriented edges. Note also the homogeneity
property

(∗) hvol(dα�) =
1
α

hvol(d�),

for every α > 0. Remark that hvol(X, d)vol(X, d) is invariant under dilations,
therefore to minimize the entropy with constant volume, it suffices to consider the
length metrics of volume 1.

If π1X is not cyclic, or equivalently if X has no terminal vertices and is not
reduced to one cycle, then hvol = hvol(d) is strictly positive, which we will assume
from now on (see for instance [Bou]). It was shown by Roblin ([Robl]) that the
upper limit above is in fact a limit. This implies that as r → ∞,

�(B(x0, r)) = ehvol(d)r+o(r).

By a metric path of length r in X, we mean the image of a local isometry f :
[0, r] → X. Note that the endpoint of a metric path is not necessarily a vertex. By a
combinatorial n-path of length r in X, we mean a path p = e1e2 · · · en of consecutive
edges in X without backtracking such that

∑n−1
j=1 �(ej) < r ≤

∑n
j=1 �(ej). A

combinatorial path is a combinatorial n-path for some n.

Lemma 1. Let Nr(x0) be the cardinality of the set of combinatorial paths of length
r in X̃ starting at x0 ∈ V X̃. Then the number Nr(x0) satisfies

lim sup
r→∞

log Nr(x0)
r

= lim
r→∞

log Nr(x0)
r

= hvol.

Proof. It follows directly from �(B(x0, r)) = e(hvol+o(1))r that for any l > 0,

lim sup
r→∞

log �(B(x0, r) − B(x0, r − l))
r

= lim
r→∞

log �(B(x0, r) − B(x0, r − l))
r

= hvol.

Now let N ′
r(x0) be the cardinality of the set of metric paths of length r starting at

x0. As X̃ has no terminal vertices, for any l > 0,

lN ′
r−l(x0) ≤ �(B(x0, r) − B(x0, r − l)) ≤ lN ′

r(x0).

Therefore

lim sup
r→∞

log N ′
r(x0)
r

= lim
r→∞

log N ′
r(x0)
r

= hvol.

It is clear that we get a combinatorial path of length r by continuing a metric path
of length r until it meets a vertex. Also, two distinct combinatorial paths of length
r cannot be extensions of one metric path of length r by the strict inequality in the
definition of a combinatorial path. It follows that Nr(x0) = N ′

r(x0), thus Nr(x0)
has the same exponential growth rate as N ′

r(x0), which is hvol. �

Let A = A(X) be the edge adjacency matrix of X, i.e. a |EX| × |EX| matrix
defined by Aef = ρef , where ρef has value 1 if ef is a combinatorial path, i.e. if
t(e) = i(f) and ē �= f , and value 0 otherwise. It is easy to see that the entry An

ef

is nonzero if and only if there is a combinatorial n-path starting with e and ending
with f . (Note that the definition of ρef implies that such a path does not have
backtracking.)
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Let us show that for any connected graph without any terminal vertex, which is
not a cycle, the matrix A is irreducible. Recall that a matrix M is reducible if there
exists a permutation matrix P such that PMP−1 is a block diagonal matrix of at
least two nontrivial blocks. A matrix is irreducible if it is not reducible. It is clear
that a nonnegative matrix M is reducible if and only if M + M t is reducible. The
matrix A+At has entries bef with bef nonzero if either ef or fe is a combinatorial
path. Let ∼ be the equivalence relation on EX generated by the relation e ∼ f if
ρef = 1 (i.e. if ef is a path without backtracking).

Lemma 2. If EX/ ∼ consists of only one element, then A is irreducible.

Proof. By contradiction. Assume that A is reducible, and hence A + At is also
reducible. This means that it is possible to find two complementary subsets U and
V in EX such that buv = 0 for any u ∈ U and v ∈ V . But then clearly no element
u of U can be equivalent to an element v of V , and in particular there are at least
two equivalence classes for the equivalence relation ∼. �

Proposition 3. Let X be a connected graph without any terminal vertex. Then
the matrix A is irreducible if and only if X has a vertex of valency at least three.

Proof. We first claim that for any e, f ∈ EX, either e ∼ f or e ∼ f . Let e and
f be the unoriented edges underlying e and f . There is a shortest (thus without
backtracking) unoriented path in X linking e and f . Thus, there is a combinatorial
(oriented) path in X linking either e or e to either f or f . If p = e1 · · · es is a
combinatorial path, then so is p = es · · · e1. We deduce that, for any two edges e1

and e2, e1 ∼ e2 ⇔ e2 ∼ e1. Applying this to e, e and f, f yields the claim.
Now if X has only bivalent vertices (i.e. if X is a cycle, as X has no terminal

vertices), then it is easy to see that A is not irreducible. Conversely, let X be
connected and let x be a vertex of valence at least three, with outgoing edges e1, e2

and e3 (these may be loops). Then e1 ∼ e3 and e2 ∼ e3, hence e1 ∼ e2. But
e1 ∼ e2, and therefore e2 ∼ e2. Now for any edge e in EX, either e ∼ e2 or e ∼ e2

by the claim above. In both cases, we have e ∼ e2. This implies that EX/ ∼ has
only one element and A is irreducible. �

Now consider the matrix A′ = A′(d, h) defined by A′
ef = ρefe−h�(f), depending

on h and the length distance d� on X. The matrix A′ is clearly irreducible since A
is irreducible.

Theorem 4. Let X be a connected finite graph without any terminal vertex, which
is not a cycle, endowed with a length distance d = d�. The volume entropy hvol is
the only positive constant h such that the following system of linear equations with
unknowns (xe)e∈EX has a solution with xe > 0 for every e ∈ EX:

(∗∗) xe =
∑

f∈EX

ρefe−h�(f)xf , for all e ∈ EX.

Proof. By the assumption on the graph, for every h > 0, we can apply the Perron-
Frobenius theorem (see [Gan] for example) to the irreducible nonnegative matrix
A′ = (ρefe−h�(f)), which says that the spectral radius of the matrix A′(h) is a
positive eigenvalue λ(h), which is simple, with an eigenvector (xe = xe(h)) whose
entries are all positive. The function λ : R≥0 → R≥0 is clearly a continuous
function of h since the characteristic function of the matrix A′ is a polynomial of
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{e−h�(e) : e ∈ EX}, and λ(0) ≥ 1 since λ(0) is the spectral radius of an irreducible
nonzero matrix A′(0) of nonnegative integer coefficients. Also, λ(h) → 0 as h → ∞,
since the coefficients of A′(h) tend to 0 as h → ∞. By the mean value theorem,
there exists an h satisfying λ(h) = 1.

Now assume that h > 0 satisfies (∗∗) for some positive xe’s. Fix an arbitrary
edge e ∈ EX (any edge e satisfies xe > 0 by the Perron-Frobenius theorem), and
choose a vertex x0 in X̃ which is an initial vertex of a fixed lift ẽ of e in X̃. Let us
fix a positive constant r.

Let Pr(e) be the set of combinatorial paths of length r in X starting with e.
We will denote a combinatorial path in X by p = e1e2 · · · en, its terminal edge by
t(p) = en and its metric length by �(p) =

∑n
i=1 �(ei). Denote by Pn(e) (resp. P ′

n(e))
the set of combinatorial k-paths of length r with k ≤ n (resp. combinatorial n-paths
of length strictly less than r) in X starting with e. Remark that Pn(e)∩P ′

n(e) = ∅,
and if n is large enough, Pn(e) = Pr(e) and P ′

n(e) = ∅.
Let us rewrite the equation (∗∗) as

eh�(e)xe =
∑

p∈P2(e)∪P′
2(e)

e−h�(p)xt(p).

Let us replace each xt(p) in the above equation by
∑

f∈EX

ρt(p)fe−h�(f)xf whenever

�(p) < r, i.e. when p ∈ P ′
2(e). The resulting equation is

eh�(e)xe =
∑

p∈P3(e)∪P′
3(e)

e−h�(p)xt(p).

Repeat this process: at each step, for each p ∈ P ′
n(e), replace xt(p) on the right

hand side of the previous equation by
∑

f∈EX

ρt(p)fe−h�(f)xf , to get

eh�(e)xe =
∑

p∈Pn+1(e)∪P′
n+1(e)

e−h�(p)xt(p) .

For n large enough, the resulting equation is

eh�(e)xe =
∑

p∈Pr(e)

e−h�(p)xt(p).

(In the case when the lengths of the edges are all equal to 1 and r is a positive
integer, we continue until we get the equation x = Ar−1x.)

Then in the resulting equation, the number of times each xf appears on the right
hand side is exactly the number Nr(e, f) of combinatorial paths of length r in X̃

with initial edge ẽ and terminal edge some lift of f in X̃. Note also that the metric
length of such a path is at least r and less than r + lmax. Thus∑

f∈EX

Nr(e, f)e−h(r+lmax)xf ≤ eh�(e)xe ≤
∑

f∈EX

Nr(e, f)e−hrxf .

Now if h is strictly greater than the volume entropy hvol, then

0 < eh�(e)xe ≤
∑

Nr(e, f)e−hrxf ≤ Nr(x0)e−hr
∑

xf

≤ e(hvol+0(1))re−hr
∑

xf = er(hvol−h+o(1))
∑

xf → 0
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as r goes to infinity, which is a contradiction. On the other hand, suppose that h is
strictly smaller than the volume entropy hvol. As Nr(x0) =

∑
e,f∈EX, i(ẽ)=x0

Nr(e, f),

there exist some e and f , depending on r, such that Nr(e, f)e−hr≥ 1
|EX|2 Nr(x0)e−hr.

Since

eh�(e)xe ≥ Nr(e, f)e−h(r+lmax)xf ≥ 1
|EX|2 e(hvol+o(1))re−h(r+lmax)xf

≥ 1
|EX|2 e(hvol−h+o(1))re−hlmax min

f∈EX
{xf},

and the latter goes to infinity as r goes to infinity, it follows that xe = ∞, which is
again a contradiction. We conclude that h is equal to the volume entropy hvol. �

Remark. Hersonsky and Hubbard showed in [HH] that the Hausdorff dimension of
the limit set of a Schottky subgroup of the automorphism group of a simplicial tree
satisfies similar systems of equations.

3. Minimal volume entropy

In this section, we prove the main theorem announced in the Introduction, using
Theorem 4.

Theorem 5. Let X be a finite connected graph such that the valency at each vertex
x, which we denote by kx + 1, is at least 3. Then there is a unique d in ∆(X)
minimizing the volume entropy hvol(d). The minimal volume entropy is

hmin(X) =
1
2

∑
x∈V X

(kx + 1) log kx,

and the entropy minimizing length distance d = d� is characterized by

�(e) =
log ki(e)kt(e)∑

x∈V X

(kx + 1) log kx
, ∀e ∈ EX.

Remark. Since we can eliminate all the vertices of valency two without changing the
entropy, the existence of d in ∆(X) minimizing the volume entropy, with minimal
value given by the same formula, holds for any graph who does not have a terminal
vertex and is not isometric to a circle. What is uniquely defined at such a minimum
is the length of each connected component of X where the vertices of valency at
least three are removed.

Proof. By assumption, kx ≥ 2 for every x ∈ V X. By Theorem 4, the volume
entropy h = hvol satisfies

xe =
∑

f∈EX

ρefe−h�(f)xf ,

for each edge e ∈ EX for some positive xe’s. Set ye = e−h�(e)xe > 0 for each edge
e. Then the above equations imply

(1) eh�(e)ye =
∑

f∈EX

ρefyf ≥ kt(e)

∏
f∈EX, ρef =1

y
1/ki(f)

f .



MINIMAL VOLUME ENTROPY FOR GRAPHS 5095

The last inequality is simply the inequality between the arithmetic mean and the
geometric mean of yf ’s, since there are exactly kt(e) = ki(f) edges f such that
ρef = 1. Multiplying over all the edges, we get∏

e∈EX

eh�eye ≥
∏

e∈EX

(kt(e)

∏
f∈EX, ρef =1

y
1/ki(f)

f ).

On the right hand side of the equation, each term y
1/ki(f)

f appears exactly ki(f)

times, since each edge f follows exactly ki(f) edges with terminal vertex i(f). Can-
celing

∏
e∈EX

ye > 0 from each side, we get

(2) e2h ≥
∏

e∈EX

kt(e) =
∏

x∈V X

k(kx+1)
x ,

since
∑

e∈EX

�(e) = 2. The equality holds if and only if equality in the inequality (1)

holds for each e ∈ EX, i.e. the yf ’s, for f ∈ EX following e, are all equal.
Suppose that the equality in the inequality (2) holds. In particular,

h =
1
2

∑
x∈V X

(kx + 1) log kx.

Since the valency at each vertex is at least 3, we can choose another edge g �= f
followed by e and conclude that yf depends only on the initial vertex i(f) of f . Let
zi(f) = yf > 0. Then equation (∗∗) in Theorem 4 amounts to

eh�(e)zi(e) =
∑

f∈EX

ρefzi(f) = kt(e)zt(e).

Since �(e) = �(ē), we also have eh�(e)zt(e) = ki(e)zi(e). Thus zi(e)/zt(e) = kt(e)/eh�(e)

= eh�(e)/ki(e) and

eh�(e) =
√

ki(e)kt(e),

so that

(3) �(e) =
log ki(e)kt(e)∑

x∈V X

(kx + 1) log kx
.

In particular, � is uniquely defined by this formula. The length distance defined by
the formula (3) clearly satisfies equation (∗∗) in Theorem 4, with

h =
1
2

∑
x∈V X

(kx + 1) log kx,

and xe’s defined, uniquely up to constant, by setting

e−h�(e)xe

e−h�(f)xf
=

√
kt(e)

ki(e)
,

for every f such that i(f) = t(e). It is clearly well-defined, since if there is a cycle
consisting of consecutive edges (e1, e2, · · · , en, en+1 = e1), then

yen
= yen−1

√
ki(en−1)

ki(en)
= · · · = ye1

j=n∏
j=2

√
ki(ej−1)

ki(ej)
= ye1

√
ki(e1)

ki(en)
.
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By uniqueness in Theorem 4, the positive number h given above is the volume
entropy of the given length distance, and it is the minimal entropy of the graph. �

Corollary 6. If X is a (k1 + 1, k2 + 1)-biregular graph, with k1 > 1, k2 > 1, then
the volume entropy of the normalized length distances on X is minimized exactly
when the lengths of the edges are all equal, and the minimal volume entropy is
|EX|

4 log(k1k2).

Proof. Suppose that X is a (k1 + 1, k2 + 1)-biregular graph, i.e. ki(e)kt(e) = k1k2

for any edge e. Let d = d� ∈ ∆(X) be the entropy-minimizing length distance.
Then �(e) = 1

2h log(k1k2) does not depend on e, thus �(e) = 2
|EX| . From eh�(e) =√

ki(e)kt(e), the volume entropy of this length distance is h = |EX|
4 log(k1k2). �

Corollary 7. If X is a (k + 1)-regular graph, with k > 1, then the volume entropy
of the normalized length distances on X is minimized exactly when the lengths of
the edges are all equal, and the minimal volume entropy is |EX|

2 log k.

Proof. This is a special case of the above corollary with k1 = k2 = k. �

Remark. Corollary 7 appears implicitly in a preprint of I. Rivin ([Riv]). There
he considers graphs with weights given on the vertices rather than the edges. The
directed line graph L(X) of a graph X is an oriented graph defined so that V L(X) =
EX and EL(X) = {(a, b) ∈ EX2 : t(a) = i(b), a �= b̄}. To a given set of weights
on the edges {�(e)}EX is associated a set of weights {�′(x)}V L(X) on the vertices
of L(X). One can see that paths on X without backtracking correspond to paths
with backtracking on L(X); see [Riv] page 14. The minimum of volume entropy
of the graph L(X) with vertex weights h((�′(x)))V L(X) (computed by I. Rivin) lies
in the image of the map (�(e)) 
→ (�′(x)) only when the graph is regular. It seems
that for general graphs, one result cannot be deduced from the other.

Remark. Corollary 7 was also shown independently by I. Kapovich and T. Nag-
nibeda [KN] by a different method (using random walks). Note that one of their
main results, on the minimal entropy among all graphs having a fixed fundamental
group, can be deduced from Theorem 5 as in the following corollary. A special case
when the graph has a highly transitive automorphism group had been shown earlier
by G. Robert ([Rob]).

Corollary 8 ([KN, Theorem B]). Consider the set of all finite metric graphs with-
out a vertex of valency one or two, whose fundamental group is a free group of
given rank r ≥ 2. Then among volume 1 length metrics, the volume entropy is
minimized by any (regular) trivalent graph in this set, with the metric assigning the
same length for every edge.

Proof. Let (X, d) be such a graph. Suppose that there is a vertex x of valency kx+1
strictly greater than three, with outgoing edges e1, . . . , ekx+1. Let us introduce a
new vertex y and a new edge f , and replace x and its outgoing edges e1, · · · , ekx+1,
by two vertices x and y, with outgoing edges f, e3, · · · , ekx+1 and e1, e2, f̄ , respec-
tively. Repeat the operation on x, until the valency of x reduces to three, to get
a new graph X ′. The graph X ′ has kx − 2 more vertices than X, all with valency
three.

Let d0 and d′0 be the unique normalized entropy-minimizing length distances on
X and X ′, respectively. By the formula in Theorem 5, and since for t ≥ 3, we have
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(t + 1) log t > (t − 1)3 log 2, it follows that

hvol(X, d) ≥ hvol(X, d0) =
1
2

∑
z∈V X−{x}

(kz + 1) log kz + (kx + 1) log kx

>
1
2

∑
z∈V X−{x}

(kz + 1) log kz + (kx − 1)3 log 2 = hvol(X ′, d′0).

Repeat the operation until we get a regular trivalent graph. Now by Corollary 7,
the volume entropy is minimized when all the edges have the same length. �

4. Entropy for graphs of groups

As another corollary of Theorem 5, let us show the analogous result of Theorem 5
for graphs of groups. Let (X, G•) be any finite connected graph of finite groups.
(Basic references for graphs of groups are [Ser] and [Bas].) Let T be a (Bass-Serre)
universal covering tree of (X, G•) and let p : T → X be the canonical projection.
The degree of a vertex x of (X, G•) is defined by∑

e∈EX,i(e)=x

|Gx|
|Ge|

.

It is easy to see that it is equal to the valency of any lift of x in V T , and we will
denote it again by kx + 1. We define a length distance d� on (X, G•) as a length
distance d� on the underlying graph X. The volume of (X, G•, d�) for a given length
distance d� on (X, G•), is defined by

vol�(X, G•) =
1
2

∑
e∈EX

�(e)
|Ge|

.

Note that in the case where �(e) is equal to 1 for every edge e and T is k-
regular, the volume vol�(X, G•) is k/2 times the usual definition of the volume∑

x∈V X 1/|Gx| of a graph of groups since k =
∑

e∈EX,i(e)=x |Gx|/|Ge|. The volume
entropy hvol(X, G•, d�) of (X, G•, d�) is defined to be the exponential growth of the
balls in T for the lifted metric as in the case of graphs.

Proposition 9. Let (X, G•) be a finite graph of finite groups such that the degree
at each vertex x of (X, G•) is at least three. Among the normalized (i.e. volume
one) length distances on (X, G•), there exists a unique normalized length distance
minimizing the volume entropy. At this minimum, the length of each edge is pro-
portional to log(ki(e)kt(e)) and the minimal volume entropy is

hmin(X, G•) =
1
2

∑
x∈V X

(kx + 1) log kx

|Gx|
.

Proof. Let Γ be a fundamental group of the graph of groups (X, G•). There exists
a free normal subgroup Γ′ of Γ of finite index (see [Ser]), say m. The group Γ′ acts
freely on T , hence the quotient graph X ′ = Γ′\T is a finite connected graph. It is
easy to see that each x in V X (resp. e in EX) has m

|Gx| (resp. m
|Ge| ) lifts in V X ′

(resp. EX ′) by the canonical map π : X ′ → X, since

m = [Γ : Γ′] =
∑

x′∈V X′ 1∑
x∈V X 1/|Gx|
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(see [Bas] for an example). It is clear that �′(e) = �(π(e)) and the valency ky + 1
is equal to the degree kπ(y) + 1. Any length distance d� of volume one on (X, G•)
can be lifted to X ′ to define a length distance d�′ normalized so that

vol�′(X ′) =
1
2

∑
e∈EX′

�′(e) =
1
2

∑
e∈EX

m

|Ge|
�(e) = m.

The volume entropy of (X ′, d′�) is equal to the volume entropy of (X, G•, d�), as
they have the same universal covering metric tree. By the homogeneity property
(∗), we can apply Theorem 5 to conclude that among the length distances of volume
m on X ′, there exists a unique entropy-minimizing length distance d′0 = d�′ on X ′.
By uniqueness in Theorem 5, the length distance d′0 is invariant under the group
Γ/Γ′. In particular, there is a normalized length distance d0 = d� on (X, G•) whose
lift to X ′ defines d′0. The minimal volume entropy of (X, G•) is clearly the volume
entropy of (X ′, d′0) since for any length distance d on (X, G•),

hvol(X, G•, d) = h(X ′, d′) ≥ h(X ′, d′0) = hvol(X, G•, d0),

where d′ is defined by the lift of d on X ′. Since the length �′(e) of an edge e is
proportional to log(ki(e)kt(e)) = log(kπ(i(e))kπ(t(e))) for every edge e in EX ′, so is
true for every edge e in EX. Since each vertex x in V X appears m

|Gx| times in X ′

and the degree kx + 1 is equal to the valency kx′ + 1 of any lift x′ ∈ π−1(x) of x in
X ′, the minimal volume entropy of (X, G•) is

hd0(X, G•) = h(X ′, d′0) =
1
m

h(X ′,
1
m

d′0) =
1

2m

∑
x′∈V X′

(k′
x + 1) log k′

x

=
1

2m

∑
x∈V X

m

|Gx|
(kx + 1) log kx =

1
2

∑
x∈V X

(kx + 1) log kx

|Gx|
. �

Now we want to consider a more general situation than in Proposition 9. The
main theorem in [BCG] says that if f : (Y, g) → (X, g0) is a continuous map of
nonzero degree between compact connected n-dimensional Riemannian manifolds
and g0 is a locally symmetric metric with negative curvature, then

hn(Y, g)vol(Y, g) ≥ |deg f |hn(X, g0)vol(X, g0),

and the equality holds if and only if f is homotopic to a Riemannian covering.
Let (X, G•, d0 = d�) be a finite (connected) graph of finite groups endowed with

the normalized length distance minimizing the volume entropy. Let (Y, H•, d) be an-
other finite graph of finite groups with a length distance. Let φ=(φ, φ•, γ•) : (Y, H•)
→ (X, G•) be a (Bass-Serre) covering of graphs of groups (see [Bas]). The value

n :=
∑

y∈φ−1(x)

|Gx|
|Hy|

=
∑

f∈φ−1(e)

|Ge|
|Hf |

does not depend on the vertex x nor on the edge e of X since the graph X is
connected, and it is an integer. A covering graph of groups with the above n is said
to be n-sheeted (see [Lim]).

When (Y, H•) and (X, G•) are graphs (of trivial groups), the next corollary can
be considered as an analog of the main theorem in [BCG].

Corollary 10. Let φ : (Y, H•) → (X, G•) be an n-sheeted covering of graphs of
groups and let d0 be the entropy-minimizing length distance on (X, G•) of volume
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one. Suppose that the degree at each vertex of (X, G•) and (Y, H•) is at least three.
Then there holds

hvol(Y, H•, d) vol(Y, H•, d) ≥ n hvol(X, G•, d0) vol(X, G•, d0).

The equality holds if and only if the length distance d on (Y, H•) is a length distance
minimizing entropy among the length distances of the same volume, and in that case
the map φ is a metric covering from (Y, H•, d) to (X, G•, λd0), for some λ > 0.

Proof. By the homogeneity property (∗) in Section 2, we may assume that
vol(Y, H•, d) = 1. Applying Proposition 9 to (Y, H•) and (X, G•), it follows that
there exists a unique length distance d′0 = d�′ on Y minimizing the volume entropy
and that

hvol(Y, H•, d) ≥ hmin(Y, H•)

=
1
2

∑
y∈V Y

(ky + 1) log ky

|Hy|
=

1
2

∑
x∈V X

∑
y∈φ−1(x)

(kx + 1) log kx

|Hy|

=
1
2
n

∑
x∈V X

(kx + 1) log kx

|Gx|
= nhmin(X, G•) = nhvol(X, G•, d0).

By Proposition 9, the equality holds if and only if d = d′0. In that case, the length of
each edge e in EY is proportional to log(ki(e)kt(e)) = log(ki(φ(e))kt(φ(e))), thus pro-
portional to the length of the edge φ(e). More precisely, let �′(e) = c′ log(ki(e)kt(e))
for every e ∈ EY and let �(e) = c log(ki(e)kt(e)) for every e ∈ EX. From the
assumption vol�(X, G•) = vol�′(Y, H•) = 1, it follows that

1 =
1
2

∑
g∈EY

c′ log(ki(g)kt(g))
|Hg|

=
1
2

∑
e∈EX

∑
g∈φ−1(e)

c′ log(ki(g)kt(g))
|Hg|

=
1
2

∑
e∈EX

nc′ log(ki(e)kt(e))
|Ge|

,

and therefore

c′ =
1

n
2

∑
e∈EX

log(ki(e)kt(e))

|Ge|

=
c

n
,

in other words, �′(e) = �(e)/n.
We conclude that for any length distance d on (Y, H•), there holds

hvol(Y, H•, d) vol(Y, H•, d) ≥ n hvol(X, G•) vol(X, G•, d0).

By Proposition 9 the equality holds if and only if d is proportional to d′0, say
d = λnd′0 for some λ > 0. Then the length of each edge e in (Y, H•, d) is λ�(φ(e)),
and the map φ is a metric covering from (Y, d′0) to (X, λ d0). �
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