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MULTIDIMENSIONAL OPERATOR MULTIPLIERS

K. JUSCHENKO, I. G. TODOROV, AND L. TUROWSKA

Abstract. We introduce multidimensional Schur multipliers and characterise
them, generalising well-known results by Grothendieck and Peller. We define a
multidimensional version of the two-dimensional operator multipliers studied
recently by Kissin and Shulman. The multidimensional operator multipliers
are defined as elements of the minimal tensor product of several 𝐶∗-algebras
satisfying certain boundedness conditions. In the case of commutative 𝐶∗-
algebras, the multidimensional operator multipliers reduce to continuous mul-
tidimensional Schur multipliers. We show that the multipliers with respect to
some given representations of the corresponding 𝐶∗-algebras do not change if
the representations are replaced by approximately equivalent ones. We estab-

lish a non-commutative and multidimensional version of the characterisations
by Grothendieck and Peller which shows that universal operator multipliers
can be obtained as certain weak limits of elements of the algebraic tensor
product of the corresponding 𝐶∗-algebras.

1. Introduction

A bounded function 𝜑 : ℕ × ℕ → ℂ is called a Schur multiplier if (𝜑(𝑖, 𝑗)𝑎𝑖𝑗)
is the matrix of a bounded linear operator on ℓ2 whenever (𝑎𝑖𝑗) is such. The
study of Schur multipliers was initiated by Schur in the early 20th century. A
characterisation of these objects was given by A. Grothendieck in his R𝑒sum𝑒 [16],
where he showed that Schur multipliers are precisely the functions 𝜑 of the form
𝜑(𝑖, 𝑗) =

∑∞
𝑘=1 𝑎𝑘(𝑖)𝑏𝑘(𝑗), where 𝑎𝑘, 𝑏𝑘 : ℕ→ ℂ are such that sup𝑖

∑∞
𝑘=1 ∣𝑎𝑘(𝑖)∣2 <

∞ and sup𝑗
∑∞

𝑘=1 ∣𝑏𝑘(𝑗)∣2 < ∞. Schur multipliers have had many important ap-
plications in analysis; see e.g. [2], [10] and [26]. One of the forms of the celebrated
Grothendieck inequality can be given in terms of these objects [26].

One of the most important developments in analysis in recent years has been
“quantisation” [12], starting with the advent of the theory of operator spaces in
the 1980s in the work of Blecher, Effros, Haagerup, Paulsen, Pisier, Ruan, Sinclair
and many others, and based on Arveson’s pioneering work in the 1970s. Operator
space (or non-commutative) versions are presently being found for many results in
classical Banach space theory [7, 22, 27]. A construction underlying many of the
developments in Operator Space Theory is the Haagerup tensor product, as well as
its weak counterpart, the weak* Haagerup tensor product [8] and its generalisation,
the extended Haagerup tensor product [15]. Grothendieck’s characterisation can be
formulated by saying that the set of Schur multipliers coincides with the extended
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(or the weak*) Haagerup tensor product ℓ∞⊗𝑒ℎ ℓ∞ of the space ℓ∞ of all bounded
complex sequences with itself.

Schur multipliers are elements of the commutative von Neumann algebra
ℓ∞(ℕ×ℕ), or equivalently of the (von Neumann) tensor product of (the commuta-
tive von Neumann algebra) ℓ∞ with itself. Subsequently, they form a commutative
algebra themselves. Their quantisation was initiated by Kissin and Shulman in [21].
Suppose that 𝒜 and ℬ are 𝐶∗-algebras and 𝜋 and 𝜌 their representations on 𝐻 and
𝐾, respectively. The Hilbert space tensor product 𝐻⊗𝐾 can be naturally identified
with the Hilbert space 𝒞2(𝐻d,𝐾) of Hilbert-Schmidt operators from the dual 𝐻d of
𝐻 into 𝐾. It follows that 𝜋 and 𝜌 give rise to a representation 𝜎𝜋,𝜌 of the minimal
tensor product 𝒜 ⊗ ℬ of 𝒜 and ℬ on 𝒞2(𝐻d,𝐾). Kissin and Shulman call an ele-
ment 𝜑 ∈ 𝒜⊗ℬ a (𝜋, 𝜌)-multiplier if 𝜎𝜋,𝜌(𝜑) is bounded in the norm of 𝒞2(𝐻d,𝐾)
induced by its inclusion into the algebra ℬ(𝐻d,𝐾) of all bounded operators from
𝐻d into 𝐾. In [21], they study two sets of problems: the dependence of (𝜋, 𝜌)-
multipliers on 𝜋 and 𝜌 and the description of the norm of an operator multiplier.
Most of their results are established in the more general setting of symmetrically
normed ideals.

Assume that 𝒜 and ℬ are commutative, say 𝒜 = 𝐶0(𝑋) and ℬ = 𝐶0(𝑌 ), for
some locally compact Hausdorff spaces 𝑋 and 𝑌 , and that the representations 𝜋 and
𝜌 arise from some spectral measures on 𝑋 and 𝑌 . The notion of a (𝜋, 𝜌)-multiplier
is in this case closely related to that of double operator integrals introduced and
developed by Birman and Solomyak [3, 4, 5, 6] in connection with various problems
of Mathematical Physics and in particular of Perturbation Theory. If (𝑋, ℰ) and
(𝑌,ℱ) are spectral measures on the Hilbert spaces 𝐻 and 𝐾, they defined the
double operator integral

𝐼𝜓(𝑇 ) =

∫
𝑋×𝑌

𝜓(𝑥, 𝑦) 𝑑ℰ(𝑥)𝑇 𝑑ℱ(𝑦),

for every bounded measurable function 𝜓 and every operator 𝑇 from the Hilbert-
Schmidt class 𝒞2(𝐻,𝐾). A function 𝜓 is called a Schur multiplier with respect
to ℰ and ℱ if 𝐼𝜓 can be extended to a bounded linear operator on the space
(ℬ(𝐻,𝐾), ∥ ⋅ ∥op) of bounded operators from 𝐻 to 𝐾, that is, if there exists 𝐶 > 0
such that ∥𝐼𝜓(𝑇 )∥op ≤ 𝐶∥𝑇∥op for all 𝑇 ∈ 𝒞2(𝐻,𝐾). Peller [24] (see also [19]) char-
acterised Schur multipliers with respect to ℰ and ℱ in several ways. In particular,
he showed that the space of Schur multipliers with respect to ℰ and ℱ coincides
with the extended Haagerup tensor product 𝐿∞(𝑋) ⊗𝑒ℎ 𝐿∞(𝑌 ) and the integral
projective tensor product 𝐿∞(𝑋)⊗̂𝑖𝐿∞(𝑌 ).

Several attempts were made to generalise the Birman-Solomyak theory to the
case of multiple operator integrals [23, 31, 30]. Such integrals appear, for in-
stance, in the study of differentiability of functions of operators depending on a
parameter. A recent definition of multiple operator integrals by Peller in [25] is
based on the integral projective tensor product. For some fixed spectral measures
(𝑋1, ℰ1), . . . , (𝑋𝑛, ℰ𝑛) on Hilbert spaces 𝐻1, . . . , 𝐻𝑛, he defines 𝐼𝜓(𝑇1, . . . , 𝑇𝑛−1) to
be equal to

∫
𝑋1×...×𝑋𝑛

𝜓(𝑥1, . . . , 𝑥𝑛) 𝑑ℰ1(𝑥1)𝑇1 𝑑ℰ2(𝑥2) . . . 𝑇𝑛−1 𝑑ℰ𝑛(𝑥𝑛),
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where 𝜓 ∈ 𝐿∞(𝑋1)⊗̂𝑖 . . . ⊗̂𝑖𝐿∞(𝑋𝑛) and 𝑇1, . . . , 𝑇𝑛−1 are bounded linear operators,
and shows that

∥𝐼𝜓(𝑇1, . . . , 𝑇𝑛−1)∥op ≤ ∥𝜓∥𝑖∥𝑇1∥op . . . ∥𝑇𝑛−1∥op,
where ∥𝜓∥𝑖 denotes the integral projective tensor norm of 𝜓. If the spectral mea-
sures are multiplicity free and 𝑇1, . . . , 𝑇𝑛−1 are Hilbert-Schmidt operators with ker-
nels 𝑓1, . . . , 𝑓𝑛−1, respectively, then 𝐼𝜓(𝑇1, . . . , 𝑇𝑛−1) is a Hilbert-Schmidt operator
with kernel 𝑆𝜓(𝑓1, . . . , 𝑓𝑛−1) ∈ 𝐿2(𝑋1 ×𝑋𝑛) equal to

(1)

∫
𝜓(𝑥1, . . . , 𝑥𝑛)𝑓1(𝑥1, 𝑥2) . . . 𝑓𝑛−1(𝑥𝑛−1, 𝑥𝑛) 𝑑ℰ2(𝑥2) . . . 𝑑ℰ𝑛−1(𝑥𝑛−1).

This was the starting point for our definition of multidimensional Schur multi-
pliers in Section 3. Let (𝑋𝑖, 𝜇𝑖), 𝑖 = 1, . . . , 𝑛, be standard 𝜎-finite measure spaces
and Γ(𝑋1, . . . , 𝑋𝑛) = 𝐿2(𝑋1×𝑋2)⊙𝐿2(𝑋2×𝑋3)⊙ . . .⊙𝐿2(𝑋𝑛−1×𝑋𝑛) be the al-
gebraic tensor product of the corresponding 𝐿2-spaces equipped with the projective
tensor norm, where each of the 𝐿2-spaces is equipped with its 𝐿2-norm. An element
𝜓 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛) determines a bounded linear map 𝑆𝜓 from Γ(𝑋1, . . . , 𝑋𝑛)
to 𝐿2(𝑋1, 𝑋𝑛) given on elementary tensors 𝑓1 ⊗ . . . ⊗ 𝑓𝑛 ∈ Γ(𝑋1, . . . , 𝑋𝑛) by (1)
(where the integration is now with respect to 𝜇𝑖 instead of ℰ𝑖). This definition ex-
tends the multivariable Schur product defined by Effros and Ruan in their study of
completely bounded multipliers of multivariable Fourier algebras of discrete groups
[13]. On the other hand, for any measure spaces (𝑋,𝜇) and (𝑌, 𝜈), the space
𝐿2(𝑋 × 𝑌 ) can be identified with the class of all Hilbert-Schmidt operators from
𝐿2(𝑋) to 𝐿2(𝑌 ); to each 𝑓 ∈ 𝐿2(𝑋×𝑌 ) there corresponds the operator 𝑇𝑓 given by
𝑇𝑓𝜉(𝑦) =

∫
𝑋

𝑓(𝑥, 𝑦)𝜉(𝑥)𝑑𝜇(𝑥), 𝜉 ∈ 𝐿2(𝑋). Using this identification, one can equip

the space 𝐿2(𝑋 × 𝑌 ) with the opposite operator space structure arising from the
inclusion of 𝐿2(𝑋×𝑌 ) into ℬ(𝐿2(𝑋), 𝐿2(𝑌 )). We further equip Γ(𝑋1, . . . , 𝑋𝑛) with
the Haagerup tensor norm ∥⋅∥h, where the 𝐿2-spaces are given their opposite opera-
tor space structure described above, and say that an element 𝜓 ∈ 𝐿∞(𝑋1×. . .×𝑋𝑛)
is a Schur multiplier (with respect to 𝜇1, . . . , 𝜇𝑛) if there exists 𝐶 > 0 such that

(2) ∥𝑆𝜓(Φ)∥op ≤ 𝐶∥Φ∥h, for all Φ ∈ Γ(𝑋1, . . . , 𝑋𝑛).

Using a generalisation of a result of Smith [28] on the complete boundedness of cer-
tain bounded bimodule maps to the case of multilinear modular maps, we obtain a
characterisation of multidimensional Schur multipliers as elements of the extended
Haagerup tensor product 𝐿∞(𝑋1)⊗𝑒ℎ . . .⊗𝑒ℎ 𝐿∞(𝑋𝑛) (Theorem 3.4). This gener-
alises the characterisations of Grothendieck and Peller in the case 𝑛 = 2. We show
that the integral projective tensor product consists of multipliers and, therefore,
𝐿∞(𝑋1)⊗̂𝑖 . . . ⊗̂𝑖𝐿∞(𝑋𝑛) ⊂ 𝐿∞(𝑋1) ⊗𝑒ℎ . . . ⊗𝑒ℎ 𝐿∞(𝑋𝑛). The converse inclusion
is true in the case 𝑛 = 2 [24] but remains an open problem for 𝑛 > 2.

In Section 4 we consider a non-commutative version of multidimensional mul-
tipliers following the Kissin-Shulman approach in the two-dimensional case. We
replace the functions 𝜓 by elements of the minimal tensor product 𝒜1 ⊗ . . . ⊗ 𝒜𝑛
of some given 𝐶∗-algebras 𝒜1, . . . ,𝒜𝑛 and the measure 𝜇𝑖 by a representation 𝜋𝑖 of
𝒜𝑖. We thus obtain a class of operator (𝜋1, . . . , 𝜋𝑛)-multipliers. If each 𝒜𝑖 is a com-
mutative 𝐶∗-algebra, say 𝒜𝑖 = 𝐶0(𝑋𝑖) for some locally compact Hausdorff space
𝑋𝑖, and 𝜋𝑖(𝑓) is the operator of multiplication by 𝑓 ∈ 𝐶0(𝑋) acting on 𝐿2(𝑋𝑖, 𝜇𝑖),
then 𝜓 is a (𝜋1, . . . , 𝜋𝑛)-multiplier if and only if 𝜓 is a Schur multiplier with respect
to 𝜇1, . . . , 𝜇𝑛 (Proposition 4.6). As in the two-dimensional case, we show that the
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set of (𝜋1, . . . , 𝜋𝑛)-multipliers does not change if we replace each 𝜋𝑖 by an approx-
imately equivalent representation (Theorem 5.1). A consequence of this result is
the fact that the class of continuous (multidimensional) Schur multipliers depends
only on the supports of the measures 𝜇𝑖.

In Section 6 we study universal mutlipliers, that is, the elements of 𝒜1⊗ . . .⊗𝒜𝑛
which are (𝜋1, . . . , 𝜋𝑛)-multipliers for all representations 𝜋𝑖 of 𝒜𝑖, 𝑖 = 1, . . . , 𝑛. We
characterise such multipliers as the elements of a certain weak completion of the
algebraic tensor product 𝒜1 ⊙ . . . ⊙ 𝒜𝑛 (Theorem 6.6). In the case where the
𝐶∗-algebras are commutative and 𝑛 = 2 this was proved in [21]; the case of ar-
bitrary 𝐶∗-algebras was left as a conjecture. Our result may be thought of as a
non-commutative and multidimensional version of Grothendieck’s and Peller’s char-
acterisations of Schur multipliers. A key ingredient in the proof is the observation
that a universal multiplier determines a completely bounded multilinear modular
map from the Cartesian product of the 𝐶∗-algebras of compact operators into the
𝐶∗-algebra of compact operators which allows us to use a result by Christensen and
Sinclair [9] providing a description of all such mappings.

2. Preliminaries

In this section we collect some preliminary notions and results which will be
needed in the sequel.

Let 𝐻 be a Hilbert space. The dual space 𝐻d of 𝐻 is a Hilbert space and there
exists an anti-isometry ∂ : 𝐻 → 𝐻d given by ∂(𝑥)(𝑦) = (𝑦, 𝑥), 𝑥, 𝑦 ∈ 𝐻. We set
𝑥d = ∂(𝑥).

If 𝐻 and 𝐾 are Hilbert spaces, we let ℬ(𝐻,𝐾) be the space of all bounded linear
operators from 𝐻 into 𝐾, and ∥⋅∥op be the usual operator norm on ℬ(𝐻,𝐾). We let
𝒦(𝐻,𝐾) be the subspace of all compact operators, and 𝒞2(𝐻,𝐾) be the subspace of
all Hilbert-Schmidt operators, from 𝐻 into 𝐾. For each 𝑇 ∈ 𝒞2(𝐻,𝐾), we denote
by ∥𝑇∥2 the Hilbert-Schmidt norm of 𝑇 . The space 𝒞2(𝐻,𝐾) is a Hilbert space
with respect to the inner product (𝑇, 𝑆) = tr(𝑇𝑆∗), where 𝑆∗ denotes the adjoint of
the operator 𝑆. We let ℬ(𝐻) = ℬ(𝐻,𝐻), 𝒦(𝐻) = 𝒦(𝐻,𝐻) and 𝒞2(𝐻) = 𝒞2(𝐻,𝐻).

If 𝑇 ∈ ℬ(𝐻,𝐾) we denote by 𝑇 d ∈ 𝐵(𝐾d, 𝐻d) the conjugate of 𝑇 . We have that
∥𝑇 d∥op = ∥𝑇∥op and 𝑇 d𝑥d = (𝑇 ∗𝑥)d, whenever 𝑥 ∈ 𝐾2. Another way of expressing
the last identity is

(3) 𝑇 d = ∂𝑇 ∗∂−1.

We also have

(4) (𝑇 ∗)d = (𝑇 d)∗ and (𝜆𝑇 )d = 𝜆𝑇 d, 𝜆 ∈ ℂ.

We let 𝐻 ⊗𝐾 be the Hilbert space tensor product of 𝐻 and 𝐾. There exists a
unitary operator 𝜃 : 𝐻⊗𝐾 → 𝒞2(𝐻d,𝐾) given on elementary tensors 𝑥⊗𝑦 ∈ 𝐻⊗𝐾
by

𝜃(𝑥⊗ 𝑦)(𝑧d) = (𝑥, 𝑧)𝑦, 𝑧d ∈ 𝐻d.

If 𝐴 ∈ ℬ(𝐻), 𝐵 ∈ ℬ(𝐾), 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾, we have that 𝜃((𝐴⊗𝐵)(𝑥⊗𝑦)) =
𝐵𝜃(𝑥⊗𝑦)𝐴d, and hence

(5) 𝜃((𝐴⊗𝐵)𝜉) = 𝐵𝜃(𝜉)𝐴d for all 𝜉 ∈ 𝐻⊗𝐾.
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If 𝜑 ∈ ℬ(𝐻 ⊗𝐾), let 𝜎(𝜑) ∈ ℬ(𝒞2(𝐻d,𝐾)) be given by the formula

𝜎(𝜑)𝜃(𝜉) = 𝜃(𝜑𝜉), 𝜉 ∈ 𝐻 ⊗𝐾.

Then 𝜎 implements a unitary equivalence between ℬ(𝐻 ⊗𝐾) and ℬ(𝒞2 (𝐻d, 𝐾)).
We will call an element 𝜑 ∈ ℬ(𝐻 ⊗ 𝐾) a concrete (operator) multiplier if there
exists 𝐶 > 0 such that ∥𝜎(𝜑)𝑇∥op ≤ 𝐶∥𝑇∥op, for each 𝑇 ∈ 𝒞2(𝐻d,𝐾). Suppose
that 𝐻 = 𝑙2(𝑋), 𝐾 = 𝑙2(𝑌 ) for some sets 𝑋 and 𝑌 and 𝜑 is the operator on
𝐻 ⊗𝐾 = ℓ2(𝑋 × 𝑌 ) of multiplication by a function 𝜙 ∈ ℓ∞(𝑋 × 𝑌 ). The concrete
operator multipliers of this form are precisely the classical Schur multipliers on
𝑋 × 𝑌 (see e.g. [26]).

Let 𝒜 and ℬ be 𝐶∗-algebras. We denote by 𝒜⊗ ℬ the minimal tensor product
of 𝒜 and ℬ. Let 𝜋 : 𝒜 → ℬ(𝐻) (resp. 𝜌 : ℬ → ℬ(𝐾)) be a representation of
𝒜 (resp. ℬ). Then 𝜋 ⊗ 𝜌 : 𝒜 ⊗ ℬ → ℬ(𝐻 ⊗ 𝐾), given on elementary tensors by
(𝜋 ⊗ 𝜌)(𝑎⊗ 𝑏) = 𝜋(𝑎)⊗ 𝜌(𝑏), is a representation of 𝒜⊗ ℬ. Let 𝜎𝜋,𝜌 = 𝜎 ∘ (𝜋 ⊗ 𝜌);
clearly, 𝜎𝜋,𝜌 is a representation of 𝒜⊗ℬ on 𝒞2(𝐻d,𝐾), unitarily equivalent to 𝜋⊗𝜌.
We moreover have

𝜎𝜋,𝜌(𝑎⊗ 𝑏)𝑇 = 𝜌(𝑏)𝑇𝜋(𝑎)d, 𝑎 ∈ 𝒜, 𝑏 ∈ ℬ, 𝑇 ∈ 𝒞2(𝐻d,𝐾).

An element 𝜑 ∈ 𝒜 ⊗ ℬ is called a (𝜋, 𝜌)-multiplier [21] if there exists 𝐶 > 0 such
that

(6) ∥𝜎𝜋,𝜌(𝜑)𝑇∥op ≤ 𝐶∥𝑇∥op, for each 𝑇 ∈ 𝒞2(𝐻d,𝐾),

in other words, if (𝜋⊗ 𝜌)(𝜑) is a concrete operator multiplier. The set of all (𝜋, 𝜌)-
multipliers in 𝒜 ⊗ ℬ is denoted by M𝜋,𝜌(𝒜,ℬ), and the smallest constant 𝐶 ap-
pearing in (6) is denoted by ∥𝜑∥𝜋,𝜌. If 𝜑 is a (𝜋, 𝜌)-multiplier for all representations
𝜋 of 𝒜 and 𝜌 of ℬ, then 𝜑 is called a universal multiplier. The set of all universal
multipliers is denoted by M(𝒜,ℬ); if 𝜑 ∈M(𝒜,ℬ) we let ∥𝜑∥univ = sup𝜋,𝜌 ∥𝜑∥𝜋,𝜌.
It is not difficult to see that in this case ∥𝜑∥univ <∞ [21].

We now recall some notions from Operator Space Theory. We refer the reader
to [7], [14] and [27] for more details. An operator space ℰ is a closed subspace of
ℬ(𝐻,𝐾), for some Hilbert spaces 𝐻 and 𝐾. If 𝑛,𝑚 ∈ ℕ, by 𝑀𝑛,𝑚(ℰ) we will denote
the space of all 𝑛 by 𝑚 matrices with entries in ℰ and let 𝑀𝑛(ℰ) = 𝑀𝑛,𝑛(ℰ). Note
that 𝑀𝑛,𝑚(ℰ) can be identified in a natural way with a subspace of ℬ(𝐻𝑚,𝐾𝑛)
and hence carries a natural operator norm. If 𝑛 = ∞ or 𝑚 = ∞, we will denote by
𝑀𝑛,𝑚(ℰ) the space of all (singly or doubly infinite) matrices with entries in ℰ which
represent a bounded linear operator between the corresponding amplifications of
the Hilbert spaces and set 𝑀∞(ℰ) = 𝑀∞,∞(ℰ). We also write 𝑀𝑛,𝑚 = 𝑀𝑛,𝑚(ℂ)
and 𝑀∞ = 𝑀∞,∞(ℂ). If 𝑎 = (𝑎𝑖𝑗) ∈ 𝑀𝑛,𝑚(ℰ), where 𝑎𝑖𝑗 ∈ ℰ , we let 𝑎d = (𝑎d𝑖𝑗);

thus 𝑎d ∈ ℬ(𝐾d,𝑚, 𝐻d,𝑛). We also let 𝑎t = (𝑎𝑗𝑖) ∈𝑀𝑚,𝑛(ℰ); thus 𝑎t ∈ ℬ(𝐻𝑛,𝐾𝑚).
We have ∥𝑎d∥op = ∥𝑎t∥op and ∥𝑎d,t∥op = ∥𝑎∥op. The opposite operator space ℰ𝑜
of the operator space ℰ is defined as follows: if ℰ ⊆ ℬ(𝐻,𝐾), then ℰ𝑜 = {𝑥d : 𝑥 ∈
ℰ} ⊆ ℬ(𝐾d, 𝐻d).

If ℰ and ℱ are operator spaces, a linear map Φ : ℰ → ℱ is called completely
bounded if the map Φ(𝑘) : 𝑀𝑘(ℰ) → 𝑀𝑘(ℱ), given by Φ(𝑘)((𝑎𝑖𝑗)) = (Φ(𝑎𝑖𝑗)), is

bounded for each 𝑘 ∈ ℕ and ∥Φ∥cb 𝑑𝑒𝑓= sup𝑘 ∥Φ(𝑘)∥ <∞.
Let ℰ , ℰ1, . . . , ℰ𝑛 be operator spaces. We denote by ℰ1 ⊙ ⋅ ⋅ ⋅ ⊙ ℰ𝑛 the algebraic

tensor product of ℰ1, . . . , ℰ𝑛. Let 𝑎𝑘 = (𝑎𝑘𝑖𝑗) ∈ 𝑀𝑚𝑘,𝑚𝑘+1
(ℰ𝑘), 𝑘 = 1, . . . , 𝑛. We
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denote by

(7) 𝑎1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑎𝑛 ∈𝑀𝑚1,𝑚𝑛+1
(ℰ1 ⊙ ⋅ ⋅ ⋅ ⊙ ℰ𝑛)

the matrix whose (𝑖, 𝑗)-entry is

(8)
∑

𝑖2,...,𝑖𝑛

𝑎1𝑖,𝑖2 ⊗ 𝑎2𝑖2,𝑖3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑛𝑖𝑛,𝑗 .

Let Φ : ℰ1 × ⋅ ⋅ ⋅ × ℰ𝑛 → ℰ be a multilinear map and

Φ(𝑚) : 𝑀𝑚(ℰ1)×𝑀𝑚(ℰ2)× ⋅ ⋅ ⋅ ×𝑀𝑚(ℰ𝑛) →𝑀𝑚(ℰ)

be the multilinear map given by

(9) Φ(𝑚)(𝑎1, . . . , 𝑎𝑛)𝑖𝑗 =
∑

𝑖2,...,𝑖𝑛

Φ(𝑎1𝑖,𝑖2 , 𝑎
2
𝑖2,𝑖3

, . . . , 𝑎𝑛𝑖𝑛,𝑗),

where 𝑎𝑘 = (𝑎𝑘𝑖𝑗) ∈𝑀𝑚(ℰ𝑘), 1 ≤ 𝑖, 𝑗 ≤ 𝑚. The map Φ is called completely bounded

if there exists 𝐶 > 0 such that for all 𝑚 ∈ ℕ and all elements 𝑎𝑘 ∈ 𝑀𝑚(ℰ𝑘),
𝑘 = 1, . . . , 𝑛, we have

∥Φ(𝑚)(𝑎1, . . . , 𝑎𝑛)∥ ≤ 𝐶∥𝑎1∥ . . . ∥𝑎𝑛∥.
Every completely bounded multilinear map Φ : ℰ1 × ⋅ ⋅ ⋅ × ℰ𝑛 → ℰ gives rise to a

completely bounded linear map from the Haagerup tensor product ℰ1 ⊗h ⋅ ⋅ ⋅ ⊗h ℰ𝑛
into ℰ . For details on the Haagerup tensor product we refer the reader to [14].

If 𝑅1, . . . , 𝑅𝑛+1 are rings, 𝑀𝑖 is an 𝑅𝑖-left and 𝑅𝑖+1-right module for each 𝑖 =
1, . . . , 𝑛, and 𝑀 is an (𝑅1, 𝑅𝑛+1)-module, then a multilinear map Φ : 𝑀1 × ⋅ ⋅ ⋅ ×
𝑀𝑛 →𝑀 will be called (𝑅1, . . . , 𝑅𝑛+1)-modular (or simply modular if 𝑅1, . . . , 𝑅𝑛+1

are clear from the context) if

Φ(𝑎1𝑚1𝑎2,𝑚2𝑎3, . . . ,𝑚𝑛𝑎𝑛+1) = 𝑎1Φ(𝑚1, 𝑎2𝑚2, 𝑎3𝑚3, . . . , 𝑎𝑛𝑚𝑛)𝑎𝑛+1,

for all 𝑚𝑖 ∈ 𝑀𝑖 (𝑖 = 1, . . . , 𝑛) and 𝑎𝑗 ∈ 𝑅𝑗 (𝑗 = 1, . . . , 𝑛 + 1). If 𝑅𝑖 = 𝒜𝑖 are 𝐶∗-
algebras and 𝑀𝑖 = ℰ𝑖 are operator spaces, we let ℬ𝒜1,...,𝒜𝑛+1

(ℰ1, . . . , ℰ𝑛; ℰ) (resp.
𝐶𝐵𝒜1,...,𝒜𝑛+1

(ℰ1, . . . , ℰ𝑛; ℰ)) denote the spaces of all bounded (resp. completely
bounded) (𝒜1, . . . ,𝒜𝑛+1)-modular maps from ℰ1 × ⋅ ⋅ ⋅ × ℰ𝑛 into ℰ .

3. Multidimensional Schur multipliers

In this section, we define multidimensional Schur multipliers on the direct prod-
uct of finitely many measure spaces. The main result of the section is Theorem 3.4,
which characterises multidimensional Schur multipliers generalising the results of
Peller [24] and Spronk [29].

Let (𝑋𝑖, 𝜇𝑖), 𝑖 = 1, 2, . . . , 𝑛, be standard 𝜎-finite measure spaces. For notational
convenience, integration with respect to 𝜇𝑖 will be denoted by 𝑑𝑥𝑖. Direct prod-
ucts of the form 𝑋𝑖1 × ⋅ ⋅ ⋅ ×𝑋𝑖𝑘 will be equipped with the corresponding product
measure. We equip the space 𝐿2(𝑋1 × 𝑋2) with an (𝐿∞(𝑋1), 𝐿

∞(𝑋2))-module
action by letting (𝑎𝜉𝑏)(𝑥, 𝑦) = 𝑎(𝑥)𝜉(𝑥, 𝑦)𝑏(𝑦). We will denote by 𝑀𝑎 the operator
of multiplication by the essentially bounded function 𝑎 acting on the corresponding
𝐿2-space.

Theorem 3.1. A multilinear map

𝑆 : 𝐿2(𝑋1 ×𝑋2)× 𝐿2(𝑋2 ×𝑋3)× ⋅ ⋅ ⋅ × 𝐿2(𝑋𝑛−1 ×𝑋𝑛) → 𝐿2(𝑋1 ×𝑋𝑛)
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is a bounded modular map if and only if there exists 𝜑 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛) such
that 𝑆 = 𝑆𝜑, where 𝑆𝜑(𝑓1, . . . , 𝑓𝑛−1)(𝑥1, 𝑥𝑛) is defined as∫

𝑋2×⋅⋅⋅×𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛)𝑓1(𝑥1, 𝑥2)𝑓2(𝑥2, 𝑥3) . . . 𝑓𝑛−1(𝑥𝑛−1, 𝑥𝑛)𝑑𝑥2 . . . 𝑑𝑥𝑛−1.

Moreover, ∥𝑆𝜑∥ = ∥𝜑∥∞.

Proof. We first show that for each 𝜑, the map 𝑆𝜑 is a bounded modular map with
norm not exceeding ∥𝜑∥∞. For simplicity, we will assume in this part of the proof
that 𝑛 = 3. Fix 𝜑, 𝑓1 and 𝑓2. We have

∥𝑆𝜑(𝑓1, 𝑓2)∥22 ≤
∫
𝑋1×𝑋3

(∫
∣𝜑(𝑥1, 𝑥2, 𝑥3)𝑓1(𝑥1, 𝑥2)𝑓2(𝑥2, 𝑥3)∣𝑑𝑥2

)2
𝑑𝑥1𝑑𝑥3

≤ ∥𝜑∥2∞
∫
𝑋1×𝑋3

(∫
∣𝑓1(𝑥1, 𝑥2)𝑓2(𝑥2, 𝑥3)∣𝑑𝑥2

)2
𝑑𝑥1𝑑𝑥3

≤ ∥𝜑∥2∞
∫
𝑋1×𝑋3

(∫
∣𝑓1(𝑥1, 𝑥2)∣2𝑑𝑥2

)(∫
∣𝑓2(𝑥2, 𝑥2)∣2𝑑𝑥2

)
𝑑𝑥1𝑑𝑥3

= ∥𝜑∥2∞∥𝑓1∥22∥𝑓2∥22.
Thus, 𝜑 is bounded with ∥𝑆𝜑∥ ≤ ∥𝜑∥∞; the modularity of 𝑆𝜑 is obvious.

Conversely, let

𝑆 : 𝐿2(𝑋1 ×𝑋2)× 𝐿2(𝑋2 ×𝑋3)× ⋅ ⋅ ⋅ × 𝐿2(𝑋𝑛−1 ×𝑋𝑛) → 𝐿2(𝑋1 ×𝑋𝑛)

be a bounded modular map. We first assume that the measures 𝜇𝑖 are finite. Write
𝐾1 = 𝐿2(𝑋1 ×𝑋𝑛) and let

𝑆1 : 𝐿2(𝑋2)× 𝐿2(𝑋2)× 𝐿2(𝑋3)× 𝐿2(𝑋3)× ⋅ ⋅ ⋅ × 𝐿2(𝑋𝑛−1)× 𝐿2(𝑋𝑛−1) → 𝐾1

be given by

𝑆1(𝜉2, 𝜂2, 𝜉3, 𝜂3, . . . , 𝜉𝑛−1, 𝜂𝑛−1) = 𝑆(1⊗ 𝜉2, 𝜂2 ⊗ 𝜉3, . . . , 𝜂𝑛−1 ⊗ 1)

(here and in the sequel we denote by 1 the constant function taking value one).
The fact that 𝑆 is modular implies that

𝑆1(𝜉2𝑎2, 𝜂2, 𝜉3𝑎3, . . . , 𝜉𝑛−1𝑎𝑛−1, 𝜂𝑛−1) = 𝑆1(𝜉2, 𝑎2𝜂2, 𝜉3, . . . , 𝑎𝑛−1𝜂𝑛−1),

whenever 𝑎𝑖 ∈ 𝐿∞(𝑋𝑖), 𝑖 = 2, . . . , 𝑛 − 1. For fixed 𝜉3, 𝜂3, . . . , 𝜉𝑛−1, 𝜂𝑛−1, let 𝑆2 :
𝐿2(𝑋2)× 𝐿2(𝑋2) → 𝐾1 be given by

𝑆2(𝜉2, 𝜂2) = 𝑆1(𝜉2, 𝜂2, 𝜉3, 𝜂3, . . . , 𝜉𝑛−1, 𝜂𝑛−1).

For ℎ ∈ 𝐾1, let 𝑆ℎ2 : 𝐿2(𝑋2)×𝐿2(𝑋2) → ℂ be defined by 𝑆ℎ2 (𝜉2, 𝜂2) = (𝑆2(𝜉2, 𝜂2), ℎ).
Clearly,

∣𝑆ℎ2 (𝜉2, 𝜂2)∣ ≤ ∥ℎ∥∥𝑆∥
𝑛−1∏
𝑖=2

∥𝜉𝑖∥∥𝜂𝑖∥.

Hence there exists a bounded operator 𝑇ℎ2 : 𝐿2(𝑋2) → 𝐿2(𝑋2) such that 𝑆ℎ2 (𝜉2, 𝜂2)

= (𝑇ℎ2 𝜉2, 𝜂2), for all 𝜉2, 𝜂2 ∈ 𝐿2(𝑋2) and ∥𝑇ℎ2 ∥ ≤ ∥ℎ∥∥𝑆∥
∏𝑛−1
𝑖=3 ∥𝜉𝑖∥ ∥𝜂𝑖∥. For each

𝑎 ∈ 𝐿∞(𝑋2) and 𝜉2, 𝜂2 ∈ 𝐿2(𝑋2), we have that

(𝑇ℎ2𝑀𝑎𝜉2, 𝜂2) = 𝑆ℎ2 (𝑎𝜉2, 𝜂2) = 𝑆ℎ2 (𝜉2, 𝑎𝜂2)

= (𝑇ℎ2 𝜉2, 𝑎𝜂2) = (𝑇ℎ2 𝜉2,𝑀𝑎𝜂2) = (𝑀𝑎𝑇
ℎ
2 𝜉2, 𝜂2).



4690 K. JUSCHENKO, I. G. TODOROV, AND L. TUROWSKA

Thus, there exists 𝜑ℎ2 ∈ 𝐿∞(𝑋2) such that 𝑇ℎ2 = 𝑀𝜑ℎ
2
. Moreover,

∥𝜑ℎ2∥∞ ≤ ∥ℎ∥∥𝑆∥
𝑛−1∏
𝑖=3

∥𝜉𝑖∥∥𝜂𝑖∥.

For each 𝑓 ∈ 𝐿1(𝑋2), the functional on 𝐾1 given by ℎ→ ∫
𝑋2

𝑓(𝑥2) 𝜑ℎ2 (𝑥2) 𝑑𝑥2 is

conjugate linear and bounded with norm not exceeding ∥𝑓∥1 ∥𝑆∥
∏𝑛−1
𝑖=3 ∥𝜉𝑖∥∥𝜂𝑖∥.

Hence, there exists Φ2(𝑓) ∈ 𝐾1 such that

(Φ2(𝑓), ℎ) =

∫
𝑋2

𝑓(𝑥2)𝜑
ℎ
2(𝑥2)𝑑𝑥2,

and ∥Φ2(𝑓)∥𝐾1
≤ ∥𝑓∥1∥𝑆∥

∏𝑛−1
𝑖=3 ∥𝜉𝑖∥∥𝜂𝑖∥. Thus, the mapping Φ2 : 𝐿1(𝑋2) → 𝐾1 is

bounded and ∥Φ2∥ ≤ ∥𝑆∥
∏𝑛−1
𝑖=3 ∥𝜉𝑖∥∥𝜂𝑖∥. Since Hilbert spaces possess the Radon-

Nikodým property, the vector-valued Riesz Representation Theorem [11, Theorem
5, p. 63] implies that there exists 𝜑2 ∈ 𝐿∞(𝑋2,𝐾1) (𝐿∞(𝑋2,𝐾1) being the space
of essentially bounded 𝐾1-valued measurable functions on 𝑋2) such that

Φ2(𝑓) =

∫
𝑋2

𝑓(𝑥2)𝜑2(𝑥2)𝑑𝑥2,

where the integral is in Bochner’s sense. Moreover,

∥𝜑2∥𝐿∞(𝑋2,𝐾1) = ess sup
𝑥2∈𝑋2

∥𝜑2(𝑥2)∥𝐾1
= ∥Φ2∥ ≤ ∥𝑆∥

𝑛−1∏
𝑖=3

∥𝜉𝑖∥∥𝜂𝑖∥.

For 𝜉2, 𝜂2 ∈ 𝐿2(𝑋2), we have that 𝜉2𝜂2 ∈ 𝐿1(𝑋2) and hence

(𝑆2(𝜉2, 𝜂2), ℎ) = (𝑇ℎ2 𝜉2, 𝜂2) =

∫
𝑋2

𝜑ℎ2(𝑥2)𝜉2(𝑥2)𝜂2(𝑥2)𝑑𝑥2

=

(∫
𝑋2

𝜑2(𝑥2)𝜉2(𝑥2)𝜂2(𝑥2)𝑑𝑥2, ℎ

)
;

in other words,

𝑆2(𝜉2, 𝜂2) =

∫
𝑋2

𝜑2(𝑥2)𝜉2(𝑥2)𝜂2(𝑥2)𝑑𝑥2,

where the integral is in Bochner’s sense.
We consider 𝜑2 as a function on 𝑋1 × 𝑋2 × 𝑋𝑛 by letting 𝜑2(𝑥1, 𝑥2, 𝑥𝑛)

= 𝜑2(𝑥2) (𝑥1, 𝑥𝑛). Note that 𝜑2 depends on 𝜉3, 𝜂3, . . . , 𝜉𝑛−1, 𝜂𝑛−1; we denote this
dependence by 𝜑2 = 𝜑2,𝜉3,𝜂3,...,𝜉𝑛−1,𝜂𝑛−1

.
Let 𝐾2 = 𝐿2(𝑋1 ×𝑋2 ×𝑋𝑛). We have

∥𝜑2∥𝐾2
=

∫
𝑋2

∫
𝑋1×𝑋𝑛

∣𝜑2(𝑥2)(𝑥1, 𝑥𝑛)∣2𝑑𝑥1𝑑𝑥𝑛𝑑𝑥2

=

∫
𝑋2

∥𝜑2(𝑥2)∥2𝐾1
𝑑𝑥2 ≤ 𝜇2(𝑋2)∥𝜑2∥𝐿∞(𝑋2,𝐾1).

It follows that the mapping 𝑆3 : 𝐿2(𝑋3)× 𝐿2(𝑋3) → 𝐾2, given by

𝑆3(𝜉3, 𝜂3) = 𝜑2,𝜉3,𝜂3,...,𝜉𝑛−1,𝜂𝑛−1
,

is well-defined and

∥𝑆3(𝜉3, 𝜂3)∥𝐾2
≤ 𝜇2(𝑋2)∥𝑆∥

𝑛−1∏
𝑖=3

∥𝜉𝑖∥∥𝜂𝑖∥.
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Hence, 𝑆3 is bounded and ∥𝑆3∥ ≤ 𝜇2(𝑋2)∥𝑆∥
∏𝑛−1
𝑖=4 ∥𝜉𝑖∥∥𝜂𝑖∥. An argument similar

to the above implies the existence of 𝜑3 ∈ 𝐿∞(𝑋3,𝐾2) with

∥𝜑3∥𝐿∞(𝑋3,𝐾2) ≤ 𝜇2(𝑋2)∥𝑆∥
𝑛−1∏
𝑖=4

∥𝜉𝑖∥∥𝜂𝑖∥,

such that

𝑆3(𝜉3, 𝜂3) =

∫
𝑋3

𝜑3(𝑥3)𝜉3(𝑥3)𝜂3(𝑥3)𝑑𝑥3,

where the integral is in Bochner’s sense. We may consider 𝜑3 as a function on
𝑋1 ×𝑋2 ×𝑋3 ×𝑋𝑛 by letting 𝜑3(𝑥1, 𝑥2, 𝑥3, 𝑥𝑛) = 𝜑3(𝑥3)(𝑥1, 𝑥2, 𝑥𝑛). We express
the dependence of 𝜑3 on 𝜉4, . . . , 𝜂𝑛−1 by writing 𝜑3 = 𝜑3,𝜉4,...,𝜂𝑛−1

. We have that

𝑆1(𝜉2, 𝜂2, . . . , 𝜉𝑛−1, 𝜂𝑛−1)

=

∫
𝑋2

∫
𝑋3

𝜑3,𝜉4,...,𝜂𝑛−1
(𝑥1, 𝑥2, 𝑥3, 𝑥𝑛)𝜉2(𝑥2)𝜂2(𝑥2)𝜉3(𝑥3)𝜂3(𝑥3)𝑑𝑥3𝑑𝑥2,

where both integrals are in Bochner’s sense.
Continuing inductively, we obtain 𝜑 ∈ 𝐿∞(𝑋𝑛−1,𝐾𝑛−2), where 𝐾𝑛−2 =

𝐿2(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛−2 ×𝑋𝑛), such that

𝑆1(𝜉2, 𝜂2, . . . , 𝜉𝑛−1, 𝜂𝑛−1)

=

∫
𝑋2

. . .

∫
𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛)𝜉2𝜂2 . . . 𝜉𝑛−1𝜂𝑛−1𝑑𝑥𝑛−1 . . . 𝑑𝑥2,

where the integrals are understood in Bochner’s sense and 𝜑 is viewed as a function
on 𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛 by letting

𝜑(𝑥1, . . . , 𝑥𝑛) = 𝜑(𝑥𝑛−1)(𝑥1, . . . , 𝑥𝑛−2, 𝑥𝑛).

It is easy to see that if 𝜓 ∈ 𝐿1(𝑌, 𝐿2(𝑍)), where 𝑌 and 𝑍 are finite measure
spaces, then

∫
𝑌×𝑍 ∣𝜓(𝑦)(𝑧)∣𝑑𝑦𝑑𝑧 is finite and

(∫
𝑌
𝜓(𝑦)𝑑𝑦

)
(𝑧) =

∫
𝑌
𝜓(𝑦)(𝑧)𝑑𝑦, for

almost all 𝑧 ∈ 𝑍 (the first integral is in Bochner’s sense, while the second one is
a Lebesgue integral with respect to the variable 𝑦). It now follows that the last
equality holds when the integrals are interpreted in the sense of Lebesgue.

The modularity of 𝑆 implies

𝑆(𝑎⊗ 𝜉2, 𝜂2 ⊗ 𝜉3, . . . , 𝜂𝑛−1 ⊗ 𝑏)

=

∫
𝑋2

∫
𝑋3

. . .

∫
𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛)𝑎𝜉2𝜂2 . . . 𝜉𝑛−1𝜂𝑛−1𝑏𝑑𝑥𝑛−1 . . . 𝑑𝑥2,

for all 𝑎 ∈ 𝐿∞(𝑋1), 𝑏 ∈ 𝐿∞(𝑋𝑛) and 𝜉𝑖, 𝜂𝑖 ∈ 𝐿2(𝑋𝑖), 𝑖 = 2, . . . , 𝑛 − 1. Letting
𝑎 = 𝜒𝛼1

, 𝑏 = 𝜒𝛼𝑛
and 𝜉𝑖 = 𝜂𝑖 = 𝜒𝛼𝑖

, 𝑖 = 2, . . . , 𝑛− 1, the boundedness of 𝑆 implies∫
𝛼1×⋅⋅⋅×𝛼𝑛

∣𝜑(𝑥1, . . . , 𝑥𝑛)∣𝑑𝑥1 . . . 𝑑𝑥𝑛 ≤ ∥𝑆∥𝜇1(𝛼1) . . . 𝜇𝑛(𝛼𝑛).

It follows that the mapping

𝑓 =

𝑁∑
𝑖=1

𝜆𝑖𝜒𝛼𝑖
1×⋅⋅⋅×𝛼𝑖

𝑛
−→

∫
𝑋1×⋅⋅⋅×𝑋𝑛

𝜑𝑓,

where {𝛼𝑖1 × ⋅ ⋅ ⋅ × 𝛼𝑖𝑛} is a finite family of disjoint Borel rectangles, is a linear
functional on a dense subspace of 𝐿1(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛) of norm not exceeding ∥𝑆∥.
Therefore, 𝜑 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛) and ∥𝜑∥∞ ≤ ∥𝑆∥.
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We have that the mappings 𝑆 and 𝑆𝜑 coincide on the tuples of the form 𝑎 ⊗
𝜉2, 𝜂2 ⊗ 𝜉3, . . . , 𝜂𝑛−1 ⊗ 𝑏; by linearity and continuity, they are equal. By the first
part of the proof, ∥𝑆∥ ≤ ∥𝜑∥∞ and hence ∥𝜑∥∞ = ∥𝑆∥.

Now relax the assumption on the finiteness of 𝜇𝑖, and let 𝑋𝑘
𝑖 , 𝑘 ∈ ℕ, be a

measurable subset of 𝑋𝑖 such that 𝜇𝑖(𝑋
𝑘
𝑖 ) < ∞, 𝑋𝑘

𝑖 ⊆ 𝑋𝑘+1
𝑖 and 𝑋𝑖 =

∪∞
𝑘=1𝑋

𝑘
𝑖 ,

𝑖 = 1, . . . , 𝑛. For each 𝑘 ∈ ℕ, let

𝑆𝑘 : 𝐿2(𝑋𝑘
1 ×𝑋𝑘

2 )× 𝐿2(𝑋𝑘
2 ×𝑋𝑘

3 )× ⋅ ⋅ ⋅ × 𝐿2(𝑋𝑘
𝑛−1 ×𝑋𝑘

𝑛) → 𝐿2(𝑋𝑘
1 ×𝑋𝑘

𝑛)

be the map given by 𝑆𝑘(𝑓1, . . . , 𝑓𝑛−1) = 𝑆(𝑓1, . . . , 𝑓𝑛−1), where 𝑓𝑖 coincides with 𝑓𝑖
on 𝑋𝑘

𝑖 and is equal to zero on the complement of 𝑋𝑘
𝑖 . Since

𝑆𝑘(𝑓1, . . . , 𝑓𝑛−1) = 𝑆(𝜒𝑋𝑘
1
𝑓1, . . . , 𝑓𝑛−1𝜒𝑋𝑘

𝑛
)

= 𝜒𝑋𝑘
1
𝑆(𝑓1, . . . , 𝑓𝑛−1)𝜒𝑋𝑘

𝑛
,

the map 𝑆𝑘 is well-defined and ∥𝑆𝑘∥ ≤ ∥𝑆∥. Since 𝑆𝑘 is obviously (𝐿∞(𝑋𝑘
𝑛), . . . ,

𝐿∞ (𝑋𝑘
1 ))-modular, the above paragraphs imply that there exists 𝜑𝑘 ∈ 𝐿∞(𝑋𝑘

1 ×
⋅ ⋅ ⋅ × 𝑋𝑘

𝑛) such that 𝑆𝑘 = 𝑆𝜑𝑘
, for each 𝑘 ∈ ℕ. The space 𝐿2(𝑋𝑘

𝑖 × 𝑋𝑘
𝑖+1) can

be considered as a subspace of 𝐿2(𝑋𝑘+1
𝑖 ×𝑋𝑘+1

𝑖+1 ) in a natural way. We have that

the restriction of 𝑆𝑘+1 to 𝐿2(𝑋𝑘
1 ×𝑋𝑘

2 ) × 𝐿2(𝑋𝑘
2 ×𝑋𝑘

3 ) × . . . × 𝐿2(𝑋𝑘
𝑛−1 ×𝑋𝑘

𝑛)

coincides with 𝑆𝑘. This implies that the restriction of 𝜑𝑘+1 to 𝑋𝑘
1 × ⋅ ⋅ ⋅ × 𝑋𝑘

𝑛

coincides (almost everywhere) with 𝜑𝑘. Hence, there exists a function 𝜑 defined on
𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛 which coincides with 𝜑𝑘 on 𝑋𝑘

1 × ⋅ ⋅ ⋅ ×𝑋𝑘
𝑛, for each 𝑘 ∈ ℕ. Since

∥𝜑𝑘∥∞ = ∥𝑆𝑘∥ ≤ ∥𝑆∥, we have that ∥𝜑∥∞ ≤ ∥𝑆∥. We have that 𝑆 and 𝑆𝜑 coincide
on the union of 𝐿2(𝑋𝑘

1 × 𝑋𝑘
2 ) × 𝐿2(𝑋𝑘

2 × 𝑋𝑘
3 ) × . . . × 𝐿2(𝑋𝑘

𝑛−1 × 𝑋𝑘
𝑛), 𝑘 ∈ ℕ,

which is a dense subset of 𝐿2(𝑋1 ×𝑋2) × 𝐿2(𝑋2 ×𝑋3) × . . . × 𝐿2(𝑋𝑛−1 ×𝑋𝑛).
It follows that 𝑆 = 𝑆𝜑, and by the first part of the proof, ∥𝑆∥ = ∥𝜑∥∞. □

Let

Γ(𝑋1, . . . , 𝑋𝑛) = 𝐿2(𝑋1 ×𝑋2)⊙ ⋅ ⋅ ⋅ ⊙ 𝐿2(𝑋𝑛−1 ×𝑋𝑛).

We identify the elements of Γ(𝑋1, . . . , 𝑋𝑛) with functions on

𝑋1 ×𝑋2 ×𝑋2 × ⋅ ⋅ ⋅ ×𝑋𝑛−1 ×𝑋𝑛−1 ×𝑋𝑛

in the obvious fashion. We equip Γ(𝑋1, . . . , 𝑋𝑛) with two norms; one is the projec-
tive norm ∥ ⋅ ∥2,∧, where each of the 𝐿2-spaces is equipped with its 𝐿2-norm, and
the other is the Haagerup tensor norm ∥ ⋅ ∥h, where the 𝐿2-spaces are given their
opposite operator space structure arising from the identification of 𝐿2(𝑋×𝑌 ) with
the class of Hilbert-Schmidt operators from 𝐿2(𝑋) into 𝐿2(𝑌 ) given by

(10) (𝑇𝑓𝜉)(𝑦) =

∫
𝑋

𝑓(𝑥, 𝑦)𝜉(𝑥)𝑑𝑥, 𝑓 ∈ 𝐿2(𝑋 × 𝑌 ), 𝜉 ∈ 𝐿2(𝑋).

For each 𝜑 ∈ 𝐿∞(𝑋1× ⋅ ⋅ ⋅ ×𝑋𝑛), we consider the linearisation of the map 𝑆𝜑 from
Theorem 3.1 to a map defined on Γ(𝑋1, . . . , 𝑋𝑛) and taking values in 𝐿2(𝑋1×𝑋𝑛)
and we denote it in the same way. Thus, if 𝑓1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛−1 is in Γ(𝑋1, . . . , 𝑋𝑛),
then 𝑆𝜑(𝑓1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛−1)(𝑥1, 𝑥𝑛) is equal to∫

𝑋2×⋅⋅⋅×𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛)𝑓1(𝑥1, 𝑥2)𝑓2(𝑥2, 𝑥3) . . . 𝑓𝑛−1(𝑥𝑛−1, 𝑥𝑛)𝑑𝑥2 . . . 𝑑𝑥𝑛−1.

By Theorem 3.1, 𝑆𝜑 is bounded and ∥𝑆𝜑∥ = ∥𝜑∥∞. Hence it extends to a bounded
map from (Γ(𝑋1, . . . , 𝑋𝑛), ∥ ⋅ ∥2,∧) into (𝐿2(𝑋1 ×𝑋𝑛), ∥ ⋅ ∥2).
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Definition 3.2. Let 𝜑 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛). We say that 𝜑 is a Schur multiplier
(relative to the measure spaces (𝑋1, 𝜇1), . . . , (𝑋𝑛, 𝜇𝑛)) if there exists 𝐶 > 0 such
that ∥𝑆𝜑(Φ)∥op ≤ 𝐶∥Φ∥h, for all Φ ∈ Γ(𝑋1, . . . , 𝑋𝑛). The smallest constant 𝐶 with
this property will be denoted by ∥𝜑∥m.

We will present next a characterisation of the 𝑛-dimensional Schur multipliers
which generalises Grothendieck’s and Peller’s characterisations. We will need the
following generalisation of a result of Smith [28].

Lemma 3.3. Let ℰ𝑖 ⊆ 𝐵(𝐻𝑖, 𝐻𝑖+1), 𝑖 = 1, . . . , 𝑛 be spaces of operators and 𝒞 ⊆
𝐵(𝐻1), 𝒟 ⊆ 𝐵(𝐻𝑛+1) be 𝐶∗-algebras with cyclic vectors. Assume that ℰ1 is a right
𝒞-module and ℰ𝑛 is a left 𝒟-module. Let 𝜙 : ℰ𝑛 × ⋅ ⋅ ⋅ × ℰ1 → 𝐵(𝐻1, 𝐻𝑛+1) be
a multilinear (𝒟, 𝒞)-module map (that is, 𝜙(𝑑𝑦, . . . , 𝑥𝑐) = 𝑑𝜙(𝑦, . . . , 𝑥)𝑐, whenever
𝑥 ∈ ℰ1, 𝑦 ∈ ℰ𝑛, 𝑐 ∈ 𝒞 and 𝑑 ∈ 𝒟) such that the corresponding linear map from
ℰ𝑛 ⊙ ⋅ ⋅ ⋅ ⊙ ℰ1 into 𝐵(𝐻1, 𝐻𝑛+1) is bounded in the Haagerup norm. Then 𝜙 is a
completely bounded multilinear map.

Proof. The proof is a straightforward generalisation of the argument given by Smith
[28]. We will denote by 𝜙 the linear map from ℰ𝑛⊙⋅ ⋅ ⋅⊙ℰ1 into ℬ(𝐻1, 𝐻𝑛+1) defined

by 𝜙(𝑎𝑛⊗⋅ ⋅ ⋅⊗𝑎1) = 𝜙(𝑎𝑛, . . . , 𝑎1). By the assumption of the lemma, it is bounded

in the Haagerup norm ∥ ⋅ ∥h. Assume that ∥𝜙∥ = 1. We will show that ∥𝜙∥cb = 1.

Suppose, to the contrary, that ∥𝜙∥cb > 1. Then there exists 𝑚 ∈ ℕ, matrices
𝑥𝑖 = (𝑥𝑖𝑘𝑗) ∈𝑀𝑚(ℰ𝑖), 𝑖 = 1, . . . , 𝑛 and column vectors 𝜉0 = (𝜉1, . . . , 𝜉𝑚) ∈ 𝐻𝑚

1 and

𝜂0 = (𝜂1, . . . , 𝜂𝑚) ∈ 𝐻𝑚
𝑛+1 such that ∥𝜉0∥ < 1, ∥𝜂0∥ < 1, all ∥𝑥𝑖∥ < 1 and

(11) ∣(𝜙(𝑚)(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1)𝜉0, 𝜂0)∣ > 1.

If 𝜉 and 𝜂 are cyclic vectors for 𝒞 and 𝒟, respectively, we may moreover assume
that 𝜉𝑖 = 𝑎𝑖𝜉 and 𝜂𝑗 = 𝑏𝑗𝜂, for some 𝑎𝑖 ∈ 𝒞 and 𝑏𝑗 ∈ 𝒟, where 𝑖, 𝑗 = 1, . . . ,𝑚. Let
𝑎 =

∑𝑚
𝑖=1 𝑎

∗
𝑖 𝑎𝑖 and 𝑏 =

∑𝑚
𝑗=1 𝑏

∗
𝑗𝑏𝑗 . Assume first that 𝑎 and 𝑏 are invertible, and let

𝑐𝑖 = 𝑎𝑖𝑎
−1/2, 𝑑𝑗 = 𝑏𝑗𝑏

−1/2, 𝜉 = 𝑎1/2𝜉 and 𝜂 = 𝑏1/2𝜂. Then 𝜉𝑖 = 𝑐𝑖𝜉 and 𝜂𝑗 = 𝑑𝑗𝜂.
Taking into account (9), the left-hand side of (11) becomes∣∣∣∣∣∣

𝑚∑
𝑖,𝑗=1

(𝜙(𝑚)(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1)𝑗𝑖𝑐𝑖𝜉, 𝑑𝑗𝜂)

∣∣∣∣∣∣(12)

=

∣∣∣∣∣∣
𝑚∑

𝑘1,...,𝑘𝑛−1=1

𝑚∑
𝑖,𝑗=1

(𝜙(𝑑∗𝑗𝑥
𝑛
𝑗𝑘𝑛−1

, 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2
, . . . , 𝑥1𝑘1𝑖𝑐𝑖)𝜉, 𝜂)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
𝑚∑

𝑘1,...,𝑘𝑛−1=1

⎛⎝𝜙

⎛⎝ 𝑚∑
𝑗=1

𝑑∗𝑗𝑥
𝑛
𝑗𝑘𝑛−1

, 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2
, . . . ,

𝑚∑
𝑖=1

𝑥1𝑘1,𝑖𝑐𝑖

⎞⎠ 𝜉, 𝜂

⎞⎠∣∣∣∣∣∣
≤

∥∥∥∥∥∥
𝑚∑

𝑘1,...,𝑘𝑛−1=1

𝜙

⎛⎝ 𝑚∑
𝑗=1

𝑑∗𝑗𝑥
𝑛
𝑗𝑘𝑛−1

, 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2
, . . . ,

𝑚∑
𝑖=1

𝑥1𝑘1,𝑖𝑐𝑖

⎞⎠
∥∥∥∥∥∥ ∥𝜉∥∥𝜂∥.

We have that

∥𝜉∥ = (𝑎1/2𝜉, 𝑎1/2𝜉) = (𝑎𝜉, 𝜉) =
𝑛∑
𝑘=1

∥𝑎𝑖𝜉∥2 =
𝑛∑
𝑘=1

∥𝜉𝑖∥2 = ∥𝜉0∥ ≤ 1,
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and similarly ∥𝜂∥ ≤ 1. Set 𝑑∗ = (𝑑∗𝑗 ) ∈ 𝑀1,𝑚(𝒟), 𝑐 = (𝑐𝑖) ∈ 𝑀𝑚,1(𝒞), 𝑢 = 𝑑∗𝑥𝑛 ∈
𝑀1,𝑚(ℰ𝑛) and 𝑣 = 𝑥1𝑐 ∈𝑀𝑚,1(ℰ1). It follows from (7) and (8) that∥∥∥∥∥∥

𝑚∑
𝑘1,...,𝑘𝑛−1=1

𝜙

⎛⎝ 𝑚∑
𝑗=1

𝑑∗𝑗𝑥𝑗𝑘𝑛−1
, 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2

, . . . ,
𝑚∑
𝑖=1

𝑥𝑘1,𝑖𝑐𝑖

⎞⎠
∥∥∥∥∥∥(13)

=

∥∥∥∥∥∥
𝑚∑

𝑘1,...,𝑘𝑛−1=1

𝜙
(
𝑢𝑘𝑛−1

, 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2
, . . . , 𝑣𝑘1

)∥∥∥∥∥∥
=

∥∥∥∥∥∥𝜙
⎛⎝ 𝑚∑
𝑘1,...,𝑘𝑛−1=1

𝑢𝑘𝑛−1
⊗ 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2

⊗ ⋅ ⋅ ⋅ ⊗ 𝑣𝑘1

⎞⎠
∥∥∥∥∥∥

≤
∥∥∥∥∥∥

𝑚∑
𝑘1,...,𝑘𝑛−1=1

𝑢𝑘𝑛−1
⊗ 𝑥𝑛−1𝑘𝑛−1𝑘𝑛−2

⊗ ⋅ ⋅ ⋅ ⊗ 𝑣𝑘1

∥∥∥∥∥∥
h

= ∥𝑢⊙ 𝑥𝑛−1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑥2 ⊙ 𝑣∥h
≤ ∥𝑑∗∥∥𝑥𝑛∥∥𝑥𝑛−1∥ . . . ∥𝑥2∥∥𝑥1∥∥𝑐∥.

We have that

∥𝑑∗∥ =

∥∥∥∥∥∥
𝑚∑
𝑗=1

𝑑∗𝑗𝑑𝑗

∥∥∥∥∥∥
1/2

= ∥𝐼∥ = 1

and, similarly, ∥𝑐∥ = 1. It follows from (12) and (13) that

∣(𝜙(𝑚)(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1)𝜉0, 𝜂0)∣ ≤ 1,

which contradicts (11).
In the case that 𝑎 or 𝑏 is not invertible, one can again follow [28] and, for each

𝑖, consider the matrix 𝑥̂𝑖 ∈ 𝑀𝑚+1(ℰ𝑖) which has the matrix 𝑥𝑖 in its upper left
corner and zeros in the last row and column. The vectors 𝜉0 and 𝜂0 are replaced

with 𝜉0 = (𝜉1, . . . , 𝜉𝑚, 𝜉𝑚+1) and 𝜂0 = (𝜂1, . . . , 𝜂𝑚, 𝜂𝑚+1), where 𝜉𝑚+1 = 𝜖𝜉 and
𝜂𝑚+1 = 𝜖𝜂, respectively, for 𝜖 small enough so that the norms of these vectors
remain less than one. Letting 𝑎𝑛+1 = 𝑏𝑛+1 = 𝜖𝐼, we have that 𝑎𝑖𝜉 = 𝜉𝑖 and
𝑏𝑖𝜂 = 𝜂𝑖 for each 𝑖 = 1, . . . ,𝑚 + 1. Finally,

(𝜙(𝑚)(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1)𝜉0, 𝜂0) = (𝜙(𝑚+1)(𝑥̂𝑛, 𝑥̂𝑛−1, . . . , 𝑥̂1)𝜉0, 𝜂0)

and the proof proceeds as before. □

The main result of this section is the following.

Theorem 3.4. Let 𝜑 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛). The following are equivalent:
(i) 𝜑 is a Schur multiplier and ∥𝜑∥m < 1;
(ii) there exist essentially bounded functions 𝑎1 : 𝑋1 →𝑀∞,1, 𝑎𝑛 : 𝑋𝑛 →𝑀1,∞

and 𝑎𝑖 : 𝑋𝑖 →𝑀∞, 𝑖 = 2, . . . , 𝑛− 1, such that, for almost all 𝑥1, . . . , 𝑥𝑛 we have

𝜑(𝑥1, . . . , 𝑥𝑛) = 𝑎𝑛(𝑥𝑛)𝑎𝑛−1(𝑥𝑛−1) . . . 𝑎1(𝑥1) and ess sup
𝑥𝑖∈𝑋𝑖

𝑛∏
𝑖=1

∥𝑎𝑖(𝑥𝑖)∥ < 1.

Proof. (i)⇒(ii) Let 𝜑 ∈ 𝐿∞(𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛) be a Schur multiplier with ∥𝜑∥m < 1.
Then the map 𝑆𝜑 induces a map, denoted in the same way, from 𝐿2(𝑋1×𝑋2)×⋅ ⋅ ⋅×
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𝐿2(𝑋𝑛−1 ×𝑋𝑛) into 𝐿2(𝑋1 ×𝑋𝑛). Let 𝐻𝑖 = 𝐿2(𝑋𝑖), 𝒟𝑖 = {𝑀𝜓 : 𝜓 ∈ 𝐿∞(𝑋𝑖)},
𝑖 = 1, . . . , 𝑛, and

𝑆𝜑 : 𝒞2(𝐻1, 𝐻2)× ⋅ ⋅ ⋅ × 𝒞2(𝐻𝑛−1, 𝐻𝑛) → 𝒞2(𝐻1, 𝐻𝑛)

be the map defined by 𝑆𝜑(𝑇𝑓1 , . . . , 𝑇𝑓𝑛) = 𝑇𝑆𝜑(𝑓1,...,𝑓𝑛). Since 𝜑 is a Schur multi-

plier, the linearisation of the map 𝑆𝜑 from (𝒞2(𝐻1, 𝐻2)⊙⋅ ⋅ ⋅⊙𝒞2(𝐻𝑛−1, 𝐻𝑛), ∥ ⋅ ∥h)
into (𝒞2(𝐻1, 𝐻𝑛), ∥⋅∥op) is bounded. (Here each of the operator spaces 𝒞2(𝐻𝑖, 𝐻𝑖+1)
is given its opposite operator space structure arising from the inclusion 𝒞2(𝐻𝑖, 𝐻𝑖+1)
⊆ ℬ(𝐻𝑖, 𝐻𝑖+1).) If 𝑎𝑖 ∈ 𝐿∞(𝑋𝑖), 𝑖 = 1, . . . , 𝑛, then

𝑆𝜑(𝑇𝑓1𝑀𝑎1 , 𝑇𝑓2𝑀𝑎2 , . . . ,𝑀𝑎𝑛𝑇𝑓𝑛𝑀𝑎𝑛−1
) = 𝑆𝜑(𝑇𝑓1𝑎1 , 𝑇𝑓2𝑎2 , . . . , 𝑇𝑎𝑛𝑓𝑛𝑎𝑛−1

)

= 𝑇𝑆𝜑(𝑓1𝑎1,𝑓2𝑎2,...,𝑎𝑛𝑓𝑛𝑎𝑛−1)(14)

= 𝑇𝑎𝑛𝑆𝜑(𝑎2𝑓1,𝑎3𝑓2,...,𝑎𝑛−1𝑓𝑛−2,𝑓𝑛)𝑎1

= 𝑀𝑎𝑛𝑆𝜑(𝑀𝑎2𝑇𝑓1 , . . . , 𝑇𝑓𝑛)𝑀𝑎1 .

By continuity, the map 𝑆𝜑 has an extension (denoted in the same way)

𝑆𝜑 : 𝒦(𝐻1, 𝐻2)⊗h ⋅ ⋅ ⋅ ⊗h 𝒦(𝐻𝑛−1, 𝐻𝑛) → 𝒦(𝐻1, 𝐻𝑛)

to a map with norm less than one, where the spaces 𝒦(𝐻𝑖, 𝐻𝑖+1) are equipped with
the operator space structure opposite to their natural operator space structure. It
follows from (14) that the map

𝑆𝜑 : 𝒦(𝐻𝑛−1, 𝐻𝑛)⊗h ⋅ ⋅ ⋅ ⊗h 𝒦(𝐻1, 𝐻2) → 𝒦(𝐻1, 𝐻𝑛),

given by

𝑆𝜑(𝑇𝑛−1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑇1) = 𝑆𝜑(𝑇1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑇𝑛−1),

is modular and bounded when the spaces 𝒦(𝐻𝑖, 𝐻𝑖+1) are given their natural op-
erator space structure. By Lemma 3.3, 𝑆𝜑 is completely bounded. It follows that
the second dual

𝑆∗∗
𝜑 : ℬ(𝐻𝑛−1, 𝐻𝑛)⊗𝜎ℎ ⋅ ⋅ ⋅ ⊗𝜎ℎ ℬ(𝐻1, 𝐻2) → ℬ(𝐻1, 𝐻𝑛)

is a weak* continuous map with c.b. norm less than one, which extends the map
𝑆𝜑. (Here ⊗𝜎ℎ denotes the normal Haagerup tensor product; see e.g. [7].)

Denote by 𝑆𝜑 the corresponding multilinear map

𝑆𝜑 : ℬ(𝐻𝑛−1, 𝐻𝑛)× ⋅ ⋅ ⋅ × ℬ(𝐻1, 𝐻2) → ℬ(𝐻1, 𝐻𝑛).

The map 𝑆𝜑 is separately weak* continuous and hence modular.
A modification of Corollary 5.9 of [9] now implies that there exist bounded linear

operators 𝑉1 : 𝐻1 → 𝐻∞
1 , 𝑉𝑛 : 𝐻∞

𝑛 → 𝐻𝑛 and 𝑉𝑖 : 𝐻∞
𝑖 → 𝐻∞

𝑖 , 𝑖 = 2, . . . , 𝑛 − 1,
such that the entries of 𝑉𝑖 belong to 𝒟𝑖 and

𝑆𝜑(𝑇𝑛−1, . . . , 𝑇1) = 𝑉𝑛(𝑇𝑛−1 ⊗ 𝐼)𝑉𝑛−1(𝑇𝑛−2 ⊗ 𝐼) . . . (𝑇1 ⊗ 𝐼)𝑉1.

Moreover, the operators 𝑉𝑖 can be chosen so that
∏𝑛
𝑖=1 ∥𝑉𝑖∥ < 1. Let 𝑉1 =

(𝑀𝑎11
,𝑀𝑎12

, . . . )t, 𝑉𝑖 = (𝑀𝑎𝑖𝑘𝑙
) and 𝑉𝑛 = (𝑀𝑎𝑛1 ,𝑀𝑎𝑛2 , . . . ), for some 𝑎1 =

(𝑎11, 𝑎
1
2, . . . )t ∈ 𝐿∞(𝑋1,𝑀1,∞), 𝑎𝑛 = (𝑎𝑛1 , 𝑎

𝑛
2 , . . . ) ∈ 𝐿∞(𝑋𝑛,𝑀1,∞) and 𝑎𝑖 =

(𝑎𝑖𝑘𝑙) ∈ 𝐿∞(𝑋𝑖,𝑀∞), 𝑖 = 2, . . . , 𝑛− 1. Moreover,

ess sup𝑥𝑖∈𝑋𝑖

𝑛∏
𝑖=1

∥𝑎𝑖(𝑥𝑖)∥ =

𝑛∏
𝑖=1

∥𝑉𝑖∥ < 1.
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If 𝜉 ∈ 𝐿2(𝑋) and 𝜂 ∈ 𝐿2(𝑌 ), denote by 𝜉 ⊗ 𝜂 the function on 𝑋 × 𝑌 given by
(𝜉 ⊗ 𝜂)(𝑥, 𝑦) = 𝜉(𝑥)𝜂(𝑦); this function gives rise by (10) to a rank one operator
𝑇𝜉⊗𝜂. Fix 𝜉𝑖, 𝜂𝑖 ∈ 𝐻𝑖, 𝑖 = 1, . . . , 𝑛. Then

𝑆𝜑(𝑇𝜉𝑛−1⊗𝜂𝑛 , . . . , 𝑇𝜉1⊗𝜂2)(𝜂1) = 𝑉𝑛(𝑇𝜉𝑛−1⊗𝜂𝑛 ⊗ 𝐼) . . . (𝑇𝜉1⊗𝜂2 ⊗ 𝐼)𝑉1(𝜂1)

= 𝑉𝑛(𝑇𝜉𝑛−1⊗𝜂𝑛 ⊗ 𝐼) . . . 𝑉2(𝑇𝜉1⊗𝜂2 ⊗ 𝐼)(𝑎1𝑘1𝜂1)𝑘1

= 𝑉𝑛(𝑇𝜉𝑛−1⊗𝜂𝑛 ⊗ 𝐼) . . . 𝑉2((

∫
𝑋1

𝑎1𝑘1(𝑥1)𝜉1(𝑥1)𝜂1(𝑥1)𝑑𝑥1)𝜂2)𝑘1

= 𝑉𝑛 . . . (𝑇𝜉2⊗𝜂3 ⊗ 𝐼)((
∞∑

𝑘1=1

∫
𝑋1

𝑎1𝑘1(𝑥1)𝜉1(𝑥1)𝜂1(𝑥1)𝑑𝑥1)𝑎
2
𝑘2,𝑘1𝜂2)𝑘2

= 𝑉𝑛 . . . 𝑉3((

∞∑
𝑘1=1

∫
𝑋1×𝑋2

𝑎2𝑘2,𝑘1(𝑥2)𝑎
1
𝑘1(𝑥1)(𝜉1𝜂1)(𝑥1)(𝜉2𝜂2)(𝑥2)𝑑𝑥1𝑑𝑥2)𝜂3)𝑘2

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∞∑
𝑘𝑛=1

(

∫
𝑋1×⋅⋅⋅×𝑋𝑛−1

∞∑
𝑘1,...,𝑘𝑛−1=1

𝑎𝑛−1𝑘𝑛−1,𝑘𝑛−2
(𝑥𝑛−1) . . . 𝑎1𝑘1(𝑥1)

× 𝜉1(𝑥1)𝜂1(𝑥1) . . . 𝜉𝑛−1(𝑥𝑛−1))𝑑𝑥1 . . . 𝑑𝑥𝑛−1)𝑀𝑎𝑛𝑘𝑛
𝜂𝑛.

Thus,

𝑆𝜑(𝑇𝜉𝑛−1⊗𝜂𝑛 , . . . , 𝑇𝜉1⊗𝜂2)(𝜂1)(𝑥𝑛)

= (

∫
𝑋1×⋅⋅⋅×𝑋𝑛−1

∞∑
𝑘1,...,𝑘𝑛=1

𝑎𝑛𝑘𝑛(𝑥𝑛)𝑎𝑛−1𝑘𝑛−1,𝑘𝑛−2
(𝑥𝑛−1) . . . 𝑎1𝑘1(𝑥1)

× 𝜉1(𝑥1)𝜂1(𝑥1) . . . 𝜉𝑛−1(𝑥𝑛−1)𝑑𝑥1 . . . 𝑑𝑥𝑛−1)𝜂𝑛(𝑥𝑛).

On the other hand,

𝑆𝜑(𝑇𝜉𝑛−1⊗𝜂𝑛 , . . . , 𝑇𝜉1⊗𝜂2)(𝜂1)(𝑥𝑛) = 𝑇𝑆𝜑(𝜉1⊗𝜂2,...,𝜉𝑛−1⊗𝜂𝑛)(𝜂1)(𝑥𝑛)

= (

∫
𝑋1×⋅⋅⋅×𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛)

× 𝜉1(𝑥1)𝜂1(𝑥1) . . . 𝜉𝑛−1(𝑥𝑛−1)𝑑𝑥1 . . . 𝑑𝑥𝑛−1)𝜂𝑛(𝑥𝑛).

It follows that

𝜑(𝑥1, . . . , 𝑥𝑛) = 𝑎𝑛(𝑥𝑛)𝑎𝑛−1(𝑥𝑛−1) . . . 𝑎1(𝑥1),

for almost all 𝑥1, . . . , 𝑥𝑛.
(ii)⇒(i) Assume that 𝜑 is given as in (ii), where 𝑎1 = (𝑎11, 𝑎

1
2, . . . )

t ∈
𝐿∞(𝑋1, 𝑀∞,1), 𝑎𝑛 = (𝑎𝑛1 , 𝑎

𝑛
2 , . . . ) ∈ 𝐿∞(𝑋𝑛,𝑀1,∞) and 𝑎𝑖 = (𝑎𝑖𝑘𝑙) ∈

𝐿∞(𝑋𝑖, 𝑀∞), 𝑖 = 2, . . . , 𝑛− 1. Let 𝑉1 : 𝐻1 → 𝐻∞
1 be the operator corresponding

to the column matrix 𝑉1 = (𝑀𝑎11
,𝑀𝑎12

, . . . )t : 𝐻1 → 𝐻∞
1 , 𝑉𝑛 : 𝐻∞

𝑛 → 𝐻𝑛 be the op-

erator corresponding to the row matrix 𝑉𝑛 = (𝑀𝑎𝑛1 ,𝑀𝑎𝑛2 , . . . ) and 𝑉𝑖 : 𝐻∞
𝑖 → 𝐻∞

𝑖

be the operator corresponding to the matrix 𝑉𝑖 = (𝑀𝑎𝑖𝑘𝑙
), 𝑖 = 2, . . . , 𝑛 − 1. Then∏𝑛

𝑖=1 ∥𝑉𝑖∥ < 1. It follows from the first part of the proof that

𝑆𝜑(𝑇𝜉𝑛−1⊗𝜂𝑛 , . . . , 𝑇𝜉1⊗𝜂2) = 𝑉𝑛(𝑇𝜉𝑛−1⊗𝜂𝑛 ⊗ 𝐼) . . . (𝑇𝜉1⊗𝜂2 ⊗ 𝐼)𝑉1,

for all 𝜉1 ∈ 𝐻1, 𝜂𝑛 ∈ 𝐻𝑛 and 𝜉𝑖, 𝜂𝑖 ∈ 𝐻𝑖, 𝑖 = 2, . . . , 𝑛− 1. Since the operator norm
is dominated by the Hilbert-Schmidt norm, we conclude that

𝑆𝜑(𝑇𝑓𝑛−1
, . . . , 𝑇𝑓1) = 𝑉𝑛(𝑇𝑓𝑛−1

⊗ 𝐼) . . . (𝑇𝑓1 ⊗ 𝐼)𝑉1,
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for all 𝑓𝑖 ∈ 𝐿2(𝑋𝑖 ×𝑋𝑖+1), 𝑖 = 1, . . . , 𝑛− 1.
Let

𝐹 = 𝐹1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝐹𝑛−1 ∈ 𝐿2(𝑋1 ×𝑋2)⊙ ⋅ ⋅ ⋅ ⊙ 𝐿2(𝑋𝑛−1 ×𝑋𝑛),

where 𝐹1 ∈ 𝑀1,∞(𝐿2(𝑋1 × 𝑋2)), 𝐹𝑛−1 ∈ 𝑀∞,1(𝐿
2(𝑋𝑛−1 × 𝑋𝑛)) and 𝐹𝑖 ∈

𝑀∞(𝐿2(𝑋𝑖 ×𝑋𝑖+1)), 𝑖 = 2, . . . , 𝑛− 2. Lemma 4.7 implies that

𝑇𝑆𝜑(𝐹 ) = 𝑉𝑛(𝑇𝐹𝑛−1
⊗ 𝐼) . . . (𝑇𝐹1

⊗ 𝐼)𝑉1,

where 𝑇𝐹𝑖
= (𝑇𝑓𝑖

𝑙𝑘
)𝑘,𝑙 whenever 𝐹𝑖 = (𝑓 𝑖𝑘𝑙)𝑘,𝑙. It follows that

∥𝑇𝑆𝜑(𝐹 )∥op ≤
𝑛−1∏
𝑖=1

∥𝐹 𝑡
𝑖 ∥op

𝑛∏
𝑖=1

∥𝑉𝑖∥.

Taking the infimum with respect to all representations of 𝐹 , we conclude that
∥𝑇𝑆𝜑(𝐹 )∥op ≤ ∥𝐹∥h

∏𝑛
𝑖=1 ∥𝑉𝑖∥ and so ∥𝜑∥m < 1. □

Remark. The space of all functions 𝜑(𝑥1, . . . , 𝑥𝑛) satisfying condition (ii) of Theo-
rem 3.4 can, in view of the commutativity of the 𝐿∞(𝑋𝑖)’s, be identified with the
extended Haagerup tensor product 𝐿∞(𝑋1)⊗𝑒ℎ 𝐿∞(𝑋2) ⊗𝑒ℎ . . . ⊗𝑒ℎ 𝐿∞(𝑋𝑛).

The next proposition relates our approach with a recent paper of Peller [25]
on multiple operator integrals. For some fixed spectral measures, Peller defines a
multiple operator integral 𝐼𝜑(𝑇1, . . . , 𝑇𝑛−1) of a function 𝜑 and an (𝑛− 1)-tuple of
operators (𝑇1, . . . , 𝑇𝑛−1), and shows that if 𝜑 belongs to the integral projective ten-
sor product of the corresponding 𝐿∞-spaces, then 𝐼𝜑(𝑇1, . . . , 𝑇𝑛−1) is well-defined
and, moreover,

∥𝐼𝜑(𝑇1, . . . , 𝑇𝑛−1)∥op ≤ ∥𝜑∥𝑖∥𝑇1∥op . . . ∥𝑇𝑛−1∥op.
Recall that the integral projective tensor product 𝐿∞(𝑋1)⊗̂𝑖 . . . ⊗̂𝑖 𝐿∞ (𝑋𝑛) is the
space of all functions 𝜑 for which there exists a measure space (𝒯 , 𝜈) and measurable
functions 𝑔𝑖 on 𝑋𝑖 × 𝒯 such that

(15) 𝜑(𝑥1, . . . , 𝑥𝑛) =

∫
𝒯
𝑔1(𝑥1, 𝑡) . . . 𝑔𝑛(𝑥𝑛, 𝑡)𝑑𝜈(𝑡),

for almost all 𝑥1 . . . , 𝑥𝑛, where∫
𝒯
∥𝑔1(⋅, 𝑡)∥∞ . . . ∥𝑔𝑛(⋅, 𝑡)∥∞𝑑𝜈(𝑡) <∞.

The integral projective norm ∥𝜑∥𝑖 of 𝜑 is the infimum of the above expressions
over all representations of 𝜑 of the form (15). It was proved by Peller in [24] that
in the case where 𝑛 = 2 the integral projective tensor product 𝐿∞(𝑋1)⊗̂𝑖𝐿∞(𝑋2)
coincides with the set of all Schur mulipliers. The next proposition shows that for
𝑛 > 2 the integral projective tensor product consists of multipliers. We do not
know whether it coincides with the space of all Schur multipliers.

Proposition 3.5. Let 𝜑 ∈ 𝐿∞(𝑋1)⊗̂𝑖 . . . ⊗̂𝑖𝐿∞(𝑋𝑛). Then 𝜑 is a Schur multiplier
and ∥𝜑∥m ≤ ∥𝜑∥𝑖.
Proof. Suppose that

𝜑(𝑥1, . . . , 𝑥𝑛) =

∫
𝒯
𝑔1(𝑥1, 𝑡) . . . 𝑔𝑛(𝑥𝑛, 𝑡)𝑑𝜈(𝑡),
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for almost all 𝑥1 . . . , 𝑥𝑛, where (𝒯 , 𝜈) is a measure space, 𝑔𝑖 is a measurable function
on 𝑋𝑖 × 𝒯 , 𝑖 = 1, . . . , 𝑛, such that∫

𝒯
∥𝑔1(⋅, 𝑡)∥∞ . . . ∥𝑔𝑛(⋅, 𝑡)∥∞𝑑𝜈(𝑡) <∞.

Let 𝐹 = 𝐹1⊙⋅ ⋅ ⋅⊙𝐹𝑛−1, where 𝐹1 ∈𝑀1,𝑘1(𝐿
2(𝑋1×𝑋2)), 𝐹𝑛−1 ∈𝑀𝑘𝑛−2,1 (𝐿2(𝑋𝑛−1

×𝑋𝑛)) and 𝐹𝑖 ∈𝑀𝑘𝑖−1,𝑘𝑖(𝐿
2(𝑋𝑖×𝑋𝑖+1)), 𝑖 = 2, . . . , 𝑛−2, and 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

𝐹 (𝑥1, 𝑥2, 𝑥2, 𝑥3, . . . , 𝑥𝑛). Denoting by 𝑀𝑔𝑖(⋅,𝑡) the multiplication operator by the
function 𝑔𝑖(⋅, 𝑡), and by 𝑀𝑔𝑖(⋅,𝑡) ⊗ 𝐼 the ampliation of 𝑀𝑔𝑖(⋅,𝑡) of multiplicity 𝑘𝑖, we
have

∥𝑆𝜑(𝐹 )∥op = ∥
∫

𝜑𝐹𝑑𝑥2 . . . 𝑑𝑥𝑛−1∥op

= ∥
∫ (∫

𝒯
𝑔1(𝑥1, 𝑡) . . . 𝑔𝑛(𝑥𝑛, 𝑡)𝑑𝑡

)
𝐹𝑑𝑥2 . . . 𝑑𝑥𝑛−1∥op

= ∥
∫
𝒯

(∫
𝑔1(𝑥1, 𝑡) . . . 𝑔𝑛(𝑥𝑛, 𝑡)𝑑𝑥2 . . . 𝑑𝑥𝑛−1

)
𝐹𝑑𝑡∥op

= ∥
∫
𝒯

(

∫
𝑀𝑔1(⋅,𝑡)𝐹1(𝑀𝑔2(⋅,𝑡) ⊗ 𝐼)(𝑥1, 𝑥2)⊙ . . .

⊙ 𝐹𝑛−1𝑀𝑔𝑛(⋅,𝑡)(𝑥𝑛−1, 𝑥𝑛)𝑑𝑥2 . . . 𝑑𝑥𝑛−1)𝑑𝑡∥op
≤

∫
𝒯
∥
∫

𝑀𝑔1(⋅,𝑡)𝐹1(𝑀𝑔2(⋅,𝑡) ⊗ 𝐼)(𝑥1, 𝑥2)⊙ . . .

⊙ 𝐹𝑛−1𝑀𝑔𝑛(⋅,𝑡)(𝑥𝑛−1, 𝑥𝑛)𝑑𝑥2 . . . 𝑑𝑥𝑛−1∥op𝑑𝑡
≤

∫
𝒯
∥𝑀𝑔1(⋅,𝑡)∥∥𝐹1∥𝑜op∥𝑀𝑔2(⋅,𝑡)∥ . . . ∥𝐹𝑛−1∥𝑜op∥𝑀𝑔𝑛(⋅,𝑡)∥𝑑𝑡

≤ ∥𝜑∥𝑖∥𝐹1∥𝑜op . . . ∥𝐹𝑛−1∥𝑜op,
where ∥ ⋅ ∥𝑜op is the opposite operator norm (see Section 2). The claim follows by
taking the infimum over all representations 𝐹 = 𝐹1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝐹𝑛−1. □

Corollary 3.6. 𝐿∞(𝑋1)⊗̂𝑖 . . . ⊗̂𝑖𝐿∞(𝑋𝑛) ⊆ 𝐿∞(𝑋1)⊗𝑒ℎ . . .⊗𝑒ℎ 𝐿∞(𝑋𝑛).

We finally point out another interesting open question, namely the one of charac-
terising the class of multipliers defined by using the projective tensor norm instead
of the Haagerup tensor norm in (2); equivalently, the class of multipliers obtained
after replacing (2) with the weaker condition

∥𝑆𝜓(𝑓1 ⊗ . . .⊗ 𝑓𝑛)∥op ≤ 𝐶∥𝑓1∥op . . . ∥𝑓𝑛∥op for all 𝑓𝑖 ∈ 𝐿2(𝑋𝑖), 𝑖 = 1, . . . , 𝑛.

4. Multidimensional operator multipliers: The definition

In this section we generalise the notion of operator multipliers given by Kissin
and Shulman [21] to the multidimensional case.

We recall the mapping 𝜃𝐾1,𝐾2
: 𝐾1 ⊗𝐾2 → 𝒞2(𝐾d1 ,𝐾2), where 𝐾1 and 𝐾2 are

Hilbert spaces, which is the unitary operator between the Hilbert spaces 𝐾1 ⊗𝐾2
and 𝒞2(𝐾d1 ,𝐾2) given on elementary tensors by

𝜃𝐾1,𝐾2
(𝜉1 ⊗ 𝜉2)(𝜂d1 ) = (𝜉1, 𝜂1)𝜉2.

Note that there is a natural identification of (𝐾1 ⊗𝐾2)d and 𝐾d1 ⊗𝐾d2 . It follows
that 𝒞2(𝐾d1 ,𝐾2)d can be identified with 𝒞2(𝐾1,𝐾d2 ) = 𝒞2((𝐾d1 )d,𝐾d2 ); we have that
𝜃𝐾d

1 ,𝐾
d
2
(𝜉d) = 𝜃𝐾1,𝐾2

(𝜉)d.
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Let 𝐻1, . . . , 𝐻𝑛 be Hilbert spaces and 𝐻 = 𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑛. For any permutation
𝜋 of {1, . . . , 𝑛}, we will identify 𝐻 with the tensor product 𝐻𝜋(1) ⊗ ⋅ ⋅ ⋅ ⊗ 𝐻𝜋(𝑛)

without explicitly mentioning this. The symbol 𝜉𝑗1,...,𝑗𝑘 will denote an element of
𝐻𝑗1 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑗𝑘 .

We define a Hilbert space 𝐻𝑆(𝐻1, . . . , 𝐻𝑛), isometrically isomorphic to 𝐻. Let
𝐻𝑆(𝐻1, 𝐻2) = 𝒞2(𝐻d1 , 𝐻2). In the case where 𝑛 is even, we let by induction

𝐻𝑆(𝐻1, . . . , 𝐻𝑛) = 𝒞2(𝐻𝑆(𝐻2, 𝐻3)d, 𝐻𝑆(𝐻1, 𝐻4, . . . , 𝐻𝑛)),

and let

𝜃𝐻1,...,𝐻𝑛
: 𝐻 → 𝐻𝑆(𝐻1, . . . , 𝐻𝑛),

be given by

𝜃𝐻1,...,𝐻𝑛
(𝜉2,3 ⊗ 𝜉) = 𝜃𝐻𝑆(𝐻2,𝐻3),𝐻𝑆(𝐻1,𝐻4,...,𝐻𝑛)(𝜃𝐻2,𝐻3

(𝜉2,3)⊗ 𝜃𝐻1,𝐻4,...,𝐻𝑛
(𝜉)),

where 𝜉 ∈ 𝐻1 ⊗𝐻4 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑛. In particular, we have that

𝜃𝐻1,...,𝐻𝑛
(𝜉2,3 ⊗ 𝜉)𝜃𝐻2,𝐻3

(𝜂2,3)d = (𝜃𝐻2,𝐻3
(𝜉2,3), 𝜃𝐻2,𝐻3

(𝜂2,3))𝜃𝐻1,𝐻4,...,𝐻𝑛
(𝜉).

In the case where 𝑛 is odd, we let

𝐻𝑆(𝐻1, . . . , 𝐻𝑛) = 𝐻𝑆(ℂ, 𝐻1, . . . , 𝐻𝑛).

If 𝐾 is a Hilbert space, we will identify 𝒞2(ℂd,𝐾) with 𝐾 via the map 𝑆 → 𝑆(1d).
Thus, 𝐻𝑆(𝐻1, . . . , 𝐻𝑛) can, in the case of odd 𝑛, be defined inductively by letting
𝐻𝑆(𝐻1) = 𝐻1 and

𝐻𝑆(𝐻1, . . . , 𝐻𝑛) = 𝒞2(𝐻𝑆(𝐻1, 𝐻2)d, 𝐻𝑆(𝐻3, . . . , 𝐻𝑛)).

The isomorphism 𝜃𝐻1,...,𝐻𝑛
is in this case given by

𝜃𝐻1,...,𝐻𝑛
(𝜉) = 𝜃ℂ,𝐻1,...,𝐻𝑛

(1⊗ 𝜉).

We will usually omit the subscripts and write simply 𝜃, when the corresponding
Hilbert spaces are understood.

Lemma 4.1. (i) Assume 𝑛 is even. Let 𝜉 ∈ 𝐻 be of the form 𝜉 = 𝜉1,2⊗⋅ ⋅ ⋅⊗𝜉𝑛−1,𝑛.
If 𝜂𝑖,𝑖+1 ∈ 𝐻𝑖 ⊗𝐻𝑖+1 (𝑖 even), then

𝜃(𝜉)(𝜃(𝜂d2,3)) . . . (𝜃(𝜂d𝑛−2,𝑛−1)) = 𝜃(𝜉𝑛−1,𝑛)𝜃(𝜂d𝑛−2,𝑛−1) . . . 𝜃(𝜉3,4)𝜃(𝜂d2,3)𝜃(𝜉1,2).

(ii) Assume 𝑛 is odd. Let 𝜉 ∈ 𝐻 be of the form 𝜉 = 𝜉1 ⊗ 𝜉2,3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛. If
𝜂𝑖,𝑖+1 ∈ 𝐻𝑖 ⊗𝐻𝑖+1 (𝑖 odd), then

𝜃(𝜉)(𝜃(𝜂d1,2))(𝜃(𝜂d3,4)) . . . (𝜃(𝜂d𝑛−2,𝑛−1)) = 𝜃(𝜉𝑛−1,𝑛)𝜃(𝜂d𝑛−2,𝑛−1) . . . 𝜃(𝜂d1,2)(𝜉1).

Proof. (i) Assume first that 𝜉𝑖−1,𝑖 = 𝜉𝑖−1 ⊗ 𝜉𝑖 and 𝜂𝑖,𝑖+1 = 𝜂𝑖 ⊗ 𝜂𝑖+1 (𝑖 even). Fix
𝜂d1 ∈ 𝐻d1 . The image of 𝜂d1 under the operator on the right-hand side of the identity
in (i) is

(𝜉1, 𝜂1)(𝜉2, 𝜂2) . . . (𝜉𝑛−1, 𝜂𝑛−1)𝜉𝑛.
On the other hand, the image of 𝜂d1 under the operator on the left-hand side is

(𝜃𝐻2,𝐻3
(𝜉2 ⊗ 𝜉3), 𝜃𝐻2,𝐻3

(𝜂2 ⊗ 𝜂3))

× 𝜃𝐻1,𝐻4,...,𝐻𝑛
(𝜉1 ⊗ 𝜉4 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛)(𝜃(𝜂4,5)d) . . . (𝜃(𝜂𝑛−2,𝑛−1)d)(𝜂d1 )

= (𝜉2, 𝜂2)(𝜉3, 𝜂3)

× 𝜃𝐻1,𝐻4,...,𝐻𝑛
(𝜉1 ⊗ 𝜉4 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛)(𝜃(𝜂4,5)d) . . . (𝜃(𝜂𝑛−2,𝑛−1)d)(𝜂d1 ).

By induction, (i) holds in the case of elementary tensors.
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By linearity, (i) holds for finite sums of elementary tensors. Using continuity
arguments and the fact that the operator norm is dominated by the Hilbert-Schmidt
norm, one can easily prove that (𝑖) holds for general 𝜉 and 𝜂𝑖,𝑖+1. □

We define a representation 𝜎𝐻 of 𝐵(𝐻) on 𝐻𝑆(𝐻1, . . . , 𝐻𝑛) by letting

𝜎𝐻(𝐴)𝜃(𝜉) = 𝜃(𝐴𝜉);

clearly, 𝜎𝐻 is unitarily equivalent to the identity representation of 𝐵(𝐻). If 𝐻1, . . . ,
𝐻𝑛 are clear from the context we will simply write 𝜎 in the place of 𝜎𝐻 . If
𝒜1, . . . ,𝒜𝑛 are 𝐶∗-algebras, 𝜋1, . . . , 𝜋𝑛 corresponding representations on 𝐻1, . . . , 𝐻𝑛,
and 𝜋 = 𝜋1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜋𝑛 we let

𝜎𝜋 = 𝜎𝐻 ∘ 𝜋 ;

thus, 𝜎𝜋 is a representation of𝒜1⊗⋅ ⋅ ⋅⊗𝒜𝑛 on 𝐻𝑆(𝐻1, . . . , 𝐻𝑛), unitarily equivalent
to 𝜋.

Lemma 4.2. Let 𝐴𝑖 ∈ 𝐵(𝐻𝑖), 𝑖 = 1, . . . , 𝑛, and 𝐴 = 𝐴1 ⊗ ⋅ ⋅ ⋅ ⊗𝐴𝑛.
(i) Assume 𝑛 is even. Let 𝜉𝑖−1,𝑖 ∈ 𝐻𝑖−1 ⊗𝐻𝑖, 𝜂𝑖,𝑖+1 ∈ 𝐻𝑖 ⊗𝐻𝑖+1 (𝑖 even). If

𝜉 = 𝜉1,2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛, then

𝜎(𝐴)(𝜃(𝜉))(𝜃(𝜂d2,3)) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

= 𝐴𝑛𝜃(𝜉𝑛−1,𝑛)𝐴d𝑛−1𝜃(𝜂𝑛−2,𝑛−1)d𝐴𝑛−2 . . . 𝐴2𝜃(𝜉1,2)𝐴d1

= 𝐴𝑛𝜃(𝜉)(𝜃((𝐴∗
2 ⊗𝐴∗

3(𝜂2,3))
d)) . . . (𝜃((𝐴∗

𝑛−2 ⊗𝐴∗
𝑛−1(𝜂𝑛−2,𝑛−1))d))𝐴d1 .

(ii) Assume 𝑛 is odd. Let 𝜉1 ∈ 𝐻1, 𝜉𝑖−1,𝑖 ∈ 𝐻𝑖−1 ⊗ 𝐻𝑖, 𝜂𝑖,𝑖+1 ∈ 𝐻𝑖 ⊗ 𝐻𝑖+1

(𝑖 odd). If 𝜉 = 𝜉1 ⊗ 𝜉2,3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛, then

𝜎(𝐴)(𝜃(𝜉))(𝜃(𝜂d1,2)) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

= 𝐴𝑛𝜃(𝜉𝑛−1,𝑛)𝐴d𝑛−1𝜃(𝜂𝑛−2,𝑛−1)d𝐴𝑛−2 . . . 𝐴d2𝜃(𝜂d1,2)(𝐴1𝜉1)

= 𝐴𝑛𝜃(𝜉)(𝜃((𝐴∗
1 ⊗𝐴∗

2(𝜂1,2))
d)) . . . (𝜃((𝐴∗

𝑛−2 ⊗𝐴∗
𝑛−1(𝜂𝑛−2,𝑛−1))d)).

Proof. (i) Let first 𝑛 = 2. If 𝜂d ∈ 𝐻d1 and 𝜉 = 𝜉1 ⊗ 𝜉2, then

𝜎(𝐴)(𝜃(𝜉))(𝜂d) = 𝜃(𝐴1𝜉1 ⊗𝐴2𝜉2)(𝜂d) = (𝐴1𝜉1, 𝜂)𝐴2𝜉2

= (𝜉1, 𝐴
∗
1𝜂)𝐴2𝜉2 = 𝐴2𝜃(𝜉1 ⊗ 𝜉2)((𝐴

∗
1𝜂)d)

= 𝐴2𝜃(𝜉1 ⊗ 𝜉2)𝐴d1(𝜂
d) = 𝐴2𝜃(𝜉)𝐴d1(𝜂

d).

It follows by linearity and continuity that 𝜎(𝐴)(𝜃(𝜉)) = 𝐴2𝜃(𝜉)𝐴d1, for every 𝜉 ∈
𝐻1 ⊗𝐻2. Using Lemma 4.1 (i) we now obtain

𝜎(𝐴)(𝜃(𝜉))(𝜃(𝜂2,3)d) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

= 𝜃((𝐴1 ⊗ ⋅ ⋅ ⋅ ⊗𝐴𝑛)(𝜉))(𝜃(𝜂2,3)d) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

= 𝜃((𝐴𝑛−1 ⊗𝐴𝑛)(𝜉𝑛−1,𝑛))𝜃(𝜂d𝑛−2,𝑛−1) . . .

. . . 𝜃((𝐴3 ⊗𝐴4)(𝜉3,4))𝜃(𝜂d2,3)𝜃((𝐴1 ⊗𝐴2)(𝜉1,2))

= 𝐴𝑛𝜃(𝜉𝑛−1,𝑛)𝐴d𝑛−1𝜃(𝜂𝑛−2,𝑛−1)d𝐴𝑛−2 . . . 𝐴d3𝜃(𝜂2,3)d𝐴2𝜃(𝜉1,2)𝐴d1

= 𝐴𝑛𝜃(𝜉)(𝜃((𝐴∗
2 ⊗𝐴∗

3)(𝜂2,3))
d)) . . . (𝜃((𝐴∗

𝑛−2 ⊗𝐴∗
𝑛−1)(𝜂𝑛−2,𝑛−1))d))𝐴d1 .
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(ii) By Lemma 4.1 (ii),

𝜎(𝐴)(𝜃(𝜉))(𝜃(𝜂1,2)d) . . . (𝜃(𝜂𝑛−2,𝑛−1)d)

= 𝜃((𝐴1 ⊗ . . . 𝐴𝑛)(𝜉))(𝜃(𝜂1,2)d) . . . (𝜃(𝜂𝑛−2,𝑛−1)d)

= 𝜃((𝐴𝑛−1 ⊗𝐴𝑛)(𝜉𝑛−1,𝑛))𝜃(𝜂d𝑛−2,𝑛−1) . . . 𝜃(𝜂d1,2)(𝐴1𝜉1)

= 𝐴𝑛𝜃(𝜉𝑛−1,𝑛)𝐴d𝑛−1𝜃(𝜂𝑛−2,𝑛−1)d𝐴𝑛−2 . . . 𝐴d2𝜃(𝜂d1,2)(𝐴1𝜉1)

= 𝐴𝑛𝜃(𝜉)(𝜃((𝐴∗
1 ⊗𝐴∗

2)(𝜂1,2))
d)) . . . (𝜃((𝐴∗

𝑛−2 ⊗𝐴∗
𝑛−1)(𝜂𝑛−2,𝑛−1))d)).

□

Let 𝐻1, . . . , 𝐻𝑛 be Hilbert spaces. If 𝑛 is even, we let

Γ(𝐻1, . . . , 𝐻𝑛) = (𝐻1 ⊗𝐻2)⊙ (𝐻d2 ⊗𝐻d3 )⊙ (𝐻3 ⊗𝐻4)⊙ ⋅ ⋅ ⋅ ⊙ (𝐻𝑛−1 ⊗𝐻𝑛).

If 𝑛 is odd, we let

Γ(𝐻1, . . . , 𝐻𝑛) = (𝐻d1 ⊗𝐻d2 )⊙ (𝐻2 ⊗𝐻3)⊙ (𝐻d3 ⊗𝐻d4 )⊙ ⋅ ⋅ ⋅ ⊙ (𝐻𝑛−1 ⊗𝐻𝑛).

After identifying ℂ⊗𝐻1 with 𝐻1, for 𝑛 odd we have the identification

Γ(ℂ, 𝐻1, . . . , 𝐻𝑛) ≡ 𝐻1 ⊙ Γ(𝐻1, . . . , 𝐻𝑛).

Fix 𝜑 ∈ 𝐵(𝐻). We define a mapping 𝑆𝜑 on Γ(𝐻1, . . . , 𝐻𝑛) taking values in
ℬ(𝐻d1 , 𝐻𝑛) in the case 𝑛 is even, and in ℬ(𝐻1, 𝐻𝑛), in the case 𝑛 is odd. First let
𝑛 be even. On elementary tensors

𝜁 = 𝜉1,2 ⊗ 𝜂d2,3 ⊗ 𝜉3,4 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛),

we let

𝑆𝜑(𝜁) = 𝜎(𝜑)𝜃(𝜉1,2 ⊗ 𝜉3,4 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛)(𝜃(𝜂d2,3)) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

and extend 𝑆𝜑 on the whole of Γ(𝐻1, . . . , 𝐻𝑛) by linearity. Note that the values of
𝑆𝜑 are Hilbert-Schmidt operators. Now assume 𝑛 is odd. Let 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛)
and 𝜉1 ∈ 𝐻1. Then

𝜉1 ⊗ 𝜁 ∈ 𝐻1 ⊙ Γ(𝐻1, . . . , 𝐻𝑛) = Γ(ℂ, 𝐻1, . . . , 𝐻𝑛).

We let 𝑆𝜑(𝜁) be the operator defined on 𝐻1 by

𝑆𝜑(𝜁)(𝜉1) = 𝑆1⊗𝜑(𝜉1 ⊗ 𝜁).

Note that 𝑆1⊗𝜑(𝜉1 ⊗ 𝜁) is an element of 𝒞2(ℂ𝑑, 𝐻𝑛), which can be identified with
𝐻𝑛 in a natural way. In this way, 𝑆𝜑(𝜁)(𝜉1) can be viewed as an element of 𝐻𝑛.
It is clear that the operator 𝑆𝜑(𝜁) : 𝐻1 → 𝐻𝑛 is linear. We moreover claim that
𝑆𝜑(𝜁) is bounded. Let

𝜁 = 𝜂d1,2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛),

and 𝜉1 ∈ 𝐻1. Then 𝑆𝜑(𝜁) is a bounded operator and

(16) ∥𝑆𝜑(𝜁)∥ℬ(𝐻1,𝐻𝑛) ≤ ∥𝜑∥ℬ(𝐻)∥𝜂1,2∥ . . . ∥𝜂𝑛−2,𝑛−1∥∥𝜉2,3∥ . . . ∥𝜉𝑛−1,𝑛∥.
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In fact, assuming for simplicity that 𝑛 = 5 we have

∥𝑆𝜑(𝜁)(𝜉1)∥ = ∥𝑆1⊗𝜑(𝜉1 ⊗ 𝜁)∥
= ∥𝜎(1⊗ 𝜑)𝜃((1⊗ 𝜉1)⊗ 𝜉2,3 ⊗ 𝜉4,5)(𝜃(𝜂d1,2))(𝜃(𝜂d3,4))∥
≤ ∥𝜎(1⊗ 𝜑)𝜃((1⊗ 𝜉1)⊗ 𝜉2,3 ⊗ 𝜉4,5)(𝜃(𝜂d1,2))∥op∥(𝜃(𝜂d3,4))∥
≤ ∥𝜎(1⊗ 𝜑)𝜃((1⊗ 𝜉1)⊗ 𝜉2,3 ⊗ 𝜉4,5)∥op∥𝜂1,2∥∥𝜂3,4∥
≤ ∥𝜑∥ℬ(𝐻)∥𝜉1∥∥𝜉2,3∥∥𝜉4,5∥∥𝜂1,2∥∥𝜂3,4∥
= ∥𝜑∥ℬ(𝐻)∥𝜁∥2,∧∥𝜉1∥.

Before proceeding, we identify two norms with which the space Γ(𝐻1, . . . , 𝐻𝑛)
can be equipped. The first norm on Γ(𝐻1, . . . , 𝐻𝑛) is the projective tensor norm
∥ ⋅ ∥2,∧, where each of the terms 𝐻𝑖 ⊗𝐻𝑖+1 (resp. 𝐻d𝑖−1 ⊗𝐻d𝑖 ) is given its Hilbert
space norm. In order to describe the second norm, note that if 𝐾1 and 𝐾2 are
Hilbert spaces, then 𝐾1 ⊗𝐾2 can be endowed with an operator space structure by
letting

∥(𝜉𝑖𝑗)∥ = ∥𝜃(𝜉𝑗𝑖)∥𝑀𝑚(ℬ(𝐾d
1 ,𝐾2)), (𝜉𝑖𝑗) ∈𝑀𝑚(𝐾1 ⊗𝐾2).

We write (𝐾1⊗𝐾2)
𝑜
op for this operator space. Note that this is the opposite operator

space structure on 𝒞2(𝐾d1 ,𝐾2) ⊆ ℬ(𝑘𝑑1 , 𝑘2), after the identification of 𝐾1 ⊗ 𝐾2
and 𝒞2(𝐾d1 ,𝐾2). The norm ∥ ⋅ ∥h is the Haagerup norm on Γ(𝐻1, . . . , 𝐻𝑛) when
Γ(𝐻1, . . . , 𝐻𝑛) is viewed as the algebraic tensor product of the operator spaces
(𝐻𝑖 ⊗ 𝐻𝑖+1)

𝑜
op (resp. (𝐻d𝑖−1 ⊗ 𝐻d𝑖 )𝑜op). Thus, the norm ∥𝑢∥h of a finite sum 𝑢 =∑

𝑖 𝜉
𝑖
1,2 ⊗ . . .⊗ 𝜉𝑖𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛) of elementary tensors equals the Haagerup

norm of the element
∑

𝑖 𝜃(𝜉𝑖𝑛−1,𝑛)⊗ . . .⊗ 𝜃(𝜉𝑖1,2).

Remark 4.3. For each 𝜑 ∈ 𝐵(𝐻) and each 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛), we have

∥𝑆𝜑(𝜁)∥op ≤ ∥𝜑∥ℬ(𝐻)∥𝜁∥2,∧.
Proof. In the case where 𝑛 is odd and 𝜁 is an elementary tensor, the inequality
coincides with (16). In the case that 𝑛 is even and 𝜁 is an elementary tensor, this
is verified similarly. The general case now follows by linearity. □

Definition 4.4. An element 𝜑 ∈ 𝐵(𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑛) is called a concrete (operator)
multiplier if there exists 𝐶 > 0 such that

∥𝑆𝜑(𝜁)∥op ≤ 𝐶∥𝜁∥h, for each 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛).

The smallest such 𝐶 is denoted by ∥𝜑∥m.
Let 𝒜1, . . . ,𝒜𝑛 be 𝐶∗-algebras and 𝜋1, . . . , 𝜋𝑛 be corresponding representations

on the Hilbert spaces 𝐻1, . . . , 𝐻𝑛. An element 𝜑 ∈ 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛 is called a
(𝜋1, . . . , 𝜋𝑛)-multiplier if (𝜋1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜋𝑛)(𝜑) is a concrete multiplier. We denote
the set of all (𝜋1, . . . , 𝜋𝑛)-multipliers in 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛 by M𝜋1,...,𝜋𝑛

(𝒜1, . . .𝒜𝑛). If
𝜑 ∈M𝜋1,...,𝜋𝑛

(𝒜1, . . .𝒜𝑛), we let ∥𝜑∥𝜋1,...,𝜋𝑛
= ∥(𝜋1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜋𝑛)(𝜑)∥m.

The element 𝜑 ∈ 𝒜1⊗⋅ ⋅ ⋅⊗𝒜𝑛 is called a universal multiplier if 𝜑 is a (𝜋1, . . . , 𝜋𝑛)-
multiplier for all representations 𝜋𝑖 of 𝒜𝑖, 𝑖 = 1, . . . , 𝑛. We denote byM(𝒜1, . . .𝒜𝑛)
the set of all universal multipliers in 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛.

Remark 4.5. In the case 𝑛 = 2, Definition 4.4 reduces to the definition of 𝒞∞-
multipliers studied in [21].
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Next we show that an element 𝜑 ∈ 𝐿∞(𝑋1)⊗ . . .⊗𝐿∞(𝑋𝑛) ⊂ 𝐿∞(𝑋1× . . .×𝑋𝑛)
is a Schur multiplier as defined in Section 3 if and only if 𝜑 is a (𝜋1, . . . , 𝜋𝑛)-
multiplier, where 𝜋𝑖 is the canonical representation of 𝐿∞(𝑋𝑖) on 𝐿2(𝑋𝑖) acting by
multiplication.

Let 𝒜 be a commutative 𝐶∗-algebra with maximal ideal space 𝑋, acting on a
Hilbert space 𝐻. It is well known that, up to unitary equivalence, 𝐻 =

⊕
𝛾∈Γ𝐻𝛾 ,

where 𝐻𝛾 = 𝐿2(𝑋,𝜇𝛾) is invariant under 𝒜 for each 𝛾 ∈ Γ, and an element 𝑓 ∈ 𝒜
acts as on 𝐻𝛾 by multiplication. Let 𝑗 : 𝐻 → 𝐻 be given by {𝜉𝛾(𝜆)} �→ {𝜉𝛾(𝜆)}.
Then 𝑉 = ∂𝑗 is a unitary operator from 𝐻 to 𝐻d such that 𝐴d = 𝑉 𝐴𝑉 −1 for all
𝐴 ∈ 𝒜. If 𝐾 is another Hilbert space, then 𝑈(𝑇 ) = 𝑇𝑉 (resp. 𝑊 (𝑆) = 𝑉 −1𝑆) is
an isometry from 𝒞2(𝐻d,𝐾) to 𝒞2(𝐻,𝐾) (resp. from 𝒞2(𝐾,𝐻d) to 𝒞2(𝐾,𝐻)).

Let 𝒜1, . . ., 𝒜𝑛 be commutative 𝐶∗-algebras and let 𝜋1, . . ., 𝜋𝑛 be corresponding
representations on 𝐻1, . . ., 𝐻𝑛 and 𝜋 = 𝜋1 ⊗ . . . ⊗ 𝜋𝑛. Let 𝑉𝑖 : 𝐻𝑖 → 𝐻d𝑖 be

the unitary operator defined above with the property 𝜋𝑖(𝑎𝑖)d = 𝑉𝑖𝜋𝑖(𝑎𝑖)𝑉
−1
𝑖 for

each 𝑎𝑖 ∈ 𝒜𝑖, 𝑖 = 1, . . . , 𝑛. Define 𝑈𝑖,𝑘 : 𝒞2(𝐻d𝑖 , 𝐻𝑘) → 𝒞2(𝐻𝑖, 𝐻𝑘) and 𝑊𝑖,𝑘 :

𝒞2(𝐻𝑖, 𝐻d𝑘 ) → 𝒞2(𝐻𝑖, 𝐻𝑘) to be 𝑈𝑖,𝑘(𝑇 ) = 𝑇𝑉𝑖 and 𝑊𝑖,𝑘(𝑆) = 𝑉 −1
𝑘 𝑆. Then for

𝜑 ∈ 𝒜1⊗⋅ ⋅ ⋅⊗𝒜𝑛, the mapping 𝑆𝜋(𝜑) can be identified with a mapping 𝑆𝜋(𝜑) from
𝒞2(𝐻1, 𝐻2)⊙ 𝒞2(𝐻2, 𝐻3)⊙ . . .⊙ 𝒞2(𝐻𝑛−1, 𝐻𝑛) into ℬ(𝐻1, 𝐻𝑛) such that whenever
𝜑 = 𝑎1 ⊗ . . .⊗ 𝑎𝑛 is an elementary tensor, then

(17) 𝑆𝜋(𝜑)(𝑅1 ⊗ . . .⊗𝑅𝑛−1) = 𝜋𝑛(𝑎𝑛)𝑅𝑛−1𝜋𝑛−1(𝑎𝑛−1)𝑅𝑛−2 . . . 𝑅1𝜋1(𝑎1).

In fact, let 𝒰 = 𝑈1,2𝜃𝐻1,𝐻2
⊗𝑊2,3𝜃𝐻2,𝐻3

⊗ . . . ⊗ 𝑈𝑛−1,𝑛𝜃𝐻𝑛−1,𝐻𝑛
if 𝑛 is even and

𝒰 = 𝑊1,2𝜃𝐻1,𝐻2
⊗ 𝑈2,3𝜃𝐻2,𝐻3

⊗ . . . ⊗ 𝑈𝑛−1,𝑛𝜃𝐻𝑛−1,𝐻𝑛
if 𝑛 is odd. Then 𝒰 maps

the space Γ(𝐻1, 𝐻2, . . . , 𝐻𝑛) onto 𝒞2(𝐻1, 𝐻2) ⊙ 𝒞2(𝐻2, 𝐻3) ⊙ . . . ⊙ 𝒞2(𝐻𝑛−1, 𝐻𝑛)
and is an isometry with respect to the norm ∥ ⋅ ∥h (this norm being defined on the
algebraic tensor product of the 𝒞2-spaces again as the Haagerup norm, where each
of the 𝒞2-spaces is equipped with its opposite operator space structure). Let

𝑆𝜋(𝜑) = 𝑈1,𝑛𝑆𝜋(𝜑)𝒰−1

in the case that 𝑛 is even and

𝑆𝜋(𝜑) = 𝑆𝜋(𝜑)𝒰−1

in the case that 𝑛 is odd. Assume that 𝜑 = 𝑎1 ⊗ . . .⊗ 𝑎𝑛. Then, in the case where
𝑛 is even, we have

𝑆𝜋(𝜑)(𝑅1 ⊗ . . .⊗𝑅𝑛−1)

= 𝑈1,𝑛𝑆𝜋(𝜑)𝒰−1(𝑅1 ⊗ . . .⊗𝑅𝑛−1)

= 𝑈1,𝑛(𝜋𝑛(𝑎𝑛)𝑈−1
𝑛−1,𝑛(𝑅𝑛−1)𝜋𝑛−1(𝑎𝑛−1)d𝑊𝑛−2,𝑛−1(𝑅𝑛−2) . . . 𝜋1(𝑎1)d)

= 𝜋𝑛(𝑎𝑛)𝑅𝑛−1𝑉 −1
𝑛−1𝜋𝑛−1(𝑎𝑛−1)

d𝑉𝑛−1𝑅𝑛−2 . . . 𝑅1𝑉 −1
1 𝜋1(𝑎1)d𝑉1

= 𝜋𝑛(𝑎𝑛)𝑅𝑛−1𝜋𝑛−1(𝑎𝑛−1)𝑅𝑛−2 . . . 𝑅1𝜋1(𝑎1).

In the case where 𝑛 is odd one shows in a similar way that (17) holds.
Now let (𝑋𝑖, 𝜇𝑖) be a standard measure space, 𝒜𝑖 = 𝐿∞(𝑋𝑖) and let 𝜋𝑖 be

the representation of 𝒜𝑖 on 𝐿2(𝑋𝑖) given by (𝜋𝑖(𝑓)𝜉)(𝑥) = 𝑓(𝑥)𝜉(𝑥), 𝜉 ∈ 𝐿2(𝑋𝑖),
𝑖 = 1, . . . , 𝑛.

Suppose 𝑛 is even. In this case 𝑆𝜋(𝜑)(𝑅1⊗⋅ ⋅ ⋅⊗𝑅𝑛−1) is an element of 𝒞2(𝐻1, 𝐻𝑛).
Using (18) and the identification 𝜓𝑘,𝑙 : 𝑓 �→ 𝑇𝑓 of 𝐿2(𝑋𝑘, 𝑋𝑙) with the class of
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Hilbert-Schmidt operators from 𝐿2(𝑋𝑘) to 𝐿2(𝑋𝑙), where

(𝑇𝑓𝜉)(𝑦) =

∫
𝑋𝑘

𝑓(𝑥, 𝑦)𝜉(𝑥)𝑑𝑥, 𝑓 ∈ 𝐿2(𝑋𝑘 ×𝑋𝑙), 𝜉 ∈ 𝐿2(𝑋𝑘), 𝑦 ∈ 𝑋𝑙,

we obtain that if 𝑓1 ⊗ . . . ⊗ 𝑓𝑛−1 ∈ Γ(𝑋1, . . . , 𝑋𝑛) and 𝜑 is an elementary tensor,
then

𝜓−1
1,𝑛(𝑆𝜋(𝜑)(𝜓1,2 ⊗ . . .⊗ 𝜓𝑛−1,𝑛)(𝑓1 ⊗ . . .⊗ 𝑓𝑛−1))(𝑥1, 𝑥𝑛)(18)

=

∫
𝑋2×...×𝑋𝑛−1

𝜑(𝑥1, . . . , 𝑥𝑛)𝑓1(𝑥1, 𝑥2) . . . 𝑓𝑛−1(𝑥𝑛−1, 𝑥𝑛)𝑑𝑥2 . . . 𝑑𝑥𝑛−1

= 𝑆𝜑(𝑓1 ⊗ . . .⊗ 𝑓𝑛−1)(𝑥1, 𝑥𝑛).

By linearity and continuity, (18) holds for any 𝜑 ∈ 𝐿∞(𝑋1)⊗ . . .⊗ 𝐿∞(𝑋𝑛).
Now assume that 𝑛 is odd. Let 𝜉 ∈ 𝐻1, 𝜂 ∈ 𝐻𝑛 and 𝜓0,1 : 𝐿2(𝑋1) →

𝒞2(ℂ, 𝐿2(𝑋1)) be the natural identification. We have that (𝑆𝜑(𝑓1⊗ ⋅ ⋅ ⋅⊗ 𝑓𝑛−1)𝜉, 𝜂)
coincides with

(𝑆(id⊗𝜋)(1⊗𝜑)(𝜓0,1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜓𝑛−1,𝑛)((1⊗ 𝜉)⊗ 𝑓1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛−1), 𝜂)

whenever 𝜑 ∈ 𝐿∞(𝑋1) ⊗ . . . ⊗ 𝐿∞(𝑋𝑛) is an elementary tensor. By linearity and
continuity, we have that 𝜓1,𝑛(𝑆𝜑(𝑓1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛−1)) is equal to

𝑆𝜋(𝜑)(𝜓1,2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜓𝑛−1,𝑛)(𝑓1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛−1)

for all 𝜑 ∈ 𝐿∞(𝑋1)⊗ . . .⊗𝐿∞(𝑋𝑛). In particular, 𝑆𝜋(𝜑) takes values in 𝒞2(𝐻1, 𝐻𝑛).
As before, it follows that

𝜓−1
1,𝑛(𝑆𝜋(𝜑)(𝜓1,2 ⊗ . . .⊗ 𝜓𝑛−1,𝑛)(𝑓1 ⊗ . . .⊗ 𝑓𝑛−1))(𝑥1, 𝑥𝑛)(19)

= 𝑆𝜑(𝑓1 ⊗ . . .⊗ 𝑓𝑛−1))(𝑥1, 𝑥𝑛)

for every 𝜑 ∈ 𝐿∞(𝑋1)⊗ . . .⊗ 𝐿∞(𝑋𝑛). We have thus shown the following.

Proposition 4.6. An element 𝜑 ∈ 𝐿∞(𝑋1)⊗ . . .⊗ 𝐿∞(𝑋𝑛) is a Schur multiplier
if and only if 𝜑 ∈M𝜋1,...,𝜋𝑛

(𝐿∞(𝑋1), . . . , 𝐿
∞(𝑋𝑛)).

Next we want to give a generalisation of Lemma 4.2 for the case where 𝜑 is a
sum of elementary tensors. Let 𝑉 ,𝑉1, . . . , 𝑉𝑛 be vector spaces, 𝐿(𝑉1, 𝑉2) be the
space of all linear mappings from 𝑉1 into 𝑉2 and 𝐿(𝑉 ) = 𝐿(𝑉, 𝑉 ). Recall that if
𝑓 : 𝑉1 → 𝑉2 is a linear map, we let 𝑓𝑘,𝑙 : 𝑀𝑘,𝑙(𝑉1) → 𝑀𝑘,𝑙(𝑉2) be the mapping
given by 𝑓𝑘,𝑙((𝑣𝑖𝑗)) = (𝑓(𝑣𝑖𝑗)), for each (𝑣𝑖𝑗) ∈ 𝑀𝑘,𝑙(𝑉1). For an element 𝑣 =
(𝑣𝑖𝑗) ∈ 𝑀𝑘,𝑙(𝑉 ) we denote by 𝑣t = (𝑣𝑗𝑖) ∈ 𝑀𝑙,𝑘(𝑉 ) the transpose of 𝑣. Denote
by 𝑑 : 𝐵(𝐾) → 𝐵(𝐾d) the mapping sending 𝐴 to its dual 𝐴d. If 𝐴 = (𝐴𝑖𝑗) ∈
𝑀𝑘,𝑙(𝐵(𝐾)) let 𝐴d = (𝐴d𝑖𝑗).

We will identify 𝑀𝑝,𝑞(𝒞2(𝐾1,𝐾2)) with 𝒞2(𝐾𝑞
1 ,𝐾

𝑝
2 ). If 𝜉 ∈𝑀𝑝,𝑞(𝐾1⊗𝐾2), then

𝜃𝑝,𝑞(𝜉) ∈𝑀𝑝,𝑞(𝒞2(𝐾d1 ,𝐾2)); using this identification, we will be considering 𝜃𝑝,𝑞(𝜉)
as a Hilbert-Schmidt operator from 𝐾𝑞

1 to 𝐾𝑝
2 . If 𝐴 ∈ 𝐵(𝐾1,𝐾2), then 𝐴 ⊗ 𝐼𝑘 ∈

𝐵(𝐾𝑘
1 ,𝐾

𝑘
2 ) is the 𝑘-fold ampliation of 𝐴; under the identification 𝐵(𝐾𝑘

1 ,𝐾
𝑘
2 ) =

𝑀𝑘 (𝐵(𝐾1, 𝐾2)), the operator 𝐴 ⊗ 𝐼𝑘 has a 𝑘 by 𝑘 diagonal matrix, whose every
diagonal entry is 𝐴. The following lemma is straightforward.
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Lemma 4.7. Let 𝑉1, . . . , 𝑉𝑛 be vector spaces, ℒ𝑖 ⊆ 𝐿(𝑉𝑖, 𝑉𝑖+1) a subspace, 𝑖 =
1, . . . , 𝑛− 1, and

𝑆 : (𝐿(𝑉𝑛)⊙ 𝐿(𝑉𝑛−1)⊙ ⋅ ⋅ ⋅ ⊙ 𝐿(𝑉1))× (ℒ𝑛−1 ⊙ ⋅ ⋅ ⋅ ⊙ ℒ1) → 𝐿(𝑉1, 𝑉𝑛)

be a mapping satisfying

𝑆(𝑎𝑛 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎1, 𝜆𝑛−1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜆1) = 𝑎𝑛𝜆𝑛−1𝑎𝑛−1 . . . 𝜆1𝑎1.

If 𝐴1 ∈ 𝑀𝑘1,1(𝐿(𝑉1)), 𝐴2 ∈ 𝑀𝑘2,𝑘1(𝐿(𝑉2)), . . . ,𝐴𝑛 ∈ 𝑀1,𝑘𝑛−1
(𝐿(𝑉𝑛)) and Λ1 ∈

𝑀𝑙1,1(ℒ1), Λ2 ∈𝑀𝑙2,𝑙1(ℒ2), . . . , Λ𝑛−1 ∈ 𝑀1,𝑙𝑛−2
(ℒ𝑛−1), then

𝑆(𝐴𝑛 ⊙ ⋅ ⋅ ⋅ ⊙𝐴1,Λ𝑛−1 ⊙ ⋅ ⋅ ⋅ ⊙ Λ1) = 𝐴𝑛 . . . (Λ2 ⊗ 𝐼𝑘2)(𝐴2 ⊗ 𝐼𝑙1)(Λ1 ⊗ 𝐼𝑘1)𝐴1.

Lemma 4.8. Let 𝐴1 ∈ 𝑀1,𝑘1(ℬ(𝐻1)), 𝐴2 ∈ 𝑀𝑘1,𝑘2(ℬ(𝐻2)), . . . , 𝐴𝑛 ∈
𝑀𝑘𝑛−1,1 (ℬ(𝐻𝑛)) and 𝜑 = 𝐴1 ⊙𝐴2 ⊙ ⋅ ⋅ ⋅ ⊙𝐴𝑛.

(i) Assume 𝑛 is even. Let 𝜉1,2 ∈ 𝑀1,𝑙1(𝐻1 ⊗𝐻2), 𝜂2,3 ∈ 𝑀𝑙1,𝑙2(𝐻d2 ⊗𝐻d3 ), . . . ,
𝜉𝑛−1,𝑛 ∈𝑀𝑙𝑛−2,1(𝐻𝑛−1 ⊗𝐻𝑛) and

𝜁 = 𝜉1,2 ⊙ 𝜂2,3 ⊙ ⋅ ⋅ ⋅ ⊙ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛).

Then

𝑆𝜑(𝜁) = 𝐴t𝑛 . . . (𝐴t,d3 ⊗ 𝐼𝑙2)(𝜃𝑙1,𝑙2(𝜂2,3)
t ⊗ 𝐼𝑘2)(𝐴

t,d
2 ⊗ 𝐼𝑙1)(𝜃1,𝑙1(𝜉1,2)

t ⊗ 𝐼𝑘1)𝐴
t,d
1 .

(ii) Assume 𝑛 is odd. Let 𝜂1,2 ∈ 𝑀1,𝑙1(𝐻d1 ⊗ 𝐻d2 ), 𝜉2,3 ∈ 𝑀𝑙1,𝑙2(𝐻2 ⊗ 𝐻3), . . . ,
𝜉𝑛−1,𝑛 ∈𝑀𝑙𝑛−2,1(𝐻𝑛−1 ⊗𝐻𝑛) and

𝜁 = 𝜂1,2 ⊙ 𝜉2,3 ⊙ ⋅ ⋅ ⋅ ⊙ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛).

Then

𝑆𝜑(𝜁) = 𝐴t𝑛 . . . (𝐴t3 ⊗ 𝐼𝑙2)(𝜃𝑙1,𝑙2(𝜉2,3)
t ⊗ 𝐼𝑘2)(𝐴

t,d
2 ⊗ 𝐼𝑙1)(𝜃1,𝑙1(𝜂1,2)

t ⊗ 𝐼𝑘1)𝐴
t
1.

Proof. Let 𝑓 : 𝑉1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑉𝑛 → 𝑉𝑛 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑉1 be the flip, namely the map given on
elementary tensors by 𝑓(𝑣1⊗⋅ ⋅ ⋅⊗𝑣𝑛) = 𝑣𝑛⊗⋅ ⋅ ⋅⊗𝑣1. Note that if 𝐴1 ∈𝑀1,𝑘1(𝑉1),
𝐴2 ∈𝑀𝑘1,𝑘2(𝑉2), . . . , 𝐴𝑛 ∈𝑀𝑘𝑛−1,1(𝑉𝑛), then

𝑓(𝐴1 ⊙ ⋅ ⋅ ⋅ ⊙𝐴𝑛) = 𝐴t𝑛 ⊙ ⋅ ⋅ ⋅ ⊙𝐴t1.

Let

𝐷 : 𝐵(𝐻1)⊙𝐵(𝐻2)⊙ ⋅ ⋅ ⋅ ⊙𝐵(𝐻𝑛) −→ 𝐵(𝐻𝑛)⊙𝐵(𝐻d𝑛−1)⊙ ⋅ ⋅ ⋅ ⊙𝐵(𝐻d1 )

be the map

𝐷 = 𝑓 ∘ (𝑑⊗ id⊗𝑑⊗ ⋅ ⋅ ⋅ ⊗ id).

We have that

𝐷(𝐴) = 𝐴t𝑛 ⊙𝐴t,d𝑛−1 ⊙ ⋅ ⋅ ⋅ ⊙𝐴t,d1 .

Define a mapping 𝑆 from

(𝐵(𝐻𝑛)⊙𝐵(𝐻d𝑛−1)⊙ ⋅ ⋅ ⋅ ⊙𝐵(𝐻d1 ))× (𝒞2(𝐻d𝑛−1, 𝐻𝑛)⊙ ⋅ ⋅ ⋅ ⊙ 𝒞2(𝐻d1 , 𝐻2))
into 𝒞2(𝐻d1 , 𝐻𝑛) by

𝑆(𝜓, 𝜁 ′) = 𝑆𝐷−1(𝜓)(𝜃
−1(𝜁 ′)),

where

𝜃 : Γ(𝐻1, . . . , 𝐻𝑛) → 𝒞2(𝐻d𝑛−1, 𝐻𝑛)⊙ ⋅ ⋅ ⋅ ⊙ 𝒞2(𝐻d1 , 𝐻2)
is given on elementary tensors by

𝜃(𝜉1,2 ⊗ 𝜂2,3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛) = 𝜃(𝜉𝑛−1,𝑛)⊗ ⋅ ⋅ ⋅ ⊗ 𝜃(𝜂2,3)⊗ 𝜃(𝜉1,2).
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By Lemma 4.2 (i), the mapping 𝑆 satisfies the requirements of Lemma 4.7 and

𝑆𝜑(𝜁) = 𝑆(𝐴t𝑛 ⊙𝐴t,d𝑛−1 ⊙ ⋅ ⋅ ⋅ ⊙𝐴t,d1 , 𝜃𝑙𝑛−2,1(𝜉𝑛−1,𝑛)t ⊙ ⋅ ⋅ ⋅ ⊙ 𝜃1,𝑙1(𝜉1,2)
t).

The claim now follows from Lemma 4.7.
The proof of (ii) is similar. □

5. Multipliers for tensor products of representations

It was proved in [21] that the space of all (𝜋, 𝜌)-multipliers does not change if
the representations 𝜋 and 𝜌 are replaced by approximately equivalent representa-
tions. In this section we will prove a corresponding result for multidimensional
multipliers. We first recall the notion of approximate equivalence and approximate
subordination introduced by Voiculescu in [32].

Let 𝜋 and 𝜋′ be ∗-representations of a 𝐶∗-algebra 𝒜 on Hilbert spaces 𝐻 and 𝐻 ′,
respectively. We say that 𝜋′ is approximately subordinate to 𝜋 and write 𝜋′ 𝑎≪ 𝜋 if
there is a net {𝑈𝜆} of isometries from 𝐻 ′ to 𝐻 such that

(20) ∥𝜋(𝑎)𝑈𝜆 − 𝑈𝜆𝜋
′(𝑎)∥ → 0 for all 𝑎 ∈ 𝒜.

The representations 𝜋′ and 𝜋 are said to be approximately equivalent if the operators

𝑈𝜆 can be chosen to be unitary; in this case we write 𝜋′ 𝑎∼ 𝜋.
For 𝐶∗-algebras 𝒜1, . . . ,𝒜𝑛 and the corresponding representations 𝜋1, . . . , 𝜋𝑛,

we will denote the collection of all (𝜋1, . . . , 𝜋𝑛)-multipliers in 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗𝒜𝑛 simply
by M𝜋1,...,𝜋𝑛

, in case there is no danger of confusion.

Theorem 5.1. Let 𝒜1, . . . ,𝒜𝑛 be 𝐶∗-algebras and 𝜋𝑖 and 𝜋′
𝑖 be representations of

𝒜𝑖 on the Hilbert spaces 𝐻𝑖 and 𝐻 ′
𝑖, respectively, 𝑖 = 1, . . . , 𝑛.

(i) If 𝜋′
𝑖

𝑎≪ 𝜋𝑖, 𝑖 = 1, . . . , 𝑛, then

M𝜋1,...,𝜋𝑛
⊆M𝜋′

1,...,𝜋
′
𝑛

and ∥𝜑∥𝜋′
1,...,𝜋

′
𝑛
≤ ∥𝜑∥𝜋1,...,𝜋𝑛

, for 𝜑 ∈M𝜋1,...,𝜋𝑛
.

(ii) If 𝜋′
𝑖
𝑎∼ 𝜋𝑖, 𝑖 = 1, . . . , 𝑛, then

M𝜋1,...,𝜋𝑛
=M𝜋′

1,...,𝜋
′
𝑛

and ∥𝜑∥𝜋1,...,𝜋𝑛
= ∥𝜑∥𝜋′

1,...,𝜋
′
𝑛
, for 𝜑 ∈M𝜋1,...,𝜋𝑛

.

Proof. (i) First let 𝑛 be even and {𝑈𝜆𝑖
} be nets of isometries from 𝐻 ′

𝑖 into 𝐻𝑖

satisfying

∥𝜋𝑖(𝑎𝑖)𝑈𝜆𝑖
− 𝑈𝜆𝑖

𝜋′
𝑖(𝑎𝑖)∥ → 0, for all 𝑎𝑖 ∈ 𝒜𝑖.

Set 𝜋 =
⊗𝑛

𝑖=1 𝜋𝑖, 𝜋
′ =

⊗𝑛
𝑖=1 𝜋

′
𝑖, 𝜆 = (𝜆1, . . . , 𝜆𝑛) and 𝑊𝜆 = 𝑈𝜆1

⊗ . . .⊗𝑈𝜆𝑛
. Then

𝑊𝜆 are isometries from
⊗𝑛

𝑖=1𝐻
′
𝑖 to

⊗𝑛
𝑖=1𝐻𝑛 and, for 𝑥 ∈ 𝒜1 ⊙ . . .⊙𝒜𝑛, we have

∥𝜋(𝑥)𝑊𝜆 −𝑊𝜆𝜋
′(𝑥)∥ −→ 0.

As ∥𝑊𝜆∥ = 1 for all 𝜆, this holds for all 𝑥 ∈ 𝒜1 ⊗ . . .⊗𝒜𝑛. By Lemma 4.2 (i) we
have that, for any 𝜉 ∈⊗𝑛

𝑖=1𝐻𝑖,

𝜃(𝑊 ∗
𝜆𝜉)(𝜃(𝜂d2,3)) . . . (𝜃(𝜂d𝑛−2,𝑛−1))

= 𝑈∗
𝜆𝑛

𝜃(𝜉)(𝜃((𝑊𝜆2,𝜆3
𝜂2,3)d)) . . . (𝜃((𝑊𝜆𝑛−2,𝜆𝑛−1

𝜂𝑛−2,𝑛−1)d))(𝑈∗
𝜆1

)d,

where 𝑊𝜆𝑘,𝜆𝑘+1
= 𝑈𝜆𝑘

⊗𝑈𝜆𝑘+1
. Therefore, if 𝜁 = 𝜉1,2 ⊗ (𝜂2,3)d ⊗ . . .⊗ 𝜉𝑛−1,𝑛, then

𝑆𝑊∗
𝜆𝜋(𝜑)𝑊𝜆

(𝜁)(21)

= 𝑈∗
𝜆𝑛

𝑆𝜋(𝜑)(𝑊𝜆1,𝜆2
𝜉1,2 ⊗ (𝑊𝜆2,𝜆3

𝜂2,3)d ⊗ . . .⊗𝑊𝜆𝑛−1,𝜆𝑛
𝜉𝑛−1,𝑛)(𝑈∗

𝜆1
)d.
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Let Γ𝜆 : Γ(𝐻 ′
1, . . . , 𝐻

′
𝑛) → Γ(𝐻1, . . . , 𝐻𝑛) be the linear operator defined on elemen-

tary tensors by

Γ𝜆(𝜉1,2 ⊗ 𝜂d2,3 ⊗ . . .⊗ 𝜉𝑛−1,𝑛) = 𝑊𝜆1,𝜆2
𝜉1,2 ⊗ (𝑊𝜆2,𝜆3

𝜂2,3)d ⊗ . . .⊗𝑊𝜆𝑛−1,𝜆𝑛
𝜉𝑛−1,𝑛.

It follows from (21) and Remark 4.3 that if 𝜑 ∈M𝜋1,...,𝜋𝑛
and 𝜁 ∈ Γ(𝐻 ′

1, . . . , 𝐻
′
𝑛),

then

∥𝑆𝜋′(𝜑)(𝜁)∥op ≤ ∥𝑆𝑊∗
𝜆𝜋(𝜑)𝑊𝜆

(𝜁)∥op + ∥𝑆𝑊∗
𝜆𝜋(𝜑)𝑊𝜆−𝜋′(𝜑)(𝜁)∥op

≤ ∥𝑆𝜋(𝜑)(Γ𝜆𝜁)∥op + ∥𝑆𝑊∗
𝜆𝜋(𝜑)𝑊𝜆−𝜋′(𝜑)(𝜁)∥op

≤ ∥𝜑∥𝜋1,...,𝜋𝑛
∥Γ𝜆𝜁∥h + ∥𝑊 ∗

𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op∥𝜁∥2,∧.

Since ∥𝑊 ∗
𝜆𝜋(𝜑)𝑊𝜆− 𝜋′(𝜑)∥op → 0, in order to prove that 𝜑 ∈M𝜋′

1,...,𝜋
′
𝑛
, it suffices

to show that ∥Γ𝜆𝜁∥h ≤ ∥𝜁∥h. If 𝜉𝑖,𝑖+1 ∈ 𝐻 ′
𝑖 ⊗ 𝐻 ′

𝑖+1, then 𝜃(𝑊𝜆𝑖,𝜆𝑖+1
𝜉𝑖,𝑖+1) =

𝑈𝜆𝑖+1
𝜃(𝜉𝑖,𝑖+1)𝑈d𝜆𝑖

. Let 𝜁 ∈ Γ(𝐻 ′
1, . . . , 𝐻

′
𝑛) be of the form

𝜁 = 𝜉1,2 ⊗ 𝜂d2,3 ⊗ . . .⊗ 𝜉𝑛−1,𝑛,

where 𝜉1,2 ∈ 𝑀1,𝑘2(𝐻
′
1 ⊗ 𝐻 ′

2), 𝜂d2,3 ∈ 𝑀𝑘2,𝑘3((𝐻
′
2)
d ⊗ (𝐻 ′

3)
d), . . ., and 𝜉𝑛−1,𝑛 ∈

𝑀𝑘𝑛−1,1(𝐻
′
𝑛−1 ⊗𝐻 ′

𝑛) are such that

∥𝜁∥h = ∥𝜃1,𝑘2(𝜉1,2)t∥op∥𝜃𝑘2,𝑘3(𝜂d2,3)t∥op . . . ∥𝜃𝑘𝑛−1,1(𝜉𝑛−1,𝑛)t∥op.

Then

Γ𝜆𝜁 = 𝑊𝜆1,𝜆2
𝜉1,2 ⊙ (𝑊 ∗,d

𝜆2,𝜆3
⊗ 𝐼𝑘2)𝜂

d
2,3 ⊙ . . .⊙ (𝑊𝜆𝑛−1,𝜆𝑛

⊗ 𝐼𝑘𝑛−1
)𝜉𝑛−1,𝑛,

and as

𝜃1,𝑘2(𝑊𝜆1,𝜆2
𝜉1,2) = 𝑈𝜆2

𝜃1,𝑘2(𝜉1,2)(𝑈
d
𝜆1
⊗ 𝐼𝑘2),

𝜃𝑘2,𝑘3(((𝑊
∗
𝜆2,𝜆3

)d ⊗ 𝐼𝑘2)𝜂
d
2,3) = (𝑈d𝜆3

⊗ 𝐼𝑘2)𝜃2,3(𝜂
d
2,3)(𝑈𝜆2

⊗ 𝐼𝑘3),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝜃𝑘𝑛−1,1((𝑊𝜆𝑛−1,𝜆𝑛
⊗ 𝐼𝑘𝑛−1

)𝜉𝑛−1,𝑛) = (𝑈𝜆𝑛
⊗ 𝐼𝑘𝑛−1

)𝜃𝑘𝑛−1,1(𝜉𝑛−1,𝑛)𝑈d𝜆𝑛−1
,

we get

∥Γ𝜆𝜁∥h ≤ ∥𝑈𝜆2
⊗ 𝐼𝑘2∥op∥𝜃1,𝑘2(𝜉1,2)t∥op∥𝑈d𝜆1

∥op . . .
. . . ∥𝜃𝑘𝑛−1,1(𝜉𝑛−1,𝑛)t∥op∥𝑈d𝜆𝑛−1

⊗ 𝐼𝑘𝑛−1
∥op

= ∥𝜃1,𝑘2(𝜉1,2)
t∥op . . . ∥𝜃𝑘𝑛−1,1(𝜉𝑛−1,𝑛)t∥op = ∥𝜁∥h.

This completes the proof for the case where 𝑛 is even. Now assume that 𝑛 is
odd and let Γ𝜆 : Γ(𝐻 ′

1, . . . , 𝐻
′
𝑛) → Γ(𝐻1, . . . , 𝐻𝑛) be the linear operator defined on

elementary tensors by

Γ𝜆(𝜉d1,2 ⊗ . . .⊗ 𝜂𝑛−1,𝑛) = (𝑊𝜆1,𝜆2
𝜉1,2)d ⊗ . . .⊗𝑊𝜆𝑛−1,𝜆𝑛

𝜂𝑛−1,𝑛.

An estimate similar to the above shows again that ∥Γ𝜆𝜁∥h ≤ ∥𝜁∥h.
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By the definition of the map 𝑆𝜋′(𝜑) and the arguments above, we obtain

∥𝑆𝜋′(𝜑)(𝜁)∥op ≤ ∥𝑆𝑊∗
𝜆𝜋(𝜑)𝑊𝜆

(𝜁)∥op + ∥𝑆(𝑊∗
𝜆𝜋(𝜑)𝑊𝜆−𝜋′(𝜑))(𝜁)∥op

= sup
𝜉1∈𝐻′

1,∥𝜉1∥=1
∥𝑆1⊗𝑊∗

𝜆𝜋(𝜑)𝑊𝜆
(𝜉1 ⊗ 𝜁)∥𝐻′

𝑛
+ ∥𝑆(𝑊∗

𝜆𝜋(𝜑)𝑊𝜆−𝜋′(𝜑))(𝜁)∥op

≤ sup
𝜉1∈𝐻′

1,∥𝜉1∥=1
∥𝑆1⊗𝜋(𝜑)(𝑈𝜆1

𝜉1 ⊗ Γ𝜆𝜁)∥𝐻𝑛
+ ∥𝑆(𝑊∗

𝜆𝜋(𝜑)𝑊𝜆−𝜋′(𝜑))(𝜁)∥op

≤ sup
𝜂1∈𝐻1,∥𝜂1∥=1

∥𝑆1⊗𝜋(𝜑)(𝜂1 ⊗ Γ𝜆𝜁)∥𝐻𝑛
+ ∥𝑊 ∗

𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op∥𝜁∥2,∧

= ∥𝑆𝜋(𝜑)(Γ𝜆𝜁)∥op + ∥𝑊 ∗
𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op∥𝜁∥2,∧

≤ ∥𝜑∥𝜋1,...,𝜋𝑛
∥∥Γ𝜆𝜁∥h + ∥𝑊 ∗

𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op∥𝜁∥2,∧
≤ ∥𝜑∥𝜋1,...,𝜋𝑛

∥∥𝜁∥h + ∥𝑊 ∗
𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op∥𝜁∥2,∧.

As ∥𝑊 ∗
𝜆𝜋(𝜑)𝑊𝜆 − 𝜋′(𝜑)∥op → 0 we obtain the desired statement.

(ii) is a direct consequence of (i). □

For 𝑇 ∈ 𝐵(𝐻), set rank(𝑇 ) = dim(𝑇𝐻). It was proved in [17, Theorem 5.1] that
for ∗-representations 𝜋 and 𝜋′ of a 𝐶∗-algebra 𝒜,

(22) 𝜋′ 𝑎≪ 𝜋 ⇐⇒ rank(𝜋′(𝑎)) ≤ rank(𝜋(𝑎)) for each 𝑎 ∈ 𝒜.

The next statement is a multidimensional version of [21, Corollory 5.3]. Its proof
follows the lines of the proof of the corresponding statement in the two-dimensional
case and uses Theorem 5.1 instead of [21, Theorem 5.2].

Corollary 5.2. Let 𝜋𝑖, 𝜋′
𝑖 be representations of separable 𝐶∗-algebras 𝒜𝑖, 𝑖 =

1, . . . , 𝑛. Assume that

min{ℵ0, rank(𝜋′
𝑖(𝑎𝑖))} ≤ min{ℵ0, rank(𝜋𝑖(𝑎𝑖))},

for each 𝑎𝑖 ∈ 𝒜𝑖 and 𝑖 = 1, . . . , 𝑛.
Then M𝜋1,...,𝜋𝑛

⊆M𝜋′
1,...,𝜋

′
𝑛

and ∥𝜑∥𝜋′
1,...,𝜋

′
𝑛
≤ ∥𝜑∥𝜋1,...,𝜋𝑛

for 𝜑 ∈M𝜋1,...,𝜋𝑛
.

Recall that a ∗-representation 𝜋 of a 𝐶∗-algebra 𝒜 has a separating vector if
there is a cyclic vector for the commutant 𝜋(𝒜)′.

Lemma 5.3. Let ℋ, 𝐻1, . . . , 𝐻𝑛 be Hilbert spaces, 𝜋1, . . . , 𝜋𝑛 be representations of
the 𝐶∗-algebras 𝒜1, . . . ,𝒜𝑛 on 𝐻1, . . . , 𝐻𝑛 and 𝜋𝑖 ⊗ 1 be the ampliation of 𝜋𝑖 on
𝐻𝑖 ⊗ℋ, respectively. Assume that 𝜋1 and 𝜋𝑛 have separating vectors. Then

M𝜋1,...,𝜋𝑛
=M𝜋1⊗1,...,𝜋𝑛⊗1,

and the multiplier norms on these spaces coincide.

Proof. We use ideas from the proofs of [28, Theorem 2.1] and Lemma 3.3. For
simplicity we assume that 𝑛 = 3 and that ℋ is separable. Let 𝜑 ∈ M𝜋1,𝜋2,𝜋3

with ∥𝜑∥𝜋1,𝜋2,𝜋3
= 1 and set 𝑆 = 𝑆(𝜋1⊗1)⊗(𝜋2⊗1)⊗(𝜋3⊗1)(𝜑). The mapping 𝑆 can be

regarded as a mapping on

(23) 𝒞2((𝐻2 ⊗ℋ)d, 𝐻3 ⊗ℋ)⊙ 𝒞2(𝐻1 ⊗ℋ, (𝐻2 ⊗ℋ)d)

by setting 𝑆(𝜃(𝜉2,3)⊗ 𝜃(𝜂d1,2)) = 𝑆(𝜂d1,2 ⊗ 𝜉2,3) for 𝜁 = 𝜂d1,2 ⊗ 𝜉2,3 ∈ Γ(𝐻1⊗ℋ, 𝐻2 ⊗
ℋ, 𝐻3 ⊗ ℋ). Similarly, the mapping 𝑆𝜋1⊗𝜋2⊗𝜋3(𝜑) can be regarded as a mapping

on 𝒞2(𝐻d2 , 𝐻3) ⊙ 𝒞2(𝐻1, 𝐻d2 ). It follows from Lemma 4.8 that 𝑆𝜋1⊗𝜋2⊗𝜋3(𝜑) is
(𝜋3(𝒜3)′, (𝜋2(𝒜2)′)d, 𝜋1(𝒜1)′)-modular.
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Assume that ∥𝜑∥𝜋1⊗1,𝜋2⊗1,𝜋3⊗1 > 1. Then there exists an element 𝑇 =
(𝑇 21 , . . . , 𝑇

2
𝑠 )⊙ (𝑇 11 , . . . , 𝑇

1
𝑠 )t in the space defined in (23) with

∥
∑

(𝑇 1𝑖 )∗𝑇 1𝑖 ∥∥
∑

𝑇 2𝑖 (𝑇 2𝑖 )∗∥ = 1,

and vectors 𝜉0 ∈ 𝐻1 ⊗ℋ, 𝜂0 ∈ 𝐻3 ⊗ℋ of norm less than one such that

∣(𝑆(𝑇 )𝜉0, 𝜂0)∣ > 1.

Fix a basis {𝑓𝑙} of ℋ and denote by 𝑃𝑛 the projection onto the space generated
by the first 𝑛 vectors in this basis. Then, as

(1𝐻3
⊗ 𝑃𝑛)𝑆(𝑇 )(1𝐻1

⊗ 𝑃𝑛) → 𝑆(𝑇 )

weakly, there exists 𝑛 ≥ 1 such that

∣((1𝐻3
⊗ 𝑃𝑛)𝑆(𝑇 )(1𝐻1

⊗ 𝑃𝑛)𝜉0, 𝜂0)∣ > 1.

Thus we may assume that 𝜉0 ∈ 𝐻1 ⊗ 𝑃𝑛ℋ and 𝜂0 ∈ 𝐻3 ⊗ 𝑃𝑛ℋ, say

𝜉0 = (𝜉1, . . . , 𝜉𝑛, 0, . . .), 𝜂0 = (𝜂1, . . . , 𝜂𝑛, 0. . . .).

As 𝜋1(𝒜1)′ and 𝜋3(𝒜3)′ have cyclic vectors, say 𝜉 and 𝜂 respectively, we may
assume that 𝜉𝑖 = 𝑎𝑖𝜉, 𝜂𝑖 = 𝑏𝑖𝜂 for some 𝑎𝑖 ∈ 𝜋1(𝒜1)′ and 𝑏𝑖 ∈ 𝜋3(𝒜3)′. Let
𝑎 =

∑
𝑎∗𝑖 𝑎𝑖, 𝑏 =

∑
𝑏∗𝑖 𝑏𝑖. Assuming first that 𝑎, 𝑏 are invertible we set 𝑎̃𝑖 =

𝑎𝑖𝑎
−1/2, 𝑏̃𝑖 = 𝑏𝑖𝑏

−1/2. Then for 𝜉 = 𝑎1/2𝜉, 𝜂 = 𝑏1/2𝜂 we have 𝜉𝑖 = 𝑎̃𝑖𝜉 and
𝜂𝑖 = 𝑏̃𝑖𝜂. We write 𝑇 𝑘𝑖 = ((𝑇 𝑘𝑖 )𝑙𝑚), where (𝑇 1𝑖 )𝑙𝑚 = (1𝐻d

2
⊗𝑃 (𝑓d𝑙 ))𝑇 1𝑖 (1𝐻1

⊗𝑃 (𝑓𝑚)),

(𝑇 2𝑖 )𝑙𝑚 = (1𝐻3
⊗ 𝑃 (𝑓𝑙))𝑇

2
𝑖 (1𝐻d

2
⊗ 𝑃 (𝑓d𝑚)), where 𝑃 (𝑓) is the projection onto the

one-dimensional space generated by 𝑓 . Using the modularity of 𝑆𝜋1⊗𝜋2⊗𝜋3(𝜑), we
obtain

∣(𝑆(𝑇 )𝜉0, 𝜂0)∣ =

∣∣∣∣∣
𝑠∑
𝑖=1

(𝑆(𝑇 2𝑖 ⊗ 𝑇 1𝑖 )𝜉0, 𝜂0)

∣∣∣∣∣
=

∣∣∣∣∣∣
𝑠∑
𝑖=1

𝑛∑
𝑙,𝑚=1

∞∑
𝑘=1

(𝑆𝜋1⊗𝜋2⊗𝜋3(𝜑)((𝑇
2
𝑖 )𝑙𝑘 ⊗ (𝑇 1𝑖 )𝑘𝑚)𝑎̃𝑚𝜉, 𝑏̃𝑙𝜂)

∣∣∣∣∣∣(24)

=

∣∣∣∣∣∣
𝑠∑
𝑖=1

𝑛∑
𝑙,𝑚=1

∞∑
𝑘=1

(𝑆𝜋1⊗𝜋2⊗𝜋3(𝜑)(𝑏̃
∗
𝑙 (𝑇

2
𝑖 )𝑙𝑘 ⊗ (𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)𝜉, 𝜂)

∣∣∣∣∣∣ .
The next step is to prove that

𝑠∑
𝑖=1

∞∑
𝑘=1

(
𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘

)
⊗
(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚

)
belongs

to 𝒦(𝐻d2 , 𝐻3)⊗h 𝒦(𝐻1, 𝐻d2 ). Observe first that the row operator

𝑅𝑖 = (

𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙1, . . . ,

𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘, . . .)

is equal to the product of the row operator 𝐵̃ = (𝑏̃1, . . . , 𝑏̃𝑛, 0, . . .) and the Hilbert-

Schmidt operator 𝑇 2𝑖 . Set 𝑅 = (𝑅1, . . . , 𝑅𝑠) = (𝐵̃𝑇 21 , . . . , 𝐵̃𝑇 2𝑠 ).
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As each 𝑇 2𝑖 is the operator norm-limit of the operators 𝑇 2𝑖 (1𝐻d
2
⊗𝑃𝑘) as 𝑘 →∞,

the operator 𝑅𝑖 is the uniform limit of the sequence of truncated operators 𝑅𝑘
𝑖 =

(
∑𝑛

𝑙=1 𝑏̃
∗
𝑙 (𝑇

2
𝑖 )𝑙1, . . . ,

∑𝑛
𝑙=1 𝑏̃

∗
𝑙 (𝑇

2
𝑖 )𝑙𝑘, 0 . . .). Thus

𝑅𝑅∗ =
𝑠∑
𝑖=1

∞∑
𝑘=1

(
𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘

)(
𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘

)∗
,

where the series converges uniformly and

∥
𝑠∑
𝑖=1

∞∑
𝑘=1

(

𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘)(

𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘)

∗∥ = ∥𝑅𝑅∗∥ = ∥
𝑠∑
𝑖=1

𝑅𝑖𝑅
∗
𝑖 ∥

= ∥𝐵̃(

𝑠∑
𝑖=1

𝑇 2𝑖 (𝑇 2𝑖 )∗)𝐵̃∗∥ ≤ ∥𝐵̃∥2∥∥
𝑠∑
𝑖=1

𝑇 2𝑖 (𝑇 2𝑖 )∗∥ ≤ 1.

In the same way one shows that the series
∞∑
𝑘=1

(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)∗

converges uniformly and∥∥∥∥∥
𝑠∑
𝑖=1

∞∑
𝑘=1

(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)∗
∥∥∥∥∥ ≤ 1.

Thus

𝑠∑
𝑖=1

∞∑
𝑘=1

(

𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘)⊗ (

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚) ∈ 𝒦(𝐻1, 𝐻d2 )⊗h 𝒦(𝐻d2 , 𝐻3) and

∥
𝑠∑
𝑖=1

∞∑
𝑘=1

(
𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘)⊗ (

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚)∥h ≤ 1.

Next ∥𝜉∥2 = (𝑏1/2𝜉, 𝑏1/2𝜉) = (𝑏𝜉, 𝜉) =
∑

𝑖(𝑏𝑖𝜉, 𝑏𝑖𝜉) = ∥𝜉0∥2 < 1. Similarly,
∥𝜂∥ < 1. Since ∥𝜑∥𝜋1,𝜋2,𝜋3

= 1, it now follows from (24) that

∣(𝑆(𝑇 )𝜉0, 𝜂0)∣ ≤
∥∥∥∥∥

𝑠∑
𝑖=1

∞∑
𝑘=1

(
𝑛∑
𝑙=1

𝑏̃∗𝑙 (𝑇
2
𝑖 )𝑙𝑘

)
⊗
(

𝑛∑
𝑚=1

(𝑇 1𝑖 )𝑘𝑚𝑎̃𝑚

)∥∥∥∥∥
h

∥𝜉∥∥𝜂∥,

which does not exceed 1, a contradiction.

If 𝑎 or 𝑏 is not invertible, let 𝜖 > 0 be such that 𝜉0
𝑑𝑒𝑓
= (𝜉1, . . . , 𝜉𝑛, 𝜖𝜉, 0, . . . ) and

𝜂0
𝑑𝑒𝑓
= (𝜂1, . . . , 𝜂𝑛, 𝜖𝜂, 0, . . . ) have norm less than one and ∣(𝑆(𝑇 )𝜉0, 𝜂0)∣ > 1. Choose

𝑎𝑖 and 𝑏𝑖 in the same way as before, and let 𝑎𝑛+1 = 𝜖𝐼, 𝑏𝑛+1 = 𝜖𝐼, 𝑎 =
∑𝑛+1

𝑖=1 𝑎∗𝑖 𝑎𝑖
and 𝑏 =

∑𝑛+1
𝑖=1 𝑏∗𝑖 𝑏𝑖. Then 𝑎 and 𝑏 are invertible and the proof proceeds in the same

fashion.
We have proved that M𝜋1,...,𝜋𝑛

⊆ M𝜋1⊗1,...,𝜋𝑛⊗1 and that ∥ ⋅ ∥𝜋1⊗1,...,𝜋𝑛⊗1 ≤
∥⋅∥𝜋1,...,𝜋𝑛

. The converse inequality is easy to show, and thus the proof is complete.
□

Corollary 5.4. Let 𝜋𝑖 be a representation of the 𝐶∗-algebra 𝒜𝑖, 𝑖 = 1, . . . , 𝑛.
Assume that 𝜋1 and 𝜋𝑛 have separating vectors. If

(25) ker(𝜋𝑖) ⊆ ker(𝜋′
𝑖), for each 𝑖 = 1, . . . , 𝑛,

then M𝜋1,...,𝜋𝑛
⊆M𝜋′

1,...,𝜋
′
𝑛

and ∥𝜑∥𝜋′
1,...,𝜋

′
𝑛
≤ ∥𝜑∥𝜋1,...,𝜋𝑛

, for each 𝜑 ∈M𝜋1,...,𝜋𝑛
.
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Proof. The proof is similar to that of [21, Corollary 5.8]; we include it for complete-
ness. Let ℋ be an infinite-dimensional Hilbert space of sufficiently large dimension.
Then (25) implies

rank(𝜋′
𝑖(𝑎𝑖)) ≤ rank(𝜋𝑖(𝑎𝑖)⊗ 1), for all 𝑎𝑖 ∈ 𝒜𝑖.

By (22), 𝜋′
𝑖

𝑎≪ 𝜋𝑖 ⊗ 1. Now applying Theorem 5.1 and then Lemma 5.3 we obtain
the statement. □

Using Corollary 5.4 and the results from [21] we will now show that if the 𝐶∗-
algebras 𝒜𝑖 are commutative, then the space M𝜋1,...,𝜋𝑛

(𝒜1, . . . ,𝒜𝑛) of multipliers
depends only on the supports of spectral measures corresponding to the represen-
tations 𝜋𝑖.

Assume that 𝒜𝑖 is commutative, 𝑖 = 1, . . . , 𝑛 and let 𝑋𝑖 be the maximal ideal
space of 𝒜𝑖; then 𝒜𝑖 ≃ 𝐶0(𝑋𝑖). Let 𝜋𝑖 be a representation of 𝒜𝑖 and ℰ𝜋𝑖

be the
spectral measure on 𝑋𝑖 corresponding to 𝜋𝑖.

It was proved in [21, Lemma 7.2] that if 𝑓 ∈ 𝐶0(𝑋) and the representation 𝜋 of
𝐶0(𝑋) is such that rank (𝜋(𝑓)) <∞, then

rank (𝜋(𝑓)) =
∑

𝑥∈𝑆(𝑓,ℰ𝜋)

dim(ℰ𝜋({𝑥})),

where 𝑆(𝑓, ℰ𝜋) = {𝑥 ∈ supp ℰ𝜋 : 𝑓(𝑥) ∕= 0}. Thus the condition

supp ℰ𝜋′ ⊂ supp ℰ𝜋
implies ker𝜋(𝑓) ⊆ ker𝜋′(𝑓). As each representation 𝜋 of a commutative algebra
𝐶0(𝑋) has a separating vector we have the following.

Corollary 5.5. Let 𝜋𝑖, 𝜋′
𝑖 be separable representations of the 𝐶∗-algebra 𝒜𝑖 =

𝐶0(𝑋𝑖) and ℰ𝜋𝑖
and ℰ𝜋′

𝑖
be the corresponding spectral measures (𝑖 = 1, . . . , 𝑛). If

supp ℰ𝜋′
𝑖
⊆ supp ℰ𝜋𝑖

, for each 𝑖 = 1, . . . , 𝑛,

then M𝜋1,...,𝜋𝑛
⊆M𝜋′

1,...,𝜋
′
𝑛
.

Let 𝜇𝑖 be measures on 𝑋𝑖. Let 𝜋𝑖 be a representation of 𝐶0(𝑋𝑖) on 𝐿2(𝑋𝑖, 𝜇𝑖)
defined by (𝜋𝑖(𝑓)ℎ)(𝑥𝑖) = 𝑓(𝑥𝑖)ℎ(𝑥𝑖). We call 𝜑 ∈ 𝐶0(𝑋1×. . .×𝑋𝑛) a (𝜇1, . . . , 𝜇𝑛)-
multiplier if 𝜑 ∈M𝜋1,...,𝜋𝑛

and let ∥𝜑∥𝜇1,...,𝜇𝑛
= ∥𝜑∥𝜋1,...,𝜋𝑛

.
By Corollary 5.5, the set of all the (𝜇1, . . . , 𝜇𝑛)-multipliers depends only on the

supports of the measures 𝜇𝑖. The next statement shows the connection between
(𝜇1, . . . , 𝜇𝑛)-multipliers and multidimensional Schur multipliers (with respect to
discrete measures).

Corollary 5.6. Let 𝑋𝑖 be locally compact spaces with countable bases and let 𝜇𝑖 be
Borel 𝜎-finite measures on 𝑋𝑖 with supp𝜇𝑖 = 𝑋𝑖. Then 𝜑 ∈ 𝐶0(𝑋1 × . . .×𝑋𝑛) is
a (𝜇1, . . . , 𝜇𝑛)-multiplier if and only if 𝜑 is a Schur multiplier on 𝑋1 × . . . × 𝑋𝑛.
Moreover, in this case ∥𝜑∥𝜇1,...,𝜇𝑛

= ∥𝑆𝜑∥.
Proof. The proof is similar to that of [21, Theorem 7.5]. □

6. Universal multipliers

The main goal of this section is to give a full description of the multipliers
which does not depend on the choice of the representations of the 𝐶∗-algebras
𝒜1, 𝒜2, . . . ,𝒜𝑛. Recall that an element 𝜑 ∈ 𝒜1 ⊗ . . . ⊗ 𝒜𝑛 is called a universal
multiplier if 𝜑 is a (𝜋1, 𝜋2, . . . , 𝜋𝑛)-multiplier for all representations 𝜋1, 𝜋2,..., 𝜋𝑛 of
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𝒜1, 𝒜2, . . . ,𝒜𝑛, respectively. The set of all universal multipliers in 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛
is denoted by M(𝒜1, . . . ,𝒜𝑛).

Along with the universal multipliers, we will describe another class of multipliers,
which we call projective universal multipliers and define as follows. Let 𝐻1, . . . , 𝐻𝑛

be Hilbert spaces. Equip Γ(𝐻1, . . . , 𝐻𝑛) with the projective tensor norm ∥ ⋅ ∥∧,
where each of the terms 𝐻𝑖 ⊗𝐻𝑖+1 (resp. 𝐻d𝑖−1 ⊗𝐻d𝑖 ) is given its operator norm.
We call an element 𝜑 ∈ ℬ(𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑛) a concrete projective multiplier if there
exists 𝐶 > 0 such that ∥𝑆𝜑(𝜁)∥op ≤ 𝐶∥𝜁∥∧, for all 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛). If 𝒜1, . . .𝒜𝑛
are 𝐶∗-algebras, an element 𝜑 ∈ 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛 will be called a projective uni-
versal multiplier if (𝜋1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜋𝑛)(𝜑) is a concrete projective multiplier for all
choices of the representations 𝜋1, . . . , 𝜋𝑛 of 𝒜1, . . . ,𝒜𝑛, respectively. We denote by
M∧(𝒜1, . . . ,𝒜𝑛) the set of all projective universal multipliers.

If 𝜑 ∈M(𝒜1, . . . ,𝒜𝑛) let

∥𝜑∥univ = sup
𝜋1,𝜋2,...,𝜋𝑛

∥𝜑∥𝜋1,𝜋2,...,𝜋𝑛
.

Note that ∥𝜑∥univ is finite. In fact, assume that there exist representations 𝜋1,𝑘, . . . ,
𝜋𝑛,𝑘, such that ∥𝜑∥𝜋1,𝑘,𝜋2,𝑘,...,𝜋𝑛,𝑘

→𝑘→∞ ∞ and let 𝜋1 =
⊕
𝑘

𝜋1,𝑘, 𝜋2 =
⊕
𝑘

𝜋2,𝑘, . . . ,

𝜋𝑛 =
⊕
𝑘

𝜋𝑛,𝑘. Then, by Theorem 5.1,

∥𝜑∥𝜋1,𝑘,𝜋2,𝑘,...,𝜋𝑛,𝑘
≤ ∥𝜑∥𝜋1,𝜋2,...,𝜋𝑛

,

for all 𝑘 ∈ ℕ, which contradicts the fact that 𝜑 ∈M(𝒜1, . . . ,𝒜𝑛).
It is clear that M(𝒜1, . . . ,𝒜𝑛) is a linear subspace of 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛 containing

𝒜1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝒜𝑛.
Recall that the Haagerup norm on 𝒜1 ⊙𝒜2 ⊙ . . .⊙𝒜𝑛 is

∥𝜔∥h = inf{∥𝜔1∥∥𝜔2∥ . . . ∥𝜔𝑛∥ : 𝜔 = 𝜔1 ⊙ 𝜔2 ⊙ . . .⊙ 𝜔𝑛,

𝜔1 ∈𝑀1,𝑖1(𝒜1), 𝜔2 ∈𝑀𝑖1,𝑖2(𝒜2), . . . , 𝜔𝑛 ∈𝑀𝑖𝑛−1,1(𝒜𝑛), 𝑖1, . . . , 𝑖𝑛−1 ∈ ℕ}.
A modification of the Haagerup norm on the algebraic tensor product of two

𝐶∗-algebras was considered in [20, 21]. We now introduce a natural generalisation
of this norm for arbitrary 𝑛. Recall the maps 𝜔 �→ 𝜔t and 𝜔 �→ 𝜔d on 𝑀𝑛(𝒜) =
𝑀𝑛(ℂ)⊗𝒜 given on elementary tensors by (𝑎⊗ 𝑏)t = 𝑎t ⊗ 𝑏 and (𝑎⊗ 𝑏)d = 𝑎⊗ 𝑏d

(here 𝒜 is a 𝐶∗-subalgebra of 𝐵(𝐻) for some Hilbert space 𝐻). We set

∥𝜔∥ph = inf{
∏
0≤𝑖<𝑛

2

∥𝜔t𝑛−2𝑖∥∥𝜔𝑛−2𝑖−1∥ : 𝜔 = 𝜔1 ⊙ 𝜔2 ⊙ . . .⊙ 𝜔𝑛, 𝜔0 = 𝐼,

𝜔1 ∈𝑀1,𝑖1(𝒜1), 𝜔2 ∈𝑀𝑖1,𝑖2(𝒜2), . . . , 𝜔𝑛 ∈𝑀𝑖𝑛−1,1(𝒜𝑛), 𝑖1, . . . , 𝑖𝑛−1 ∈ ℕ},
In the case 𝑛 = 2, the above norm was denoted in [20] by ∥ ⋅ ∥h′ . Clearly, if the
algebras 𝒜𝑖, 𝑖 = 1, . . . , 𝑛, are commutative, then the norms ∥⋅∥h and ∥⋅∥ph coincide.
It was shown in [20] that in general they need not even be equivalent.

Lemma 6.1. ∥𝜔∥univ ≤ ∥𝜔∥ph for all 𝜔 ∈ 𝒜1 ⊙ . . .⊙𝒜𝑛.
Proof. Let 𝜋𝑖 be a representation of 𝒜𝑖, 𝑖 = 1, . . . , 𝑛, and let 𝜔 = 𝜔1 ⊙ 𝜔2 ⊙
. . . ⊙ 𝜔𝑛, where 𝜔1 ∈ 𝑀1,𝑘1(𝒜1), 𝜔2 ∈ 𝑀𝑘1,𝑘2(𝒜2), . . . , 𝜔𝑛 ∈ 𝑀𝑘𝑛−1,1(𝒜𝑛) for some
𝑘1, 𝑘2, . . . , 𝑘𝑛−1 ∈ ℕ.

Let 𝑛 be even, 𝜉1,2 ∈ 𝑀1,𝑙1(𝐻1 ⊗ 𝐻2), 𝜂2,3 ∈ 𝑀𝑙1,𝑙2(𝐻𝑑
2 ⊗ 𝐻𝑑

3 ), . . . , 𝜉𝑛−1,𝑛 ∈
𝑀𝑙𝑛−2,1(𝐻𝑛−1 ⊗𝐻𝑛) and

𝜁 = 𝜉1,2 ⊙ 𝜂2,3 ⊙ ⋅ ⋅ ⋅ ⊙ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛).
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Letting 𝜋 = 𝜋1 ⊗ . . .⊗ 𝜋𝑛, by Lemma 4.8 we have

𝑆𝜋(𝜔)(𝜁) = (id 1,𝑘𝑛−1
⊗ 𝜋𝑛)(𝜔t𝑛) . . . (𝜃𝑙1,𝑙2(𝜂2,3)

t ⊗ 𝐼𝑘2)

×((id 𝑘1,𝑘2 ⊗ 𝜋2)(𝜔
t
2)⊗ 𝐼𝑙1)(𝜃1,𝑙1(𝜉1,2)

t ⊗ 𝐼𝑘1)(id 𝑘1,1 ⊗ 𝜋1)(𝜔
t
1)
d.

Since ∥(id𝑘𝑚−1,𝑘𝑚 ⊗𝜋𝑚)(𝜔t𝑚)d∥ = ∥(id𝑘𝑚−1,𝑘𝑚 ⊗𝜋𝑚)(𝜔𝑚)∥, we have

∥𝑆𝜋(𝜔)(𝜁)∥op ≤ ∥𝜃1,𝑙1(𝜉1,2)t∥ . . . ∥𝜃𝑙𝑛−2,1(𝜉𝑛−1,𝑛)t∥
×

∏
0≤𝑖<𝑛

2

∥𝜔t𝑛−2𝑖∥∥𝜔𝑛−2𝑖−1∥ = ∥𝜔∥ph∥𝜁∥h.

Now let 𝑛 be odd and

𝜁 = 𝜂1,2 ⊙ 𝜉2,3 ⊙ ⋅ ⋅ ⋅ ⊙ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛),

where 𝜂1,2 ∈𝑀1,𝑙1(𝐻d1 ⊗𝐻d2 ), 𝜉2,3 ∈𝑀𝑙1,𝑙2(𝐻2⊗𝐻3), . . . , 𝜉𝑛−1,𝑛 ∈𝑀𝑙𝑛−2,1 (𝐻𝑛−1⊗
𝐻𝑛). Using the previously obtained inequality, we have

∥𝑆𝜋(𝜔)(𝜁)∥op = sup
∥𝜉∥≤1

∥𝑆𝜋(𝜔)(𝜁)(𝜉)∥𝐻𝑛

= sup
∥𝜉∥≤1

∥𝑆id⊗𝜋(1⊗𝜔)((1⊗ 𝜉)⊗ 𝜁)∥ℬ(ℂd,𝐻𝑛)

≤ ∥𝜔∥ph∥𝜉∥∥𝜁∥h.
The proof is complete. □

If 𝐻1, . . . , 𝐻𝑛 are Hilbert spaces, we say that a net {𝜑𝜈} ⊆ 𝐵(𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐻𝑛)
converges semi-weakly to an operator 𝜑 ∈ 𝐵(𝐻1⊗⋅ ⋅ ⋅⊗𝐻𝑛) if (𝜑𝜈𝜁1, 𝜁2) → (𝜑𝜁1, 𝜁2)
for all 𝜁1, 𝜁2 ∈ 𝐻1⊙⋅ ⋅ ⋅⊙𝐻𝑛. Note that if the net {𝜑𝜈} is bounded, then it converges
semi-weakly if and only if it converges weakly.

Let 𝒜1 ⊆ 𝐵(𝐻1), 𝒜2 ⊆ 𝐵(𝐻2), . . ., 𝒜𝑛 ⊆ 𝐵(𝐻𝑛) be 𝐶∗-algebras and (𝒜1⊙𝒜2⊙
. . .⊙𝒜𝑛)♯ be the linear space of all 𝜑 ∈ 𝒜1⊗𝒜2⊗ . . .⊗𝒜𝑛 for which there exists a
net {𝜑𝜈} ⊆ 𝒜1 ⊙𝒜2 ⊙ . . .⊙𝒜𝑛 converging to 𝜑 semi-weakly (as a net of operators
in 𝐵(𝐻1 ⊗𝐻2 ⊗ . . .⊗𝐻𝑛)) and such that sup

𝜈
∥𝜑𝜈∥ph <∞.

Proposition 6.2. Let 𝒜𝑖 ⊆ ℬ(𝐻𝑖), 𝑖 = 1, . . . , 𝑛, be 𝐶∗-algebras. Then (𝒜1⊙ ⋅ ⋅ ⋅ ⊙
𝒜𝑛)♯ ⊆M(𝒜1, . . . ,𝒜𝑛) ⊆M∧(𝒜1, . . . ,𝒜𝑛).

Proof. Since ∥𝜁∥ℎ ≤ ∥𝜁∥∧ for all 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛) we have M(𝒜1, . . . , 𝒜𝑛) ⊆
M∧ (𝒜1, . . . ,𝒜𝑛).

Let us first prove that

(𝒜1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝒜𝑛)♯ ⊆M𝜋1,...,𝜋𝑛
(𝒜1, . . . ,𝒜𝑛),

in the case where 𝜋𝑖 =
⊕
𝜆𝑖

id is the sum of 𝜆𝑖 copies of the identity representation.

Let {𝜑𝜈} ⊆ 𝒜1 ⊙ . . . ⊙ 𝒜𝑛 be a net converging semi-weakly to 𝜑 and such that
𝐷 = sup

𝜈
∥𝜑𝜈∥ph <∞ and 𝜋 = 𝜋1 ⊗ . . .⊗ 𝜋𝑛. By Lemma 6.1,

∥𝑆𝜋(𝜑𝜈)(𝜁)∥op ≤ 𝐷∥𝜁∥h,
for all 𝜈 and 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛).

Suppose first that 𝑛 is even. To prove that ∥𝑆𝜋(𝜑)(𝜁)∥op ≤ 𝐷∥𝜁∥h, it suffices

to show that the net {𝑆𝜋(𝜑𝜈)(𝜁)} of operators in 𝐵(𝐻̃d1 , 𝐻̃𝑛) converges weakly to
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the operator 𝑆𝜋(𝜑)(𝜁) (here and in the sequel we set 𝐻̃𝑖 =
⊕
𝜆𝑖

𝐻𝑖, 𝑖 = 1, . . . , 𝑛).

By linearity and the uniform boundedness of the net {𝑆𝜋(𝜑𝜈)(𝜁)}, it is sufficient to
prove that

(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦) → (𝑆𝜋(𝜑)(𝜁)𝑥d, 𝑦),

for all 𝑥d and 𝑦 which have only one non-zero entry in the corresponding direct
sums of 𝐻d1 and 𝐻𝑛, respectively.

Fix such 𝑥d and 𝑦, and let 𝜁 = 𝜉1,2 ⊗ 𝜂d2,3 ⊗ . . .⊗ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻̃1, . . . , 𝐻̃𝑛). Then

(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦) = (𝜋(𝜑𝜈)(𝜉1,2 ⊗ . . .⊗ 𝜉𝑛−1,𝑛), 𝑥⊗ 𝜂2,3 ⊗ 𝜂4,5 ⊗ . . .⊗ 𝜂𝑛−2,𝑛−1 ⊗ 𝑦).

Indeed, assuming 𝑛 = 4 for simplicity we get

(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦) = (𝜎𝜋(𝜑𝜈)𝜃(𝜉1,2 ⊗ 𝜉3,4)(𝜃(𝜂d2,3)), 𝜃(𝑥⊗ 𝑦))2

= (𝜎𝜋(𝜑𝜈)𝜃(𝜉1,2 ⊗ 𝜉3,4), 𝜃(𝜃(𝜂2,3)⊗ 𝜃(𝑥⊗ 𝑦)))2

= (𝜎𝜋(𝜑𝜈)𝜃(𝜉1,2 ⊗ 𝜉3,4), 𝜃(𝑥⊗ 𝜂2,3 ⊗ 𝑦))2,

= (𝜋(𝜑𝜈)(𝜉1,2 ⊗ 𝜉3,4), 𝑥⊗ 𝜂2,3 ⊗ 𝑦).

Fix 𝜖 > 0 and let 𝜁 = 𝜉1,2 ⊗ 𝜂d2,3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛 be such that all norms

∥𝜉1,2−𝜉1,2∥, ∥𝜂2,3−𝜂2,3∥,. . . ,∥𝜉𝑛−1,𝑛−𝜉𝑛−1,𝑛∥ are smaller than 𝜖 and all vectors 𝜉1,2,

𝜂d2,3,. . . ,𝜉𝑛−1,𝑛 are finite sums of elementary tensors which have only finitely many
non-zero entries in the direct sums of the corresponding Hilbert spaces. Thus, we

may assume that 𝜉1,2 ∈ 𝐻
(𝑘)
1 ⊙𝐻

(𝑘)
2 ,𝜂2,3 ∈ 𝐻

(𝑘)
2 ⊙𝐻

(𝑘)
3 , . . . , 𝜉𝑛−1,𝑛 ∈ 𝐻

(𝑘)
𝑛−1 ⊙𝐻

(𝑘)
𝑛 ,

𝑥d ∈ 𝐻
(𝑘)
1 and 𝑦 ∈ 𝐻

(𝑘)
𝑛 for some 𝑘 ∈ ℕ.

It follows from the formula above that there exists 𝜈0 such that if 𝜈 ≥ 𝜈0, then

∣(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦)− (𝑆𝜋(𝜑)(𝜁)𝑥d, 𝑦)∣ < 𝜖.

On the other hand,

∣(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦)− (𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦)∣
≤ 𝐷∥𝑥∥∥𝑦∥∥𝜁 − 𝜁∥h ≤ (𝐶 + 𝜖)𝑛−2𝐷(𝑛− 1)∥𝑥∥∥𝑦∥𝜖,

for every 𝜈, where 𝐶 = max{∥𝜉1,2∥, ∥𝜂2,3∥, . . . , ∥𝜉𝑛−1,𝑛∥}. Using Remark 4.3, we
have

∣(𝑆𝜋(𝜑)(𝜁)𝑥d, 𝑦)− (𝑆𝜋(𝜑)(𝜁)𝑥d, 𝑦)∣
≤ ∥𝜑∥∥𝑥∥∥𝑦∥∥𝜁 − 𝜁∥2,∧ ≤ ∥𝜑∥(𝐶 + 𝜖)𝑛−2(𝑛− 1)∥𝑥∥∥𝑦∥𝜖.

Thus,

∣(𝑆𝜋(𝜑𝜈)(𝜁)𝑥d, 𝑦)− (𝑆𝜋(𝜑)(𝜁)𝑥d, 𝑦)∣
≤ 𝜖(1 + (𝐶 + 𝜖)𝑛−2𝐷(𝑛− 1)∥𝑥∥∥𝑦∥+ ∥𝜑∥(𝐶 + 𝜖)𝑛−2(𝑛− 1)∥𝑥∥∥𝑦∥)

whenever 𝜈 ≥ 𝜈0. It follows that the net {𝑆𝜋(𝜑𝜈)(𝜁)} converges weakly to 𝑆𝜋(𝜑)(𝜁)
and hence 𝜑 ∈ M𝜋1,...,𝜋𝑛

(𝒜1, . . . ,𝒜𝑛).
In the case that 𝑛 is odd, a calculation similar to the one above shows that

(𝑆𝜋(𝜑𝜈)(𝜁)𝑥, 𝑦) is equal to

(𝜋(𝜑𝜈)(𝑥⊗ 𝜉2,3 ⊗ . . .⊗ 𝜉𝑛−1,𝑛), 𝜂1,2 ⊗ . . .⊗ 𝜂𝑛−2,𝑛−1 ⊗ 𝑦),

whenever 𝑥 ∈ 𝐻̃1, 𝑦 ∈ 𝐻̃𝑛, 𝜁 = 𝜂d1,2 ⊗ 𝜉2,3 ⊗ . . .⊗ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻̃1, . . . , 𝐻̃𝑛), and the
proof proceeds in a similar fashion.
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Now let 𝜋1, . . . , 𝜋𝑛 be representations of 𝒜1, . . . , 𝒜𝑛 on 𝐻𝜋1
, . . . , 𝐻𝜋𝑛

and
𝜋 = 𝜋1 ⊗ . . .⊗ 𝜋𝑛. Then

rank(𝜋𝑖(𝑎𝑖)) ≤ rank

⎛⎝ ⊕
dim(𝐻𝜋𝑖

)

id(𝑎𝑖)

⎞⎠ ,

for all 𝑎𝑖 ∈ 𝒜𝑖 and 𝑖 = 1, . . . , 𝑛. By Theorem 5.1 (i),

M⊕
𝜆1

id,
⊕
𝜆2

id,...,
⊕
𝜆𝑘

id(𝒜1, . . . ,𝒜𝑛) ⊆M𝜋1,𝜋2,...,𝜋𝑘
(𝒜1,𝒜2, . . . ,𝒜𝑛).

The proof is complete. □
Assume that 𝑛 is even. Then the mapping 𝑆id(𝜑) acting on Γ(𝐻1, . . . , 𝐻𝑛) =

(𝐻1 ⊗𝐻2)⊙ (𝐻d2 ⊗𝐻d3 )⊙ . . .⊙ (𝐻𝑛−1 ⊗𝐻𝑛) can be regarded as a mapping on the
algebraic tensor product

𝐻𝑆(𝐻𝑛−1, 𝐻𝑛)⊙𝐻𝑆(𝐻𝑛−2, 𝐻𝑛−1)d ⊙ . . .⊙𝐻𝑆(𝐻1, 𝐻2)(26)

of the corresponding spaces of Hilbert-Schmidt operators by letting

𝑆𝜑(𝜃(𝜉𝑛−1,𝑛)⊗ 𝜃(𝜂𝑛−2,𝑛−1)d ⊗ 𝜃(𝜉𝑛−3,𝑛−2)⊗ . . .⊗ 𝜃(𝜉1,2)) = 𝑆𝜑(𝜁),

where 𝜁 = 𝜉1,2 ⊗ 𝜂d2,3 ⊗ 𝜉3,4 ⊗ . . . ⊗ 𝜉𝑛−1,𝑛. Denote the space (26) by

𝐻𝑆Γ(𝐻1, . . . , 𝐻𝑛). If 𝜑 is an elementary tensor, then Lemma 4.8 (i) shows that
𝑆id(𝜑) is (𝒜′

𝑛, (𝒜d𝑛−1)′, . . . ,𝒜′
2, (𝒜1d)′)-modular. It follows by continuity that 𝑆id(𝜑)

is (𝒜′
𝑛, (𝒜d𝑛−1)′, . . . ,𝒜′

2, (𝒜1d)′)-modular for every 𝜑 ∈ 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛. If more-
over 𝜑 ∈Mid,...,id(𝒜1, . . . ,𝒜𝑛), then 𝑆id(𝜑) can be extended to a bounded mapping
(denoted in the same way) from the algebraic tensor product

𝒦(𝐻d𝑛−1, 𝐻𝑛)⊙𝒦(𝐻d𝑛−2, 𝐻𝑛−1)d ⊙ ⋅ ⋅ ⋅ ⊙ 𝒦(𝐻d1 , 𝐻2)

into 𝒦(𝐻d1 , 𝐻𝑛). By continuity, this extension is (𝒜′
𝑛, (𝒜d𝑛−1)′, . . . ,𝒜′

2, (𝒜1d)′)-
modular.

Similarly, if 𝑛 is odd and 𝜑 ∈Mid,...,id(𝒜1, . . . ,𝒜𝑛), then 𝑆id(𝜑) can be regarded

as a multilinear (𝒜′
𝑛, (𝒜𝑛−1d)′, . . . , (𝒜2d)′,𝒜′

1)-modular map from

𝒦(𝐻d𝑛−1, 𝐻𝑛)⊙𝒦(𝐻d𝑛−2, 𝐻𝑛−1)d ⊙ ⋅ ⋅ ⋅ ⊙ 𝒦(𝐻d1 , 𝐻2)

into ℬ(𝐻1, 𝐻𝑛). Denote by M𝑐𝑏
id,...,id(𝒜1, . . . ,𝒜𝑛) the set of all (id, . . . , id)-multi-

pliers for which the mapping 𝑆id(𝜑) is completely bounded.

Proposition 6.3. Let 𝒜𝑖 ⊆ ℬ(𝐻𝑖), 𝑖 = 1, . . . , 𝑛, be von Neumann algebras. Then
M𝑐𝑏
id,...,id(𝒜1, . . . ,𝒜𝑛) ⊆ (𝒜1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝒜𝑛)♯.

Proof. Assume first that 𝑛 is even. For notational simplicity we assume that 𝐻𝑖 is
separable, 𝑖 = 1, . . . , 𝑛. Let id : 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑛 → ℬ(𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗𝐻𝑛) be the identity
representation.

Let 𝜑 ∈ M𝑐𝑏
id,...,id(𝒜1, . . . ,𝒜𝑛). Then 𝑆id(𝜑) is a multilinear (𝒜′

𝑛, (𝒜d𝑛−1)′, . . .,

𝒜′
2, (𝒜1d)′)-modular mapping on

𝒦(𝐻d𝑛−1, 𝐻𝑛)⊙𝒦(𝐻𝑛−2, 𝐻d𝑛−1)⊙ ⋅ ⋅ ⋅ ⊙ 𝒦(𝐻d1 , 𝐻2),

taking values in 𝒦(𝐻d1 , 𝐻𝑛). Let 𝐻∞ = 𝐻⊗ 𝑙2, and let 𝐼∞ be the identity operator
on 𝑙2.

Since 𝑆id(𝜑) is completely bounded, it extends to a completely bounded mapping,
denoted in the same way, from

𝒦(𝐻d𝑛−1, 𝐻𝑛)⊗h 𝒦(𝐻𝑛−2, 𝐻d𝑛−1)⊗h ⋅ ⋅ ⋅ ⊗h 𝒦(𝐻d1 , 𝐻2)
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into 𝒦(𝐻d1 , 𝐻𝑛). Then the second dual 𝑆∗∗
id(𝜑) is a weak* continuous completely

bounded mapping from ℬ(𝐻d𝑛−1, 𝐻𝑛) ⊗𝜎 h . . . ⊗𝜎 h ℬ(𝐻d1 , 𝐻2) into ℬ(𝐻d1 , 𝐻𝑛) and

hence gives rise to a weak* continuous completely bounded (𝒜′
𝑛, (𝒜d𝑛−1)′, . . ., 𝒜′

2,

(𝒜1d)′)-modular multilinear map, denoted in the same way, from

ℬ(𝐻d𝑛−1, 𝐻𝑛)× ℬ(𝐻𝑛−2, 𝐻d𝑛−1)× ⋅ ⋅ ⋅ × ℬ(𝐻d1 , 𝐻2)

into ℬ(𝐻d1 , 𝐻𝑛).
It follows from Corollary 5.9 of [9] that there exist bounded linear operators

𝐴1 : 𝐻d1 → (𝐻d1 )∞, 𝐴𝑗 : 𝐻∞
𝑗 → 𝐻∞

𝑗 , if 𝑗 is even, 𝐴𝑗 : (𝐻d𝑗 )∞ → (𝐻d𝑗 )∞ if 𝑗 is odd

(𝑗 = 2, . . . , 𝑛− 1) and 𝐴𝑛 : 𝐻∞
𝑛 → 𝐻𝑛 such that the entries of 𝐴𝑗 with respect to

the corresponding direct sum decomposition belong to 𝒜′′
𝑗 = 𝒜𝑗 for even 𝑗 and to

(𝒜d𝑗 )′′ = 𝒜d𝑗 for odd 𝑗,

𝑆id(𝜑)(𝜁) = 𝐴𝑛(𝜃(𝜉𝑛−1,𝑛)⊗ 𝐼∞)𝐴𝑛−1(𝜃(𝜂𝑛−2,𝑛−1)d ⊗ 𝐼∞)𝐴𝑛−2 . . . 𝐴1,

for all

𝜁 = 𝜃(𝜉𝑛−1,𝑛)⊗ 𝜃(𝜂𝑛−2,𝑛−1)d ⊗ . . .⊗ 𝜃(𝜉1,2) ∈ 𝐻𝑆Γ(𝐻1, . . . , 𝐻𝑛),

and

∥𝑆id(𝜑)∥𝑐𝑏 =
∏
1≤𝑖≤𝑛

∥𝐴𝑖∥.

Let 𝑃𝑚,𝜈 = (𝑝𝑚𝑖𝑗 )
∞
𝑖,𝑗=1 be the projection with 𝑝𝑚𝑖𝑗 ∈ 𝐵(𝐻𝑚) (resp. 𝑝𝑚𝑖𝑗 ∈ 𝐵(𝐻d𝑚)),

𝑝𝑚𝑖𝑖 = 𝐼𝐻𝑚
(resp. 𝑝𝑚𝑖𝑖 = 𝐼𝐻d

𝑚
) if 𝑚 is even (resp. if 𝑚 is odd) and 1 ≤ 𝑖 ≤ 𝜈, and

𝑝𝑚𝑖𝑗 = 0 otherwise.

Set 𝜑𝜈 = 𝐴d,t1 𝑃 d1,𝜈 ⊙ 𝑃2,𝜈𝐴2𝑃2,𝜈 ⊙𝑃3,𝜈𝐴d3𝑃3,𝜈 ⊙ . . .⊙𝑃𝑛,𝜈𝐴𝑛. Clearly, ∥𝜑𝜈∥ph ≤∏
1≤𝑖≤𝑛

∥𝐴𝑖∥ for each 𝜈; it hence suffices to prove that {𝜑𝜈} converges semi-weakly

to 𝜑.
As 𝑆id(𝜑𝜈)(𝜁) equals

𝐴𝑛𝑃𝑛,𝜈(𝜃(𝜉𝑛−1,𝑛)⊗ 𝐼∞)𝑃𝑛−1,𝜈𝐴𝑛−1𝑃𝑛−1,𝜈(𝜃(𝜂𝑛−2,𝑛−1)d ⊗ 𝐼∞) . . . 𝑃1,𝜈𝐴1,

and 𝑃𝑙,𝜈 converges strongly to 𝐼𝐻𝑙
, we have that 𝑆id(𝜑𝜈)(𝜁) converges weakly to

𝑆id(𝜑)(𝜁). By the proof of Proposition 6.2, if 𝑥d ∈ 𝐻d1 , 𝑦 ∈ 𝐻𝑛 and 𝜓 ∈ 𝒜1⊗. . .⊗𝒜𝑛,
then (𝑆id(𝜓)(𝜁)𝑥d, 𝑦) equals

(𝜎id(𝜓)𝜃(𝜉1,2 ⊗ . . .⊗ 𝜉𝑘−1,𝑘), 𝜃(𝑥⊗ 𝜂2,3 ⊗ . . .⊗ 𝜂𝑘−2,𝑘−1 ⊗ 𝑦))2

= (𝜓(𝜉1,2 ⊗ . . .⊗ 𝜉𝑘−1,𝑘), 𝑥⊗ 𝜂2,3 ⊗ . . .⊗ 𝜂𝑘−2,𝑘−1 ⊗ 𝑦).

Thus 𝜑𝜈 converges semi-weakly to 𝜑 and therefore 𝜑 ∈ (𝒜1⊙ . . .⊙𝒜𝑛)♯, giving the
inclusion M𝑐𝑏

id,...,id(𝒜1, . . . ,𝒜𝑛) ⊆ (𝒜1⊙ . . . ⊙ 𝒜𝑛)♯.

Now assume that 𝑛 is odd. In this case 𝑆∗∗
id(𝜑) is a weak* continuous completely

bounded multilinear (𝒜′
𝑛, (𝒜d𝑛−1)′, . . ., (𝒜d2)′, 𝒜1′)-modular mapping on

ℬ(𝐻d𝑛−1, 𝐻𝑛)× ℬ(𝐻𝑛−2, 𝐻d𝑛−1)× ⋅ ⋅ ⋅ × ℬ(𝐻1, 𝐻d2 ),

taking values in ℬ(𝐻1, 𝐻𝑛)∗∗. Let 𝑄 be the weak* continuous projection from
ℬ(𝐻1, 𝐻𝑛)∗∗ onto ℬ(𝐻1, 𝐻𝑛). Then 𝑄 ∘ 𝑆∗∗

id(𝜑) takes values in ℬ(𝐻1, 𝐻𝑛), and

coincides with 𝑆id(𝜑) on 𝐻𝑆Γ(𝐻1, . . . , 𝐻𝑛). The proof now proceeds as above. □
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Proposition 6.4. Let 𝒜𝑖 ⊆ ℬ(𝐻𝑖), 𝑖 = 1, . . . , 𝑛, be 𝐶∗-algebras. Then
M∧(𝒜1, . . . , 𝒜𝑛) ⊆ M𝑐𝑏

id,...,id(𝒜1, . . . ,𝒜𝑛).

Proof. Let 𝜑 ∈M∧(𝒜1, . . . ,𝒜𝑛). Then there exists a constant 𝐷 > 0 such that

∥𝜎𝜋1⊗...⊗𝜋𝑛
(𝜑)(𝜁)∥op ≤ 𝐷∥𝜁∥∧,

for all 𝜁 ∈ Γ(𝐻1, . . . , 𝐻𝑛) and all representations 𝜋1, . . . , 𝜋𝑛 of 𝒜1, . . . , 𝒜𝑛, respec-
tively.

Let 𝑘 ∈ ℕ. The space 𝐻𝑆Γ(𝐻𝑘
1 , . . . , 𝐻

𝑘
𝑛) is naturally isomorphic to

𝑀𝑘(𝐻𝑆(𝐻𝑛−1, 𝐻𝑛))⊙𝑀𝑘(𝐻𝑆(𝐻𝑛−2, 𝐻𝑛−1)d)⊙ . . .⊙𝑀𝑘(𝐻𝑆(𝐻1, 𝐻2)),(27)

and thus the mapping 𝑆(id⊗1𝑘)⊗...⊗(id⊗1𝑘)(𝜑) is well-defined on the space (27). One
can easily check that

(28) 𝑆
(𝑘)
id⊗...⊗id(𝜑)(Ξ𝑛−1 ⊙ . . .⊙ Ξ1) = 𝑆(id⊗1𝑘)⊗...⊗(id⊗1𝑘)(𝜑)(Ξ𝑛−1 ⊗ . . .⊗ Ξ1),

where Ξ𝑖 ∈𝑀𝑘(𝐻𝑆(𝐻𝑖, 𝐻𝑖+1)) (resp. Ξ𝑖 ∈𝑀𝑘(𝐻𝑆(𝐻𝑖, 𝐻𝑖+1)d)) if 𝑖 is even (resp.,
if 𝑖 is odd) and Ξ𝑖 ∈𝑀𝑘(𝐻𝑆(𝐻𝑖, 𝐻𝑖+1)d) (resp. Ξ𝑖 ∈𝑀𝑘(𝐻𝑆(𝐻𝑖, 𝐻𝑖+1))) if 𝑖 is odd
(resp., if 𝑖 is even). If the matrices Ξ𝑖 are of arbitrary sizes such that the product
Ξ𝑛−1 ⊙ . . . ⊙ Ξ1 is well-defined, then they may be considered as square matrices,
all of the same size, by complementing with zeros, and identity (28) will still hold.
It follows that

∥𝑆(𝑘)id⊗...⊗id(𝜑)(Ξ1 ⊙ . . .⊙ Ξ𝑛−1)∥op ≤ 𝐷
∏

1≤𝑖≤𝑛−1
∥Ξ𝑖∥op,

for all Ξ1, . . .Ξ𝑛−1, and hence the mapping 𝑆id⊗...⊗id(𝜑) is completely bounded and
𝜑 is an (id, . . . , id)-multiplier. □

Theorem 6.5. Let 𝒜𝑖 ⊆ ℬ(𝐻𝑖), 𝑖 = 1, . . . , 𝑛, be 𝐶∗-algebras. Then M(𝒜1, . . . ,
𝒜𝑛) =M∧(𝒜1, . . . , 𝒜𝑛) = (𝒜1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝒜𝑛)♯.

Proof. By Propositions 6.2, 6.3 and 6.4,

M𝑐𝑏
id,...,id(𝒜′′

1 , . . . ,𝒜′′
𝑛) = (𝒜′′

1 ⊙ . . .⊙𝒜′′
𝑛)♯.

Evidently,

M𝑐𝑏
id,...,id(𝒜1, . . . ,𝒜𝑛) ⊆M𝑐𝑏

id,...,id(𝒜′′
1 , . . . ,𝒜′′

𝑛) ∩ (𝒜1 ⊗ . . .⊗𝒜𝑛).

Applying Propositions 6.2, 6.3 and 6.4, we obtain

(𝒜1 ⊙ . . .⊙𝒜𝑛)♯ ⊆ M(𝒜1, . . . ,𝒜𝑛)

⊆ M∧(𝒜1, . . . ,𝒜𝑛)

⊆ M𝑐𝑏
id,...,id(𝒜1, . . . ,𝒜𝑛)

⊆ M𝑐𝑏
id,...,id(𝒜′′

1 , . . . ,𝒜′′
𝑛) ∩ (𝒜1 ⊗ . . .⊗𝒜𝑛)

= (𝒜′′
1 ⊙ . . .⊙𝒜′′

𝑛)♯ ∩ (𝒜1 ⊗ . . .⊗𝒜𝑛).

It hence suffices to show that

(𝒜′′
1 ⊙ . . .⊙𝒜′′

𝑛)♯ ∩ (𝒜1 ⊗ . . .⊗𝒜𝑛) ⊆ (𝒜1 ⊙ . . .⊙𝒜𝑛)♯.

Let 𝜑 ∈ (𝒜′′
1 ⊙ . . .⊙𝒜′′

𝑛)♯ ∩ (𝒜1 ⊗ . . .⊗𝒜𝑛). Then there exists a net {𝜑𝜈}𝜈∈𝐽 ⊆
𝒜′′
1 ⊙ . . . ⊙ 𝒜′′

𝑛 with sup
𝜈
∥𝜑𝜈∥ph < ∞ which converges semi-weakly to 𝜑. Write
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𝜑𝜈 = 𝐴1,𝜈 ⊙ . . . ⊙ 𝐴𝑛,𝜈 , where 𝐴1,𝜈 ∈ 𝑀1,𝑖1(𝒜′′
1), 𝐴2,𝜈 ∈ 𝑀𝑖1,𝑖2(𝒜′′

2), . . . , 𝐴𝑛,𝜈 ∈
𝑀𝑖𝑛,1(𝒜′′

𝑛).
By Kaplansky’s Density Theorem for TRO’s [18], for each pair (𝑚, 𝜈) there exists

a net {𝐴𝑚,𝜈,𝜏(𝑚)}𝜏(𝑚) ⊂𝑀𝑖𝑚−1,𝑖𝑚(𝒜𝑚) converging strongly to 𝐴𝑚,𝜈 and such that
∣∣𝐴𝑚,𝜈,𝜏(𝑚)∣∣ ≤ ∣∣𝐴𝑚,𝜈 ∣∣ for all 𝜏 (𝑚). Thus if 𝐴𝜈,𝜏 = 𝐴1,𝜈,𝜏(1) ⊙ 𝐴2,𝜈,𝜏(2) ⊙ . . . ⊙
𝐴𝑛,𝜈,𝜏(𝑛), where 𝜏 = (𝜏 (1), . . . , 𝜏 (𝑛)), then the net {𝐴𝜈,𝜏}𝜏 converges strongly to
𝜑𝜈 and ∣∣𝐴𝜈,𝜏 ∣∣ph ≤ ∣∣𝜑𝜈 ∣∣ph.

Let 𝒰 be the collection of all weak neighbourhoods of 0 of the form {𝑆 ∈ ℬ(𝐻1⊗
⋅ ⋅ ⋅ ⊗ 𝐻𝑛) : ∣(𝑆(𝜁𝑗1), 𝜁

𝑗
2)∣ < 𝜖𝑗 , 𝑗 = 1, . . . , 𝑘}, where 𝜁𝑗1 , 𝜁

𝑗
2 ∈ 𝐻1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝐻𝑛 and

𝜖𝑗 > 0, 𝑗 = 1, . . . , 𝑘. Note that 𝒰 is directed with respect to reverse inclusion. The
convergence of the net {𝜑𝜈}𝜈∈𝐽 semi-weakly to 𝜑 implies that for every 𝑈 ∈ 𝒰 there
exists 𝜈(𝑈) such that for every 𝜆 ∈ 𝐽 with 𝜆 ≥ 𝜈(𝑈), we have that 𝜑𝜆 − 𝜑 ∈ 𝑈 .
The convergence of {𝐴𝜈,𝜏}𝜏 to 𝜑𝜈 implies the existence of 𝑇 (𝜈(𝑈), 𝑈) such that
for every 𝜏 ≥ 𝑇 (𝜈(𝑈), 𝑈), we have that 𝐴𝜈(𝑈),𝜏 − 𝜑𝜈(𝑈) ∈ 𝑈 . Consider the net
𝐴𝑈 = 𝐴𝜈(𝑈),𝑇 (𝜈(𝑈),𝑈) indexed by 𝒰 . It is easy to check that 𝐴𝑈 converges semi-
weakly to 𝜑. The proof is complete. □

Note that in Theorem 6.5 we actually proved that if 𝑛 is even, 𝜑 ∈ M(𝒜1, . . . ,
𝒜𝑛), 𝜁 = 𝜉1,2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑛−1,𝑛 ∈ Γ(𝐻1, . . . , 𝐻𝑛) and

𝑆id⊗⋅⋅⋅⊗id(𝜑)(𝜁) = 𝐴𝑛(𝜃(𝜉𝑛−1,𝑛)⊗ 𝐼) . . . (𝜃(𝜉1,2)⊗ 𝐼)𝐴d1 ,

where 𝐴𝑖 for 𝑖 even (resp. 𝐴d𝑖 for 𝑖 odd) is a bounded block operator matrix with
entries in 𝒜′′

𝑖 (resp. (𝒜d𝑖 )′′), then there exists a net 𝜑𝜈 = 𝐴𝜈
1 ⊙ 𝐴𝜈

2 ⊙ ⋅ ⋅ ⋅ ⊙ 𝐴𝜈
𝑛,

where 𝐴𝜈
𝑖 is a finite block operator matrix with entries in 𝒜𝑖 such that 𝜑𝜈 → 𝜑

semi-weakly, 𝐴𝜈
𝑖 → 𝐴𝑖 (resp. 𝐴𝜈 d

𝑖 → 𝐴d𝑖 ) strongly for 𝑖 even (resp. for 𝑖 odd) and
all operator norms ∥𝐴𝜈

𝑖 ∥, ∥𝐴𝑖∥ are bounded by a constant depending only on 𝑛. A
similar statement holds in the case 𝑛 is odd.

Denote by (𝒜1 ⊙ . . . ⊙ 𝒜𝑛)∼ the set of all 𝜑 ∈ 𝒜1 ⊗ . . . ⊗ 𝒜𝑛 for which there
exists a net {𝜑𝜈} ⊆ 𝒜1 ⊙ ⋅ ⋅ ⋅ ⊙ 𝒜𝑛, such that sup

𝜈
∥𝜑𝜈∥ph < ∞ and if 𝜋𝑖 is an

irreducible representation of 𝒜𝑖, 𝑖 = 1, . . . , 𝑛, then {(𝜋1 ⊗ . . .⊗ 𝜋𝑛)(𝜑𝜈)} converges
semi-weakly to (𝜋1 ⊗ . . .⊗ 𝜋𝑛)(𝜑). Note that if sup

𝜈
∥𝜑𝜈∥min < ∞, which holds for

example when the norms ∥ ⋅ ∥ph and ∥ ⋅ ∥h are equivalent (see [20]), then in the
definition of the space (𝒜1⊙ . . .⊙𝒜𝑛)∼ the semi-weak convergence can be replaced
by the convergence in the weak operator topology.

It follows from [21] that if 𝒜 and ℬ are commutative 𝐶∗-algebras, then M(𝒜,ℬ)
= (𝒜⊙ℬ)∼. As a corollary of Theorem 6.5, we show that the same equality holds
for an arbitrary number of arbitrary 𝐶∗-algebras, giving an answer to a problem
posed in [21].

Theorem 6.6. Let 𝒜𝑖, 𝑖 = 1, . . . , 𝑛, be 𝐶∗-algebras. Then

M(𝒜1, . . . ,𝒜𝑛) =M∧(𝒜1, . . . ,𝒜𝑛) = (𝒜1 ⊙ . . .⊙𝒜𝑛)∼.

Proof. Let 𝜋1 =
⊕

𝜋∈𝐼𝑟𝑟𝑅𝑒𝑝(𝒜1)

𝜋, . . . , 𝜋𝑛 =
⊕

𝜋∈𝐼𝑟𝑟𝑅𝑒𝑝(𝒜𝑛)

𝜋, where 𝐼𝑟𝑟𝑅𝑒𝑝 (𝒜𝑖) is a

set whose elements are all inequivalent irreducible representations of 𝒜𝑖. Then

M(𝒜1, . . . ,𝒜𝑛) = (𝜋1 ⊗ . . .⊗ 𝜋𝑛)−1(𝜋1(𝒜1)⊙ . . .⊙ 𝜋𝑛(𝒜𝑛))♯

⊆ (𝒜1 ⊙ . . .⊙𝒜𝑛)∼.
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Using arguments similar to the ones from the proof of Proposition 6.2, one can
show that

(𝒜1 ⊙ . . .⊙𝒜𝑛)∼ ⊆M(𝒜1, . . . ,𝒜𝑛),

which together with Theorem 6.5 gives the statement of the theorem. □
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