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MULTIDIMENSIONAL OPERATOR MULTIPLIERS

K. JUSCHENKO, I. G. TODOROV, AND L. TUROWSKA

ABSTRACT. We introduce multidimensional Schur multipliers and characterise
them, generalising well-known results by Grothendieck and Peller. We define a
multidimensional version of the two-dimensional operator multipliers studied
recently by Kissin and Shulman. The multidimensional operator multipliers
are defined as elements of the minimal tensor product of several C*-algebras
satisfying certain boundedness conditions. In the case of commutative C*-
algebras, the multidimensional operator multipliers reduce to continuous mul-
tidimensional Schur multipliers. We show that the multipliers with respect to
some given representations of the corresponding C*-algebras do not change if
the representations are replaced by approximately equivalent ones. We estab-
lish a non-commutative and multidimensional version of the characterisations
by Grothendieck and Peller which shows that universal operator multipliers
can be obtained as certain weak limits of elements of the algebraic tensor
product of the corresponding C*-algebras.

1. INTRODUCTION

A bounded function ¢ : N x N — C is called a Schur multiplier if (¢(¢, j)ai;)
is the matrix of a bounded linear operator on ¢*> whenever (a;;) is such. The
study of Schur multipliers was initiated by Schur in the early 20th century. A
characterisation of these objects was given by A. Grothendieck in his Résumé [16],
where he showed that Schur multipliers are precisely the functions ¢ of the form
0(i,§) = > pey ar(i)bg(4), where ag, by, : N — C are such that sup; > p; |ax(i)|? <
oo and sup; > .2; [bx(j)[* < co. Schur multipliers have had many important ap-
plications in analysis; see e.g. [2], [L0] and [26]. One of the forms of the celebrated
Grothendieck inequality can be given in terms of these objects [26].

One of the most important developments in analysis in recent years has been
“quantisation” [12], starting with the advent of the theory of operator spaces in
the 1980s in the work of Blecher, Effros, Haagerup, Paulsen, Pisier, Ruan, Sinclair
and many others, and based on Arveson’s pioneering work in the 1970s. Operator
space (or non-commutative) versions are presently being found for many results in
classical Banach space theory [7, 22 27]. A construction underlying many of the
developments in Operator Space Theory is the Haagerup tensor product, as well as
its weak counterpart, the weak* Haagerup tensor product [§] and its generalisation,
the extended Haagerup tensor product [I5]. Grothendieck’s characterisation can be
formulated by saying that the set of Schur multipliers coincides with the extended
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(or the weak*) Haagerup tensor product £° ®.p, £°° of the space £>° of all bounded
complex sequences with itself.

Schur multipliers are elements of the commutative von Neumann algebra
£>°(N x N), or equivalently of the (von Neumann) tensor product of (the commuta-
tive von Neumann algebra) £>° with itself. Subsequently, they form a commutative
algebra themselves. Their quantisation was initiated by Kissin and Shulman in [21].
Suppose that A and B are C*-algebras and 7 and p their representations on H and
K, respectively. The Hilbert space tensor product H® K can be naturally identified
with the Hilbert space C2(H9, K) of Hilbert-Schmidt operators from the dual HY of
H into K. It follows that 7 and p give rise to a representation o , of the minimal
tensor product A ® B of A and B on Co(HY, K). Kissin and Shulman call an ele-
ment ¢ € A® B a (m, p)-multiplier if o, ,(¢) is bounded in the norm of Co(HY, K)
induced by its inclusion into the algebra B(HY, K) of all bounded operators from
H4 into K. In [21], they study two sets of problems: the dependence of (m, p)-
multipliers on 7 and p and the description of the norm of an operator multiplier.
Most of their results are established in the more general setting of symmetrically
normed ideals.

Assume that A and B are commutative, say A = Cy(X) and B = Cy(Y'), for
some locally compact Hausdorff spaces X and Y, and that the representations m and
p arise from some spectral measures on X and Y. The notion of a (7, p)-multiplier
is in this case closely related to that of double operator integrals introduced and
developed by Birman and Solomyak [3],[4, 5] [6] in connection with various problems
of Mathematical Physics and in particular of Perturbation Theory. If (X, &) and
(Y, F) are spectral measures on the Hilbert spaces H and K, they defined the
double operator integral

1,(T) = oy Y(z,y) d€(x)T dF (y),

for every bounded measurable function v and every operator T from the Hilbert-
Schmidt class Co(H, K). A function 1 is called a Schur multiplier with respect
to & and F if I, can be extended to a bounded linear operator on the space
(B(H, K),| - |lop) of bounded operators from H to K, that is, if there exists C' > 0
such that || I, (T)]lop < C||T||op for all T' € Co(H, K). Peller [24] (see also [19]) char-
acterised Schur multipliers with respect to £ and F in several ways. In particular,
he showed that the space of Schur multipliers with respect to £ and F coincides
with the extended Haagerup tensor product L (X) ®., L>®(Y) and the integral
projective tensor product L (X)&;L>(Y).

Several attempts were made to generalise the Birman-Solomyak theory to the
case of multiple operator integrals [23] [BI, B0]. Such integrals appear, for in-
stance, in the study of differentiability of functions of operators depending on a
parameter. A recent definition of multiple operator integrals by Peller in [25] is
based on the integral projective tensor product. For some fixed spectral measures
(X1,&1),- .., (X, &) on Hilbert spaces Hu, ..., Hy, he defines I,(T1,...,T,—1) to
be equal to

/ (X, .. xy) dEy (x1) Ty dEs(22) . .. Th—1 dEn(Tn),
X1 X...xX,
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where 1) € L®(X1)®; ...®;L>®(X,)and Ty,...,T),_; are bounded linear operators,
and shows that

My (Tas s T llop < N9 1illTallop - -+ 171 llop,

where ||3||; denotes the integral projective tensor norm of . If the spectral mea-
sures are multiplicity free and 71, ...,7T;,,_1 are Hilbert-Schmidt operators with ker-
nels fi,..., fn—1, respectively, then I, (T4, ..., T),—1) is a Hilbert-Schmidt operator
with kernel Sy (fi,..., fa—1) € L?(X; x X,,) equal to

(1) /1/1(1‘1, e ,l’n)fl(.’ﬂl,l'g) ‘e fn—l(xn—la Zn) dgg(.’ﬂQ) [N dgn—l(l'n—l)-

This was the starting point for our definition of multidimensional Schur multi-
pliers in Section Bl Let (X, u;), ¢ = 1,...,n, be standard o-finite measure spaces
and I'(X1,...,X,) = L2 (X1 x X2) O L? (X2 x X3) ®...© L*(X,,_1 x X,,) be the al-
gebraic tensor product of the corresponding L?-spaces equipped with the projective
tensor norm, where each of the L2-spaces is equipped with its L2-norm. An element
€ L®(X; x -+ x X,,) determines a bounded linear map Sy from I'(Xq,..., X,,)
to L?(X1, X,,) given on elementary tensors f; ®@ ... ® f, € ['(Xy,...,X,,) by @)
(where the integration is now with respect to p; instead of &;). This definition ex-
tends the multivariable Schur product defined by Effros and Ruan in their study of
completely bounded multipliers of multivariable Fourier algebras of discrete groups
[13]. On the other hand, for any measure spaces (X,p) and (Y,v), the space
L?(X x Y) can be identified with the class of all Hilbert-Schmidt operators from
L*(X) to L3(Y); to each f € L?(X xY') there corresponds the operator T given by
Teé(y) = [y f(@,y)€(x)dp(x), € € L*(X). Using this identification, one can equip
the space L?(X x Y) with the opposite operator space structure arising from the
inclusion of L?(X xY) into B(L*(X), L*(Y)). We further equip I'(X1, ..., X,,) with
the Haagerup tensor norm ||- ||;,, where the L2-spaces are given their opposite opera-
tor space structure described above, and say that an element ) € L (X x...x X,,)
is a Schur multiplier (with respect to p1, ..., y) if there exists C' > 0 such that

(2) 1S4(®)[lop < C|| @[y, for all & € T(X1, ..., X,,).

Using a generalisation of a result of Smith [28] on the complete boundedness of cer-
tain bounded bimodule maps to the case of multilinear modular maps, we obtain a
characterisation of multidimensional Schur multipliers as elements of the extended
Haagerup tensor product L®(X1) ®ep, . - . @ep L°(X,,) (Theorem BA]). This gener-
alises the characterisations of Grothendieck and Peller in the case n = 2. We show
that the integral projective tensor product consists of multipliers and, therefore,
L®(X1)®; ... 0;L>(X,) C L®(X1) @ep, - .- @en, L°(X,,). The converse inclusion
is true in the case n = 2 [24] but remains an open problem for n > 2.

In Section @] we consider a non-commutative version of multidimensional mul-
tipliers following the Kissin-Shulman approach in the two-dimensional case. We
replace the functions v by elements of the minimal tensor product A; ® ... ® A,
of some given C*-algebras Ay, ..., A, and the measure u; by a representation m; of
A;. We thus obtain a class of operator (71, ..., m,)-multipliers. If each A; is a com-
mutative C*-algebra, say A; = Cy(X;) for some locally compact Hausdorff space
X;, and 7;(f) is the operator of multiplication by f € Co(X) acting on L?(X;, u1;),
then ¢ is a (my, . .., m,)-multiplier if and only if ¢ is a Schur multiplier with respect
to p1,. ..,y (Proposition [6). As in the two-dimensional case, we show that the
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set of (71, ..., ,)-multipliers does not change if we replace each 7; by an approx-
imately equivalent representation (Theorem [B.). A consequence of this result is
the fact that the class of continuous (multidimensional) Schur multipliers depends
only on the supports of the measures ;.

In Section [f] we study universal mutlipliers, that is, the elements of A1 ®...® A4,
which are (7y, ..., m,)-multipliers for all representations m; of A;,i=1,...,n. We
characterise such multipliers as the elements of a certain weak completion of the
algebraic tensor product A; ® ... ® A, (Theorem [6.6). In the case where the
C*-algebras are commutative and n = 2 this was proved in [21]; the case of ar-
bitrary C*-algebras was left as a conjecture. Our result may be thought of as a
non-commutative and multidimensional version of Grothendieck’s and Peller’s char-
acterisations of Schur multipliers. A key ingredient in the proof is the observation
that a universal multiplier determines a completely bounded multilinear modular
map from the Cartesian product of the C*-algebras of compact operators into the
C*-algebra of compact operators which allows us to use a result by Christensen and
Sinclair [9] providing a description of all such mappings.

2. PRELIMINARIES

In this section we collect some preliminary notions and results which will be
needed in the sequel.

Let H be a Hilbert space. The dual space H4 of H is a Hilbert space and there
exists an anti-isometry 9 : H — HY given by 9(z)(y) = (y,z), =,y € H. We set
zd = 9(x).

If H and K are Hilbert spaces, we let B(H, K') be the space of all bounded linear
operators from H into K, and ||-||op be the usual operator norm on B(H, K). We let
K(H, K) be the subspace of all compact operators, and Co(H, K) be the subspace of
all Hilbert-Schmidt operators, from H into K. For each T € Co(H, K), we denote
by || T||2 the Hilbert-Schmidt norm of 7. The space Co(H, K) is a Hilbert space
with respect to the inner product (7, S) = tr(T'S*), where S* denotes the adjoint of
the operator S. Welet B(H) = B(H,H), K(H) = K(H, H) and Co(H) = C2(H, H).

If T € B(H, K) we denote by T9 € B(Kd, Hd) the conjugate of T. We have that
1T op = || T |lop and Tad = (T*z)4, whenever x € K. Another way of expressing
the last identity is

(3) T4 =010 .
We also have
(4) (T*)d = (Td)* and ()\T)d =\T4, NeC.

We let H ® K be the Hilbert space tensor product of H and K. There exists a
unitary operator § : H® K — Co(H9Y, K) given on elementary tensors zQy € HQ K
by

0(z @y)(29) = (z,2)y, 2% €H".

If Ae B(H), Be B(K), z € Handy € K, we have that 0((A®B)(z®y)) =
BO(z®y)Ad, and hence

(5) O((A®B)¢) = BO(E)AY for all € € HRK.
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If p € B(H® K), let o(p) € B(C2(H4, K)) be given by the formula

a(p)f(§) =0(vs), € HR K.

Then ¢ implements a unitary equivalence between B(H ® K) and B(Cy (HY, K)).
We will call an element ¢ € B(H ® K) a concrete (operator) multiplier if there
exists C' > 0 such that |[o(©)T||op < C||T||op, for each T € Co(HY, K). Suppose
that H = [?(X), K = [*(Y) for some sets X and Y and ¢ is the operator on
H® K = (*(X x Y) of multiplication by a function ¢ € £>°(X x Y). The concrete
operator multipliers of this form are precisely the classical Schur multipliers on
X XY (seee.g. [20]).

Let A and B be C*-algebras. We denote by A ® B the minimal tensor product
of Aand B. Let 7 : A — B(H) (resp. p: B — B(K)) be a representation of
A (resp. B). Then 1 ®p: A® B — B(H ® K), given on elementary tensors by
(m® p)(a®b) = m(a) @ p(b), is a representation of A® B. Let 0, = 0o (7 ® p);
clearly, o , is a representation of A® B on Co(HY, K), unitarily equivalent to 7 ® p.
We moreover have

orp(a®@b)T = p(b)Tr(a)!, a€ AbeB,T e Ca(HY, K).

An element ¢ € A® B is called a (m, p)-multiplier [21] if there exists C' > 0 such
that

(6) low.p(@)Tllop < C|Tlop,  for each T' € Co(H?, K),

in other words, if (7 ® p)(¢) is a concrete operator multiplier. The set of all (7, p)-
multipliers in A ® B is denoted by My ,(A, B), and the smallest constant C' ap-
pearing in (@) is denoted by ||¢||x . If ¢ is a (7, p)-multiplier for all representations
m of A and p of B, then ¢ is called a universal multiplier. The set of all universal
multipliers is denoted by M(A, B); if ¢ € M(A, B) we let [¢|luniv = sup, , [|¢[lxp-
It is not difficult to see that in this case ||¢||univ < oo [21].

We now recall some notions from Operator Space Theory. We refer the reader
to [7], [14] and [27] for more details. An operator space &£ is a closed subspace of
B(H, K), for some Hilbert spaces H and K. If n,m € N, by M, ,,(€) we will denote
the space of all n by m matrices with entries in £ and let M, () = M, ,(£). Note
that M, ,,(€) can be identified in a natural way with a subspace of B(H™, K™)
and hence carries a natural operator norm. If n = oo or m = oo, we will denote by
M,,,m (&) the space of all (singly or doubly infinite) matrices with entries in £ which
represent a bounded linear operator between the corresponding amplifications of
the Hilbert spaces and set Moo (€) = Moo 0o(€). We also write My, ,, = M, 1, (C)
and Moo = Moo oo (C). If a = (aij) € My m(E), where a;; € €, we let ad = (ag));
thus ad € B(Kd™, H4™). We also let a* = (aj;) € My, »(€); thus a® € B(H", K™).
We have ||ad|op = [lat]lop and [adt|lop = |lallop. The opposite operator space £°
of the operator space £ is defined as follows: if £ C B(H, K), then £° = {zd : z €
£} C B(K4, HY).

If £ and F are operator spaces, a linear map ® : £ — F is called completely
bounded if the map ®*) : My (E) — My (F), given by ®*)((a;;)) = (®(aij)), is

bounded for each k € N and ||®||cp def supy, ||<I>(k)|| < 00.

Let &,&1,...,&, be operator spaces. We denote by & © --- ® &, the algebraic
tensor product of &1,...,&,. Let ap = (afj) € M, (&), k=1,...,n. We

M, MEg+1
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denote by
(7) 0/1 @"'@an € Mml,m"+1(51 ®®8TL)

the matrix whose (¢, j)-entry is

2 1 2 n
(8) ai,iz ® aiQ,iS ® T ® ain»j'
in

12500040

Let ®: & x --- x &, — & be a multilinear map and
B My (E1) X My (E3) X -+ X My (En) = My (E)

be the multilinear map given by

(9) <I>(m)(ot17 co,a) = Z @(ag’h,ai’is, e a;i“j),

12,--50n

where a* = (a};) € My (Ex), 1 <4,j < m. The map @ is called completely bounded
if there exists C > 0 such that for all m € N and all elements a* € M,,(&x),
k=1,...,n, we have

12 (at, ... a")|| < Clla*]... [la"]|.

Every completely bounded multilinear map ¢ : & x --- x &, — & gives rise to a
completely bounded linear map from the Haagerup tensor product & ®y, - -+ ®y, &,
into €. For details on the Haagerup tensor product we refer the reader to [14].

If Rq,...,R,41 are rings, M; is an R;-left and R;;1-right module for each i =
1,...,n, and M is an (R, R,41)-module, then a multilinear map & : M7 x --- X
M,, — M will be called (R, ..., Ry4+1)-modular (or simply modular if Ry, ..., Ry41
are clear from the context) if

Q(armiaz, maas, ..., Mpapi1) = a1P(m1, agma, agms, . .., anMy,)an 1,

forallm; e M; (i=1,...,n)anda; € R; (j=1,...,n+1). If R, = A; are C*-
algebras and M; = &; are operator spaces, we let B4, .. 4,.,(E1,...,En; E) (resp.
CBa,,.. A, (E1y ..., E)) denote the spaces of all bounded (resp. completely
bounded) (Ay,...,Apt1)-modular maps from & x --- x &, into &.

3. MULTIDIMENSIONAL SCHUR MULTIPLIERS

In this section, we define multidimensional Schur multipliers on the direct prod-
uct of finitely many measure spaces. The main result of the section is Theorem [3.4]
which characterises multidimensional Schur multipliers generalising the results of
Peller [24] and Spronk [29].

Let (X;,1;),i=1,2,...,n, be standard o-finite measure spaces. For notational
convenience, integration with respect to u; will be denoted by dx;. Direct prod-
ucts of the form X;, x --- x X;, will be equipped with the corresponding product
measure. We equip the space L?(X; x X5) with an (L°°(Xy), L°°(X3))-module
action by letting (a&d)(z,y) = a(x)é(z, y)b(y). We will denote by M, the operator
of multiplication by the essentially bounded function a acting on the corresponding
L2%-space.

Theorem 3.1. A multilinear map

S:L?(X) x Xp) x L*(Xy x X3) x -+ x L*(X,_1 x X,,) = L*(X1 x X,,)
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is a bounded modular map if and only if there exists ¢ € L (Xy x -+ x X,,) such
that S = S,, where Sy (f1,. .., fu—1)(x1,2s) is defined as

/ (p(.’L‘l, e ,$n>f1 (l‘l, Ig)fg(xg, l‘3) e fnfl(l‘n,l, In)dIQ . dInfl.
XQX"'XXn_l

Moreover, ||S, || = [|¢]sc-

Proof. We first show that for each ¢, the map S, is a bounded modular map with
norm not exceeding ||¢||co. For simplicity, we will assume in this part of the proof
that n = 3. Fix ¢, f1 and fo. We have

2
I 21 < [ ( / Iw(xl,xz,:vs)fl(xhxz)fz(:vz,xs)dfﬂz) daryds

X1><X3

2
<lol [ ( / f1<x1,x2>f2<x2,x3>|dx2) drydas
1 X X3

< H%Hio/x N </f1($1,$2)2d$2> </|f2(932,$2)|2d$2> dxidxs

= lellZ I Al 213

Thus, ¢ is bounded with ||S, || < ||¢||«; the modularity of S, is obvious.
Conversely, let

S:L?(X) x Xp) x L*( Xy x X3) x -+ x L*(X,_1 x X,,) = L*(X1 x X,,)
be a bounded modular map. We first assume that the measures p; are finite. Write
K = L*(X; x X,,) and let
Syt L2(X3) x L3(X3) x L*(X3) x L*(X3) x -+ x L*(X,,_1) x L*(X,,_1) = K3
be given by
31(525 T]2a§3a n3,... 7§n—1777n—1) = S(l X 52) T2 & 537 ey Mn—1 ® 1)
(here and in the sequel we denote by 1 the constant function taking value one).
The fact that S is modular implies that
S1(82a2,m2,&303, ..., En—1an-1,Mn—1) = S1(§2,a2m2,83, - - -, Gn—11n—1),
whenever a; € L*(X;), i = 2,...,n— 1. For fixed &3,73,...,&n—1,Mn—1, let Sy :
L?(X3) x L*(X5) — K1 be given by
S2(82,m2) = S1(§2,m2,83, M35 - - -1 En—1,Mn—1)-

For h € K1, let SI : L?(X5)x L?(X5) — C be defined by S% (&3, m2) = (Sa2(2,m2), h).
Clearly,

n—1
155 (&2,m2)| < IRANST TT &illllmll-

=2
Hence there exists a bounded operator Ty : L?(X5) — L?(X3) such that S¥(&,12)
= (T3, 73), for all &, 12 € L*(Xp) and | T < IS T €Il 1]l For each
a € L®(Xs) and &2,m2 € L*(X2), we have that
(TQ}LMa€27%) = 53(052»772) = Sél(§27 a772)
= (36, @) = (156, MaTR) = (M, T3, 7).
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Thus, there exists o € L>°(X3) such that Ty' = M. Moreover,

n—1
o5 oo < IBIISITT Nl imil-
i=3
For each f € L'(X3), the functional on K; given by h — sz f(z2) OB (x2) dag is
conjugate linear and bounded with norm not exceeding || f||1 ||5]| H:.:; 1€ Il -
Hence, there exists ®o(f) € K such that

(@2(f), h) = f(x2) 5 (x2)dxs,

X2

and || @2 (f)llre, < £ ISI T, 1€l lm: . Thus, the mapping ®; : L' (Xa) = K is
bounded and ||®s]| < ||5]] H?;; [I€:11|m: |- Since Hilbert spaces possess the Radon-
Nikodym property, the vector-valued Riesz Representation Theorem [I1, Theorem
5, p. 63] implies that there exists po € L>®(X3, K1) (L (X2, K1) being the space
of essentially bounded Kj-valued measurable functions on X5) such that

Oo(f) = f(x2)p2(w2)dxs,
X2

where the integral is in Bochner’s sense. Moreover,
n—1
2]l oe (x5, 16) = esssup [l2(w2) i, = [1@2]| < IS T 16 lImll-
T2€X2 i—3
For &3,m2 € L?(X5), we have that &7 € L'(X3) and hence

(Sabavm) h) = (Théa7) = / o (2)Ea 211 (a02) i

X2

</ 802($2)§2(992)7]2(992)d992,h> ;
X2
in other words,
Sa(&2,m2) = / P2(22)62(2)m2(22)d2,
X2

where the integral is in Bochner’s sense.

We consider s as a function on X; x Xy x X, by letting @o(x1, 22, 2,)
= @a(z2) (21,2,). Note that po depends on &3,m3,...,&—1,Mn—1; we denote this

dependence by 02 = V2655, 801001
Let Ko = L?(X; x X3 x X,,). We have

loalles = / / (oa(@2) (@1, ) Py dindir
Xo J X1 XX,

[ Toalalie des < pa(Xa)lalmora i

X

It follows that the mapping S3 : L?(X3) x L?(X3) — Ka, given by

53(537 773) = P2,£,m3, . En—1,n—1>
is well-defined and

n—1

15 (&, m3) 12 < m2(X2)ISI T T Nillllmall

=3
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Hence, S is bounded and ||S3|| < p2(X2)||S|| T, Y11&]lIm:]l. An argument similar
to the above implies the existence of ¢35 € L*> (Xg, K») with

n—1

ll@allLoo (x5,k0) < p2(X2)||S]] H NEall |71

i
such that
53(537773)2/ w3(x3)&s(ws)ns(xs)des,

X3
where the integral is in Bochner’s sense. We may consider @3 as a function on
X1 x X2 x X3 x X, by letting p3(x1, x2, 23, 2,) = @3(3)(21, 2, ). We express
the dependence of w3 on &4, ...,n,—1 by writing p3 = @3¢, ... ,. We have that

51(527772, cee ,En—lﬂ?n—l)
Z/ / 0364, (T15 T2, T3, Tn ) E2(w2)M2(22)E3(3) 03 (23) dw3dz,
X9 J X3

where both integrals are in Bochner’s sense.
Continuing inductively, we obtain ¢ € L*®(X,_1,K,_2), where K, o =
L?(X1 x --- X X,,_9 X X,,), such that

Sl 6277727"'7577, lvnn 1)
/ / 331, . ,Jin)fgﬁg . fn—lnn—ldxn—l . dl‘Q,
X2 Xn-1

where the integrals are understood in Bochner’s sense and ¢ is viewed as a function
on X1 x --- x X, by letting

(1, n) = O(Tn1)(T1, ..., Tn_2,Tn).
It is easy to see that if ¢ € L'(Y,L?*(Z)), where Y and Z are ﬁnite measure
spaces, then [y, [¢(y)(2)|dydz is finite and ([, ¥ (y)dy) (2) = [, ¥(y)(z)dy, for

almost all z € Z (the first integral is in Bochner’s sense, whlle the second one is
a Lebesgue integral with respect to the variable y). It now follows that the last
equality holds when the integrals are interpreted in the sense of Lebesgue.

The modularity of S implies

®§2;772®€37~-~a77n l®b)

/ / / o1, .., xn)aéamnz ... En1Mn—1bdr, 1 ... dxa,
X2 J X3 Xn-1

for all @ € L*®°(Xy), b € L>®(X,) and &;,7; € LQ(Xi), i=2,...,n— 1. Letting
4= Xoy> 0= Xa,, a0d & =1 = Xa,, ¢ = 2,...,n— 1, the boundedness of S implies

/ lo(z1, ..y xn)|dey - day, < ||S||pa(aa) ... pn(an).
@1 X XOQn

It follows that the mapping

f= ZAZXQ X xad, of,

XX XXp

where {af x --- x al} is a finite family of disjoint Borel rectangles, is a linear
functional on a dense subspace of L'(X; x --- x X,,) of norm not exceeding || S]|.
Therefore, p € L® (X7 x -+ x X,;) and ||¢|leo < ||S]I-



4692 K. JUSCHENKO, I. G. TODOROV, AND L. TUROWSKA

We have that the mappings S and S, coincide on the tuples of the form a ®
€2,M2 ® &3, .., Mp—1 ® b; by linearity and continuity, they are equal. By the first
part of the proof, ||S] < |l¢lle and hence |||l = [|S]|-

Now relax the assumption on the finiteness of pu;, and let Xi”“, k € N, be a
measurable subset of X; such that yu;(XF) < oo, XF C XF™ and X, = Uy, XF,
i=1,...,n. For each k € N, let

Sp ot L2(XF x X5) x LA(X5 x X5y - x L2(XF_ | x XF) = L2(XT x XF)

be the map given by Si(f1,- .., fa1) = S(f1,- -, fn_1), where f; coincides with f;
on X} and is equal to zero on the complement of XF. Since

Sk(fla"'afnfl) = S(XXfflaafnflfo;)
= XX{“S(ho”w.fnfl)XXﬁv

the map S, is well-defined and || Sy|| < ||S||. Since Si is obviously (L*°(XF), ...,
L* (XF))-modular, the above paragraphs imply that there exists ¢ € L= (XF x

- x X¥) such that S, = S,,, for each k € N. The space L?(XF x XF ) can
be considered as a subspace of L?(X ikH x X ffll) in a natural way. We have that
the restriction of Ski1 to L2(XF x X§) x L2(X} x X¥) x ... x L2(Xk_| x XFK)
coincides with Si. This implies that the restriction of g1 to Xf X oee X Xﬁ
coincides (almost everywhere) with . Hence, there exists a function ¢ defined on
X1 x -+ x X,, which coincides with ¢, on XF x - x X* for each k € N. Since
ll¢klloo = [ISk]l < ||S]|, we have that [|¢|le < |S||. We have that S and S, coincide
on the union of L2(X¥ x X%) x L*(X§ x X§) x ... x L*(XF_, x XF), k e N,
which is a dense subset of L?(X; x X5) x L*(Xa x X3) X ... x L?*(X,_1 X X,).
It follows that S = S, and by the first part of the proof, ||S|| = ||¢|co- O

Let
L(Xy,..., X,) = LQ(Xl X X9)®©:- 0O LQ(Xn—l x Xp).
We identify the elements of T'(X7y, ..., X,,) with functions on
X1 XXQ XX2 X ><an1 ><an1 XXn

in the obvious fashion. We equip I'( X7, ..., X,,) with two norms; one is the projec-
tive norm || - ||2,n, where each of the L2-spaces is equipped with its L?-norm, and
the other is the Haagerup tensor norm || - ||;,, where the L2-spaces are given their

opposite operator space structure arising from the identification of L?(X x Y') with
the class of Hilbert-Schmidt operators from L?*(X) into L*(Y') given by

(10) (Tr)(y) = /Xf(ﬂfvy)f(l’)d% fe L’ (X xY),¢e LX(X).

For each ¢ € L>(X; x --- x X,,), we consider the linearisation of the map S, from
Theorem B.I] to a map defined on I'(X7, ..., X,,) and taking values in L?(X; x X,,)
and we denote it in the same way. Thus, if fi ® -+ ® f,—1 is in T'(Xy,..., X,),
then S, (fi ® -+ ® fn1)(z1,2,) is equal to

/ oz, ..., zn) f1(z1, z2) fo(xo, x3) . .« fro1(Tn—1,Tn)dzs ... dx,_1.
XoX - XXp_1

By Theorem B.1] S, is bounded and ||S,|| = ||¢|loc. Hence it extends to a bounded
map from (['(X1,...,X5), | - [l2,4) into (L2(X1 x Xp), || - ||2)-
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Definition 3.2. Let ¢ € L=°(X; X --- x X,;). We say that ¢ is a Schur multiplier
(relative to the measure spaces (X1, 1), .., (Xn, pin)) if there exists C' > 0 such
that ||S,(®)]lop < C||®||y,, for all @ € T'(X4, ..., X,,). The smallest constant C with
this property will be denoted by ||¢||m-

We will present next a characterisation of the n-dimensional Schur multipliers
which generalises Grothendieck’s and Peller’s characterisations. We will need the
following generalisation of a result of Smith [28§].

Lemma 3.3. Let & C B(H;, Hi+1), it = 1,...,n be spaces of operators and C C
B(Hy), D C B(H,+1) be C*-algebras with cyclic vectors. Assume that &; is a right
C-module and &, is a left D-module. Let ¢ : &, x -+ x & — B(Hy, Hpt1) be
a multilinear (D,C)-module map (that is, ¢(dy, ...,xc) = d¢(y,...,x)c, whenever
x €&,y €&, ce€C andd € D) such that the corresponding lmear map from
En© - ® & into B(Hy,Hy,y1) is bounded in the Haagerup norm. Then ¢ is a
completely bounded multilinear map.

Proof. The proof is a straightforward generalisation of the argument given by Smith
[28]. We will denote by ¢ the linear map from &, ®- - -©&; into B(Hy, H, 1) defined
by gb(an ®---®ay) = ¢(ay,...,ar). By the assumption of the lemma, it is bounded
in the Haagerup norm || - ||j. Assume that ||¢|| = 1. We will show that |||, = 1.
Suppose, to the contrary, that ||<5ch > 1. Then there exists m € N, matrices
rt = (157@]) € M (&), i=1,...,n and column vectors & = (&1,...,&y) € H™ and
o = (771, cee 777m) H:Ln-i-l such that ||§OH < lv HUOH <1, all szH <1 and

(11) |(¢(m)('xn7xn717"'7x1)€05n0)| > 1.

If £ and n are cyclic vectors for C and D, respectively, we may moreover assume
that & = a;§ and n; = b;n, for some a; € C and b; € D, where i,j =1,...,m. Let
a=>", aZ a; and b = Z] 1 bbj. Assume first that a and b are 1nvert1ble and let

¢ = aia" V2, dj = bb=1/2 € = a'/?¢ and 7 = b'/25). Then & = ¢;€ and n; = d;7n.
Taking into account (), the left-hand side of (Il becomes

m

(12) Z(¢(m)(xn7xn71a"'7x1)j’icigvdjﬁ)

ij=1

m m
_ n n—1 1 NE &
- : : z : ijknfl’xknflkn727.'.7xk1icz)§”r])
m m
— n s~
- Z ¢ Z G L jkn—1° Tk, _ 1kn PR Zxkl iCi ETI
k —
m
< | X

We have that

€]l = (a'/2¢,a'/2¢) = (ag, €) = ZIIMH2 ZH&II2 €0l <1,

-

m ~
Mo e Z%,cz (GG
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and similarly ||77|| < 1. Set d*

= (d )eMlm(D)aCZ( i) € Mim,1(C), u=da" €
My m(Ey) and v = ztc € My, 1(&1).

It follows from (7)) and (&) that

m
(13) E d; xjk?n 1, L K _ lk" IR § Lky,iCi
k?17~~; n—1=1 j=1
m
= E ( kn_11L K 1]% 2,...,’[)kl>
ki,iskn_1=1
m
_ I n—1
= ¢ Uk, QT g Q- @ Uk
kiyeokn—1=1
m
§ n—1
S ®xk‘n e ®...®Uk1
kiyeokn—1=1 h

= |uoa" e 02?0,
<l =™ a2 el

We have that
1/2

sl = > _djds|| =11l =1
j=1
and, similarly, ||c|| = 1. Tt follows from ([I2)) and (3] that

|(¢(m)(xn7xn717 s 71'1)50; 7]0)| < 17

which contradicts ().

In the case that a or b is not invertible, one can again follow [28] and, for each
i, consider the matrix 3¢ € M, +1(&;) which has the matrix z' in its upper left
corner and zeros in the last row and column. The vectors & and 7y are replaced
with 50 = (€1a s agma€m+1> and 770 = (7717 .. 'anm777m+1>7 where £m+1 = 65 and
Nm+1 = €N, respectively, for e small enough so that the norms of these vectors
remain less than one. Letting a,4+1 = bp41 = €I, we have that a;& = ¢ and
bin =mn; for each ¢ =1,...,m+ 1. Finally,

(¢(m) (xn’ xnila . )507 770) (¢(m+1)( 713 cee 7591)50, 770)

and the proof proceeds as before. O
The main result of this section is the following.

Theorem 3.4. Let ¢ € L>®°(X; x -+ x X,,). The following are equivalent:

(i) ¢ is a Schur multiplier and ||p|lm < 1;

(1) there exist essentially bounded functions a1 : X1 = Moo 1, apn @ Xy = M1
and a; : X; = My, 1 = 2,...,n — 1, such that, for almost all x1,...,x, we have

(1, xn) = an(Tn)an—1(Tn_1)...a1(x1) and esssupH llai(x;)] < 1.

Proof. (1)=(ii) Let p € L>°(X; X --- x X,,) be a Schur multiplier with ||¢|lm < 1.
Then the map S, induces a map, denoted in the same way, from L?(X1x Xo) X+ %
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LZ(X.,L_l X Xn) into LZ(Xl X Xn) Let Hz = LZ(XZ), Di = {Ml/, : 1,[} S LOO(XZ)},
i=1,...,n,and

Slp : Cg(Hl,Hg) X -+ X Cg(Hn,]_,Hn) — Cg(Hl,Hn)

be the map defined by S’w(Tfl, LTy = Ts,(f1,....fn)- Since ¢ is a Schur multi-
plier, the linearisation of the map S, from (Co(Hy, Ho) ® -+ ® Co(Hp—_1, Hp), | - |In)
into (Ca(H1, Hy), || +|lop) is bounded. (Here each of the operator spaces Co(H;, Hiy1)
is given its opposite operator space structure arising from the inclusion Co(H;, H; 1)
- B(Hz, Hi+1)~) If a; € LOO(Xz), 1=1,...,n, then

SAP(TflMCu ) szMaw ooy Mg, Tfn Manfl) = SW(Tf1a1’Tf2azv [ Tanfnanfl)
14)

TS«p(flal’f2a2s“‘fanf’nan—l)
= Tanstp(a2f1>a3f21"'>an—1fn—2)fn)al
= ManSAP(MaszN""Tfn)Mal'

(

By continuity, the map 5}, has an extension (denoted in the same way)
S’Ap : IC(H1, H2) ®h e ®h K(anlv Hn) — ’C(H1, Hn)

to a map with norm less than one, where the spaces K(H;, H;11) are equipped with
the operator space structure opposite to their natural operator space structure. It
follows from (I4) that the map

Sy K(Hy—1, Hy) @y -+ @y K(Hy, Ho) — K(Hy, Hy),
given by

So(Tn1 @ @Ty) =S,(Th @+ @ Tp1),

is modular and bounded when the spaces K(H;, H;11) are given their natural op-
erator space structure. By Lemma B3] S, is completely bounded. It follows that
the second dual

S:;* : B(anlaHn) Qoh ** Qah B(H15H2) — B(HlaHn)

is a weak™ continuous map with c¢.b. norm less than one, which extends the map

Se. (Here ®4p, denotes the normal Haagerup tensor product; see e.g. [7].)
Denote by S, the corresponding multilinear map

Sy B(H, 1, H,) x --- x B(Hy, Hy) — B(Hy, H,).

The map S@ is separately weak® continuous and hence modular.

A modification of Corollary 5.9 of [9] now implies that there exist bounded linear
operators Vi : Hy — H°, V,, : HX — Hy,and V; : H* — H>®,i=2,...,n—1,
such that the entries of V; belong to D; and

STty o, T1) = V(T @ DV A (Tr 2@ 1) ... (Ty @ V4.
Moreover, the operators V; can be chosen so that [], [|[Vi]| < 1. Let V;
(Mar, Mgy, .. )% Vi = (M) and Vi, = (Map, May,...), for some a1 =

(al,al, ... )t € L®(X1,M1,0), an = (a},a},...) € L®(X,,M; ) and q;
(at;) € L®(X;, M), i = 2,...,n — 1. Moreover,

n n
esssup,. ¢ x, H llai(z:)| = H [Vill < 1.
i=1 i=1
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If ¢ € L3(X) and € L?(Y), denote by £ ® 1 the function on X x Y given by
€@ n)(z,y) = &(x)n(y); this function gives rise by ([I0) to a rank one operator
Teoy. Fix &,mi€ Hi,i=1,...,n. Then

S@(Tin—1®nn7 SR T51®772)(771) = Vn(TEn—1®77n & I) s (T§1®772 ® I)V1(771)
= VH(TEn—1®Tln 0y I) s ‘/Q(T&@??Q & I)(allclnl)/ﬂ

= Val(Tey som, ® 1) Va(( / ok, (1) (0 ) (a0 ey ),

X1

= Voo (Terams ®I)((Z/ azlcl(951)51(901)771(901)(1901)(1%2,,61772);62

k=17%1
= Va.. . V5(( Z / kg (@2)ak, (@1)(Em) (@1)(Eome) (w2)dardas)ns) i,

k51:1 X1><X2
- > S )k (1)
kn=1 X1x X X1 k1,..0kpn—1=1

< &i(z)m(zy) .. Eno1(@n_1))dzy ... dxn,l)Ma;;nnn,

S@(Tfn_1®nnv e ’T£1®n2)(771)($n)

oo

- (/X X Z aZ" (xn)azn_—lhknfz (x"—l) s allcl (xl)
LXe

HKXn-1 oy k=1
X 51 (.Z‘l)’lh (x1> e gnfl(xnfl)dxl .. .dl‘nfl)nn(l‘n).
On the other hand,

S«p(Tﬁn_1®nn, cee T£1®nz)(771)(xn) = TS¢(§1®n2,.--,§n71®nn)(nl)(xn)

= (/ o(T1y oy Tp_1, Tn)
X1><-”><X-,L71

X 51 (951)7]1 (951) .. .{n_l(:cn_l)d:vl e d:vn_l)nn(xn)
It follows that

o1, ..y xn) = an(Tn)an-1(Tn-1)...a1(x1),
for almost all x1,...,x,.
(i)=(1) Assume that ¢ is given as in (i), where a1 = (aj,a3,...)" €
L>®(Xy, Mx1), an = (al,ay,...) € L®(X,,Mi) and a; = (a},) €

L>®(X;, M), i=2,...,n—1. Let Vi : H — H{® be the operator corresponding
to the column matrix Vi = (M1, My, ...)" : Hy — H{°, Vi, : H® — H,, be the op-
erator corresponding to the row matrix V,, = (Myn, May,...) and V; : H® — H>®
be the operator corresponding to the matrix V; = (Mai-z)’ i=2,...,n—1. Then
[T7, IVi]l < 1. It follows from the first part of the proof that

SW(T€7L71®’"7L’ s 7T€1®772) = VTL(T&Hl@% ® I) s (T€1®772 ® I)Vla
for all & € Hy, n, € H, and &;,m; € H;, i =2,...,n— 1. Since the operator norm
is dominated by the Hilbert-Schmidt norm, we conclude that

SSO(Tfn—l’ .. .,Tfl) = Vn(Tfn—l (24 I) Ce (Tf1 X I)Vl,
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for all fz S LZ(Xz X Xi+1)7 i=1,...,n—1.
Let

F=F0©0F,_€Ll*X|xX)® 0L (X,1 xX,),

where Fy € M oo(L3(X1 % X2)), Foo1 € Moo 1(L3(Xpo1 x X)) and F; €
Moo (L3(X; X Xi41)), i =2,...,n — 2. Lemma 7] implies that

TSW(F) = Vn(TFn_l ® I) - (TF1 ® I)V1,
where T, = (Ty; )iy whenever F; = (f{;)x. It follows that

n—1 n

ITs, i llop < TT 1 llop TT 1VA-
=1 i=1

Taking the infimum with respect to all representations of F, we conclude that
I Ts, ()llop < [1Flln TTi=y Vil and so [|gflm < 1. O

Remark. The space of all functions ¢(x1,...,x,) satisfying condition (ii) of Theo-
rem [34] can, in view of the commutativity of the L (X;)’s, be identified with the
extended Haagerup tensor product L>(X1)®en LP(X2) Qe - Qe L2 (X0).

The next proposition relates our approach with a recent paper of Peller [25]
on multiple operator integrals. For some fixed spectral measures, Peller defines a
multiple operator integral I,(T1,...,T,—1) of a function ¢ and an (n — 1)-tuple of
operators (11, ...,T,—1), and shows that if ¢ belongs to the integral projective ten-
sor product of the corresponding L*°-spaces, then I,(T%,...,T,—1) is well-defined
and, moreover,

HLP(Tlv cee 7Tn71)||0p < ”SDHZ'HTIHOP s ”Tnfl”or)'

Recall that the integral projective tensor product L>(X)®; ... ®; L™ (X,,) is the
space of all functions ¢ for which there exists a measure space (T, v) and measurable
functions g; on X; x T such that

(15) tp(xl,...,a:n):/Tgl(a:l,t)...gn(:cn,t)du(t),

for almost all z; ..., x,, where

/ 191G+ )lloe - 19+ 8)lsodir(8) < o0,
i

The integral projective norm ||¢||; of ¢ is the infimum of the above expressions
over all representations of ¢ of the form ([I3). It was proved by Peller in [24] that
in the case where n = 2 the integral projective tensor product L>(X;)®;L>(X5)
coincides with the set of all Schur mulipliers. The next proposition shows that for
n > 2 the integral projective tensor product consists of multipliers. We do not
know whether it coincides with the space of all Schur multipliers.

Proposition 3.5. Let ¢ € L®(X1)®; ... ®;L>(X,,). Then ¢ is a Schur multiplier
and |l¢llm < [|ells-

Proof. Suppose that

gp(xl,...,xn):/Tgl(xl,t)...gn(xn,t)du(t),
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for almost all x1 ..., x,, where (T, v) is a measure space, g; is a measurable function
on X; xT,i=1,...,n, such that

10 Dl < o0

Let F = F1®---OF,_ 1, where Fy € M, k1 (LQ(Xl XXQ)) n—1 € Mkn 2,1 (L2(Xn_1
xX,)) and F; € My, , 5, (L*(X; x Xi41)), i =2,...,n—2, and F(z1,x,...,2,) =
F(x1,29,72,23,...,2,). Denoting by M, (¢ the multiplication operator by the
function g;(-,t), and by My, . ;) ® I the ampliation of My, . ;) of multiplicity k;, we
have

150(P)lo = | / pFdrs ..y op

= || / </ g1 xlv gn(xn,t)dt> Fde ~-~dxn—1||op
||/ (/91 T1,t ...gn(xn,t)dajg...da:n_l) Fdt|op

||// e F (M) ® D) (a1, 22) © ..

©  FuoaMg, (0 (Tn-1,75)dr2 . .. dry_1)dt||op

< / ||/ g1 F1 (Mg, 1y @ I)(21,22) O . ..

® 1My (@1, 2n)drs . drg_1lopdt

< / Mg, () HIFL [ Mgy - )l - N Fn—1lISp 1| M, (-t |t
< lellsllFllgp - - - 1Fn-1lIgp,

where || - [|5,, is the opposite operator norm (see Section 2)). The claim follows by
taking the infimum over all representations F' = F} ® ---® F,,_1. O

Corollary 3.6. LOO(X1)®,L ce ®2Loo (Xn) - L (X]_) Reh - -+ Deh L (Xn)

We finally point out another interesting open question, namely the one of charac-
terising the class of multipliers defined by using the projective tensor norm instead
of the Haagerup tensor norm in (2); equivalently, the class of multipliers obtained
after replacing (2) with the weaker condition

||5w(f1 &...Q fn)HOP < C”leOP e anHOP for all f; € L2(Xi)ai =1,...,n.

4. MULTIDIMENSIONAL OPERATOR MULTIPLIERS: THE DEFINITION

In this section we generalise the notion of operator multipliers given by Kissin
and Shulman [21] to the multidimensional case.

We recall the mapping Ok, r, : K1 ® Ko — Co(K¢, K»), where K; and K, are
Hilbert spaces, which is the unitary operator between the Hilbert spaces K; ® Ks
and Co(K{, K3) given on elementary tensors by

9K17K2(§1 ®€2>(77§1> = (§17771>€2-

Note that there is a natural identification of (K; ® K2)4 and K¢ ® K$. Tt follows
that Co(K¢, K3)d can be identified with Co(K1, K$) = Co((K{)d, K&); we have that
eK?,Kg (€d) = 9K17K2 (f)d
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Let Hy,..., H, be Hilbert spaces and H = H; ® --- ® H,. For any permutation
7 of {1,...,n}, we will identify H with the tensor product Hr(1) ® --- ® Hy(y)

....jx Will denote an element of

Hj @---® Hj,.
We define a Hilbert space HS(Hj, ..., H,), isometrically isomorphic to H. Let
HS(Hy, Hy) = C2(H{, Hy). In the case where n is even, we let by induction

HS(Hy,... Hy) = Co(HS(Hs, H3), HS(Hy, Hy, ..., Hy)),
and let
9H15~~7Hn cH — HS(Hl, . ,Hn),
be given by
Om,,...1, (82,3 ® &) = Ous(H,, Hy), HS(Hy Ha,...,H,) (O, 1y (§2,3) @ Om, 1, 1, (£)),
where £ € H1 @ Hy ® --- ® H,. In particular, we have that
Omy,....1, (€23 ® €)0m,, 11, (112,3)" = (011,11, (€2,3), Or1, 115 (12,3)) 0 1 11, (€)-
In the case where n is odd, we let
HS(H,, ..., Hy) = HS(C, Hy,..., H,).
If K is a Hilbert space, we will identify Co(C4, K) with K via the map S — S(19).
Thus, HS(Hy, ..., H,) can, in the case of odd n, be defined inductively by letting
HS(Hl) = H1 and
HS(Hy,...,H,) = Cg(HS(Hl,Hg)d, HS(Hs,...,Hy,)).

The isomorphism 0, ... g, is in this case given by

n

Ou,,...n, (&) = Oc.m,,..H, (1 ®E).
We will usually omit the subscripts and write simply 6, when the corresponding

Hilbert spaces are understood.

Lemma 4.1. (i) Assume n is even. Let & € H be of the form € = §12Q--Q@&p—1,n-
If 941 € Hi @ Hixq (i even), then

0(E)(0(n3.3)) - (O 9, 1)) = 0(En—1.0)0(N5 5, 1) ---0(E3.4)0(n8 3)0(E1.2)-

(ii) Assume n is odd. Let & € H be of the form € =& @& 3@ @ &p_1n. If
Nii+1 € H; ®Hz‘+1 (Z Odd), then

9(5)(9(77(1{2))(9(773,4)) e (9(772724%1)) = 9(5n—1,n)9(77272,n71) E 9(77(11,2)(51)-

Proof. (i) Assume first that &_1,; = &_1 ® & and 7, ;41 = 17; @ 741 (¢ even). Fix
n{ € H{. The image of n{ under the operator on the right-hand side of the identity
in (i) is

(E1,m)(Eam2) -+ - (§n1,Mn—1)én-
On the other hand, the image of ¢\ under the operator on the left-hand side is

(Ors, 1, (&2 ® &3), Oty 1, (12 @ 13))

X Oy Hyyo 1, (61 Q& @ @ &) (0(Ma,5)Y) ... (0(n—2,0-1)) (n])
= (&,m2)(&3,m3)
X Oy Hay i, (1@ &R - @E)(O(N15)Y) ... (O(Nn—2,n—1)Y) (n).

By induction, (i) holds in the case of elementary tensors.
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By linearity, (i) holds for finite sums of elementary tensors. Using continuity

arguments and the fact that the operator norm is dominated by the Hilbert-Schmidt
norm, one can easily prove that (i) holds for general £ and 7; ;11. O

We define a representation oy of B(H) on HS(Hy, ...

on(A)0(E) = 0(AS);

,H,) by letting

clearly, o is unitarily equivalent to the identity representation of B(H). If Hy, ...,

H,, are clear from the context we will simply write ¢ in the place of op. If

A1, ..., A, are C*-algebras, 71, . .., m, corresponding representations on Hy, ..., Hy,
and 7T =m ® - ®m, we let

Op =0 OT ;
thus, o, is a representation of 4; ®- - -®.A,, on HS(H1, ..., H,), unitarily equivalent

to .

Lemma 4.2. Let A; € B(H;),i=1,...,n,and A=A ® - - ® A,.
(i) Assume n is even. Let §_1,; € Hi_1 ® H;, 141 € H; ® Hipq (i even). If
§=81.20 - ®&—1,n, then

a(A)(O())(O(n53)) - (012 -1))
Ane(gnfl,n)Agfle(nnflnfl)dAn72 . A2 (61 Z)Ad
An0(8)(0((A3 ® A3(n2,3)%) - (O((A}_o ® A}y (Nn—2,0-1))")) AS.
(ZZ) Assume n is odd. Let 51 € Hy, Sifl’i € H, 1 ® H;, Nii+1 € H; ® HiJrl
(i odd). If € =61 @& 3R - Q@E&u_1n, then
a(A)(O(E)) (O ,)) - (015 _3-1))
= Ane(gnfLn)Agfle(nannfl)dAn72 s Ade(nfz)(Algl)
= A0(8)(0((AT @ A3(m2))) - . (O((Af_2 ® A7, _1 (h-2,0-1))%)-

Proof. (i) Let first n = 2. If nd € H{ and £ = &; ® &, then

a(A)(09))(nY) = 0(A1& ® Ax&)(n?) = (A1&1,m) A2
= (&, Ain)Axé = Ax0(& ® &) ((Afn)Y)
= A0(& @ &) AT () = A20(8) AT (nY).

It follows by linearity and continuity that o(A)(6(¢)) = A20(£)AY, for every € €
H; ® Hy. Using Lemma [£1] (i) we now obtain

a(A)(G(ﬁ))(G(m 3)4) . (O —21))
= (4 ® An)(©))(O(n2,3)) - (005 _2,—1))
= 0((An- 1®A )(En—1.0))0(15 2m—1) -
(A3 ® A4)(€3,4))0(n5 3)0((A1 @ Ag)(&12))
3 - AG0(n2,3)1 A20(&1,2) AT
3

n— 1n>Ad (nn 2,n— l)dAn 2 -
)(O((A3 ® A3)(n2:3))) - - (O((A7 5 ® A7, 1) (1h—2,0-1)))) AT

o(
— A,6(
A,0(
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(ii) By Lemma [AT] (ii),
a(A)(0(€)(O(m,2)?) - (O(m—2.n-1)")

= 0((A1®... A)(€))(O0(n1,2)") .. (O(n—2,n-1)7)

= 0((An-1® An)(En—1,0))0(15 2 —1) - - - O(n 5) (A1&1)

= An9(€n71,n)Ag—19(nnf2,n71)dAn72 - A30(n ii )(Ai&r)

= A0(8)(O((AT @ A3)(m2))N) - - (O((A7 2 @ A7, 1) (—2,0-1))%))-

Let Hy,..., H, be Hilbert spaces. If n is even, we let
[(Hy,...,Hy,) = (Hi® Hy) ® (H{ @ H}) © (H3® Hy) ® -+ ® (H,—1 ® Hy).
If n is odd, we let
[(Hy,...,H,) = (H{®@ H)® (H:® H3) © (H{ @ H) ® - ® (Hp—1 @ Hy).
After identifying C ® H; with H;, for n odd we have the identification
I'C,Hy,...,Hy,) =H OT'(Hy,..., Hy).

Fix ¢ € B(H). We define a mapping S, on I'(Hy,..., H,) taking values in
B(H{, H,) in the case n is even, and in B(Hy, H,,), in the case n is odd. First let
n be even. On elementary tensors

C = 51,2 & 773,3 Y 53,4 & Q En—l,n S F(Hla LR Hn)a
we let
SAP(C) = U(@)9(§1,2 ®E4A®--® §n71,n)(9(77§,3)) cee (9(77272,1171))

and extend S, on the whole of I'(Hy, ..., H,) by linearity. Note that the values of
S, are Hilbert-Schmidt operators. Now assume n is odd. Let ¢ € I'(Hy, ..., H,)
and & € Hy. Then

G ®ceH OT(H,... Hy) =T(C,Hy,..., H,).
We let S,(¢) be the operator defined on Hy by

So(€)(&1) = S1pp (&1 ® C).

Note that Sig, (&1 ® €) is an element of Co(C?, H,,), which can be identified with
H,, in a natural way. In this way, S,(¢)(&1) can be viewed as an element of H,.
It is clear that the operator S,(¢) : Hi — H, is linear. We moreover claim that
S, (C) is bounded. Let

(=1l,®  ®&1, €T(H,..., Hy),
and & € H;. Then S,(() is a bounded operator and

(16) 1Se(Ollsa.m,) < el llmall- - mm—2n-1llg2sl - lén—1.all
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In fact, assuming for simplicity that n =5 we have

1S5 (O (€D = [1S184(§1 @ )|
[o(1®@)0((1© &) ® &3 @ Eas)(O(nf2)) (005 4)) ]l

< lo(1@e)f((1® &) @ Eaz @ Eas)(0(n5 2))lopll (0(nS.2))l
< ol @e)0((1® &) @ E&2,3 @ &a5)llopllm 2l Ims,4l
< ellsenlléllléslIEasim,2llins,al
= llelsulIChzalléll
Before proceeding, we identify two norms with which the space T'(Hy, ..., Hy)
can be equipped. The first norm on I'(Hy,..., H,) is the projective tensor norm

| - |l2,n, where each of the terms H; ® H,y1 (resp. H{ | @ H{) is given its Hilbert
space norm. In order to describe the second norm, note that if Ky and Ky are
Hilbert spaces, then K; ® K5 can be endowed with an operator space structure by
letting

1)l = N0C&50) ar,, (s(rg Ka)), (§i) € Min (Ey @ Ks).

We write (K1 ®K. 2)gp for this operator space. Note that this is the opposite operator
space structure on Co(K{, K3) C B(k{,ks), after the identification of K; ® Ko
and Co(K¢, K3). The norm | - ||}, is the Haagerup norm on I'(Hy,..., H,) when
I'(Hy,...,H,) is viewed as the algebraic tensor product of the operator spaces
(H; ® Hi1)2, (vesp. (He, ® H)?)). Thus, the norm [lull;, of a finite sum u =

> fig ®...® §;71m € I'(Hy, ..., Hy) of elementary tensors equals the Haagerup
norm of the element Y7, 6(&), ;) ® ... @ 0(&] ).

Remark 4.3. For each ¢ € B(H) and each ¢ € I'(Hy, ..., H,), we have
150 (O llop < llellsem IS

Proof. In the case where n is odd and ( is an elementary tensor, the inequality
coincides with ([I6). In the case that n is even and ¢ is an elementary tensor, this
is verified similarly. The general case now follows by linearity. O

|2,

Definition 4.4. An element ¢ € B(H; ® --- ® H,,) is called a concrete (operator)
multiplier if there exists C' > 0 such that

150 (Ollop < CICll, for each ¢ € D(Hy, ..., Hy).

The smallest such C' is denoted by ||¢||m.

Let Ay, ..., A, be C*-algebras and 71, ..., m, be corresponding representations
on the Hilbert spaces Hi,...,H,. An element o € A; ® --- ® A, is called a
(71,...,mp)-multiplier if (11 ® -+ ® m,)(¢) is a concrete multiplier. We denote
the set of all (71, ..., m,)-multipliers in A1 @ --- @ A, by My, . - (A1,...A,). If
@€ Mnp, (A1, .. An), we let [[@flz,, . r, = [[(71 @+ @ 70) () ][

The element ¢ € A;®- - -R.A, is called a universal multiplier if p is a (71, ..., 7, )-
multiplier for all representations m; of A;, ¢ =1,...,n. We denote by M(A4,...A,)
the set of all universal multipliers in 4; ® --- ® A,,.

Remark 4.5. In the case n = 2, Definition [£4] reduces to the definition of Cu-
multipliers studied in [21].
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Next we show that an element p € L®(X1)®...Q L>(X,) C L®(X1 X...xX,)
is a Schur multiplier as defined in Section Bl if and only if ¢ is a (m1,...,7,)-
multiplier, where 7; is the canonical representation of L>°(X;) on L?(X;) acting by
multiplication.

Let A be a commutative C*-algebra with maximal ideal space X, acting on a
Hilbert space H. It is well known that, up to unitary equivalence, H = @wer H,,
where H., = Ly(X, p1,) is invariant under A for each v € ', and an element f € A
acts as on H, by multiplication. Let j : H — H be given by {&,(\)} — {&(V)}.
Then V = 95 is a unitary operator from H to HY such that Ad = VAV~ for all
A € A. If K is another Hilbert space, then U(T) = TV (resp. W(S) =V ~18) is
an isometry from Co(HY, K) to Co(H, K) (resp. from Co(K, HY) to C2(K, H)).

Let A4, ..., A, be commutative C*-algebras and let 7y, ..., T, be corresponding
representations on Hi,..., H, and # = m ® ... ® m,. Let V; : H; — HZ be
the unitary operator defined above with the property m;(a;)d = Vmi(ai)Vfl for
each a; € A;, i = 1,...,n. Define U, : Co(HE, Hy) — Co(H;, Hg) and Wy :
Cg(Hi,Hg) — Cg(Hi,Hk) to be Ui7k(T) = TVZ and Wz,k(S) = Vk_IS. Then for
pe A ®- - ®A,, the mapping Sr(,) can be identified with a mapping Sﬂ(w) from
Co(Hy, Hy) ©® Co(H2,H3) ® ... ® Ca(Hy—1, Hy) into B(Hy, Hy,) such that whenever
p=a1®...R a, is an elementary tensor, then

(17) STF((/J)(RI ®R...Q Rnfl) = Wn(an)Rnflﬂ-nfl(anfl)Rn72 e R17r1(a1).

In fact, let U = Uy 205, 1, ® WosOm, o, ® ... ® Up—1,00m,_, .1, if n is even and
U = Wi20m, 1, U 30w, 1, @ ... ® Un_100m,_,.m, if nis odd. Then U maps
the space I'(Hy, Ha, ..., Hy,) onto Co(Hy, Hy) ® Co(H2, H3) @ ... ® Co(Hp—1, Hy)
and is an isometry with respect to the norm || - ||, (this norm being defined on the
algebraic tensor product of the Co-spaces again as the Haagerup norm, where each
of the Cs-spaces is equipped with its opposite operator space structure). Let

Sr(e) = UtnSe(ol !
in the case that n is even and
Sr(e) = Se@U ™!

in the case that n is odd. Assume that ¢ =a; ® ... ® a,,. Then, in the case where
n is even, we have

SW(LP) (R1 X... Q0 Rn—l)

= Ul)nSﬂ.(@)u_l(Rl ®...0 Rp_1)

= Ul,n(ﬂ'n(an)Urj_ll,n(Rn—l)ﬂ'n—l(an—l)de—Q,n—l(Rn—2) ... T (al)d)

= 7Tn(an)Rn—lvn__llﬁn—l(an—l)an—an—Q . Rlvl_lﬂ'l(al)dvl

= Ty (an)Rn—1Tn—1(an-1)Rn—2 ... Rimi(a1).
In the case where n is odd one shows in a similar way that () holds.

Now let (X;, ;) be a standard measure space, A; = L*°(X;) and let 7; be

the representation of A; on L2(X;) given by (m;(f)é)(z) = f(x)é(x), € € L?(X;),
1=1,...,n.

Suppose n is even. In this case Sw(w)(Rl ®---®R,_1) is an element of Co(H1, Hy,).
Using (I8) and the identification ¢y ; : f — T} of Lo(Xk, X;) with the class of
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Hilbert-Schmidt operators from Lo(Xy) to Lo(X;), where

(Tr6)(y) = [z, y)é(x)da, f € La(Xp x Xy),€ € L*(Xy),y € Xy,
X

we obtain that if fi ®...® f,—1 € [(Xy,...,X,) and ¢ is an elementary tensor,
then

(18)  Yim(Snip)($12@ - @V 1) (1@ ® fo1)) (w1, 20)
:/ P, wn)fi(zr,w2) - foa(Tn1, wn)day . drn
XoX..XXp_1
=So(f1®...® fuo1) (@1, m0).

By linearity and continuity, (I8) holds for any ¢ € L>®(X;) ® ... ® L>(X,).

Now assume that n is odd. Let & € Hy, n € H, and vo; : L*(X1) —
C2(C, L?(X1)) be the natural identification. We have that (S, (f1 ® - ® fn_1)&,7)
coincides with

(S’(id®7r)(1®<p) (¢O,1 K- & /(bnfl,n)((l ® 5) ® fl Q- ® fnfl)an)

whenever ¢ € L®(X;) ® ... ® L*®(X,,) is an elementary tensor. By linearity and
continuity, we have that ¢ ,(S,(fi ® - ® fn—1)) is equal to

Sﬂ'(g&)(djl,Z &K ®wnfl,n)(f1 X fnfl)

forall p € L>®(X1)®...Q L*(X,,). In particular, S
As before, it follows that

(19) VinBr W12 ® . ® bu12)(1 ® .. ® fumr))(@1,20)
= Sw(fl ®...Q0 fn—l))(xhx”)

= (o) takes values in Co(Hy, Hy).

for every ¢ € L>®(X;1) ® ... ® L>(X,,). We have thus shown the following.

Proposition 4.6. An element ¢ € L™(X1) ® ... ® L*(X,,) is a Schur multiplier
if and only if ¢ € My, (L™®(X1),...,L2(X,)).

Next we want to give a generalisation of Lemma for the case where ¢ is a
sum of elementary tensors. Let V. Vi,...,V, be vector spaces, L(Vi,V3) be the
space of all linear mappings from V; into V5 and L(V) = L(V,V). Recall that if
f Vi — Vuis a linear map, we let fi; : My (V1) — My (V) be the mapping
given by fr1((vij)) = (f(vij)), for each (v;;) € My ;(V1). For an element v =
(vij) € My (V) we denote by v* = (v;;) € M; (V) the transpose of v. Denote
by d : B(K) — B(K?) the mapping sending A to its dual Ad. If A = (4;;) €
M (B(K)) let Ad = (A?j).

We will identify M, ,(Ca(K1, K»)) with Co(K?, K2). Tf € € M, o(K; ® K>), then
0,.4(&) € M, ,(Co(K{, Ks)); using this identification, we will be considering 6, ,(¢)
as a Hilbert-Schmidt operator from Ki to K5. If A € B(K;,K3), then A® I, €
B(K¥ K%) is the k-fold ampliation of A; under the identification B(KT,K}) =
My, (B(K1, K3)), the operator A ® Ij has a k by k diagonal matrix, whose every
diagonal entry is A. The following lemma is straightforward.
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Lemma 4.7. Let Vi,...,V, be vector spaces, L; C L(V;,Viy1) a subspace, i
1,...,n—1, and

S : (L(Vn) © L(Vn_l) [OEERNO) L(Vl)) X (Ln—l [OEERNO) El) — L(Vl, Vn)
be a mapping satisfying
S(an @ @ a1, A1 @+ @N) = ApAp_1ap_1...A107.

If A1 c Mkl,l(L(Vl)); A2 c Mkz’kl(L(Vg)),...,An c Ml,kn_l(L(Vn)) and A1 S
Mll,l(ﬁl); A2 € Mlz,l1(£2)7 Ceey An,1 S M17l"72 ([,nfl), then

S(An® - OALA 10 OM)=An. . (A2 ® Ii,) (A2 @ I1, ) (A @ Iy, ) Ay

Lemma 4.8. Let A; € Ml,kl (B(Hl)), Ay € Mk;l’k;z(B(HQ)), Ceey A, €
My, 1 (B(Hp)) and p =41 0A,0--- 0 A,.

(i) Assume n is even. Let &9 € My, (Hy ® Ha), m23 € My, 1,(HS @ HY), ...,
gnfl,n S Mln_g,l(anl &® Hn) and

C = 51,2 © 12,3 (ORRRNO gn—l,n S F(Hla ceey Hn)
Then
S@(C) = A:z cee (Agd ® Ilz)(ell,lz ("72,3)t oY Ikz)(Agd Y Ill)(aLh (61,2)t ® Ikl)A?d'

(i) Assume n is odd. Let n1 o € My, (HY ® HY), &3 € My, 1,(Ha @ H3), ...,
gn—l,n S Mln_g,l(Hn—l ® Hn) and

(=m20&30 - &1, €T (Hi,...,Hy).
Then
SW(C) = A:z s (Ag ® Il2>(9l1,l2 (§2>3)t ® Ikz)(Agd ® Il1>(917l1 ("71,2)t ® I’ﬁ)Atl'

Proof. Let f : V1 ®--- OV, =V, ® --©®Vp be the flip, namely the map given on
elementary tensors by f(v1 ®---®uv,) = v, ®---®v1. Note that if A; € My g, (V1),
A2 c Mkl,k-2(v2), ey An S Mkn_hl(Vn), then

f(AL e 04,) =400 Al
Let
D:B(H,)®B(H2)®---® B(H,) — B(H,) ® B(H}_)®---©® B(H{)
be the map
D=fo(d®ided® - ®id).
We have that
D(A)=A0AM o0 A,
Define a mapping S from
(B(Hy) © B(Hy, 1) © - © B(H{)) x (Co(Hyy_y, Hy) © -+ © Co(HY, Ha))
into C2(H{, H,) by
S(wv C/) = SD*I(w)(Hil(C/))a
where )
0:T(Hy,...,H,) = Co(HS |, H,) @ - ©Co(HY, Hy)

is given on elementary tensors by

é(fl,z @M23R @En—1,n) = 0(En—1,0) ® - @ 0(M2,3) ®O(E1,2)-
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By Lemma (i), the mapping S satisfies the requirements of Lemma [£7] and
Sp(¢) = S(A, 0 AL 0 @AY 01, 1(n1n)' © - © 014, (61,2)Y).

The claim now follows from Lemma (7]
The proof of (ii) is similar. O

5. MULTIPLIERS FOR TENSOR PRODUCTS OF REPRESENTATIONS

It was proved in [21] that the space of all (m, p)-multipliers does not change if
the representations 7 and p are replaced by approximately equivalent representa-
tions. In this section we will prove a corresponding result for multidimensional
multipliers. We first recall the notion of approximate equivalence and approximate
subordination introduced by Voiculescu in [32].

Let m and 7’ be *-representations of a C*-algebra A on Hilbert spaces H and H’',

respectively. We say that «' is approzimately subordinate to m and write 7’ < if
there is a net {Uy} of isometries from H' to H such that

(20) |7(a)Us — Ust'(a)|| — 0 for all a € A.

The representations 7’ and 7 are said to be approzimately equivalent if the operators
Uy can be chosen to be unitary; in this case we write 7/ ~ 7.

For C*-algebras Aj,..., A, and the corresponding representations my, ..., m,,
we will denote the collection of all (my, ..., 7, )-multipliers in A; ® - -- ® A,, simply
by M, .. ., in case there is no danger of confusion.

Theorem 5.1. Let Ay,..., A, be C*-algebras and m; and 7, be representations of
A; on the Hilbert spaces H; and H}, respectively, i =1,...,n.

(i) If7r§£<7ri,i:1,...,n, then

Mr,,..r, © My 7 and ||90||7r{7...,7r; <|lellay,mns for o € Ma, ..
(i5) If 7t & i, i =1,...,n, then

Mzr,,..o;w = Mry o and |@lln, o, = 1@llxs e for @ € My g,

Proof. (i) First let n be even and {U,,} be nets of isometries from H] into H;
satisfying
Hm(ai)UAi — UAlw:(az)H — 0, for all a; € A;.

Set m=Q, mi, ™ =@ T A= (A1,..., ) and Wy = Uy, ®...®U,,. Then
W, are isometries from ", H! to @, H, and, for z € A; ©® ... ® A, we have

|7 (x)Wx — Wyn'(z)|| — 0.

As ||Wy|| =1 for all A, this holds for all z € 4; ® ... ® A,,. By Lemma 2 (i) we
have that, for any £ € Q;-, H;,

OWXE(O(155)) - (005 _2,0—1))
= U3 0()(0(Way 25m2,3)%)) - (O((Wx, s xn_17n—2,n—1)))(UX)Y,
where Wy, x,,, = Ux, ® Uy, Therefore, if ( =& 2® (123)4®...®& 11, then
= U3, Sr(e) (Way 00812 @ (Wi a3m2,3)? @ .. @ W,y 3, En1.0) (U
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Let T'y : T(HY,...,H]) — T'(Hy,..., H,) be the linear operator defined on elemen-
tary tensors by

Ta(€12@783® ... @&n1n) = Wiy 0612 @ (W 2,72,3) @ . @ Wi, 2 6n1ne

It follows from (2I) and Remark 3 that if o € My, . . and ( € I'(H{,..., H)),
then

157 ) (Ollop < 1Swir(ywi (Dllop + 1Swir(oyws—x () (Ollop

< S7) (TaQllop + 1wzt wa () (O llop

< Wpllmsom IOl + IWER@IW — 7' (2 lopl€lzn
Since [Wim(0)Wx —7'(#)[lop — 0, in order to prove that v € My .~ it suffices
to show that [IxCll, < (Il If &iv1 € Hf ® Hiyy, then 0(Wx x,&iit1) =
U, 10(&ii1)US . Let ¢ € T(HY, ..., H},) be of the form

(=&6201530 ... Q& 1,

where 5172 € Ml,kQ(Hi ® Hé)’ 77(21,3 € Mkz,ks((Hé)d & (Hé)d)aa and fn—l,n S
My, _, 1(H),_, ® H]) are such that

n

1< = 1161, (€1.2)" lop 10ks k5 (05,5) [lop - - - 16k, 1 (€n—1.0)" [lop-

Then

IaC= Wi 28120 (W:f,\3 @I )n5 5O © (Wa,_yx, @ Iy )en—1.m

and as
016, (Wi ao€12) = Un01k,(612)(UY, @ Iy),
Oa ks (W, 05) @ T )5 5) = (US, @ I, )02,3(09 3) (U, @ Iy),
s tWa i © T Jr1n) = (U, @ o D ann VS,
we get
ITxCle < 0% @ Tisllop 103,55 (61,2) o 1US, llop - - -

||0kn_1,1(€n—1,n)t||0p||U§n,1 ® Ikn—1||0p
= 1101k (612) lop - - 10k, —11(En-1,0) " llop = [I<]In-

This completes the proof for the case where n is even. Now assume that n is
odd and let Ty : T'(Hy,..., H)) = T'(Hy,..., H,) be the linear operator defined on
elementary tensors by

Tal€lo @ @ Nn1m) = (Way 00612)0 @ . @ W, A\ Tn—1.m-

An estimate similar to the above shows again that ||[TxC|l, < I<]l,-
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By the definition of the map S/(,) and the arguments above, we obtain

(¢
157 (2) (Ollop < 1Swiayws (Ollop + 1S Wi (o)W~ () (llop

= sup  [Siewirews (§1 @ Ollaz, + [1Swirywa—(0) (Ollop
&1€H,||&1]I=1

< osup IS1en(e) (Un &1 @ TAQ) E, + 1Swsa (o) wa— () (O llop
&1eH,[I&]=1

< sup [[Sien(e) (m @ TaO)la, + [WIT(@)Wx = 7' () loplI< 2.0

mEH; [In =1

= [1Sr (o) TrOlop + [WXT (@)W = 7' () llop|IC 12,1

< ellaymn HITAC R + IWIT () Wa = 7' (@) loplI€ 2,4
< N@lmsseoesmn M + IWRT (@) Wa = 7 () [lop 1€ l2,n-

As [Win(@)Wx — 7' (¢)|lop — 0 we obtain the desired statement.
(ii) is a direct consequence of (i). O

For T € B(H), set rank(T") = dim(T H). It was proved in [I7, Theorem 5.1] that
for *-representations m and 7’ of a C*-algebra A,

(22) L = rank (7’ (a)) < rank(r(a)) for each a € A.

The next statement is a multidimensional version of [2I], Corollory 5.3]. Its proof
follows the lines of the proof of the corresponding statement in the two-dimensional
case and uses Theorem [5.1] instead of [21, Theorem 5.2].

Corollary 5.2. Let m;, w, be representations of separable C*-algebras A;, i =
1,...,n. Assume that

min{Rg, rank(7}(a;))} < min{Rg, rank(m;(a;))},
for each a; € A; andi=1,...,n.

Then My, . r, C M7r{,..‘,7r’n and ||90||7r{,.u,7r; < ||‘»0||7r1w,7fn foro € My, x,-

Recall that a x-representation m of a C*-algebra A has a separating vector if
there is a cyclic vector for the commutant 7(.A)’.

Lemma 5.3. Let H, Hq,...,H, be Hilbert spaces, m1,...,m, be representations of
the C*-algebras Ay, ..., A, on Hy,...,H, and m; @ 1 be the ampliation of m; on
H; ® H, respectively. Assume that w1 and 7, have separating vectors. Then

Mﬂ'l,.“,ﬂ'n = M‘n'1®1,.4.,7rn®17
and the multiplier norms on these spaces coincide.
Proof. We use ideas from the proofs of [28, Theorem 2.1] and Lemma B3 For
simplicity we assume that n = 3 and that #H is separable. Let ¢ € Mg, ;.

with [[]|x, mp,ms = 1 and set S = S(r, 91)@(r01)0(rs01)(p)- Lhe mapping S can be
regarded as a mapping on

(23) Co((Hy @ H), Hs @ H) © Co(Hy @ H, (Ho @ H)Y)

by setting S(0(E2,3) @ 0(15)) = S(nfy @ &a3) for ¢ =nfl, @&z € T(H1 @H, Ho ®
H,Hz ® H). Similarly, the mapping Sy, @r,emr,(,) can be regarded as a mapping
on Co(HY, Hs) ® Co(Hy, HY). Tt follows from Lemma H.8 that S @ma@ms(p) 15
(m3(A3)’, (m2(A2))4, m1(A1)")-modular.
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Assume that ||¢|lr@1,me1me1 > 1. Then there exists an element T =
(T2,..., T o (T},..., T} in the space defined in Z3) with

I @ THIN Y T (T ) =1,

and vectors £y € H; ® H, 19 € H3 ® H of norm less than one such that

|(S(T)&o0,m0)| > 1.

Fix a basis {f;} of H and denote by P, the projection onto the space generated
by the first n vectors in this basis. Then, as

(1g, @ P)S(T)(1y, @ P,) — S(T)
weakly, there exists n > 1 such that

‘((11{3 ® Pn)S(T)(lHl ® Pn)€07"70)| > 1.

Thus we may assume that §g € H; ® P,’H and ng € H3 ® P,’H, say

50 = (51;"';577,;07"')7770: (771’7777170)

As m1(Ay) and w3(A3)" have cyclic vectors, say ¢ and 7 respectively, we may
assume that & = a;&, n; = byn for some a; € 7 (A;) and b; € w3(A3z)’. Let

= > afa;, b = > bfb;. Assuming first that a, b are invertible we set a; =
a;a= /2 b; = b;b=Y2. Then for £ = a'/2¢, 71 = b2y we have & = @;€ and
e = bii. We write T = (TF)in), whete (T3 = (Lyg © PG T (L, © P(fn).
(T3)im = (1g, ® P(fl))Tf(ng ® P(f4)), where P(f) is the projection onto the
one-dimensional space generated by f. Using the modularity of S; gr,@ms(p)s We
obtain

S

(S(T)éo,mo)l = |>_(S(T? @ T})éo.m0)

i=1

(24) = Z Z Z(Sm@m@ﬂs(sa)((T )lk ® (T )km)amg bm)

i=1I,m=1 k=1

- Z Z Z 7T1®7r2®7"3(89)(bl( )lk®( z) maM)gvﬁ) .

1=1Il,m=1k=1

The next step is to prove that Z Z <Z ) <Z (Til)km&m> belongs

=1 k=1 m=1

to K(HY, H3) @, K(Hy, HY). Observe first that the row operator

Z (TP Y b5 (T ks )

=1

is equal to the product of the row operator B = ~(l~71, b, 0, . ..) and the Hilbert-
Schmidt operator T2. Set R = (Ry,...,Rs) = (BT%,. BTZ)
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As each T} is the operator norm-limit of the operators T7 (154 ® Py) as k — oo,
the operator R; is the uniform limit of the sequence of truncated operators Rf =

o br (T, -, >y b7 (T3)15, 0. ..). Thus
ZZ <sz (T?): ) (Zlg?‘(ﬂ?)lk) :
=1

i=1 k=1
where the series converges uniformly and

||ZZ sz (T7 )ik Z (T7)ik) \—||RR*||=||ZRR*||
=1

i=1 k=1 l=1 =1

= HB(ZCI?(J?)*)B*H < IBIPIY TP (T < 1.
i=1 i=1
In the same way one shows that the series

o0 n n

Z( Z (Til)km&m)( Z (Til)kmdm)*

k=1 m=1 m=1
converges uniformly and

S oo n

3> (ki3 (T i

i=1 k=1 m=1

<1

1=1 k=1 [=1 m=1
S (oo} n _ n
D3O b (@) @ (O (T kmam)lly < 1.
=1 k=1 l=1 m=1

Next [|€]2 = (bY/2€,012¢) = (b€,€) = 32,(bi€,b:€) = ||&o|® < 1. Similarly,
Il < 1. Since ||@|lxy me,ms = 1, it now follows from ([24)) that

S (S o (e

i=1 k=1 m=1

€71,

h

|(S(T)&0,mo)| <

which does not exceed 1, a contradiction.

If a or b is not invertible, let € > 0 be such that §0 def (&1,...,&n,€£,0,...) and

fo (N1, -,y €n, 0, ... ) have norm less than one and |(S(T)&o, flo)| > 1. Choose

a; and b; in the same way as before, and let a,41 = €I, b1 =€l, a = Z?Jrll a;a;
and b = Z?:ll bib;. Then a and b are invertible and the proof proceeds in the same
fashion.

We have proved that My, . C My g1, re1 and that || - |ne1,. . et <
IIllx;,....x,- The converse inequality is easy to show, and thus the proof is complete.
O

Corollary 5.4. Let m; be a representation of the C*-algebra A;, i = 1,...,n.
Assume that w1 and m, have separating vectors. If

(25) ker(m;) C ker(w}), for eachi=1,...,n,
then My, x, C Mﬂﬂ,-.. !, and H‘PHﬂl, o S l@llxy.....m,» for each o € My, ..
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Proof. The proof is similar to that of [2I, Corollary 5.8]; we include it for complete-
ness. Let H be an infinite-dimensional Hilbert space of sufficiently large dimension.
Then (23] implies

rank (7, (a;)) < rank(m;(a;) ® 1), for all a; € A;.

By [22), =, < m 1. Now applying Theorem 5.1l and then Lemma we obtain
the statement. O

Using Corollary [5.4] and the results from [2I] we will now show that if the C*-
algebras A; are commutative, then the space My, . (Ai,...,A,) of multipliers
depends only on the supports of spectral measures corresponding to the represen-
tations ;.

Assume that A; is commutative, ¢ = 1,...,n and let X; be the maximal ideal
space of A;; then A; ~ Cy(X;). Let m; be a representation of A; and &, be the
spectral measure on X; corresponding to ;.

It was proved in |21 Lemma 7.2] that if f € Cy(X) and the representation 7 of
Co(X) is such that rank (7(f)) < oo, then

rank (7(f)) = Z dim (& ({z})),

2€S(f.Ex)
where S(f,&r) = {z € supp &, : f(x) # 0}. Thus the condition
supp & C supp Ex

implies ker w(f) C kern/(f). As each representation 7 of a commutative algebra
Co(X) has a separating vector we have the following.

Corollary 5.5. Let m;, m, be separable representations of the C*-algebra A; =
Co(Xi) and &, and Ex; be the corresponding spectral measures (i =1,...,n). If

supp Er; C supp Ex,, for eachi=1,...,n,
then Mﬂl,.“,ﬂn g M‘n’i,“.,w/

Let p; be measures on X;. Let m; be a representation of Co(X;) on La(X;, ;)
defined by (m;(f)h)(x;) = f(zi)h(z;). Wecall p € Co(X1x...xXp) a (1, ln)-
multiplier if ¢ € My, . and let |0, pn = [@lr,... -

By Corollary 5.5 the set of all the (u1, . .., iy )-multipliers depends only on the
supports of the measures ;. The next statement shows the connection between
(41, - - -, pon)-multipliers and multidimensional Schur multipliers (with respect to
discrete measures).

Corollary 5.6. Let X; be locally compact spaces with countable bases and let u; be
Borel o-finite measures on X; with supp pu; = X;. Then ¢ € Co(X7 x ... x X,) is
a (41, ..., pn)-multiplier if and only if ¢ is a Schur multiplier on X1 X ... x X,.
Moreover, in this case [|@| ;... u. = [|S0]l-

Proof. The proof is similar to that of [2I, Theorem 7.5]. O

6. UNIVERSAL MULTIPLIERS

The main goal of this section is to give a full description of the multipliers
which does not depend on the choice of the representations of the C*-algebras
Az, Ao, ..., A,. Recall that an element ¢ € A; ® ... ® A, is called a universal
multiplier if ¢ is a (71, 72, . .., ™, )-multiplier for all representations 7y, 7a,..., 7, of
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A1, As, ..., A,, respectively. The set of all universal multipliers in A; ® --- ® A,
is denoted by M(Ay,...,A,).

Along with the universal multipliers, we will describe another class of multipliers,
which we call projective universal multipliers and define as follows. Let Hy,..., H,
be Hilbert spaces. Equip I'(Hy, ..., H,) with the projective tensor norm | - ||,
where each of the terms H; ® H;41 (resp. H | @ HY) is given its operator norm.
We call an element ¢ € B(H; ® --- ® H,,) a concrete projective multiplier if there
exists C' > 0 such that |S,({)|lop < C|[C|[a, for all { € T'(Hy, ..., Hy). If Ay,... A,
are C*-algebras, an element ¢ € A} ® --- ® A, will be called a projective uni-
versal multiplier if (m ® -+ ® m,)(¢) is a concrete projective multiplier for all
choices of the representations 7y, ...,m, of A1,..., A,, respectively. We denote by
M"(A;4,...,A,) the set of all projective universal multipliers.

If p e M(Ay,...,A,) let

H@Huniv = sup HCPHﬂl,TFz,-uJTn'
T, T2,eeey Ty
Note that ||¢||univ is finite. In fact, assume that there exist representations my g, . . .,
T ks Such that |||z, iz prmns koo 00 and let mp = ?ﬂ'Lk, Ty = ?71’2’]@, ol

T = @ mp . Then, by Theorem [.T]
k

[ llms ko isecesmn e < NPllmsmayc s
for all k € N, which contradicts the fact that ¢ € M(A4,...,A,).
It is clear that M(Ay,...,A,) is a linear subspace of 41 ® --- ® A,, containing
-Al ©-0O An
Recall that the Haagerup normon A3 © A2 ® ... A, is

lwllp = nf{|lwr|[[|ws]l - - lwn]l i w =w1 Ows © ... wy,
wi € My, (A1), we € My, 3, (A2), ... ,wn € My, 1(An),i1,...,in—1 € N}
A modification of the Haagerup norm on the algebraic tensor product of two
C*-algebras was considered in [20] [2I]. We now introduce a natural generalisation
of this norm for arbitrary n. Recall the maps w — w' and w — w9 on M, (A) =

M, (C) ® A given on elementary tensors by (a ® b)* = a®* ® b and (¢ ® b)d = a ® bd
(here A is a C*-subalgebra of B(H) for some Hilbert space H). We set

lwllpn = inf{ T lwhsillllwn—2iil:w=wi@ws®...Own, wo =1,

0<i<?
w1 € Ml,h (.Al),o.)g S Mil,iz (Ag), oo, W € Min_1’1(.An),i1, ceyipn_1 € N},
In the case n = 2, the above norm was denoted in [20] by || - |- Clearly, if the
algebras A;, i = 1,...,n, are commutative, then the norms ||-||, and ||-||pn coincide.

It was shown in [20] that in general they need not even be equivalent.
Lemma 6.1. ||w|luniv < ||w|lpn for alw e A1 ©...0 A,.

Proof. Let m; be a representation of A;, i = 1,...,n, and let w = w1 O wy ®
... ©wy, where wy € My g, (A1), ws € My, 1, (A2), ... ,wn € My, _, 1(Ay) for some
kl;kZa"'vkn—l € N.

Let n be even, 51,2 € Ml,ll(Hl ® HQ), 12,3 S Mll,lg(Hg X Héi),, gnfl’n S
Ml7L72,1(H’I’L71 ® Hn) and

C = 51,2 G>f’72,3 (ORRRNO gn—l,n S F(Hla .. ;Hn)
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Letting 7 = 7 ® ... ® 7,, by Lemma [£.8 we have

STK'(UJ)(C) = (ld Lkn1 ® ﬂ-n)(wfm) B (011712 (772,3)t ® Ikz)
X ((id gy ky @ T2) (W5) @ I, ) (01,1, (€1,2)" @ Ty ) (id gy 1 @ 1) ().

Since || (idk,, 1k ©Tm) (@) = [|(idky, 1k @) (Wi )], We have
1Srw)(Ollop < 11010, (E1.2)" -+ - 1161, 51 (En1.0)" |
< T et ailllwn—2i-1ll = [wllpnll¢]ln-
0<i<2

Now let n be odd and
C=Mm20&30 01, € T(Hy,..., Hy),

where M2 € M17ll (H?@Hg), 5273 (S ]\411712 (Ifg@]‘[g)7 ey §N—1JL S Mln72,1 (Hn_1®
H,). Using the previously obtained inequality, we have

[Sr@)(Ollop = sup [|Sx(w) () ()=,
lel<1
= sup [|Sider(1ew) (1®£) @ Qlsce,m,)
lell<1
< wllpnllENICn-
The proof is complete. O

If Hy,...,H, are Hilbert spaces, we say that a net {¢,} C B(H1 ® --- ® Hy,)
converges semi-weakly to an operator ¢ € B(H1®---® H,,) if (¢, (1, C2) — (01, (2)
for all ¢1,¢(; € H1®---®H,. Note that if the net {, } is bounded, then it converges
semi-weakly if and only if it converges weakly.

Let Ay C B(Hy), Ay C B(Hs),..., A, C B(H,) be C*-algebras and (A; © A3 ®
.. G)An)ﬁ be the linear space of all p € 4; ® A2 ®...® A, for which there exists a
net {¢,} CA 0A;0...0 A, converging to ¢ semi-weakly (as a net of operators
in B(Hi ® Hy ® ...® H,,)) and such that sup ||, ||pn < 0.

Proposition 6.2. Let A; C B(H;),i=1,...,n, be C*-algebras. Then (A1 ®---©
A CM(Ay, .. Ay STMAN (AL A).

Proof. Since ||C||n, < ||€||a for all ¢ € T'(Hy,...,H,) we have M(A;,..., A,) C
M”" (Ay, ..., Ayp).
Let us first prove that

(-Al (ORERNO) -An))j g M‘n'l,...,Tr” (-’417 R 7-’411)’

in the case where m; = @ id is the sum of \; copies of the identity representation.
)\.

Let {v,} € A1 ©...® A, be a net converging semi-weakly to ¢ and such that
D =sup|lovllph <o and 7 =m ® ... m,. By Lemma 6]

Hsﬂ(apy)(C)HOP < DHCHhv

for all v and ¢ € I'(Hy, ..., Hyp).
Suppose first that n is even. To prove that [S;(,)(0)llop < DJ[C]]4, it suffices

to show that the net {S;(,,)(¢)} of operators in B(H{, H,) converges weakly to
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the operator S (,)(¢) (here and in the sequel we set H;, = PH,i=1..,n).
Ai

By linearity and the uniform boundedness of the net {Sy(,,)(¢)}, it is sufficient to
prove that

(Sﬂ(gal,)(C)xd’ y) — (Sfr(ga)(C)xdv y)a

for all x4 and y which have only one non-zero entry in the corresponding direct
sums of H{ and H,,, respectively.
Fix such 29 and y, and let ( = &2 ® 77(21’3 ®...0& 10 €T (Hy,...,Hy). Then

(Sﬂm)(é‘)wd, Y) = (M) (12® ... ®&n-10),T@N23DMs5@ ... DNp—2pn-1DY).

Indeed, assuming n = 4 for simplicity we get

(Sr(en) Q2% y) = (0x(0)0(&12 ®E3.4)(0(n53)), 0(z ® y))2
= (07(p)0(61,2®E3,4),0(0(n2,3) ® 0(z @ y)))2
(o (00)0(81,2 ®E3,4),0(z @123 @ Y))2,
= (m(pu)(€12®E34),TR@N23 R Y).
Fix ¢ > 0 and let §~ = 51’2 ® ﬁg’g ® - ® fn,l,n be such that all norms
”'512_51:2”’ In2.3—72.3l, - - ,Hgn,l,n—én,l,nn are smaller than e and all vectors 51)2,

ﬁg,S" ..,&n—1,n are finite sums of elementary tensors which have only finitely many
non-zero entries in the direct sums of the corresponding Hilbert spaces. Thus, we

may assume that 51,2 € Hl(k) @Hék),ﬁg)g € HQ(k) @H?Ek), e 757171,71 € HT(Lk_)1 @H,(lk),

zd e Hl(k) and y € H,(Ik) for some k € N.
It follows from the formula above that there exists vy such that if v > vy, then

|(S7T(<p,,)(§)xd7y) - (Sﬂ(ap)(g)xday)‘ <€

s
s

On the other hand,

|(S7T(<p,,)(g)xd7y) - (Sﬂ(apu)(g)xday)l
< Dlz[[lyllll¢ = ¢l < (C + )" 2D(n = 1)|jz[llly]le,

for every v, where C = max{[|&12||, |m2,3]:-- -, |€n—1,n]}. Using Remark 3] we
have
|(S7r(g0) (C)xda y) - (Sﬂ(ga)(g)mdvy”
< JelllzHyllic = Cllza < llel(C + )" (n = 1)lzl[[ylle.
Thus,

|(S7T(LP,/)(<)$d7y) - (Sﬂ(tp)(c)xd) y)|
< e+ (C+e" 2D = D]llyll + lell(C + )"~ (n = Dl=[lyl)
whenever v > vg. It follows that the net {Sz(,,)(¢)} converges weakly to Sy, (¢)

and hence p € My, . (A1,...,An).
In the case that n is odd, a calculation similar to the one above shows that

(Sﬂ(%)(C)ﬂ%y) is equal to
(7T(<Pu)($ ® 52,3 ®...Q gn—l,n)7 M2® ... @Np—2pn-1® y)7

whenever z € Hy, y € H,, = 77?)2 ®E3®... Q& _1n € I'(Hy,...,Hy,), and the
proof proceeds in a similar fashion.
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Now let m, ..., m, be representations of A;, ..., A, on Hy, ..., Hy and
T=m1&®...Q%7m,. Then

rank(m;(a;)) < rank @ id(a;) |,
dim(Hx,)

for all a; € A; and i = 1,...,n. By Theorem 5.1 (i),
Mgid,@id,...@id(AL - An) € Mr oy om (A Az, oo Ay,
Ak

A1 A2

The proof is complete. (I

Assume that n is even. Then the mapping Siq(, acting on I'(Hy, ..., Hy) =
(Hi® Hy)® (HY® H§)®...® (H,—1 ® H,) can be regarded as a mapping on the
algebraic tensor product
(26) HS(H, 1,H,) ®HS(H,_2,H, 1)?®...© HS(Hy, Hs)
of the corresponding spaces of Hilbert-Schmidt operators by letting

Se(0(€n—1,1) @ O(Nn—2,1-1) @ 0(En—3.n—2) ® ... ®0(&12)) = Sp(C),

where ¢ = {12 ® 77(21’3 ® €4 ® ... @ En_1n. Denote the space ([26) by
HST(Hy,...,Hy). If ¢ is an elementary tensor, then Lemma [A.§] (i) shows that
Siap) is (AL, (A3_y), ..., Ab, (A1%))-modular. It follows by continuity that Siq(,)
is (A, (AL Y, .. AL, (A1Y))-modular for every ¢ € Ay ® -+ ® A,. If more-
over ¢ € Miq,...ia(A1, ..., An), then Siq(,) can be extended to a bounded mapping
(denoted in the same way) from the algebraic tensor product

K(HS_, H,) ©K(HS 5, Hy 1) @ -+ © K(HY, H)

into IC(H{, H,). By continuity, this extension is (A’ (A ), ..., A}, (A19))-
modular.

Similarly, if n is odd and ¢ € Miq,... ia(A1, ..., An), then Siq(,) can be regarded
as a multilinear (A’ (A,_1%), ..., (A2%), A})-modular map from

K(HS—UHYL) © K:(HS—Q’ Hn—l)d ©-0 ’C(Hiia HQ)

into B(Hy, Hy). Denote by Mgy i (Ai,...,Ayp) the set of all (id, ..., id)-multi-
pliers for which the mapping Sjq(,) is completely bounded.

Proposition 6.3. Let A; C B(H;), i =1,...,n, be von Neumann algebras. Then
Mf§7_4.7id(A1, s A) (AL An)ﬁ'
Proof. Assume first that n is even. For notational simplicity we assume that H; is
separable, i =1,...,n. Letid: 41 ®---® A, = B(H; ® --- ® H,) be the identity
representation.

Let ¢ € M} 4(A,..., Ay). Then S, is a multilinear (A, (A3 ), ...,

h, (A19)")-modular mapping on
K(HS |, H,) © K(Hn—2, HS_}) © -+ © K(H{, Hy),

taking values in K(H{, H,,). Let H>® = H ®I?, and let I, be the identity operator
on [2.

Since Siq(,) is completely bounded, it extends to a completely bounded mapping,
denoted in the same way, from

K(HI_{, Hy) @, K(Hp—2, HY_)) @y, - @y, K(HY, H)
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into K(H{, H,). Then the second dual Sid(p) 18 a weak® continuous completely
bounded mapping from B(HS |, Hy,) Qo - .. ®01, B(HY, Hy) into B(H{, H,,) and
hence gives rise to a weak* continuous completely bounded (A, (AL ), ..., A,
(A19)")-modular multilinear map, denoted in the same way, from

B(HS | H,) x B(Hp_o, H} |) x -+ x B(H{, H>)

n—1»

into B(H{, H,,).

It follows from Corollary 5.9 of [9] that there exist bounded linear operators
Ay HE — (H{)>™, A; H2® — H3°,if j is even, Aj (de)oo — (de)C>O if j is odd
(j=2,...,n—1) and A, : H;® — H, such that the entries of A; with respect to
the corresponding direct sum decomposition belong to A} = A; for even j and to
(A)" = A for odd j,

Sid(%’) (C) = An(e(Enfl,n) ® Ioo)Anfl(e(nnflnfl)d ® Ioo)An72 e Al;

for all
C=00n—1,0) @0(Nn—2n-1)1®...®0(&2) € HST(Hy, ..., Hy),

and

ISiallee = T N4l
1<i<n
Let P, = (pj})i5=1 be the projection with pj} € B(H.,) (resp. pj} € B(Hg,)),
pip = Ip,, (resp. pji = Ipa) if m is even (resp. if m is odd) and 1 <4 < v, and
pi; = 0 otherwise.
Set ¢, = AY'PL, @ Py, AsPa, & PsyASPs, O ... ® Py, Ay, Clearly, [loy [[pn <

IT IIA;|l for each v; it hence suffices to prove that {¢,} converges semi-weakly
1<i<n
to .

As Siq(p,)(¢) equals

AnPn,l/(e(gn—l,n) ® Ioo)Pn—l,uAn—lpn—l,u(G(nn—Z,n—l)d ® Ioo) DR Pl,yAla

and P;, converges strongly to Iy,, we have that Sjq(,,)(¢) converges weakly to
Sid(p)(€). By the proof of Proposition[6.2] if 24 € H y e H,and ¢y € 41®...0A,,
then (Siacy)(¢)zd,y) equals

(0ia(¥)0(612® ... @ Ek—1£),0(z@M23 @ ... @ Nk—2k—1 DY))2
= (W(29...Q08-14),T@M3R ... 0 Nk—2k-1Y).

Thus ¢, converges semi-weakly to ¢ and therefore p € (A; ®...0 A,)%, giving the
inclusion M§ (A1, ..., Ap) C (A1O ... © Ay

Now assume that n is odd. In this case Si*d*(@) is a weak® continuous completely
bounded multilinear (A, (A% ), ..., (4%), A;’)-modular mapping on

B(HY

n—1»

H,) x B(H,_», HY

n—

1) X e x B(Hy, HY),

taking values in B(Hy, H,)**. Let @ be the weak™ continuous projection from

B(Hy, Hy)™" onto B(Hiy,Hy). Then Qo Siy ) takes values in B(Hy, Hy), and

coincides with Siq(,y on HST'(Hy,. .., Hy,). The proof now proceeds as above. [
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Proposition 6.4. Let A; C B(H;), i = 1,...,n, be C*-algebras. Then
MA(Ay, ..., Ay) C Mfé’)wid(Al,...,An).

Proof. Let o € M"(Ay,...,A,). Then there exists a constant D > 0 such that

lom®.. @, (‘P)(C)HOP < DJ[¢]|a,

for all { e T'(Hy, ..., H,) and all representations 1, ..., m, of Ay,..., A,, respec-
tively.
Let k € N. The space HST(HY, ..., H¥) is naturally isomorphic to

(27) Myp(HS(H,_1,H,)) ® Mx(HS(H,_2,H,_1)Y) ® ... Mp(HS(Hy, H>)),
and thus the mapping S(iq1,)e...0(d@1,)(p) 15 well-defined on the space (Z1). One
can easily check that

k - - - -
(28) Si(d()@...@)id(ga)(:‘n*l ©...0E1) = Side1)e..0Gdol)(e) (En-1® ... ® 1),

where Z; € My(HS(H;, Hi11)) (resp. Z; € My (HS(H;, H;11)%)) if 7 is even (resp.,
ifiisodd) and 2; € My(HS(H;, Hi+1)?) (resp. E; € My (HS(H;, Hiy1))) if i is odd
(resp., if ¢ is even). If the matrices Z; are of arbitrary sizes such that the product
Zn_1 ®...® 2 is well-defined, then they may be considered as square matrices,
all of the same size, by complementing with zeros, and identity ([28]) will still hold.
It follows that

k —_ —_ —_
1S5 iaE1© - 0Zn Dlop <D T 1Zillop,
1<i<n—1

for all 2y, ... 2,1, and hence the mapping Siq g...0id(,) is completely bounded and
v is an (id,. .., id)-multiplier. O
Theorem 6.5. Let A; C B(H;), i = 1,...,n, be C*-algebras. Then M(A;, ...,
A =MMNAL o A = (A0 0 A
Proof. By Propositions [6.2] and [6.4]
M gAY, AD) = (A 0.0 A

Evidently,

Mg LalA L AR) € Mfgw)id( Lo AN (A ®.. .0 A,).

yee

Applying Propositions [6.2 [6.3] and [6.4], we obtain

(A 0...0A) € M(AL,...,A,)
C MMA,...,A)
< Micg,..i,id(Ala---aAn)
C M A ADN (A 2.0 A,)

= Ao0..0AYNA...0A,.
It hence suffices to show that
(Al 0.0 AN (A ®...04,) C (A O...0 A"

Let p€ (A ®...0 AN (A ®...®A,). Then there exists a net {¢, },es C
Al © ... 0 Al with sup ||¢,|lph < oo which converges semi-weakly to ¢. Write
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©y = AL,/ ®...0 Am,/, where Al,u S Ml,i1 (AY),AQ,V S Mil,ig (Ag), . ,Am,/ S
M;,, 1 (A7)

By Kaplansky’s Density Theorem for TRO’s [18], for each pair (m, v) there exists
anet {Ay, r(m)trm) € Mi,,_, 4, (Am) converging strongly to A,, , and such that
[ Ap vyl < [|Amy|| for all 7(m). Thus if A, = Ay, 1) © Azpr2) © ... O
Ay vr(ny, where 7 = (7(1),...,7(n)), then the net {A, .}, converges strongly to
¢v and || Ay, |lpn < [|ov|[pn-

Let U be the collection of all weak neighbourhoods of 0 of the form {S € B(H; ®
ce @ Hy) 2 |(S(¢]),8)| < €. =1,...,k}, where ({,{ € HH ® -+ ® H,, and
€; >0,7=1,...,k. Note that U is directed with respect to reverse inclusion. The
convergence of the net {¢, },cs semi-weakly to ¢ implies that for every U € U there
exists v(U) such that for every A € J with A > v(U), we have that oy —¢ € U.
The convergence of {4, .}, to ¢, implies the existence of T'(v(U),U) such that
for every 7 > T'(v(U),U), we have that A, ), — ¢,@w) € U. Consider the net
Ay = Ay),1(w),v) indexed by U. Tt is easy to check that Ay converges semi-
weakly to ¢. The proof is complete. (I

Note that in Theorem we actually proved that if n is even, ¢ € M(Ay,...,
An), (=620 ®& 1 € T(Hy,...,H,) and

Sidg--mid(p)(€) = An(0(En—1,0) @ I) ... (0(&1,2) ® I)AS,

where A; for i even (resp. A{ for i odd) is a bounded block operator matrix with
entries in A/ (resp. (A¢)”), then there exists a net ¢, = AY ® AY ®--- © AY,
where AY is a finite block operator matrix with entries in A; such that ¢, — ¢
semi-weakly, AY — A; (resp. AYd — A¢) strongly for i even (resp. for i odd) and
all operator norms ||AY||, ||4;|| are bounded by a constant depending only on n. A
similar statement holds in the case n is odd.

Denote by (A1 ©...® A,)~ the set of all p € 4] ® ... ® A, for which there
exists a net {¢,} € A3 ©@--- @ A, such that sup ||o,||[ph < oo and if m; is an

14

irreducible representation of A;, i = 1,...,n, then {(m ®...®m,)(p,)} converges
semi-weakly to (m; ® ... ® m,) (). Note that if sup ||, ||min < 00, which holds for

example when the norms || - ||pn and || - ||, are equivalent (see [20]), then in the
definition of the space (A; ®...® A4,)"~ the semi-weak convergence can be replaced
by the convergence in the weak operator topology.

It follows from [21] that if A and B are commutative C*-algebras, then M(A, B)
= (A® B)™~. As a corollary of Theorem [6.5] we show that the same equality holds
for an arbitrary number of arbitrary C*-algebras, giving an answer to a problem
posed in [27].

Theorem 6.6. Let A;,i=1,...,n, be C*-algebras. Then
M(Ag, ..., A) =M Ag, A = (A0 0 A,

Proof. Let m = &b Tyeeny Ty = ) 7, where IrrRep (A;) is a
welrrRep(Ay) welrrRep(Ay)
set whose elements are all inequivalent irreducible representations of A;. Then
M(A,...,A) = (M®...0m) Ym(A)®...0 7 (A))

C (A 0o...0A)".
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Using arguments similar to the ones from the proof of Proposition [6.2] one can
show that

(-Al ®®An)N g M(Al,“-;An)v
which together with Theorem gives the statement of the theorem. O
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