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A DEGENERATE SOBOLEV INEQUALITY

FOR A LARGE OPEN SET IN A HOMOGENEOUS SPACE

SCOTT RODNEY

Abstract. In current literature, existence results for degenerate elliptic equa-
tions with rough coefficients on a large open set Θ of a homogeneous space
(Ω, d) have been demonstrated; see the paper by Gutierrez and Lanconelli
(2003). These results require the assumption of a Sobolev inequality on Θ of
the form

(1)
{∫

Θ
|w(x)|2σdx

} 1
2σ ≤ C

{∫
Θ
Q(x,∇w(x))dx

} 1
2
,

holding for w ∈ Lip0(Θ) and some σ ∈ (1, 2]. However, it is unclear when such
an inequality is valid, as techniques often yield only a local version of (1):
(2)
{ 1

|Br |

∫
Br

|v(x)|2σ
} 1

2σ ≤ Cr
{ 1

|Br |

∫
Br

Q(x,∇v(x))dx+
1

|Br |

∫
Br

|v(x)|2dx
} 1

2
,

holding for v ∈ Lip0(Br), with σ as above. The main result of this work
shows that the global Sobolev inequality (1) can be obtained from the local
Sobolev inequality (2) provided standard regularity hypotheses are assumed
with minimal restrictions on the quadratic form Q(x, ·). This is achieved via
a new technique involving existence of weak solutions, with global estimates,
to a 1-parameter family of Dirichlet problems on Θ and a maximum principle.

1. Introduction

This work addresses difficulties in obtaining existence and global estimates of
weak solutions to second order linear subelliptic Dirichlet problems in divergence
form with rough coefficients. Specifically, a local to global result for degenerate
Sobolev inequalities is presented. This is achieved via a new process involving weak
solutions, with global estimates, to a 1-parameter family of degenerate Dirichlet
problems and a maximum principle.

Let Ω � R
n be open with n ≥ 3. Denote by Q(x, ξ) = ξ′Q(x)ξ a bounded,

measurable, non-negative semi-definite quadratic form on Ω×R
n. We assume that

the Carnot-Carathéodory control distance d, defined by Q on Ω, defines a homoge-
neous space structure in Ω in the sense of [15] and [12]. We consider equations of
the form:

Xu = ∇′Q(x)∇u+HRu+ S′Gu+ Fu = f + T ′g(3)

where the coefficient functions H,G, g ∈ Lq
loc(Ω) and F, f ∈ L

q/2
loc (Ω) for q > 2σ′,

with
1

σ
+

1

σ′ = 1 where σ is as in (12). The vector fields R,S, T are assumed
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to be subunit with respect to Q(x, ·) in Ω. Recall that a vector field V (x) =∑n
j=1 vj(x)

∂

∂xj
, identified with the vector v(x) = (v1(x), ..., vn(x)), is said to be

subunit with respect to the quadratic form Q in Ω if(
v(x) · ξ

)2

≤ Q(x, ξ)(4)

for every x ∈ Ω and ξ ∈ R
n. The operator X is assumed to satisfy the following

negativity condition analogous to that of [4] in the elliptic case, that is,∫
Ω

(Fv −GSv) ≤ 0(5)

for all v ∈ C∞
0 (Ω) with v ≥ 0 in Ω.

Remark 1.1. The negativity condition is sufficient for existence of weak solutions
to Dirichlet problems involving the operator X; see (3). Indeed, if one sets H =
G = g = 0 and F = c, c a constant, with Q the identity quadratic form on R

n,
then one obtains the elliptic equation

∆u+ cu = f.(6)

In this case the negativity condition becomes c ≤ 0, which is known to be sufficient
for existence of weak solutions to equations of this type; see [4].

In a subsequent paper the existence theory for Dirichlet problems of the form

Xu = f + T ′g in Θ(7)

u = φ on ∂Θ

where Θ � Ω is open will be treated. To obtain existence and uniqueness of weak
solutions, weak in the sense of [5], the Fredholm Alternative will be used. Thus, we
are required to show that the solution of the zero problem

Xu = 0 in Θ(8)

u = 0 on ∂Θ

is unique and zero a.e. and so a maximum principle is needed. To obtain such a
maximum principle it is sufficient to generalize the weak maximum principle of [4],
the source of the idea for this work. The main ingredient for this generalization is
a global Sobolev inequality on Θ of the form

(∫
Θ

|w|2σ
) 1

2σ ≤ C
(∫

Θ

Q(x,∇w)
) 1

2

,(9)

holding for all w ∈ Lip0(Θ) for some σ ∈ (1, 2]. In the case where X is elliptic we

have σ =
n

n− 2
, the classical sharp Sobolev exponent. In the current literature one

is most often provided with a local version of the Sobolev inequality:
( 1

|Br(x)|

∫
Br(x)

|w|2σ
) 1

2σ ≤ Cr
( 1

|Br(x)|

∫
Br(x)

Q(y,∇w)
) 1

2

,(10)

holding for all w ∈ Lip0(Br(x)), 0 < r < δdist(x, ∂Ω), where Br(x) is the Carnot-
Carathéodory control ball of radius r > 0. The constant δ appearing in (10) is due
to difficulties arising from the degeneracy of the quadratic form Q. Unfortunately,
a naive partition of unity argument using inequality (10) does not give a Sobolev
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inequality of the form (9). Rather, one obtains a weaker form of inequality (9).
This inequality, referred to as a global weak Sobolev inequality, is of the form

(∫
Θ

|w|2σ
) 1

2σ ≤ C
{(∫

Θ

Q(x,∇w)
) 1

2

+
(∫

Θ

|w|2
) 1

2
}
,(11)

holding for all w ∈ Lip0(Θ). Inequality (11) is insufficient, using the techniques
of [4], for the goal of establishing existence of weak solutions to Dirichlet problems
of the form (7), due to a breakdown in a generalization of the proof of the weak
maximum principle of [4]. In [12] it is shown that interior regularity of weak solu-
tions to (7) is obtained via a weak local Sobolev inequality. It is assumed in [12],
and shall be for the rest of this work, that ∃σ ∈ (1, 2] and C, δ > 0 such that if
0 < r < δdist(x, ∂Ω), then

( 1

|Br(x)|

∫
Br(x)

|w|2σ
) 1

2σ

(12)

≤ C
{
r
( 1

|Br(x)|

∫
Br(x)

Q(y,∇w)
) 1

2

+
( 1

|Br(x)|

∫
Br(x)

|w|2
) 1

2
}

for all w ∈ Lip0(Br(x)) where Br(x) is the Carnot-Carathéodory control ball of
radius 0 < r < δdist(x,Ω). This inequality is weaker than inequality (10) since it
is easily obtained from the local form (10). Inequality (10) is not unreasonable to
assume, as such an inequality can be achieved via a sub-representation inequality;
see [12]. To obtain a sub-representation inequality of the form considered in [12]
in the case where Q(x) is diagonal with coefficients qj(x), one must take suprema
of the coefficients qj(x) in large boxes of girth which may be as large as r||Q||∞.
Thus, these cubes may spill outside of the overlying set Ω. The δ appearing above is,
therefore, essentially 1/||Q||∞. See [12] for more details. Due to the weaker nature
of inequality (12) compared with inequality (10), it will be the starting point of the
work to follow.

It is the goal of this paper to show that the weak local Sobolev inequality (12)
implies the global Sobolev inequality (9) on Θ. This is achieved by solving a family
of homogeneous Dirichlet problems related to the principal part of the operator
X, see (21), provided that we assume an L2 − L2 Poincaré inequality, see below.
The Sobolev inequality on the set Θ allows one to conclude existence and global
estimates for weak solutions of the homogeneous Dirichlet problem (7), to be dealt
with in subsequent work. This demonstrates the close connection between Sobolev
inequalities and existence of weak solutions to Dirichlet problems also evident in
the elliptic case.

The Poincaré Inequality: ∃Cp > 0 such that for x ∈ Ω and 0 < r < δdist(x∂Ω) we
have the Poincaré inequality:

( 1

|Br(x)|

∫
Br(x)

|w − wBr
|2
) 1

2 ≤ Cpr
( 1

|Br(x)|

∫
Br(x)

Q(y,∇w)
) 1

2

(13)

holding for all w ∈ Lip(Br(x)).
Lastly, the setting in which the following takes place is the Hilbert space QH1

0 (Θ)

= W 1,2
Q (Θ). Due to the degeneracy of the quadratic form Q, the gradient of an
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element u ∈ QH1
0 (Θ) may not be uniquely determined by its projection onto L2.

This strange behavior does not have strong implications for this work but does play
a role in regularity theory; see [13].

To define the degenerate Sobolev space QH1
0 (Θ) for an open bounded subset Θ

of the homogeneous space (Ω, d), we first define the related space L2(Θ,Q). The
following development of the space L2(Θ,Q) is due to E. Sawyer and R.L. Wheeden
in [13]. Define the form weighted vector space L2(Θ,Q) to consist of all measurable
vector valued functions h(x) = (h1(x), ..., hn(x)) defined a.e. on Θ for which

||h||L2(Θ,Q) =
(∫

Θ

Q(x, h(x))dx
) 1

2

< ∞.(14)

If one identifies two functions h, g ∈ L2(Θ,Q) if ||h − g||L2(Θ,Q) = 0, then (14)

defines a norm on the vector space L2(Θ,Q). As is shown in [13], with the norm
(14) L2(Θ,Q) is a Hilbert space with respect to the inner product

< h, g >L2(Θ,Q)=

∫
Θ

h(x)′Q(x)g(x)dx.(15)

It should be noted that due to the above formulation the calculus extends to these
spaces as can be seen in [13] and with a different approach in [7]. The author would
like to thank E. Sawyer and R. Wheeden for their precise definition of the space
L2(Θ,Q).

We now define the degenerate Sobolev space QH1
0 (Θ) = W 1,2

Q (Θ). Consider the
inner product on Lip0(Θ) given by

(w, v)Q =

∫
Θ

w(x)v(x)dx+ < ∇w,∇v >L2(Θ,Q) .(16)

This inner product generates a norm on Lip0(Θ) given by

||w||QH1
0 (Θ) = (w,w)

1
2

Q =
{
||w||2 + ||∇w||L2(Θ,Q)

} 1
2

.(17)

We define the space QH1
0 (Θ) = W 1,2

Q (Θ) as the completion of Lip0(Θ) under the

norm (17). QH1
0 (Θ) is then a Hilbert space with respect to the inner product (16);

see [7] for more details.
The space QH1

0 (Θ) consists of equivalence classes of Cauchy sequences of Lip-
schitz functions. The equivalence class represented by a Cauchy sequence {uj} ⊂
Lip0(Θ) will be denoted by [{uj}]. Due to the nature of the norm (17), if {wj} ⊂
Lip0(Θ) is Cauchy with respect to (17), then {wj} is also Cauchy in L2(Θ) and
{∇wj} is Cauchy in L2(Θ,Q). Thus for the equivalence class [{wj}] there are
unique functions wL2 ∈ L2(Θ), w∇ ∈ L2(Θ,Q) associated to it. As discussed in
[13] this reasoning gives rise to a Hilbert space isomorphism J between QH1

0 (Θ)

and a closed subspace of L2(Θ)×L2(Θ,Q) denoted by W1,2
Q (Θ). This Hilbert space

isomorphism is defined by

J ([{uj}]) = (uL2 , u∇).(18)

Remark 1.2. The gradient of a function u ∈ QH1
0 (Θ) is a member of the space

L2(Θ,Q). Due to the isomorphism J of QH1
0 (Θ) into W1,2

Q (Θ) one identifies u =

(uL2 , u∇). One may be tempted to believe that u∇ is uniquely determined by
the “L2-part” of u, uL2 . As can be seen in an example due to Fabes, Kenig and
Serapioni in [1], this is in fact not the case. This does not affect the work to be
presented here, but we shall need to consider the natural map I : QH1

0 (Θ) → L2(Θ)
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defined as I = P ◦ J , where P is projection of W1,2
Q (Θ) onto the first component,

such that

I([{uj}]) = uL2 .(19)

Due to the example of Fabes, Kenig and Serapioni, the natural map may not be
one to one; however, as will be seen below, I is a compact mapping, which is the
essential property to be exploited here.

Some care has been taken to make a distinction between an equivalence class
[{uj}] of QH1

0 (Θ) and a pair (uL2 , u∇) ∈ W1,2
Q (Θ). However, what follows will

contain some abuses of notation to simplify equations and inequalities. Indeed, u
will be used to denote an element [{uj}] ∈ QH1(Θ), and this same u will also be
used to denote its L2-part uL2 . The difference will be taken as understood in the
context presented. Further, by the definitions given above the Sobolev inequality
(12) extends by density to QH1

0 (Br) functions. The quadratic form Q also gives rise
to a pointwise inner product and norm which are useful for simplifying notation. For
v, w ∈ L2(Θ,Q) we write < v,w >Q= v′Q(x)w and the pointwise norm generated
by this inner product is denoted by ||w||2Q = w′Q(x)w. These elements are well

defined, as per [13] and [7], as L1(Θ) functions.
The main theorems to be demonstrated are as follows.

Theorem 1.1. Let (Ω, d) be a homogeneous space, Θ � Ω an open set and Q(x, ·) a
bounded, measurable, non-negative semi-definite quadratic form in Ω. Then ∃C =
C(σ,Θ, d) so that the global Sobolev inequality

( 1

|Θ|

∫
Θ

|w|2σ
) 1

2σ ≤ C
( 1

|Θ|

∫
Θ

Q(x,∇w)
) 1

2

(20)

holds for all w ∈ Lip0(Θ) provided the following conditions hold:
1. the weak local Sobolev inequality (12);
2. the Poincaré inequality (13).

The main obstacle to proving theorem (1.1) is a weak maximum principle requir-
ing the following compactness result concerning the natural map I : QH1

0 (Θ) →
L2(Θ), defined by I(u) = u. This result is similar to theorem 3.4 in [3] but does
not require the context of Lipschitz vector fields.

Theorem 1.2. Let Θ � Ω be open with (Ω, d) a homogeneous space. Let the qua-
dratic form Q(x, ·) be as in Theorem ( 1.1). Then the natural map I : QH1

0 (Θ) →
L2(Θ) is compact provided the local Poincaré inequality ( 13) holds in Ω.

Theorem (1.2) evolved substantially through discussion of [3] with S. K. Choi of
the Singapore National University and R. Wheeden of Rutgers University and the
author thanks them for their comments. Theorem (1.2) can be shown to hold in
a much broader context and is the subject of current work joint with the authors
just mentioned. This work may be found in the near future under the title ”A
Compactness Theorem for Generalized Sobolev Spaces”.

The last step in obtaining the strong Sobolev inequality (9) is to exploit the
close connection between the existence of weak solutions to a family of Dirichlet
problems related to the principal part of the operator X and Sobolev inequalities.
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Corollary 1.1. Let 0 < τ < 1 be given and let q > 2σ′ where σ is as in (12). If
the local weak Sobolev inequality (12) holds in Ω and f ∈ L

q
2 (Θ), then there exists

a weak solution of the homogeneous Dirichlet problem

∇′Q(x)∇u− τu = f in Θ

u = 0 on ∂Θ.(21)

Further, if ||f ||q/2 = 1, ∃C = C(σ, q,Θ, d) > 0 so that this weak solution satisfies
the global estimate

sup
Θ

|u| ≤ C(22)

where C is independent of τ .

Theorem 1.1 will be achieved via Corollary 1.1, using the fact that the constant
in (22) is independent of τ > 0 in a slight modification of the proof of the local
Sobolev inequality appearing in [12], which was achieved via Lq-subellipticity for
the homogeneous Dirichlet problem.

2. Proofs

Proof of Theorem 1.2: Let {fn} be a sequence in the unit ball of QH1
0 (Θ). Then

from the definition of the space QH1
0 (Θ) we have that {fn} is a bounded sequence

in L2(Θ) and so contains a weakly convergent subsequence in L2(Θ) which we
relabel as {fn}. Our goal is to show that {fn} is Cauchy in L2(Θ) giving that {fn}
converges in norm. Let ε > 0 be given and let 0 < r < δdist(Θ,Ω), r will be chosen
precisely in a moment. Cover Θ with N = N(ε) metric balls {Bj

r} satisfying

(i) Θ ⊂ ∪N
j=0B

j
r ,

(ii)
N∑
j=0

χBj
r
(x) ≤ M for every x ∈ Ω.(23)

Note that the constant M may be chosen to depend only on the quasimetric d and
not on N or ε. With this we have,

||fn − fm||22 ≤
N∑
j=0

∫
Bj

r

|fn − fm|2dx

=
N∑
j=0

∫
Bj

r

|fn − fm − (fn − fm)Bj
r
+ (fn − fm)Bj

r
|2dx

≤
N∑
j=0

∫
Bj

r

|fn − fm − (fn − fm)Bj
r
|2dx+

N∑
j=0

∫
Bj

r

|(fn − fm)Bj
r
|2dx

= I + II.

From the Poincaré inequality (13) and (ii) above we have,

I ≤ Cpr
2

N∑
j=0

∫
Bj

r

|(∇(fn − fm))′Q(x)∇(fn − fm)|2

≤ Cr2.(24)
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Thus, we may fix r so that 0 < r < δdist(Θ,Ω) and I ≤ ε. With this value of r we
have

II ≤
N∑
j=0

|Bj
r |−1|

∫
Bj

r

(fn − fm)dx|2

≤
N∑
j=0

|Bj
r |−1|

∫
Θ

(fn − fm)χBj
r
dx|2.

Since χBj
r
∈ L2(Ω) as Ω � R

n we may choose, using the weak convergence of {fn},
m,n sufficiently large so that

II ≤ ε.(25)

Thus {fn} is Cauchy in L2(Θ). Therefore, any bounded sequence in QH1
0 (Θ)

contains a subsequence convergent in L2(Θ) giving that I is indeed a compact
mapping.

Proof of Corollary 1.1 To begin, we obtain a weak Sobolev inequality on the set
Θ via a standard partition of unity argument. The proof of the following lemma is
omitted here as it is elementary.

Lemma 2.1. Let Θ be an open set with Θ � Ω and assume that the local weak
Sobolev inequality (12) holds in Ω. Then ∃C = C(σ,Θ) > 0 such that

( 1

|Θ|

∫
Θ

|w|2σ
) 1

2σ ≤ C
{( 1

|Θ|

∫
Θ

∇′wQ(x)∇w
) 1

2

+
( 1

|Θ|

∫
Θ

|w|2
) 1

2
}

(26)

for any w ∈ Lip0(Θ).

Consider the operator associated to L = ∇′Q(x)∇ given by Lτu = ∇′Q(x)∇u−
τu and the associated Dirichlet problem

Lτu = f in Θ

u = 0 on ∂Θ.(27)

By assumption, f ∈ Lq/2(Θ) for some q > 2σ′, σ′ being the dual of the exponent σ
appearing in (12). The associated bi-linear form for this Dirichlet problem acting
on QH1

0 (Θ)×QH1
0 (Θ) is given by:

Lτ (u, v) =

∫
Θ

< ∇u,∇v >Q +τ

∫
Θ

uv.(28)

Thus, a weak solution of (27) must then satisfy:

Lτ (u, v) = −
∫

Θ

fv(29)

for any v ∈ QH1
0 (Θ). The linear functional acting on QH1

0 (Θ) given by Φ(v) =

−
∫

Θ

fv is clearly continuous since ||f ||2 ≤ C||f ||q/2 and ||v||2 ≤ ||v||QH1(Θ). Fur-

ther, the bi-linear form Lτ is both bounded and coercive on QH1
0 (Θ). Indeed, the
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pointwise inequality < ∇u,∇v >Q≤ ||∇u||Q||∇v||Q, holding almost everywhere in
Θ, together with Hölder’s inequality gives

Lτ (u, v) ≤
∫

Θ

||u||Q||v||Q + ||u||2||v||2

≤
(∫

Θ

||∇u||2Q
)1/2(∫

Θ

||∇v||2Q
)1/2

+ ||u||2||v||2

≤ 2||u||QH1(Θ)||v||QH1(Θ)(30)

and hence boundedness of Lτ . The coercivity of Lτ is immediate since 0 < τ < 1.
Indeed,

τ ||u||2QH1(Θ) = τ

∫
Θ

||∇u||2Q + τ ||u||22

≤
∫

Θ

||∇u||2Q + τ ||u||22

= Lτ (u, u).(31)

Therefore, by the Lax-Milgram theorem there exists a unique weak solution to (27).
For the second part of the theorem we follow the method of proof outlined in

Theorem 8.15 of [4]; this argument also appears in [5]. If u is a weak solution to
(27), then by definition u ∈ QH1

0 (B). It is clear that we then have u+ ∈ QH1
0 (Θ),

where u+ is defined as in [7], so that u+ is a valid test function for u, i.e.

∫
Θ

(∇u+)′Q∇u = −
∫

Θ

(fu+).(32)

This equality is key and should be kept in mind for what will follow. Set w = u++1.
For β ≥ 1 we define, for N > 1, HN : [1,∞) → R+ by

HN (s) =

⎧⎨
⎩

0 if s < 1
sβ − 1 if 1 ≤ s ≤ N
βNβ−1(s−N) +Nβ − 1 if s > N.

This function is clearly C1([1,∞)) with H ′
N ∈ L∞ and HN (1) = 0. The lemma on

admissible compositions in [12] and [7] then gives HN (w) ∈ QH1
0 (Θ). Next, define

the test function GN : [1,∞) → R+ by

GN (x) =

∫ x

1

(H ′
N (s))2ds,

which satisfies the key inequality

GN (x) ≤ xG′
N (x).(33)

We require that GN ∈ QH1
0 (Θ) in order to be able to test the weak solution

against it. However, since GN (1) = 0 we have by the lemma on admissible compo-
sitions in [12] and [7] that indeed G(w) ∈ QH1

0 (Θ). The weak Sobolev inequality
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(26) then gives:

1

|Θ| 1
σ

(∫
Θ

|HN (w)|2σ
) 1

σ ≤ C2

|Θ|

(∫
Θ

||∇HN (w)||2Q + ||HN (w)||22
)

by (26)

=
C2

|Θ|

(∫
Θ

(H ′
N (w))2(∇w)′Q∇w + ||HN (w)||22

)

=
C2

|Θ|

(∫
Θ

(∇GN (w))′Q∇u+ ||HN (w)||22
)
.

The last equality is due to the fact that ∇w = ∇u+ = ∇u where ∇u+ �= 0 and if
u+ = 0 we have that w = 1, giving GN (w) = 0. Thus, using the fact that u is a
weak solution to (27),

1

|Θ| 1
σ

(∫
Θ

|HN (w)|2σ
) 1

σ ≤ C2

|Θ|

(∫
Θ

|f |GN (w) + (1− τ )||HN (w)||22
)
.

Since w ≥ 1, taking limits in all of the above we have by (30) and (33) that

(∫
Θ

|HN (w)|2σ
) 1

σ ≤ C2

|Θ|σ−1
σ

(∫
Θ

|f |w2G′
N (w) + (1− τ )||HN (w)||22

)

=
C2

|Θ|σ−1
σ

(∫
Θ

|f |(wH ′
N (w))2 + ||HN (w)||22

)
.

Now HN and H ′
N are increasing in N and (34) holds for every N . The monotone

convergence theorem applied to each side of the equation then yields:

||wβ − 1||22σ ≤ C2

|Θ|σ−1
σ

(∫
Θ

|f |(w · βwβ−1)2 + ||wβ − 1||22
)

≤ C(Θ)
(
β2||w2β || q

q−2
+ β2||w2β || q

q−2

)
,(34)

since w ≥ 1 and 1 <
q

q − 2
due to the choice of q > 2σ′. Taking square roots and

using the homogeneity of the Lp norm, we obtain the reverse Hölder estimate:

||wβ ||2σ ≤ Mβ||wβ || 2q
q−2

(35)

where M = M(Θ). Setting χ =
σ(q − 2)

q
> 1, since q > 2σ′, we rewrite the above

as

||w||βχq∗ ≤
(
Mβ

) 1
β ||w||βq∗(36)

where q∗ =
2q

q − 2
. Hence, (36) says that w ∈ Lβq∗ implies w ∈ Lβχq∗ which is a

stronger inclusion since χ > 1. Following the argument found in [5] Theorem 3.1
we obtain:

sup
y∈Θ

u+ ≤ sup
y∈Θ

w ≤ C(σ, q,Θ)
(
||u+||2 + 1

)
.(37)

Replacing u+ with u− in all of the above yields the inequality

sup
y∈Θ

u− ≤ C(σ, q,Θ)
(
||u−||2 + 1

)
,(38)
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giving

||u||L∞(Θ) ≤ C(σ, q,Θ, )(||u||2 + 1).(39)

To finish the proof we bound ||u||2 independently of τ . Thus, we seek to show that if
uτ is a weak solution to the problem (27), then ||uτ ||2 ≤ C where C is independent
of τ . Suppose the inequality is not true. Then ∃ a sequence {τk}k and a sequence
of Q-weak solutions {vτk} of the Dirichlet problems

Lτku = f in Θ

u = 0 on ∂Θ(40)

with ||f ||q/2 = 1 (q > 2σ′) such that ||vτk ||2 → ∞. This forces the sequence {τk}
to have limit zero. Indeed, if we assume τk → τ > 0 we obtain from (31) that for
each k ∈ N,

τk||vτk ||22 ≤ Lτ (vτk , vτk)

≤ |
∫

Θ

vτkf |

≤ ||vτk ||2.(41)

This yields ||vτk ||2 ≤ 1

τk
< ∞, contradicting ||vτk ||2 → ∞. Thus τk → 0. Set

βk =
1

||vτk ||2
(so βk → 0 as k → ∞), wk = βkvτk and fk = βkf . Then wk is a

Q-weak solution of the Dirichlet problem

Lτku = fk in Θ

u = 0 on ∂Θ.(42)

Now, we have that ||wk||2 = 1 for each k and so by the compactness of the natural
map I : QH1

0 (Θ) → L2(Θ), from Theorem 1.2, we have that there is a subsequence
{wk}∞k=0 (relabeled so that we keep the same index) such that wk → w in L2 and
||w||2 = 1. Further, we also have wk → w in QH1

0 (Θ), giving w ∈ QH1
0 (Θ) so that

we may test w against itself. This is due to the inequality∫
Θ

||∇wk||2Q ≤ Lτk(wk, wk)

≤ ||wk||2||fk||q/2 = βk.(43)

Thus we obtain w as a Q-weak solution of the Dirichlet problem

Lv = ∇′Q(x)∇v = 0 in Θ

v = 0 on ∂Θ.(44)

By the Poincaré inequality (13) we then obtain that on any ball Br with r > 0
sufficiently small: ∫

Br

|w − wBr
|2 = 0,(45)

giving that w is constant on any ball Br with r > 0 sufficiently small and hence that
w is constant in Θ. Without loss of generality we assume w = 1 in Θ. To obtain
a contradiction we now show that (45) implies w = 0 in L2(Θ). Let Γ � Ω be an
open set so that Θ̄ ⊂ Γ ⊂ Γ̄ � Ω. Let {wj}j ⊂ Lip0(Θ) be a sequence representing
w in QH1

0 (Θ). Define {w̄j}j ⊂ Lip0(Γ) where w̄j = wj in Θ and w̄j = 0 in Γ \ Θ.
Set w̄ = w in Θ and w = 0 in Γ \ Θ̄. Clearly we have that w̄j → w̄ in L2(Γ) and we
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also obtain

∫
Γ

Q(x,∇w̄j) → 0 as j → ∞ since (∇wj)
′Q(x)∇wj → (∇w)′Q(x)∇w

in L1(Θ). Thus we obtain via the Poincaré inequality that w̄ is constant in Γ.
Indeed, from the Poincaré inequality we have that for any ball B ⊂ Γ with radius
sufficiently small,

∫
B

|w̄j − w̄jB |2 ≤ Cpr

∫
B

(∇w̄j)
′Q(x)∇w̄j

≤
∫

Γ

(∇w̄j)
′Q(x)∇w̄j → 0 as j → ∞.(46)

Since w̄ is zero in any ball of radius sufficiently small in Γ \ Θ̄ we then have that
w̄ = 0 in Γ and hence w = 0 in Θ, which is a contradiction since ||w||L2(Θ) = 1. �

Proof of Theorem 1.1 The proof of this result mimics the proof of the local
weak Sobolev inequality (12) in [12], with modifications since we use the global

weak Sobolev inequality (11). Set η =
σ + 1

2
; thus 1 < η < σ. Let f ∈ L

q
2 (Θ); be

such that ||f || q
2
= 1 with q = 2η′ > 2σ′. Let u be the unique weak solution to the

Dirichlet problem (27) with τ > 0 to be chosen in a moment. Thus, for v ∈ Lip0(Θ)
we have:

∫
Θ

v2f = −
∫

Θ

< ∇v2,∇u >Q −τ

∫
Θ

uv2

= −2

∫
Θ

v < ∇v,∇u >Q −τ

∫
Θ

uv2

≤ 2
(∫

Θ

v2||∇u||2Q
)1/2(∫

B

||v||2Q
)1/2

+ τ

∫
Θ

uv2.

Using the fact that u is a weak solution, the square of the first factor satisfies:

∫
Θ

v2||∇u||2Q =

∫
Θ

(
< ∇(uv2),∇u >Q −2 < u∇v, v∇u >

)

= −2

∫
Θ

< u∇v, v∇u >Q −
∫

Θ

uv2f − τ

∫
Θ

u2v2

≤
(1
2

∫
Θ

v2||∇u||2Q + 2

∫
Θ

u2||∇v||2Q +

∫
Θ

|u|v2f + τ

∫
Θ

u2v2
)

=
1

2

∫
Θ

v2||∇u||2Q + 2

∫
Θ

u2||∇v||2Q +

∫
Θ

|u|v2f + τ

∫
Θ

u2v2.(47)

Absorbing the first term on the right into the left hand side and multiplying by 2
yields:

∫
Θ

v2||∇u||2Q ≤ 4
(
sup
Θ

|u|
)2

∫
Θ

||∇v||2Q + 2
(
sup
Θ

|u|
)∫

Θ

v2f + 2τ

∫
Θ

u2v2

≤ 4max
{(

sup
Θ

|u|
)2

∫
Θ

||∇v||2Q ,
(
sup
Θ

|u|
)∫

Θ

v2f,
(
sup
Θ

|u|
)2

τ

∫
Θ

v2
}
.

(48)
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No matter which term on the right is the maximum, (48) with (29) gives:∫
B

v2f ≤ C
{(

sup
Θ

|u|
)∫

Θ

||∇v||2Q + τ
(
sup
Θ

|u|
)∫

Θ

v2
}

≤ C|Θ|
2
q

{( 1

|Θ|

∫
Θ

|f |
q
2

) 2
q

∫
Θ

||∇v||2Q + τ
( 1

|Θ|

∫
Θ

|f |
q
2

) 2
q

∫
Θ

v2
}

= C |Θ|
1
η′
{( 1

|Θ|

∫
Θ

|f |η′
) 1

η′
∫

Θ

||∇v||2Q + τ
( 1

|Θ|

∫
Θ

|f |η′
) 1

η′
∫

Θ

v2
}
.(49)

Thus, we have:
( 1

|Θ|

∫
Θ

|v|2η
) 1

η

= sup
1

|Θ|
∫
Θ

|f |η′=1

∣∣∣ 1

|Θ|

∫
Θ

v2f
∣∣∣

≤ C|Θ|
1
η′
{( 1

|Θ|

∫
Θ

||∇v||2Q + τ

∫
Θ

v2
)}

.(50)

Taking square roots of both sides gives:
( 1

|Θ|

∫
Θ

|v|2η
) 1

2η ≤ C
{(∫

Θ

||∇v||2Q
) 1

2

+ τ
1
2

(∫
Θ

v2
) 1

2
}
.(51)

At this point we are free to choose τ as close to zero as we like. We choose τ > 0
sufficiently small so that we may absorb the L2 norm on the right hand side into
the L2η norm on the left. We are able to do this since 2 ≤ 2η. This yields the
Sobolev inequality

( 1

|Θ|

∫
Θ

|v|2η
) 1

2η ≤ C
( 1

|Θ|

∫
Θ

||∇v||2Q
) 1

2

,(52)

holding for all v. Combining this result with the weak Sobolev inequality on Θ,
(26), we obtain:

(∫
Θ

|w|2σ
) 1

2σ ≤ C
{(∫

Θ

Q(x,∇w)
) 1

2

+ C̃
(∫

Θ

|w|2η
) 1

2η
}

(53)

≤ C
(∫

Θ

Q(x,∇w)
) 1

2

,

for w ∈ Lip0(Θ).
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