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POLYHEDRAL REALIZATION
OF THE HIGHEST WEIGHT CRYSTALS

FOR GENERALIZED KAC-MOODY ALGEBRAS

DONG-UY SHIN

Abstract. In this paper, we give a polyhedral realization of the highest weight
crystals B(λ) associated with the highest weight modules V (λ) for the gener-
alized Kac-Moody algebras. As applications, we give explicit descriptions of
crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster
algebras.

Introduction

The quantum groups introduced by Drinfel′d and Jimbo, independently, are de-
formations of the universal enveloping algebras of Kac-Moody algebras [5, 6]. More
precisely, let g be a Kac-Moody algebra and U(g) be its universal enveloping al-
gebra. Then, for each generic parameter q, we associate a Hopf algebra Uq(g),
called the quantum group, whose structure tends to that of U(g) as q approaches
1. The important feature of quantum groups is that the representation theory of
Uq(g) is the same as that of U(g). Therefore, to understand the structure of repre-
sentations over general quantum groups Uq(g), it is enough to understand that of
representations over Uq(g) for some special parameter q which is easy to treat. The
crystal bases, introduced by Kashiwara [12, 13], can be viewed as bases at q = 0
for the integrable modules over quantum groups. They give a structure of colored
oriented graphs, called the crystal graphs, reflecting the combinatorial structure of
integrable modules. For instance, one of the major goals in representation theory is
to find an explicit expression for the characters of representations, and this can be
obtained by finding an explicit combinatorial description of crystal bases. So one
of the most fundamental problems in crystal basis theory is to construct the crystal
basis explicitly. In order to answer this, several kinds of combinatorial objects have
been invented [10, 11, 15, 16].

In [14], Kashiwara introduced the embedding of crystals Ψι : B(∞) ↪→ Z∞,
where ι is some infinite sequence from the index set of simple roots. But, in general,
it is not easy to find the image ImΨι. In [3], Cliff described the image of the
Kashiwara embedding for the classical Lie algebras and some reduced expression.
For more general types, Zelevinsky and Nakashima obtained the exact image of the
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embedding by a unified method, called the polyhedral realization [18]. Moreover,
in [17], Nakashima introduced the crystal Rλ = {rλ}, and he showed that the
connected component containing u∞⊗rλ is isomorphic to the highest weight crystal
B(λ), where u∞ is the highest weight vector in B(∞). Applying this property to
the Kashiwara embedding, he gave the embedding of crystals Ψλ

ι : B(λ) ↪→ Z∞⊗Rλ

and described the explicit form of ImΨλ
ι .

The generalized Kac-Moody algebras were introduced by Borcherds in his study
of Monstrous Moonshine [1, 2]. The structure and representation theories of gener-
alized Kac-Moody algebras are very similar to those of Kac-Moody algebras. The
main difference is that the generalized Kac-Moody algebras may have imaginary
simple roots with nonpositive norms whose multiplicity can be greater than one,
and they may have infinitely many simple roots. In [9], Kang introduced the quan-
tum generalized Kac-Moody algebras as an analogue of quantum groups, and in
[7], Jeong, Kang, and Kashiwara developed the crystal basis theory for quantum
generalized Kac-Moody algebras. In [8], Jeong, Kang, Kashiwara and the author
introduced the notion of abstract crystals and an analogue Ψι of the Kashiwara
embedding of crystals for quantum generalized Kac-Moody algebras. Moreover, in
[19], the author gave the generalized version of polyhedral realization of the crystal
B(∞).

In this paper, we give a polyhedral realization of the crystal bases B(λ) of the
highest weight modules V (λ) for quantum generalized Kac-Moody algebras. More
precisely, we introduce the crystal Rλ for generalized Kac-Moody algebras and show
that the connected component containing u∞⊗ rλ is also isomorphic to the highest
weight crystal B(λ) as in the Kac-Moody case. Moreover, on the basis of the
embedding of crystals given in [8] and the crystal Rλ for generalized Kac-Moody
algebras, we introduce the crystal structure Z∞

≥0[λ], and we give explicit images
of Kashiwara embedding Ψλ

ι . As applications, we give explicit descriptions of the
crystals over Kac-Moody algebras of ranks 2 and 3. Moreover, for the Monster Lie
algebra which played an important role in proving the Moonshine conjecture given
by Conway and Norton [4], we give the explicit description of ImΨλ

ι . Finally, from
this description, we give characters of the highest weight module V (λ) over Uq(g).

1. Crystals for generalized Kac-Moody algebras

Let I be a countable index set. A real matrix A = (aij)i,j∈I is called a Borcherds-
Cartan matrix if it satisfies: (i) aii = 2 or aii ≤ 0 for all i ∈ I, (ii) aij ≤ 0 if i �= j,
(iii) aij ∈ Z if aii = 2, (iv) aij = 0 if and only if aji = 0. Let Ire = {i ∈ I| aii = 2}
and Iim = {i ∈ I| aii ≤ 0}. Moreover, we say that an index i in Ire (resp. Iim) is
real (resp. imaginary).

In this paper, we assume that for all i, j ∈ I, aij ∈ Z, aii ∈ 2Z, and A is
symmetrizable. That is, there is a diagonal matrix D = diag(si ∈ Z>0| i ∈ I)
such that DA is symmetric. We set a Borcherds-Cartan datum (A, P∨, P, Π∨, Π)
as follows:

A : a Borcherds-Cartan matrix,

P∨ =
( ⊕

i∈I Zhi

)
⊕

( ⊕
i∈I Zdi

)
: a free abelian group,

P = {λ ∈ h∗|λ(P∨) ⊂ Z} : the weight lattice,
Π∨ = {hi| i ∈ I} ⊂ h : the set of simple coroots,
Π = {αi| i ∈ I} ⊂ h∗ : the set of simple roots.
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Here, the simple roots αi (i ∈ I) are defined by

〈hj , αi〉 = aji and 〈dj , αi〉 = δji.

We denote by Uq(g) the quantum generalized Kac-Moody algebras associated with
the Borcherds-Cartan datum (A, P∨, P, Π∨, Π). We also denote by P+ = {λ ∈
P |λ(hi) ≥ 0 for all i ∈ I} the set of dominant integral weights.

We recall the definition of abstract crystals introduced in [8] for quantum gen-
eralized Kac-Moody algebras.

Definition 1.1 ([8]). An abstract crystal for Uq(g) or a Uq(g)-crystal is a set B

together with the maps wt : B → P , ẽi, f̃i : B → B ∪ {0} (i ∈ I), and εi, ϕi : B →
Z ∪ {−∞} (i ∈ I) such that for all b ∈ B, we have

(i) wt(ẽib) = wt b + αi if i ∈ I and ẽib �= 0,
(ii) wt(f̃ib) = wt b − αi if i ∈ I and f̃ib �= 0,
(iii) for any i ∈ I and b ∈ B, ϕi(b) = εi(b) + 〈hi, wt b〉,
(iv) for any i ∈ I and b, b′ ∈ B, f̃ib = b′ if and only if b = ẽib

′,
(v) for any i ∈ I and b ∈ B such that ẽib �= 0, we have

(a) εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1 if i ∈ Ire,
(b) εi(ẽib) = εi(b) and ϕi(ẽib) = ϕi(b) + aii if i ∈ Iim,

(vi) for any i ∈ I and b ∈ B such that f̃ib �= 0, we have
(a) εi(f̃ib) = εi(b) + 1 and ϕi(f̃ib) = ϕi(b) − 1 if i ∈ Ire,
(b) εi(f̃ib) = εi(b) and ϕi(f̃ib) = ϕi(b) − aii if i ∈ Iim,

(vii) for any i ∈ I and b ∈ B such that ϕi(b) = −∞, we have ẽib = f̃ib = 0.

Definition 1.2 ([8]). A morphism of crystals or a crystal morphism ψ : B1 → B2

is a map ψ : B1 → B2 such that
(i) wt(ψ(b)) = wt(b) for all b ∈ B1,
(ii) εi(ψ(b)) = εi(b), ϕi(ψ(b)) = ϕi(b) for all b ∈ B1, i ∈ I,
(iii) if b ∈ B1 and i ∈ I satisfy f̃ib ∈ B1, then we have ψ(f̃ib) = f̃iψ(b).

For a morphism of crystals ψ : B1 → B2, ψ is called a strict morphism if

ψ(ẽib) = ẽiψ(b), ψ(f̃ib) = f̃iψ(b) for all i ∈ I and b ∈ B1.

Here we understand ψ(0) = 0. Moreover, ψ is called an embedding if the underlying
map ψ : B1 → B2 is injective. In this case, we say that B1 is a subcrystal of B2. If
ψ is a strict embedding, we say that B1 is a full subcrystal of B2.

Example 1.3. (a) The crystal basis B(λ) of the irreducible highest weight module
V (λ) with λ ∈ P+ is a Uq(g)-crystal, where the maps εi, ϕi (i ∈ I) are given by

εi(b) =

{
max{k ≥ 0 | ẽk

i b �= 0} for i ∈ Ire,
0 for i ∈ I im,

ϕi(b) =

{
max{k ≥ 0 | f̃k

i b �= 0} for i ∈ Ire,
〈hi, wt(b)〉 for i ∈ I im.

(b) The crystal basis B(∞) of U−
q (g) is a Uq(g)-crystal, where

εi(b) =

{
max{k ≥ 0 | ẽk

i b �= 0} for i ∈ Ire,
0 for i ∈ I im,

ϕi(b) = εi(b) + 〈hi, wt(b)〉 (i ∈ I).
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Example 1.4. For λ ∈ P , the singletons Tλ = {tλ} and Rλ = {rλ} are Uq(g)-
crystals with maps defined by

wt(tλ) = λ, εi(tλ) = ϕi(tλ) = −∞, ẽitλ = f̃itλ = 0 for all i ∈ I,

and

wt(rλ) = λ, εi(rλ) = −〈hi, λ〉, ϕi(rλ) = 0, ẽirλ = f̃irλ = 0 for all i ∈ I.

Example 1.5. For each i ∈ I, let Bi = {bi(−n) |n ≥ 0}. Then Bi is a crystal with
maps defined by

wt(bi(−n)) = −nαi,

ẽibi(−n) = bi(−n + 1), f̃ibi(−n) = bi(−n − 1),

ẽjbi(−n) = f̃jbi(−n) = 0 if j �= i,

εi(bi(−n)) = n, ϕi(bi(−n)) = −n if i ∈ Ire,

εi(bi(−n)) = 0, ϕi(bi(−n)) = −naii if i ∈ Iim,

εj(bi(−n)) = ϕj(bi(−n)) = −∞ if j �= i.

Here, we understand bi(−n) = 0 for n < 0. The crystal Bi is called an elementary
crystal.

We define the tensor product of a pair of crystals as follows: for two crystals
B1 and B2, their tensor product B1 ⊗ B2 is {b1 ⊗ b2|b1 ∈ B1, b2 ∈ B2} with the
following crystal structure. The maps wt, εi, ϕi are given by

wt(b ⊗ b′) = wt(b) + wt(b′),

εi(b ⊗ b′) = max(εi(b), εi(b′) − 〈hi, wt(b)〉),
ϕi(b ⊗ b′) = max(ϕi(b) + 〈hi, wt(b′)〉, ϕi(b′)).

For i ∈ I, we define

f̃i(b ⊗ b′) =

{
f̃ib ⊗ b′ if ϕi(b) > εi(b′),
b ⊗ f̃ib

′ if ϕi(b) ≤ εi(b′).

For i ∈ Ire, we define

ẽi(b ⊗ b′) =

{
ẽib ⊗ b′ if ϕi(b) ≥ εi(b′),
b ⊗ ẽib

′ if ϕi(b) < εi(b′),

and, for i ∈ Iim, we define

ẽi(b ⊗ b′) =

⎧⎪⎨⎪⎩
ẽib ⊗ b′ if ϕi(b) > εi(b′) − aii,
0 if εi(b′) < ϕi(b) ≤ εi(b′) − aii,
b ⊗ ẽib

′ if ϕi(b) ≤ εi(b′).

This tensor product rule is different from the one given in [7]. But when B1 = B(λ)
and B2 = B(µ) for λ, µ ∈ P+, the two rules coincide. Note that by the definition
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above, B1 ⊗B2 is a crystal. Moreover, the associativity law for the tensor product
holds [8].

Example 1.6. Let Rλ = {rλ} be the crystal given in Example 1.4. Then for a
crystal B, B ⊗ Rλ is a crystal with the maps wt, εi, ϕi given by

wt(b ⊗ rλ) = wt(b) + λ,

εi(b ⊗ rλ) = max(εi(b),−〈hi, λ + wt(b)〉),

ϕi(b ⊗ rλ) =

{
ϕi(b) + 〈hi, λ〉 for i ∈ Ire,

max(ϕi(b) + 〈hi, λ〉, 0) for i ∈ Iim,

ẽi(b ⊗ rλ) =

⎧⎪⎨⎪⎩
ẽib ⊗ rλ if ϕi(b) ≥ −〈hi, λ〉 and i ∈ Ire,

or ϕi(b) + 〈hi, λ〉 + aii > 0 and i ∈ Iim,
0 otherwise,

f̃i(b ⊗ rλ) =

{
f̃ib ⊗ rλ if ϕi(b) > −〈hi, λ〉,
0 otherwise.

2. Embedding of the highest weight crystal B(λ)

Let ∗ be the Q(q)-algebra anti-automorphism of Uq(g) such that

e∗i = ei, f∗
i = fi and (qh)∗ = q−h.

In [8], it is verified that L(∞)∗ = L(∞) and B(∞)∗ = B(∞). So let us define for
each i ∈ Ire, ε∗i (b) = εi(b∗) and ϕ∗

i (b) = ϕ(b∗).

Proposition 2.1 ([8]). For all i ∈ I, there exists a unique strict embedding

Ψi : B(∞) −→ B(∞) ⊗ Bi such that u∞ �→ u∞ ⊗ bi(0),

where u∞ is the highest weight vector in B(∞).

Proof. Now, we give a brief sketch of the proof given in [8]. For b = f̃ir
. . . f̃i1u∞ ∈

B(∞), take µ � 0 such that π̂µ(b) = π̂µ(f̃ir
. . . f̃i1u∞) = f̃ir

. . . f̃i1uµ �= 0. Let
λ ∈ P+ such that λ(hi) = 0 and λ(hj) = µ(hj) � 0 for all j �= i. Set µ(hi) = l � 0.
Then there is a strict embedding φ : B(µ) → B(λ)⊗B(lΛi) sending uµ to uλ⊗ulΛi

.
Moreover, Im(φ ◦ π̂µ) belongs to B(λ) ⊗ {f̃m

i ulΛi
| m ≥ 0}.

Define a map ψi : B(λ) ⊗ {f̃m
i ulΛi

| m ≥ 0} → B(∞) ⊗ Bi by

ψi(f̃js
. . . f̃j1uλ ⊗ f̃m

i ulΛi
) = f̃js

. . . f̃j1u∞ ⊗ bi(−m).

Then ψi is injective, and ψi commutes with ẽj and f̃j .
Now, we define Ψi(b) by

ψi ◦ φ ◦ π̂µ(b) = ψi ◦ φ(f̃ir
. . . f̃i1uµ) = ψi(f̃ir

. . . f̃i1(uλ ⊗ ulΛi
))

= ψi(f̃js
. . . f̃j1(uλ ⊗ f̃m

i ulΛi
)) = f̃js

. . . f̃j1u∞ ⊗ bi(−m).

Then Ψi is a strict embedding. Moreover,

(2.1) f̃js
. . . f̃j1u∞ = (ẽm

i b∗)∗, and m = maxk{k | ẽk
i b∗ �= 0}.

�
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Let ι be an infinite sequence, ι = (. . . , i2, i1) in I, such that every i ∈ I appears
infinitely many times, and let Z∞

≥0,ι be the crystal introduced in [19]. (Indeed, the
crystal Z∞

≥0,ι is isomorphic to the crystal B(ι), the (set-theoretical) inductive limit
of B(k) = Bik

⊗ · · · ⊗ Bi1 , given in [8].) By taking the composition of the above
crystal embeddings repeatedly, we have

Proposition 2.2 ([8, 19]). There is a strict embedding Ψι : B(∞) ↪→ Z∞
≥0,ι.

Let πλ : U−
q (g) → V (λ) be the natural projection sending L(∞) to L(λ), and let

π̂λ : L(∞)/qL(∞) → L(λ)/qL(λ) be the induced map sending B(∞) to B(λ)∪{0}.
Then we have

f̃i ◦ π̂λ = π̂λ ◦ f̃i,

ẽi ◦ π̂λ = π̂λ ◦ ẽi, if π̂λ(b) �= 0,

π̂λ : B(∞)\{π̂−1
λ (0)} → B(λ) is bijective.

Now, define a map

Φλ : (B(∞) ⊗ Rλ) ∪ {0} → B(λ) ∪ {0}
by

Φλ(b ⊗ rλ) = π̂λ(b) and Φλ(0) = 0.

Let B̃(λ) := {b ⊗ rλ ∈ B(∞) ⊗ Rλ|Φλ(b ⊗ rλ) �= 0}. Then we have

Theorem 2.3. (a) The map Φλ is a surjective strict morphism of crystals. More-
over, it induces an isomorphism of crystals from B̃(λ) to B(λ).

(b) B̃(λ) is the set of b ⊗ rλ ∈ B(∞) ⊗ Rλ such that
(i) ε∗i (b) ≤ λ(hi) (i ∈ Ire), (ii) if λ(hi) = 0, ẽib

∗ = 0.

Proof. (b) is directly derived from the following fact, obtained by (2.1) in the proof
of Proposition 2.1:

(2.2)
π̂λ(b) �= 0 if and only if

ε∗i (b) ≤ λ(hi) (i ∈ Ire), and λ(hi) = 0 implies ẽib
∗ = 0.

For (a), since π̂λ is surjective, it is clear that Φλ is also surjective. In order
to show that Φλ is a strict morphism of crystals, it suffices to show that for u ∈
B(∞) ⊗ Rλ,

(1) wt(Φλ(u)) = wt(u) if Φλ(u) �= 0,
(2) εi(Φλ(u)) = εi(u) for any i ∈ I if Φλ(u) �= 0,
(3) ϕi(Φλ(u)) = ϕi(u) for any i ∈ I if Φλ(u) �= 0,
(4) ẽiΦλ(u) = Φλ(ẽiu) for any i,
(5) f̃iΦλ(u) = Φλ(f̃iu) for any i.

If i ∈ Ire, (1), (2) and (3) follow from the proof of Theorem 3.1 of [17], and if
i ∈ Iim, since εi(b) = 0 for all b ∈ B(∞) or B(λ), it is clear. So it suffices to
consider (4) and (5). For u = b ⊗ rλ, suppose that Φλ(u) = π̂λ(b) �= 0. When
i ∈ Ire, we have

0 ≤ ϕi(π̂λ(b)) = 〈hi, λ〉 + ϕi(b),

which implies that ẽi(b ⊗ rλ) = ẽib ⊗ rλ. Hence

ẽiΦλ(u) = ẽiπ̂λ(b) = π̂λ(ẽib) = Φλ(ẽiu).



HIGHEST WEIGHT CRYSTALS FOR KAC-MOODY ALGEBRAS 6377

When i ∈ Iim, if ẽi(b ⊗ rλ) = ẽib ⊗ rλ, there is nothing to prove. If ẽi(b⊗ rλ) =
b⊗ ẽirλ = 0, then 〈hi, λ+wt(b)〉+aii ≤ 0. Hence ẽiΦλ(u) = ẽiπ̂λ(b) = 0 = Φλ(ẽiu).

Next, consider the case Φλ(u) = π̂λ(b) = 0. Then it suffices to show that
Φλ(ẽi(b ⊗ rλ)) = 0. If ẽi(b ⊗ rλ) = 0, there is nothing to prove. If ẽi(b ⊗ rλ) �= 0,
since ẽirλ = 0,

ẽi(b ⊗ rλ) = ẽib ⊗ rλ,

which implies

(2.3)
ϕi(b) ≥ εi(rλ) = −〈hi, λ〉 for i ∈ Ire,

〈hi, wt(b) + λ〉 + aii > 0 for i ∈ Iim.

Assuming Φλ(ẽib⊗ rλ) = π̂λ(ẽib) �= 0, we shall derive a contradiction. Since f̃i and
π̂λ commute, f̃iπ̂λ(ẽib) = π̂λ(f̃iẽib) = π̂λ(b) = 0. It means that

ϕi(π̂λ(ẽib)) = 0 (i ∈ Ire) and 〈hi, π̂λ(ẽib)〉 = 0 (i ∈ Iim).

When i ∈ Ire,
0 = ϕi(π̂λ(ẽib)) = 〈hi, wt(π̂λ(ẽib))〉 + εi(π̂λ(ẽib))

= 〈hi, λ + wt(b) + αi〉 + εi(ẽib)

= 〈hi, λ〉 + 〈hi, wt(b)〉 + 2 + εi(b) − 1

= 〈hi, λ〉 + ϕi(b) + 1.

Therefore,
ϕi(b) = −〈hi, λ〉 − 1 = εi(rλ) − 1 < εi(rλ),

which contradicts (2.3).
When i ∈ Iim,

0 = 〈hi, π̂λ(ẽib)〉 = 〈hi, wt(b) + λ + αi〉.
This contradicts (2.3).

Now, let us prove (5). We know that f̃iΦλ(u) = f̃iπ̂λ(b) = π̂λ(f̃ib). So if
f̃iu = f̃ib⊗ rλ, then π̂λ(f̃ib) = Φλ(f̃iu). Suppose that f̃iu = b⊗ f̃irλ = 0. Then we
have

(2.4)
ϕi(b) ≤ εi(rλ) = −〈hi, λ〉 for i ∈ Ire,

〈hi, wt(b) + λ〉 = 0 for i ∈ Iim.

If Φλ(u) = π̂λ(b) = 0, there is nothing to prove. Assume that Φλ(u) = π̂λ(b) �= 0.
Suppose that f̃iΦλ(u) = f̃iπ̂λ(b) �= 0. Then

0 < ϕi(π̂λ(b)) = 〈hi, λ〉 + ϕi(b) for i ∈ Ire,

〈hi, λ + wt(b)〉 > 0 for i ∈ Iim,

which contradicts (2.4). Therefore, Φλ is a surjective strict morphism of crystals.
Finally, we will show that Φλ induces an isomorphism of crystals from B̃(λ) to

B(λ). Since Φλ(b⊗rλ) �= 0 is equivalent to π̂λ(b) �= 0, φλ := Φλ|B̃(λ) : B̃(λ) → B(λ)

is a 1-1 correspondence. So if we show that B̃(λ) is stable under ẽi and f̃i, then φλ

is a strict morphism of crystals. In order to prove stability, it is enough to show
that Φλ(ẽi(b ⊗ rλ)) = 0 (resp. Φλ(f̃i(b ⊗ rλ)) = 0) implies ẽi(b ⊗ rλ) = 0 (resp.
f̃i(b ⊗ rλ) = 0). First, suppose that Φλ(ẽi(b ⊗ rλ)) = ẽiπ̂λ(b) = 0. Since π̂λ(b) �= 0,
ẽiπ̂λ(b) = π̂λ(ẽib) = 0, which implies ẽib = 0. Indeed, if ẽib �= 0, we have

maxk{k | ẽk
j (ẽib)∗ �= 0} ≤ maxk{k | ẽk

j b∗ �= 0} for any j ∈ I.
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This contradicts π̂λ(ẽib) = 0 by (2.2). Therefore, we have ẽi(b⊗ rλ) = 0. Secondly,
suppose that Φλ(f̃i(b ⊗ rλ)) = f̃iπ̂λ(b) = 0. If i ∈ Ire, we have 0 = ϕi(π̂λ(b)) =
ϕi(b) + 〈hi, λ〉. Therefore, f̃i(b ⊗ rλ) = b ⊗ f̃irλ = 0. If i ∈ Iim, we have 0 =
〈hi, wt(π̂λ(b))〉 = 〈hi, λ + wt(b)〉. Therefore, f̃i(b ⊗ rλ) = 0. �

Let ι = (. . . , ik, . . . , i1) be an infinite sequence such that

(2.5) ik �= ik+1 and #{k : ik = i} = ∞ for any i ∈ I.

According to Proposition 2.2 and Theorem 2.3, we derive a crystal structure Z∞
≥0,ι[λ]

on the set of infinite sequences of nonnegative integers

Z∞
≥0 := {(. . . , xk, . . . , x1) : xk ∈ Z≥0 and xk = 0 for k � 0}

associated with ι as follows: Let −→x = (. . . , xk, . . . , x1) be an element of Z∞
≥0 corre-

sponding to · · · ⊗ bik
(−xk) ⊗ · · · ⊗ bi1(−x1) ⊗ rλ. For k ≥ 1, we define

(2.6) σk(−→x ) =

{
xk +

∑
j>k〈hik

, αij
〉xj if ik ∈ Ire,∑

j>k〈hik
, αij

〉xj if ik ∈ Iim.

Let
σ(i)(−→x ) = maxk:ik=i{σk(−→x )},

σ
(i)
0 (−→x ) = −〈hi, λ〉 +

∑
j≥1

〈hi, αij
〉xj ,

nf = min{k : ik = i, σk(−→x ) = σ(i)(−→x )},

ne =

{
max{k : ik = i, σk(−→x ) = σ(i)(−→x )} if i ∈ Ire,
nf if i ∈ Iim.

For each k ≥ 1, we denote by k(+) (resp. k(−)) the minimal (resp. maximal)
index j > k (resp. j < k) such that ij = ik. We now define

(2.7) f̃i
−→x =

⎧⎪⎨⎪⎩
(xk + δk,nf

: k ≥ 1) if i ∈ Ire and σ(i)(−→x ) > σ
(i)
0 (−→x ),

or i ∈ Iim and σ
(i)
0 (−→x ) < 0,

0 otherwise,

and ẽi
−→x = (xk − δk,ne

: k ≥ 1) if −→x satisfies the following conditions:

(2.8)

(i) i ∈ Ire : σ(i)(−→x ) > 0, σ(i)(−→x ) ≥ σ
(i)
0 (−→x ),

(ii) i ∈ Iim : σ
(i)
0 (−→x ) − aii < 0, for k = ne with k(−) �= 0,

xk > 1, or xk = 1 and
∑

k(−)<j<k

〈hi, αij
〉xj < 0.

Otherwise, ẽi
−→x = 0. We also define

wt(−→x ) = λ −
∞∑

j=1

xjαij
,

εi(−→x ) = max (σ(i)(−→x ), σ(i)
0 (−→x )),

ϕi(−→x ) = 〈hi, wt(−→x )〉 + εi(−→x ).
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Then it is easy to see that Z∞
≥0 is a crystal, and we will denote this crystal by

Z∞
≥0,ι[λ]. Note that the crystal Z∞

≥0,ι[λ] is isomorphic to Z∞
≥0,ι ⊗ Rλ

∼= B(ι) ⊗ Rλ.
Therefore, by Theorem 2.3, we have

Proposition 2.4. Let B(λ) be the highest weight crystal with a dominant integral
weight. Then there is a strict embedding Ψλ

ι : B(λ) ↪→ Z∞
≥0,ι[λ].

3. Polyhedral realization of B(λ)

Let Q∞ = {−→x = (. . . , xk, . . . , x1) | xk ∈ Q and xk = 0 for k � 0} be an infinite
dimensional vector space. Let β

(±)
k (−→x ) be linear functions given by

(3.1) β
(+)
k (−→x ) = σk(−→x ) − σk(+)(−→x )

and

(3.2) β
(−)
k (−→x ) =

{
σk(−)(−→x ) − σk(−→x ) if k(−) > 0,
σ

(ik)
0 (−→x ) − σk(−→x ) if k(−) = 0.

We define an operator Ŝk = Ŝk,ι for a linear function ψ(−→x ) = c +
∑

k≥1 ψkxk on
(Q∞)∗ by

Ŝk(ψ) =

⎧⎪⎨⎪⎩
ψ − ψkβ

(+)
k if ψk > 0, ik ∈ Ire,

ψ − ψk(xk +
∑

k<j<k(+)〈hi, αij
〉xj − xk(+)) if ψk > 0, ik ∈ Iim,

ψ − ψkβ
(−)
k if ψk ≤ 0.

For the fixed sequence ι, we denote by ι(i) the first number k such that ik = i.
For each i ∈ Ire, let

λ(i)(−→x ) = 〈hi, λ〉 −
∑

1≤j<ι(i)

〈hi, αij
〉xj − xι(i) .

For ι and a dominant integral weight λ,

Θι[λ] := {Ŝjl
· · · Ŝj1xj0 : l ≥ 0, j0, . . . , jl ≥ 1}

∪ {Ŝjk
· · · Ŝj1λ

(i)(−→x ) : k ≥ 0, j1, . . . , jk ≥ 1}.

Moreover, for a given s, t ≥ 1 (t > s), let Θs\t
ι be the subset of Θι of linear forms

obtained from the coordinate forms xs by applying transformations Sk with k �= t,
i.e.,

Θs\t
ι [λ] = {Ŝjl

· · · Ŝj1xs : l ≥ 0, s, j1, . . . , jl ≥ 1},
where none of j1, . . . , jl is t.

Let Γι[λ] be the set of −→x ∈ Z∞
≥0,ι[λ] satisfying the following conditions:

(i) ψ(−→x ) ≥ 0 for any ψ ∈ Θι[λ],
(ii) for each t with it ∈ Iim, if xt �= 0, then

(3.3)

∑
t(−)<j<t

〈hit
, αij

〉xj < 0 (t(−) �= 0),

−〈hit
, λ〉 +

∑
1≤j<t

〈hit
, αij

〉xj < 0 (t(−) = 0).
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In addition, if

(3.4)

∑
t(−)<j<t

j∈Iim

〈hit
, αij

〉xj = 0 (t(−) �= 0),

−〈hit
, λ〉 +

∑
1≤j<t

j∈Iim

〈hit
, αij

〉xj = 0 (t(−) = 0),

then there exists a p (t(−) < p < t) with ip ∈ Ire such that

(3.5) 〈hit
, αip

〉xp < 0 and ψ(−→x ) > 0 for any ψ ∈ Θp\t
ι [λ].

Theorem 3.1. Let ι be the sequence of indices satisfying (2.5), and let λ be a
dominant integral weight. Suppose that

−→
0 = (. . . , 0, . . . , 0) belongs to Γι[λ]. Let

Ψλ
ι : B(λ) ↪→ Z∞

≥0,ι[λ] be the embedding. Then we have

Im Ψλ
ι

( ∼= B̃(λ)
)

= Γι[λ].

Proof. First, let us start by showing that Γι[λ] is closed under the Kashiwara
operators ẽi and f̃i. Let −→x be an element of Γι[λ]. Suppose that f̃i

−→x =
(. . . , xk + 1, . . . , x2, x1) �= 0. Since ψ(f̃i

−→x ) = ψ(−→x ) + ψk ≥ ψk for any ψ ∈ Γι[λ],
it suffices to consider the case ψk < 0. Note that for each k, σk(−→x ) > σk(−)(−→x ) if
k(−) > 0, and σk(−→x ) > σ

(i)
0 (−→x ) if k(−) = 0. (Indeed, when ik ∈ Iim, σk(−→x ) = 0,

and σk(−)(−→x ) < 0 and σ
(i)
0 (−→x ) < 0.) So we have β

(−)
k (−→x ) ≤ −1, which implies

ψ(f̃i
−→x ) = ψ(−→x ) + ψk ≥ ψ(−→x ) − ψkβ

(−)
k (−→x ) = (Ŝkψ)(−→x ) ≥ 0.

Now, suppose that f̃i
−→x does not satisfy the condition (3.3). Then we have the

following cases:

(i) k(−) �= 0 : xk = 0,
∑

k(−)<j<k〈hi, αij
〉xj = 0 (in −→x )

f̃i−→ xk = 1,
∑

k(−)<j<k〈hi, αij
〉xj = 0 (in f̃i

−→x ),
(ii) k(−) = 0 : xk = 0, −〈hi, λ〉 +

∑
1≤j<k〈hi, αij

〉xj = 0 (in −→x )
f̃i−→ xk = 1, −〈hi, λ〉 +

∑
1≤j<k〈hi, αij

〉xj = 0 (in f̃i
−→x ).

But, this cannot occur by the definition of the Kashiwara operator f̃i.
Now, we show that f̃i

−→x satisfies the condition (3.5). First, suppose that there
exist p and t satisfying (3.5) in −→x . Since ψ(f̃i

−→x ) = ψ(−→x ) + ψk, it is enough
to consider the cases that ψk < 0. Note that by definition of the set Θp\t

ι [λ],
ψt > 0 for all ψ ∈ Θp\t

ι [λ]. So it suffices to consider the case that k �= t. If
k �= t, then Skψ ∈ Θp\t

ι and so ψ(f̃i
−→x ) = ψ(−→x ) + ψk ≥ (Skψ)(−→x ) > 0. Second,

suppose that k = t, xt = 0, and for any j such that t(−) < j < t, ij ∈ Ire,
〈hit

, αij
〉xj < 0, there is a ψ ∈ Θj\t

ι [λ] such that ψ(−→x ) = 0 in −→x . Note that since j

is the index such that 〈hit
, αij

〉 < 0, we have ψt > 0 for all ψ ∈ Θj\t
ι [λ]. Therefore,

ψ(f̃i
−→x ) = ψ(−→x ) + ψt ≥ ψt > 0 for all ψ ∈ Θj\t

ι [λ]. Therefore, Γι[λ] is closed under
f̃i.

On the other hand, suppose that ẽi
−→x = (. . . , xk − 1, . . . , x2, x1) �= 0. Since

ψ(ẽi
−→x ) = ψ(−→x ) − ψk ≥ −ψk, it is enough to consider the case ψk > 0. Note that

if ik ∈ Ire, σk(−→x ) > σk(+)(−→x ), and if ik ∈ Iim, then xk +
∑

k<j<k(+)〈hik
, αij

〉xj −
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xk(+) > 0. Therefore,

ψ(ẽi
−→x ) = ψ(−→x ) − ψk

≥
{

ψ(−→x ) − ψkβ
(+)
k (−→x ) (ik ∈ Ire)

ψ(−→x ) − ψk(xk +
∑

k<j<k(+)〈hik
, αij

〉xj − xk(+)) (ik ∈ Iim)

= (Ŝkψ)(−→x ) ≥ 0.

Now, suppose that ẽi
−→x does not satisfy the condition (ii). By (3.3) and (3.5), it

is easy to see that ẽi
−→x satisfies (3.3). For instance, if ẽi

−→x (i ∈ Ire) does not satisfy
(3.3) (t(−) = 0), then xk in −→x must be 1, and

〈hit
, λ〉 = 〈hit

, αij
〉xj = 0 for all j �= k, 1 ≤ j < t (in −→x ).

That is, −→x satisfies the condition (3.4). Then by (3.5), we have Ŝkxk(−→x ) = xk −
β

(+)
k > 0, which implies β

(+)
k ≤ 0. This contradicts the definition of the Kashiwara

operator ẽi. Moreover, by the same argument given in the proof of Theorem 3.1
in [19], it is proved that ẽi

−→x satisfies the condition (3.5). Therefore, Γι is closed
under all ẽi.

To complete the proof, it suffices to show that if −→x ∈ Γι[λ] satisfies ẽi
−→x = 0 for

any i ∈ I, then −→x =
−→
0 . Suppose that ẽi

−→x = 0 for any i ∈ I and −→x �= −→
0 . Since

−→x �= −→
0 , we have j > 0 such that xj > 0 and xk = 0 for all k > j. First, consider

the case ij ∈ Ire. Since σj(−→x ) = xj > 0, by (2.8), σ(i)(−→x ) < σ
(i)
0 (−→x ) for ij = i.

Hence,

0 < σ
(i)
0 (−→x ) − σ(i)(−→x ) ≤ σ

(i)
0 (−→x ) − σι(i)(−→x ) = β

(−)

ι(i) (−→x ) = −λ(−)(−→x ).

This is a contradiction.
Second, consider the case that ij ∈ Iim. If j(−) = 0, by (2.8), we have

σ
(i)
0 (−→x ) − aii = −〈hi, λ〉 +

∑
l≥1

〈hi, αl〉xl − aii ≥ 0,

where ij = i. But, by (3.3),

σ
(i)
0 (−→x ) − aii = −〈hi, λ〉 +

∑
1≤l<j

〈hi, αl〉xl + aii(xj − 1) < 0.

This is a contradiction. Moreover, if j(−) �= 0, then σ
(i)
0 (−→x ) − aii < 0 and

xj = 1 and
∑

j(−)<l<j

〈hij
, αil

〉xl = 0.

(Indeed, if σ
(i)
0 (−→x ) − aii ≥ 0, we can derive a contradiction by the same argument

given in the case that j(−) = 0.) But, this contradicts (3.3). �
Now, recall the main result of polyhedral realization of B(∞) given in [19]. Let

Sk = Sk,ι be a piecewise-linear operator on (Q∞)∗ such that

Sk(ψ) =

⎧⎪⎨⎪⎩
ψ − ψkβk if ψk > 0, ik ∈ Ire,
ψ − ψk(xk +

∑
k<j<k(+)〈hi, αij

〉xj − xk(+)) if ψk > 0, ik ∈ Iim,
ψ − ψkβk(−) if ψk ≤ 0,

where βk = β
(+)
k . Let

Θι = {Sjl
· · ·Sj1xj0 : l ≥ 0, j0, . . . , jl ≥ 1}
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be the set of linear forms obtained from the coordinate forms xj by applying trans-
formations Sk. Then under the positivity assumption on ι [18, 19], we have

Theorem 3.2 ([19]). Let ι be the sequence of indices satisfying (2.5). Let Ψι :
B(∞) ↪→ Z∞

≥0,ι be the Kashiwara embedding. Then Im Ψι is the set Γι of −→x ∈ Z∞
≥0,ι

such that
(i) ψ(−→x ) ≥ 0 for any ψ ∈ Θι,
(ii) for each t with it ∈ Iim, if xt �= 0 and t(−) �= 0, then

(3.6)
∑

t(−)<j<t

〈hit
, αij

〉xj < 0.

In addition, if 〈hit
, αij

〉xj = 0 (t(−) < j < t) for all j with ij ∈ Iim, there
exists a p (t(−) < p < t) such that ip ∈ Ire,

(3.7) 〈hit
, αip

〉xp < 0 and ψ(−→x ) > 0 for any ψ ∈ Θp\t
ι .

Corollary 3.3 ([19]). Assume that all elements of I are imaginary, that is, I =
Iim. Then the image of the Kashiwara embedding ImΨι equals the set of −→x ∈ Z∞

≥0,ι

satisfying (3.6) of Theorem 3.2.

Corollary 3.4 ([19]). Let I be an index set such that the cardinality of Ire is 1,
and let ι be a sequence of indices in I satisfying (2.5). Then the image ImΨι of the
crystal embedding is the set Γι of −→x ∈ Z∞

≥0,ι satisfying the following conditions:
(i) Sjxj ≥ 0 for all j with ij ∈ Ire,
(ii) for each t with it ∈ Iim, if xt �= 0 and t(−) �= 0, then∑

t(−)<j<t

〈hit
, αij

〉xj < 0.

In addition, if 〈hit
, αij

〉xj = 0 (t(−) < j < t) for all ij ∈ Iim, then there
exists a p (t(−) < p < t) such that ip ∈ Ire,

〈hit
, αip

〉xp < 0 and Spxp > 0.

Now, define a linear form ξ(i) (i ∈ Ire) on Q∞ by

ξ(i)(−→x ) = −
∑

1≤j<ι(i)

〈hi, αij
〉xj − x(i)

ι = −〈hi, λ〉 + λ(i)(−→x ),

and set
Θ(i)

ι = {Sjl
. . . Sj1ξ

(i)| l ≥ 0, j1, . . . , jl ≥ 1}.
Then the strict positivity assumption for ι [17] is as follows:

for any ψ =
∑

k ψkxk ∈
(
Θι ∪ (

⊔
j∈I Θj

ι )
)
\{ξ(j)| j ∈ I},

ψk ≥ 0 if k(−) = 0.

Proposition 3.5. For the sequence ι satisfying the strict positivity assumption, we
have

Ŝjl
. . . Ŝj1xj0 = Sjl

. . . Sj1xj0

for any l ≥ 0, j0, . . . , jl ≥ 1, and

(3.8) Ŝjl
. . . Ŝj1λ

(i)(−→x ) = 〈hi, λ〉 + Sjl
. . . Sj1ξ

(i)(−→x )

for any l ≥ 0, j1, . . . , jl ≥ 1, if the left hand side of (3.8) is nonzero.
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Proof. By the same argument as in the proof of Lemma 4.3 in [17], it is proved. So
we omit it. �

By Proposition 3.5, we know that under the strict positivity assumption for ι,
the set Γι[λ] (λ ∈ P+) has

−→
0 . Moreover, we have

Corollary 3.6. Let ι be a sequence of indices satisfying (2.5) and λ be a dominant
integral weight. Suppose that

−→
0 belongs to Γι[λ]. Then we have

Im Ψλ
ι =

{
−→x ∈ Z∞

≥0,ι

∣∣∣∣ (i)ψ(−→x ) ≥ 0 for any ψ ∈ Θι,
(ii) 〈hi, λ〉 + ψ(−→x ) ≥ 0 for any ψ ∈ Θ(i)

ι (i ∈ Ire),
(iii)−→x satisfies the condition (ii) of Γι[λ]

}
.

Corollary 3.7. Assume that all elements of I are imaginary, that is, I = Iim.
Then the image of the Kashiwara embedding Im Ψλ

ι equals the set of −→x ∈ Z∞
≥0,ι[λ]

satisfying (3.3) of Theorem 3.1.

Proof. By Corollary 3.6, it suffices to consider the set Θ(i)
ι . By a simple calculation,

it is easy to see that the set Θ(i)
ι consists of the linear combinations of the coordinate

forms xj with nonnegative coefficients, which completes the proof. �
By Corollary 3.4 and Corollary 3.6, we have the following simple but important

corollary.

Corollary 3.8. Let I be an index set such that the cardinality of Ire is 1, and let ι
be a sequence of indices in I satisfying (2.5). Then the image ImΨλ

ι of the crystal
embedding is the set Γι[λ] of −→x ∈ Z∞

≥0,ι[λ] satisfying the following conditions:
(i) Sjxj ≥ 0 for all j with ij ∈ Ire,
(ii) 〈hi, λ〉 + ψ(−→x ) ≥ 0 for any ψ ∈ Θ(i)

ι (i ∈ Ire),
(iii) for each t with it ∈ Iim, if xt �= 0, then∑

t(−)<j<t

〈hit
, αij

〉xj < 0 (t(−) �= 0),

−〈hit
, λ〉 +

∑
1≤j<t

〈hit
, αij

〉xj < 0 (t(−) = 0).

In addition, if ∑
t(−)<j<t

j∈Iim

〈hit
, αij

〉xj = 0 (t(−) �= 0),

−〈hit
, λ〉 +

∑
1≤j<t

j∈Iim

〈hit
, αij

〉xj = 0 (t(−) = 0),

then there exists a p (t(−) < p < t) with ip ∈ Ire such that

〈hit
, αip

〉xp < 0 and Ŝpxp(−→x ) > 0.

Set W (λ) = {µ ∈ P |B(λ)µ �= ∅} and denote by mλ,µ the weight multiplicity of
µ in B(λ). Any µ ∈ W (λ) is written as λ −

∑
i miαi for mi ∈ Z≥0.

Corollary 3.9. For µ = λ−
∑

i miαi ∈ W (λ), the weight multiplicity of µ is given
by

mλ,µ = #
{
−→x ∈ Γι[λ]

∣∣∣∣mi =
∑
ik=i

xk for any i ∈ I

}
.
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4. Applications: Monster Lie algebras

In this section, we will give an explicit description of the image of the Kashiwara
embedding for the generalized Kac-Moody algebras of ranks 2, 3 and Monster
Lie algebras. First, consider the rank 2 case. Assume that I = {1, 2} and ι =
(. . . , 2, 1, 2, 1). Since we have the results for the Kac-Moody case [17, 18], we also
assume that one of 1, 2 ∈ I is imaginary. Thanks to Corollary 3.3, it is enough to
consider the case that 1 ∈ Iim and 2 ∈ Ire. Set

〈h1, α1〉 = −a, 〈h1, α2〉 = −b, 〈h2, α1〉 = −c, and 〈h2, α2〉 = 2,

where a, b, c ∈ Z≥0.

Corollary 4.1. Let λ be a dominant integral weight. Assume that 1 ∈ Iim and
2 ∈ Ire. The image of the Kashiwara embedding Im Ψλ

ι is given by the subset Γι[λ]
of −→x ∈ Z∞

≥0,ι[λ] as follows:
(a) When b = c = 0,

(i) xk = 0 for k ≥ 3,
(ii) −x2 + 〈h2, λ〉 ≥ 0,
(iii) x1 �= 0 implies 〈h1, λ〉 > 0.

(b) When neither b nor c is 0,

(i) cx1 − x2 + 〈h2, λ〉 ≥ 0,

(ii) for each k ≥ 1, cx2k+1 − x2k+2 > 0 unless x2k+1 = x2k+2 = 0,

(iii) for each k ≥ 1, if x2k+1 �= 0, then x2k > 0,

(iv) x1 �= 0 implies 〈h1, λ〉 > 0.

Proof. By Example 3.4 in [19] and Corollary 3.8, it suffices to consider

ξ(2) = −
∑

1≤j<2

〈h2, αij
〉xj − x2 = cx1 − x2 and Sjl

. . . Sj1ξ
(2).

Since Sjl
. . . Sj1ξ

(2) is a linear combination of xi’s with nonnegative coefficients, the
only meaningful element is cx1 − x2. Moreover, if x1 is nonzero, by (3.3), we have
〈h1, λ〉 > 0. �

Example 4.2. If b = 1, c = 2, and 〈h1, λ〉 = 〈h2, λ〉 = 1, then the top part of
Im Ψλ

ι
∼= B(λ) is as follows:

−→
0 = (. . . , 0, 0, 0)

1 2

(. . . , 0, 0, 1) (. . . , 0, 1, 0)

1 2 1

(. . . , 0, 0, 2) (. . . , 0, 1, 1) (. . . , 0, 1, 1, 0)

1 2 1 2 1 2

(. . . , 0, 0, 3) (. . . , 0, 1, 2) (. . . , 0, 1, 1, 1) (. . . , 0, 2, 1) (. . . , 0, 2, 1, 0) (. . . , 0, 1, 1, 1, 0)

...
...

...
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Now, let us apply Corollary 3.8 to the generalized Kac-Moody algebras of rank 3.
Assume that I = {1, 2, 3} and ι = (. . . , 1, 3, 2, 1). Assume that 1, 2 ∈ Iim, 3 ∈ Ire.
Let A be a Borcherds-Cartan matrix

A =

⎛⎝ −a −b −c
−d −e −f
−g −h 2

⎞⎠ ,

where a, b, c, d, e, f, g, h ∈ Z≥0.

Corollary 4.3. Let λ be a dominant integral weight. The image of the Kashiwara
embedding Im Ψλ

ι is given by the subset Γι[λ] of −→x ∈ Z∞
≥0,ι[λ] satisfying the following

conditions:
(i) gx1 + hx2 − x3 + 〈h3, λ〉 ≥ 0,
(ii) for each k ≥ 1, gx3k+1 + hx3k+2 − x3k+3 ≥ 0,
(iii) for each k ≥ 4 with ik = 1, 2, if xk �= 0, then

bxk−2 + cxk−1 > 0 (ik = 1), fxk−2 + dxk−1 > 0 (ik = 2).

Moreover, if 〈hik
, αij

〉xj = 0 for j = k − 1, k − 2 with ij �= 3, then
gxj+1 + hxj+2 − xj+3 > 0.

(iv) x1 �= 0 and x2 �= 0 imply
〈h1, λ〉 > 0 and −〈h2, λ〉 − dx1 < 0, respectively.

Proof. By Theorem 7 in [19], and Corollary 3.6, it suffices to consider the set

Θ(i)
ι = {Sjl

. . . Sj1ξ
(i) | l ≥ 0, j1, . . . , jl ≥ 1}.

We know that ξ(3) = gx1 + hx2 − x3 and

S1(ξ(3)) = (bg + h)x2 + (cg − 1)x3 + gx4,

S2(ξ(3)) = gx1 + (fh − 1)x3 + dhx4 + hx5.

Since S1(ξ(3)) and S2(ξ(3)) are linear combinations with nonnegative coefficients of
xi’s, it is clear that Sjl

. . . Sj1ξ
(i) ≥ 0 (l ≥ 1) for all −→x ∈ Γι. �

Let I = {−1 = −11} ∪ {it| i ∈ N, t = 1, . . . , c(i)}, where c(i) is the coefficient of
the elliptic modular function

j(q) − 744 = q−1 + 196884q + 21493760q2 + · · · =
∞∑

i=−1

c(i)qi.

We define A = (apq)p,q∈I to be the matrix such that

apq = −(i + j) if p = il, q = jm for 1 ≤ l ≤ c(i), 1 ≤ m ≤ c(j).

The associated generalized Kac-Moody algebra g is called the Monster Lie algebra,
and it played a crucial role in Borcherds’ proof of the Moonshine conjecture [2].
More precisely, Borcherds derived the twisted denominator identity for the Monster
Lie algebra with the action of the Monster, from which the replication formulae for
the Thompson series follow.

In this paper, we deal with the corresponding quantum group Uq(g), which we
call the quantum Monster algebra. Assume that

ι = (. . . ,−1, 3c(3), . . . , 31,2c(2), . . . , 21, 1c(1), . . . , 11,−1,

2c(2), . . . ,21, 1c(1), . . . , 11,−1, 1c(1), . . . , 11,−1).
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Let I(−1) be the set of positive integers k such that ik = −1; i.e.,

I(−1) = {1} ∪ {b(n) = nc(1) + (n − 1)c(2) + · · · + c(n) + n + 1 |n ∈ N},

and for any n ≥ 1,
σ(n) = c(1) + · · · + c(n).

Theorem 4.4. Let λ be a dominant integral weight. Then the image of the Kashi-
wara embedding Im Ψλ

ι is given by the subset Γι[λ] of −→x ∈ Z∞
≥0,ι[λ] such that

(i) 0 ≤ x1 ≤ 〈h−1, λ〉, xc(1)+2 = 0, and for each n ≥ 1,

n∑
k=1

k(xb(n)+σ(k)+1 + · · · + xb(n)+σ(k+1)) − xb(n)+σ(n+1)+1 ≥ 0,

(ii) for each k /∈ I(−1), if xk �= 0 and k(−) �= 0, then∑
k(−)<j<k

〈hik
, αij

〉xj �= 0.

Moreover, if 〈hik
, αij

〉xj = 0 for all k(−) < j < k with j /∈ I−1, then there
exists m ≥ 1 such that k(−) < b(m) < k and

m∑
k=1

k(xb(m)+σ(k)+1 + · · · + xb(m)+σ(k+1)) − xb(m)+σ(m+1)+1 > 0,

(iii) for each k /∈ I−1, if xk �= 0 and k(−) = 0, then

−〈hik
, λ〉 +

∑
1≤j<k〈hik

, αij
〉xj < 0.

Moreover, if 〈hik
, λ〉 = 0 and 〈hik

, αij
〉xj = 0 for all 1 ≤ j < k with

j /∈ I−1, then there exists m ≥ 1 such that 1 ≤ b(m) < k and
m∑

k=1

k(xb(m)+σ(k)+1 + · · · + xb(m)+σ(k+1)) − xb(m)+σ(m+1)+1 > 0.

Proof. By Theorem 10 in [19] and Corollary 3.6, it is enough to consider the set

Θ(i)
ι = {Sjl

. . . Sj1ξ
(i) | l ≥ 0, j1, . . . , jl ≥ 1}.

We know that ξ(−1) = −x1 and Sjl
. . . Sj1ξ

(i) = −x1 for all l, which completes the
proof. �

Finally, by Theorem 4.4, we have the following character of the highest weight
module V (λ) over Uq(g).

Corollary 4.5.

ch V (λ) =
∑

−→x ∈Γι[λ]

ewt(−→x ) =
∑

−→x ∈Γι[λ]

eλ−
∑∞

j=1 xjαij .
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