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THE DEFOCUSING ENERGY-SUPERCRITICAL NONLINEAR
WAVE EQUATION IN THREE SPACE DIMENSIONS

ROWAN KILLIP AND MONICA VISAN

ABSTRACT. We consider the defocusing nonlinear wave equation uyr — Au +
|ulPu = 0 in the energy-supercritical regime p > 4. For even values of the
power p, we show that blowup (or failure to scatter) must be accompanied
by blowup of the critical Sobolev norm. An equivalent formulation is that
solutions with bounded critical Sobolev norm are global and scatter. The
impetus to consider this problem comes from recent work of Kenig and Merle
who treated the case of spherically-symmetric solutions.
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1. INTRODUCTION

We consider the initial value problem for the defocusing nonlinear wave equation
in three space dimensions:

uge — Au+ F(u) =0,
u(0) = ug, u(0) = uy,

(1.1)

where the nonlinearity F(u) = |u|Pu is energy-supercritical, that is, p > 4. For the
sake of simplicity, we restrict our attention to even values of the power p only.
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The class of solutions to (L)) is left invariant by the scaling
(1.2) u(t, z) = Aru(M, Az).

This defines a notion of criticality. More precisely, a quick computation shows
that the only homogeneous L2-based Sobolev norm left invariant by the scaling
is Hgﬁu X Hgﬁu_l, where the critical reqularity is s, := % — %. If the regularity of
the initial data to (ILI]) is higher/lower than the critical regularity s., we call the
problem subcritical /supercritical.

We consider ([T) for initial data belonging to the critical homogeneous Sobolev
space, that is, (ug,u1) € Hf; X ijl in the energy-supercritical regime s. > 1.
We prove that any maximal-lifespan solution u with the property that (u,w;) is
uniformly bounded (throughout its lifespan) in H? x H;fl must be global and
scatter.

Let us start by making the notion of a solution more precise.

Definition 1.1 (Solution). A function u : I x R®> — R on a nonempty time
interval 0 € I C R is a (strong) solution to (L)) if (u,u;) € CY(K; He x H~1)
and u € Lff;(K x R3) for all compact K C I, and it obeys the Duhamel formula

[U(t)] _ lu(o)]
ug(t) u¢(0)

F(u(s))ds
for all t € I. We refer to the interval I as the lifespan of u. We say that u is a
mazimal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that v is a global solution if I = R.

cos(t|V|) |V|~Lsin(t|V])
—|V|sin(¢|V]) cos(t|V])

B /t [V‘l sin((t — s)|V|)

cos((t — )|V

(1.3)

We define the scattering size of a solution to (L)) on a time interval I by

(1.4) Sr(u) == /I/Rd lu(t, x)|?P dz dt.

Associated to the notion of a solution is a corresponding notion of blowup. By
the standard local theory (see Theorem B.]), this precisely corresponds to the im-
possibility of continuing the solution.

Definition 1.2 (Blowup). We say that a solution « to (L)) blows up forward in
time if there exists a time ¢; € I such that

Sity sup 1) (u) = 00
and that u blows up backward in time if there exists a time ¢; € I such that
S(inf],tl](u) = 0C.
Our main result is the following

Theorem 1.3 (Spacetime bounds). Suppose p > 4 is even and let u: [ x R — R
be a solution to (L) such that (u,u;) € L{°(I; HSe x Hi<™1). Then

O el ([OOSR ——
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We have not considered other values of p > 4, for which the nonlinearity is
no longer a polynomial in u; we felt that it would muddy the main thrust of the
argument, without due reward.

As mentioned above, finite-time blowup of a solution to () must be accom-
panied by divergence of the scattering size defined in ([L4). Thus, Theorem [3]
immediately implies

Corollary 1.4 (Spacetime bounds). If u : I x R® — R is a maximal-lifespan
solution to (L) with (u,u;) € L (I; Hie x H3™1), then u is global and moreover,

Se(u) < C (11w, ue)ll oo (m.prze e rze1))-

This corollary takes on a more appealing form if we rephrase it in the contra-
positive:

Corollary 1.5 (Nature of blowup). A solution u : [ x R3 — R to (L) can only
blow up in finite time or be global but fail to scatter if its He x H3<~! norm diverges.

For spherically-symmetric initial data, Theorem was proved by Kenig and
Merle [12]. The (nonradial) analogue of Theorem [[3] for NLS in dimensions d > 5
was proved in [I7] by adapting the methods of [I5]. We will discuss these papers
and their relation to the results presented here more fully when we outline the proof
of Theorem [[L3] Before doing this, let us briefly review some of the backstory and,
in particular, the origins of some of the techniques we will be using.

When p = 4, or equivalently, s, = 1, the critical Sobolev norm is automatically
bounded in time by virtue of the conservation of energy:

(1.5) B(u) = /R L2 + 3Vul? + L5 [ul+? de.

This energy-critical case of (LI has received particular attention because of this
property. Global well-posedness was proved in a series of works [5l, [6] [7), [24] [29] [25]
20] with finiteness of the scattering size being added later; see [II [, 22] 23] [31].
Certain monotonicity formulae, the Morawetz and energy flux identities, play an
important role in all these results. It is important that these monotonicity formulae
also have critical scaling.

In the energy-supercritical case discussed in this paper, all conservation laws and
monotonicity formulae have scaling below the critical regularity. At the present mo-
ment, there is no technology for treating large-data dispersive equations without
some a priori control of a critical norm. Indeed, one may assert that the fundamen-
tal difficulty associated with the 3D Navier—Stokes system is controlling the possible
growth of (scaling-)critical norms. This is the purpose of the L¢°(I; Hse x He—1)
assumption in Theorem [[L3} it plays the role of the missing conservation law at
the critical regularity. Nevertheless, the fact that the monotonicity formulae have
noncritical scaling remains a problem.

The problem of having monotonicity formulae at a different regularity to the crit-
ical (coercive) conservation laws is a difficulty intrinsic to the nonlinear Schrodinger
equation and it was in this setting that the first methods were developed for its
treatment. The original breakthrough in this direction was Bourgain’s paper [2].
His work introduced the induction on energy technique, which was then further
developed in [3 B0]. In this paper, we will use a variant of this method that was
introduced by Kenig and Merle, [9], building on work of Keraani, [I3]. In this
latter approach, one first shows that failure of the theorem implies the existence
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of minimal counterexamples. This part of the argument is based on concentration-
compactness techniques and is very robust, with very little that is equation-specific.
It breaks the scaling symmetry because such minimal counterexamples have an in-
trinsic length scale, albeit time-dependent. The second part of this approach is
to use conservation laws and/or monotonicity formulae to show that such coun-
terexamples do not exist. Like the conservation laws and monotonicity formulae
themselves, this part of the argument is intrinsically equation dependent.

1.1. Outline of the proof. We argue by contradiction. The failure of Theo-
rem [[.3] would imply the existence of very special types of counterexamples. Such
counterexamples are then shown to have a wealth of properties not immediately
apparent from their construction, so many properties, in fact, that they cannot
exist.

While we will make some further reductions later, the main property of the
special counterexamples is almost periodicity modulo symmetries:

Definition 1.6 (Almost periodicity modulo symmetries). A solution u to (ILI]) with
lifespan I is said to be almost periodic modulo symmetries if (u,u;) is bounded in
H;C X H;C_l and there exist functions N : I = RT, 2: I = R?, and C : Rt — R*
such that for all t € I and n > 0,

||V|56u(t,x)|2 dx +/ HV\SC*lut(t,x)‘de <7

/wm(t)>C(n)/N(t) lo—z(t)|=C(n)/N ()

and

/ €2 [a(t, ) de + / €26 [y (1, €)[2 de < .
[£]>C(n)N(t)

[€[=C (N (t)
We refer to the function N(t) as the frequency scale function for the solution wu,
to z(t) as the spatial center function, and to C(n) as the compactness modulus
function.

Remarks. 1. Given a time to € I we may rescale the function u(tg,z) so as to
renormalize the frequency scale to equal one. We may then perform a spatial
translation to bring the spatial center of the function to the origin. Noting that
these operations are symmetries of our equation and incorporating an additional
time translation, this procedure yields a solution to (LI called the normalization
of u associated to the time tg:

(1.6) uwuax):;N@@—%uao+tN@@*ax@@-+xN@@*w.

Note that the normalization of w is still almost periodic modulo symmetries; indeed,
it admits the same compactness modulus function as u.

2. By the Ascoli-Arzela Theorem, a family of functions is precompact in H S(R3)
if and only if it is norm-bounded and there exists a compactness modulus function
C so that

1Y) f(2)|* da + / €12 | f(€)[2 de <
|[z|>C(n) [£]>C(n)

for all functions f in the family. Thus, an equivalent formulation of Definition
is as follows: u is almost periodic modulo symmetries if and only if

(1.7) { (ul)(0), Opulte)(0)) : to € T}

is a precompact subset of H5 x H3e~t.
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3. The continuous image of a compact set is compact. Thus, by Sobolev embed-
ding, almost periodic (modulo symmetries) solutions obey the following: For each
n > 0 there exists C'() > 0 so that
(1.8)
ut, )|

where V, yu = (u;, Vu) denotes the space-time gradient of w.

})+||Vt,zu(t,w)|| s <,

3
LZ"’L:“E {lz—z(®)|=C(n)/N (1) L L™ ({la—a(t)[>C(n)/N(1)})

With these preliminaries out of the way, we can now describe the first major
milestone in the proof of Theorem [[.3

Theorem 1.7 (Reduction to almost periodic solutions, [12]). Assume Theorem [L3l
failed. Then there exists a mazimal-lifespan solution u : I x R® — R to (L) such
that (u,us) € L (I, H;c X H;c_l), u is almost periodic modulo symmetries, and
u blows up both forward and backward in time. Moreover, u is minimal among all
blow-up solutions in the sense that

supH (u(t), ut(t)) HH§L x Hge! < SUPH (U(t)v Ut(t)) HHwL X H2e1
terl g g teJ

for all mazimal-lifespan solutions v : J x R3 — R that blow up in at least one time
direction.

The reduction to almost periodic solutions is now a standard technique in the
analysis of dispersive equations at critical regularity. Their existence was first
proved by Keraani [13] in the context of the mass-critical NLS and they were first
used as a tool for proving global well-posedness by Kenig and Merle [9]. As noted
above, Theorem [[7] was proved by Kenig and Merle in [12]; for other instances of
the same techniques, see [10, [IT], 14} [15), 16}, [T'7, [I8], 19} 32, [33].

We will also need the following further refinement of Theorem [L7}

Theorem 1.8 (Three special scenarios for blowup, [I5]). Suppose that Theorem [L3]
failed. Then there exists a mazimal-lifespan solution u : I x R? = R, which obeys
(u,u;) € LP(I; Hee x H3e~ 1), is almost periodic modulo symmetries, and Sy(u) =
00. Moreover, we can also ensure that the lifespan I and the frequency scale function
N : I — RT match one of the following three scenarios:

I. (Finite-time blowup) We have that either sup I < oo or |inf I| < co.
II. (Soliton-like solution) We have I =R and

N(t)=1 forall teR.
III. (Low-to-high frequency cascade) We have I =R,
gnﬂgN(t) >1, and limsupN(t) = co.
€

t——+oo

The reference given above discusses the energy-critical NLS; however, the result
follows from Theorem [[.71by the same arguments since they are essentially combina-
torial and so apply to any dispersive equation. As we are treating a problem whose
critical regularity lies above that of the conserved quantity, the energy-critical NLS
serves as a better model than the mass-critical NLS. This is the reason for using
this set of special scenarios rather than those obtained in [I8].

A further manifestation of the minimality of u as a blow-up solution is the
absence of a scattered wave at the endpoints of the lifespan I'; more formally, we have
the following Duhamel formulae, which play an important role in proving needed
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decay. This is a robust consequence of almost periodicity modulo symmetries; see,
for example, [16].

Lemma 1.9 (No-waste Duhamel formulae). Let u be an almost periodic solution
to (LIl on its mazimal-lifespan I. Then, for allt € I,

u(t) _ et M u(s))ds
- {ut(t)] /t cos((t ‘YIS)WD e
. t sin((t*5)|v‘)
_ — 5T s))ds
/infl Los((t —3)|V])

as weak limits in HJe X H;cfl.

Representations of this type are central tools for improving the decay and/or
regularity properties of the solution w. For the problem under discussion in this
paper, it is better decay that is required since the key monotonicity formula (the
Morawetz identity) and the key conservation law (the energy) have H! x L2 scaling.
We need access to these identities in order to preclude the soliton-like and frequency-
cascade solutions (described in Theorem [[])), respectively. It is considerably easier
to dispense with the finite-time blow-up solution: minimality forces the solution to
lie inside a light cone, which in turn implies that the energy is zero. This argument
is presented in Section [I0] and is little different from the treatment in [12].

A key problem in low-dimensional situations, such as the problem under dis-
cussion in this paper, is making the integrals (I9) converge in a better sense, for
example, in some norm. In [I2], an incoming/outgoing wave decomposition is used
together with the weighted decay available from radial Sobolev embedding. A not
dissimilar technique was used in [18, [19], which studied 2D NLS; the 3D NLW has
the same poor dispersive estimate as the 2D NLS.

In this paper, we will prove that the Duhamel integrals converge by making use
of the energy flux identity (cf. Lemma B2]); the same idea (albeit with a different
purpose) was used in [3I, Corollary 4.3]. This is much weaker than the weighted
estimates available in the radial case. Nevertheless, by expanding on the ideas in
our earlier paper [15], we are able to show that u lies in L° L4 (R?) for some q < ?’2—’),
the exponent given by Sobolev embedding. This is the topic of Section Bl While
this does constitute better decay than the a priori bound, it is not sufficient to use
the monotonicity /conservation laws; these require L2-type control on V; ,u.

As in [I5], we will employ the double Duhamel identity to upgrade the L% esti-
mates to the better kind of decay required. This identity was first introduced in [3]
for the nonlinear Schrodinger equation and results from taking the inner product
between the two formulae in (L9). We have not seen this technique used before for
the nonlinear wave equation and, in light of this, it is perhaps worth noting that in
order to maintain the natural structure of the formula, one should take the inner
product of the two representations of the spacetime derivative V; ,u(0), rather than
of u(0) as in the Schrédinger case. This is a manifestation of the fact that (L)) is
second-order in time.

The double Duhamel integrals have very poor convergence properties. In [I5],
this restricted us to working in five or more (spatial) dimensions. Due to the
different nature of the dispersive estimate, this would be analogous to dimensions
six or higher for the wave equation. Making the double Duhamel formula converge is
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quite an undertaking, as we will describe. First, we localize in space. This was done
already in [3] and results in an improvement equivalent to lowering the applicable
dimension by two, which is still insufficient for the nonlinear wave equation in three
dimensions.

In the manner as we have described it so far, the space-localized double Duhamel
formula reads as follows:
(1.10)

o) 0
2 sin sin T
/W x(@)|Vezu(0)] dz = —/0 /_OO<V—|<‘VV"“F@), XD p(r)) dr dt

_/000/_ (cos(|V[t)F(t), xcos(|V|T)F(r))dr dt,

where F(t) is short-hand for F'(u(t)), the nonlinearity in (Il), x denotes a spatial
cutoff function, and the inner products are in vector- and scalar-valued LZ2(R3),
respectively. When actually used in Section [7] there will be additional frequency
projections and, in the first occurrence, (fractional) differential operators.

Our technique for making the integrals in (ILI0) converge is inspired by a con-
sideration of geometric optics: In a sense, (LI0) represents the nonlinearity F'(t) at
time ¢ looking at the nonlinearity F(7) at time 7 though a ‘keyhole’ whose aperture
is the support of x. Note that the main part of the nonlinearity F'(t) lies near the
center of the wave-packet at that time, namely, x(¢). This indicates the path we
will follow: (a) make sure that points near x(t) cannot see points near x(7), at least
not directly, (b) control the amount of diffraction associated with the aperture, and
(c) control the contribution from points far from z(¢) and/or z(7).

For short times, part (a) of this programme is immediate from the finiteness of
the speed of propagation. If the aperture is far from x(0), then z(¢) and z(7) do
not have time to travel far enough to see one another. While this very naive picture
continues to hold in the long-time regime, that is, 2(¢) cannot catch up to a light
ray emanating from z(7) that passes through the aperture, there is no improvement
with the passing of time that might allow the time integral to converge. We thus
need to show that z(t) and z(7) travel strictly slower than light. This is the topic
of Section Ml In previous work on critical dispersive equations, the motion of z(t)
has been constrained by using conservation laws, specifically, the conservation of
momentum. This approach is not available in this case, since we need to control
x(t) first in order to obtain finiteness of the conserved quantities. In the case of
radial data, z(t) = 0.

Part (b) of the programme outlined above is encapsulated in Proposition
Thanks to the subluminality proved in Section M we need not consider very long
times.

The proof that u (and so also F'(u)) decays quickly away from z(t) is the subject
of Section [6] which handles part (¢) of our programme. To the best of our knowl-
edge, this is the first instance when power-law decay has been obtained without the
benefit of radial initial data in the setting of critical dispersive equations. Moreover,
we obtain this decay in a scaling-invariant space. The argument uses the energy
flux identity to make the Duhamel integral converge. This places the long-time
piece in LY for ¢ > 3p/2. To compensate for this, we interpolate with the decay
estimates obtained in Section [B which show that v € L§° L% for some ¢ < 3p/2.
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In Section [1] we pull these three threads together to prove that not only does
u have finite energy, but even that the energy decays with a power-law away from
x(t). This is done using an iterative procedure that takes one from s. derivatives
to s. — € derivatives to s. — 2¢ derivatives, and so forth. The last step, from 1 4 ¢
derivatives to finite energy, is treated separately, because this can be done much
more simply — V is local in space, while |[V|!*¢ is not.

Sections B and [@ use the finiteness of the energy to show, respectively, that
frequency-cascade and soliton-like solutions to (II]) are not possible. We show that
the frequency-cascade solution is inconsistent with the conservation of energy; of
course, this would be meaningless had we not first proved that the energy is finite.
The existence of solitons is precluded by use of the Morawetz identity (cf. [20 21]):

4
dt Jrs

= /3 a;r(x)u;(t, x)ug(t, ) + ﬁajj(x)u(t, x)Pt? — %ajjkk(x)u(t,xf dz,
R

—aj(@)u(t, 2)u;(t, ) — 3aj;(z)ult, 2)u(t, z) do

where u is a solution to ([IT), subscripts indicate partial derivatives, and repeated

indices are summed. More precisely, we use the special case a(x) = |z|, which,
together with the Fundamental Theorem of Calculus and Hardy’s inequality, yields
u(t, z)[P+?
(111) P R T -
IJR3 || *

Notice that by finite speed of propagation, the left-hand side should grow logarith-
mically in time.

The finite-time blow-up solution is precluded in Section [I0]and does rely on Sec-
tions [ through [7l Like the frequency-cascade, this type of solution is inconsistent
with the conservation of energy; finiteness of the energy in this case follows from the
fact that finite-time blow-up solutions are compactly supported at each time. The
idea of using a second (noncritical) conservation law to control the growth/decay
of N(t) originates in the study of NLS (cf. [2, §4]); in this paper, the assumed
boundedness of the critical Sobolev norm acts as a first conservation law.

2. NOTATION AND USEFUL LEMMAS

We write X < Y to indicate that X < CY for some constant C, which may
change from line to line. Dependencies will be indicated with subscripts, for exam-
ple, X <, Y. We will write X ~ Y to indicate that X <Y < X.

Let (€) be a radial bump function supported in the ball {¢ € R? : [¢] < %
and equal to 1 on the ball {¢ € R? : |¢| < 1}. For each number N > 0, we define
the Fourier multipliers

Pon (€)== o(&/N) f(6),
Pon(€) = (1— (&/N))f(6),
Pr (€)== (p(€/N) — p(26/N)) f(€)

and similarly for P<x and P>py. We also define

PM<-§N = PSN_PSM: E PN/
M<N'<N
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whenever M < N. We will only have cause to use these multipliers when M and
N are dyadic numbers (that is, of the form 2" for some integer n); in particular,
all summations over N or M are understood to be over dyadic numbers.

Like all Fourier multipliers, the Littlewood-Paley operators commute with deriva-
tives and the propagator. We will only need the basic properties of these operators,
particularly,

Lemma 2.1 (Bernstein estimates). For 1 < p < ¢ < oo,
IV P f ~ NI fllss,

3_3
|P<nfllrs S N? a||[P<nfllre,
3_3
1Pnfllrgs S N#~a|[Pnfllee.

In three space dimensions, the wave equation obeys the strong form of the Huy-
gens principle. This is most easily expressed in terms of the explicit form of the
propagator:

Lemma 2.2. For Schwartz functions f,
(21) @ =g [ swasw)
r—y|=t

where dS denotes the usual 2-dimensional surface measure.

To be absolutely clear about the normalization here, we note that if f = 1, then
RHSE2I]) =t. A well-known consequence of ([Z1]) is the following;:

Lemma 2.3 (Dispersive estimate). For 2 < ¢ < oo and f € L9 (R3),

—1 . —(1—2 _4
(191 sin@v ]|, SOV .

La(R3)
Proof. For ¢ = 2, the result reduces to the boundedness of the Fourier multiplier
sin(¢|€]). When ¢ = oo, the desired estimate is

|1V SV 0 gy S IV e
which follows easily from (21 and

/ ftw) dS(w) = /OO/ —w - Vf(rw) dS(w)dr <t 2|V f|| 1 (rs).-
lwl=1 t |wl=1

For general ¢ one may apply the theory of analytic interpolation. We caution the
reader, however, that this requires the use of BMO and its interpolation theory; see,
for example, [27], §IV.5], which uses a very closely related estimate as the motivating
example. (I

Note that even when ¢ = oo, this gives only ¢! decay. This is not integrable in
time and so is insufficient to prove convergence of the Duhamel formulae (9.

As is now well understood, the dispersive estimate forms the basis for proving
Strichartz estimates, which we record next. See [8] 23], 28] and the references therein
for further information.

Lemma 2.4 (Strichartz estimates). Let I be a compact time interval and let u :
I x R3 = R be a solution to the forced wave equation

Utt—AU+F:O
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Then for any to € I, 6 < g < 00, and p/2 < § < oo,

e ez el g UV IV,

S llulto)ll gz + lue(to) | gze—r + IV F|| 20 o,

Ltq+6 L;;I—l

where all spacetime norms are on I x R3.

As noted in the introduction, much of the argument presented here was inspired
by work on NLS. The most favourable difference between NLW and NLS is that
NLW enjoys finite speed of propagation. Unfortunately, we will need to deal with a

noninteger number of derivatives, which is inherently a nonlocal operator. To cope
with this, we will make use of the following:

Lemma 2.5 (Mismatch estimates). Let ¢1 and ¢2 be (smooth) functions obeying

|¢jl <1 and  dist(supp ¢1, supp ¢2) > 4,
for some large constant A. Then for o >0 and 1 < p < q < oo,
(2.2)
1611917 P<x (25| o oy + |01 VIVI7 " Pea (62) | g gy S A~ 0162 | 1 e)-
Proof. Elementary computations show that if K (z) denotes the convolution ker-
nel associated to either of the Fourier multipliers |V|” P<; or V|V|? 7! P<q, then

K ()] < fa| =27
Noting that

/ pm@B)ap2 gp < AU =D  when L4
A

S
I
—_
_|_
Q=

1
P
the result follows from Young’s inequality. O

Our next proposition shows that waves do not diffract too much through a large
aperture and is an essential ingredient in justifying the geometric optics heuristics
set forth in the introduction; see (LI0) and the adjacent discussion. We are content
to show that there is sufficient decay in (Z4]) below and have made no attempt to
find the optimal bound.

Proposition 2.6 (Weak diffraction). Let ¢ : R® — [0,1] be a smooth compactly
supported function such that ¢(x) =1 for |x| <1 and ¢(z) =0 for |z > 15. Also,
let 0 : R — [0,00) be defined by

(2.3 o) = [1(E))"
Then

(2.4) ’//(Vsml(‘%lt)e(iV)F(t), 6(5) VG2 0(1V)G (7)) dr dt

+ //<cos(|V|t)9(iV)F(t), ¢(%) cos(|V|T)0(iV)G(7)) dr dt’

SR F e |Gllress .
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provided F(t,z) and G(7,y) are supported where

t_ — —
(2.5) 4 7]+ o] + o] SR and LTIl Sy

for any (large) constant R.

Remarks. 1. The second inequality in (2.5) shows that the spacetime points (¢, x)
and (7,y) are not light-like separated. Thus if the ¢(-/R) cutoff were removed from
[24), the left-hand side would equal zero by the strong Huygens principle. In this
way, we see that the proposition is truly a bound on the diffraction caused by the
finite-size aperture ¢(-/R).

2. The multiplier #(¢V) plays the role of P<;. Choosing this in lieu of the
regular low-frequency projection has little effect on the proof, but avoids the ap-
pearance of additional error terms when we apply it in Section [l This is because
the corresponding integral kernel has compact support.

Proof. The LHS([2.4) can be rewritten as

////[Kl(twfﬂ'a y) + Ko(t, z;7,y)|F(t, 2)G(1, y) do dy dr dt,

where K7 and K5 are the kernels
KoomRe [ [ e i 5 (e — )o(€)6n) de
which captures the principal behaviour of [2.4]), and
Ko == [ [ sintil)sin(rla B0 (R(E = m)0©)8(n) 1 = 5] de

To prove the proposition, it suffices to estimate these kernels in L,})TLgf’y on the
support of F and G. In view of (23], this in turn can be effected by proving
R~21/10 hounds on the kernels in L5 .., which is essentially what we will do. As
a first step, we change variables to u = HT" and v = &T" and we split the integral
into several pieces, first by introducing the cutoffs ¢(R7/u) and 1 — ¢(R7/p), and
then in the latter case, the cutoffs ¢(R®/9v) and 1 — ¢(R8/?v). The job of these
cutoffs is to focus attention on the dominant region of (£, 7) space, namely, where
€ —n| < |€] + |n]. While the ¢ term clearly concentrates |€ — 5| near zero, the tiny
tails significantly muddy the requisite computations in the dominant regime, hence
the need for ¢(R%?v). Knowing that v is small, we see that the momentum transfer
to the light on passing through the aperture is very small; however, the direction of
propagation of a light ray is dictated by £/|£| and so low-momentum light rays can
nonetheless undergo significant changes in direction. This is the anomaly associated
to the case of small u. The temporal supports of G(7) and F(t) are too short to
allow significant production/absorbtion of low-momentum light (cf. the uncertainty
principle); this is the physical content of the estimate (2.6 below.

When the cutoff ¢(R7/ 91) is present, we bring absolute values inside the integrals
and bound the corresponding contribution (to K; or Ks) by

(2.6) S [ o R SR dudv S R
R3 JR3
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When the factor [1 — ¢(R™/2u)][1 — ¢(R¥°v)] is present, we again bring the
absolute values inside. We also make use of the fact that |¢(C)| Sp, [¢]7™ for all
m € N. Thus, the contribution of this term to either kernel is

/RS /]RB S(RT°m)] [1 — ¢(RY°v)| R®|$(2Rv)|0(ps + )0 (1 — v) dpu dv

N/Rs[ — ¢(RY°v)| R*|$(2Rv)| dv

R3
< ———dv
~ /VgRs/g (R|v[)*
(2.7) <R3,

It remains to estimate the contributions that are associated with the factor
[1 — ¢(R™°1)]¢(R®/v), which is indeed the heart of the matter. Here we must
treat the two kernels separately. We begin by considering K;, which amounts to
estimating the integral

I :z/ / ), v) dpdy,
R3 JR3

o(p,v) = Ftln+v|—7tlp—v|+(@—y) - p+(x+y) V]

with

and
Y(p,v) = [1 = $(R7° )| 6(RY V) R*G(2Rv)0(11 + v)0 (1 — v).
To do this, we will employ the technique of nonstationary phase. The fact that the
phase is indeed nonstationary is a consequence of ([2.3)).
For all multi-indices o € Z% of length |a| < 4, we have the following symbol-
type estimates: -

020(8)| <o Iﬁl“‘” 1020] So B3|, 10%] o Ll

a P |—\a|

1
and ‘— ga’
’ "
uniformly for (u,v) € supp(z/J), which implies that |u| > R™7/° and |v| < R/,
To derive the last estimate, one squares both sides and uses the fact that for these
/“L’ l/7

Iz

to obtain

_ - R/ (7))
BV =F A FAO(—R )

The inequality now follows from this and (23).
Using these estimates and the quotient rule in the symbol calculus, we find that

the vector a := (ﬁ : Vugp) ; obeys

Mt
|0al Sa ||~ uniformly in  |p| > R™7/? and |v| < R78/°
when |a| < 4. Moreover,

sup|(iV,, - a) 9| < > |05t al -+ |0pal || S R |ul =,
v o +-Fas+B8|=4
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Thus, as e/ = R=4(a - iV,)*e'??, we obtain

L SRF sup /eiR“’(“’”)w(u,V)du‘
R3

|V SR=8/9

_4_8
<R*5  sup
ISR/

set [ R~ dp
InIZR=7/9

(2.8) <SR,
Collecting ([2.6]), [2.7), and (2.8)), we obtain
‘Kl(tv €T, y)| S R77/3'

By virtue of ([ZH), this settles the K portion of the proposition.
We now turn to estimating the remaining portion of the integral defining Ko,
namely,

I = / / sin(t[p + v|) sin(r|p — v|)R*¢(2Rv) e ==V EE G (14 4+ )0 (1 — v)
Rr3 JR3

(2.9) x [1 = Yt =T 11— g(RTO )] g(Rv) dpd.

[, 9, a) )

To continue, we use the simple identity
sin(t|p + v|) sin(r|p — v|) = % Re ettlntvi—irlp—vl _ % Re ettlntvitirin—vl

which naturally breaks I5 into the sum of two pieces. The first summand can be
estimated in a manner similar to that used to treat I, or by a simplified version of
the technique we will use to estimate the second summand,

I .= /R3 /]R3 e R}G(2Rv)0(u+ v)0(p — v) [1 — %}
x [1 = (R )] (R *v) dpdv,
where
pi=tp+v|+7lp—v|+p@ -y +vi@+y).

As a first estimate on I}, we note that when |v| < |u|, which is where the
integrand is supported,
_ ) w=v) _ ool
(2.10) 1= Smsr =O0(5R)
and hence

IS [ [ BIGR6G+ )00 - vt dudv s [ BRI dv
R3 JR3 R3

(2.11) < R™2

Note that this is not quite good enough: when integrated over |t| < R and |7] < R,
there are no powers of R left over to provide the required decay. Nevertheless,
it does provide the requisite R~!/1* bound on the L} L%, norm of K; in the
restricted region where |t 4+ 7| < R%/10.

It remains only to estimate I} in the region where |t 47| > R%/0. To do this we
will use the Van der Corput Lemma, which is most cleanly done by breaking the p
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integral into six pieces, one near each coordinate semi-axis. To this end, let us take
a smooth partition of unity of the unit sphere adapted to the open cover

{max(|pal, p2]) < gua}, {max(|pl, |p2|) < —gpa}, {max(|ps|, [p]) < Sua},
fma(lsa), rl) < —2pa}, {ma(lpial, lial) < Spn}, {ma(lpial, lial) < — Ly}

We break the p integral into pieces by introducing cutoffs x(u/|u|), where x denotes
one of the elements of this partition of unity. By symmetry, it suffices to treat the
piece associated to the first region listed above.

Recalling that we are considering only the case where |t47| > R0, |u| > R=7/9
and || < R7%/°, we have

22 1
02,0 = (t+m) gt 4+ o(lu 'R 7Y).

[u]3

Noting that |p| — |p1] ~ || ~ ps on the support of x(u/|u|), we deduce that on
this set,

(2.12) 102, 6| > |t+7‘

Thus, by writing
V() = 0(p+ )0 — v) [1 = YLD — 9RO p))x (1)
and noting that

_8|v|?
16l pos gy S (a) ™ and [0, 4]] 1,
the Van der Corput Lemma (cf. [27, p. 334]) ylelds

i 1/2
/// P dpy dus dus S // (75%) {|I¢I|Loo(dm)+||<9M¢HL1(dm)}duz dus
|2 Sps

[v|?
|t+T|1/2’

v|? v|?
<:U’3>78(‘M_|3 + %)7

uniformly for |v| < R™%/%. Thus when |t + 7| > R%/10, we may bound the portion
of I, partitioned off by x(u/|u|) as follows:

/ / e P (1, 1) R G(2Rw ) (R v) dps dv
R3 JR3

As a consequence, we can bound the Lj L3°, norm of K on this set of times by
R—9/20.

This completes the proof of the proposition. O

SRt +77V2,

3. NLW BACKGROUND

We start by recording the standard local well-posedness theory for (). All
results follow from the Strichartz inequalities discussed in Lemma[2.4] and the usual
contraction mapping arguments.

Theorem 3.1 (Local well-posedness). Given (ug,u;) € Hse x H3~" and ty € R,
there is a unique maximal-lifespan solution u : I x R® — R to (L)) with initial data
(u(to), ut(to)) = (ug,u1). This solution also has the following properties:

e (Local existence) I is an open neighbourhood of t.

e (Blow-up criterion) If sup I is finite, then u blows up forward in time (in the
sense of Definition [L2)); if inf I is finite, then u blows up backward in time.
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e (Scattering) If supI = +oo and u does not blow up forward in time, then u
scatters forward in time, that is, there exists a unique (ua'7 ui") € Hie x H2=~ such
that

(3.1) lim H — cos(t|V])ug — SREUVD,+

=0.
t—+oo V]

iz

Conversely, given (ud,ul) € Hse x H2~' there is a unique solution to (LI) in a
neighbourhood of infinity so that (531) holds.

o (Small data global existence) If (ug, u1) is sufficiently small in H3e x H5~1, then
u 18 a global solution which does not blow up either forward or backward in time.
Indeed, in this case,

Su () S || (o, w) [ grzer-

Our next topic is the energy flux identity/inequality, which is a variant of the
Morawetz identity/inequality discussed in the introduction and is proved in much
the same way. We will use it in connection with the Duhamel formulae (L9), in
order to show that the time integrals converge.

Lemma 3.2 (Energy flux inequality). If u is a solution to (II) with (u,u:) €
Leo(I; Hse x He=Y), then

/ / fu(t, 5)[P*? dS(y) dt <., sup [t
|z—y|=|t| tel

uniformly for x € R3.

Proof. The result follows by applying the Fundamental Theorem of Calculus to
£0)i= [ V)l + phplutt ) dy
z—y|<|t

and noting that
W) S (INewtu®)? ap, + IuC@)P5 )13 S 177,
Lpt? L2

x

by Hélder’s inequality and Sobolev embedding. (]

The small data theory shows that the H. e X Hgﬁu_l norm of a blow-up solution
must remain bounded from below. The fact that this norm is nonlocal in space
reduces the efficacy of this statement. Our next lemma gives a lower bound in a
more suitable norm:

Lemma 3.3 (V, ,u nontriviality). Let u be a global solution that is almost periodic
modulo symmetries. Then,

(3.2) inf [ |Vieu(t,z)|»%2 do >, 1.
teER g3

Proof. First we note that by the small data theory,
(3.3) inf [Veut, )] o Zp 1,
for otherwise u would have finite spacetime norm in contravention of the hypotheses

of this lemma. Indeed, a solution that scatters cannot be almost periodic modulo
symmetries.
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Next, we note that
1 g, = Il >0

for any nonzero R*-valued f € H;fl. Hence this ratio achieves a nonzero minimum
on any compact set that does not contain the zero function. Indeed, since this ratio
is invariant under scaling and translation, it suffices for the set to be compact
modulo these symmetries. Therefore, the ratio is bounded from below on the
(precompact) orbit V; u(t), and so, in view of (B3], the lemma follows. Note also
that (B.3) guarantees that the orbit V, ;u(t) does not approach the zero function.

O

It is not possible to obtain lower bounds on the norm of u(¢) for a single time ¢,
as it is quite conceivable that u(t) = 0, with all the H2 x H*~! norm concentrating
in wu(t). Nevertheless, this phenomenon must be rather rare as our next lemma
demonstrates.

Lemma 3.4 (Lip/z—norm nontriviality). Let u be a global solution that is almost
periodic modulo symmetries. Then, for any A > 0, there exists n = n(u, A) > 0 so
that

(3.4) [{t € [to,to + AN (to) '] : lu(t)l svr2 gsy > n}| =nN(to) ™"

for all tyg € R.

Proof. Recasting (84 in terms of the normalizations of u, defined in (LH), yields
(3.5) {5 € [0, 4] : el (5) 30/ gy > 0} ] > .

As the map from the initial data to the solution is continuous (a consequence of
the local theory) and the set

{(u[t‘)] (0), uyO}(O)7 s) 1t € Rand s € [0, 4]}

is precompact, we deduce that {ul®!(s) : t, € R and s € [0, A]} is precompact in
H;C. Thus by Sobolev embedding, we see that it suffices to show that for some
choice of 7 the set appearing in (B3] is nonempty for all 5 € R. (Of course, the
passage from nonemptyness to positive measure requires a reduction in 7.)

To see that the set appearing in (B3] is nonempty, we argue by contradiction.
To this end, imagine that there is a sequence of times t,, so that

(3.6) [|ulte](s) — 0 uniformly for s e [0, A].

HLip/2(R3)

Then, by a simple bootstrap argument using the Duhamel formula, (3], and the
Strichartz inequality, we deduce that

[[ult1(s) — cos(s|V yul™1(0) — |V~ sin(s| V)ul™ ()| o y30/2 (0 a) zs) = O

Thus, appealing to ([B6) once again, we obtain

(3.7) Hcos(s|V|)u[t"](0) +|v|! sin(s|V|)u[St”](O)HLgoLip/z([QA]XRS) — 0.

This, we will see, contradicts the uniqueness theorem for the linear wave equation.
As noted previously (cf. the remarks after Definition [[L6), almost-periodicity of u

implies that the sequence of pairs (ul**1(0), u[st”](O)) is precompact in H5 x Hs~1,

Thus, by passing to a subsequence, we may assume that it converges and name

the limit (f,g). This limit must be nonzero, for otherwise, we could apply the
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small-data theory to the pair (u(t,), u+(t,)), for n large enough, and deduce that u
is global and has finite spacetime norm.
On the other hand, from [B7), we see that

cos(s|V|)f + V| tsin(s|V|)g =0 forall se0,4],

which implies that f = g = 0, since they can be reconstructed from the behaviour
of this solution of the linear wave equation as s — 0. This contradicts the results
of the previous paragraph and so completes the proof of the lemma. O

Corollary 3.5 (Potential energy concentration). Let u be a global solution that is
almost periodic modulo symmetries. Then, there exists C = C(u) so that

(3.8) // lu(t, z) P12 da dt 2u/N(t)%*1dt
1 J)z—2(t)|<C/N(t) I

uniformly for all intervals I = [t1,t3] C R with to > t1 + N(t1)~1.

Proof. We know that there exists § = §(u) so that
(3.9)
N(t) ~y N(tg) uniformly for ¢ € [to—dN(to) ' to+N(t)™'] and t¢o € R.

Indeed, if it were not possible to choose a ¢ with this property, then one could find
a convergent sequence of initial data (taken from normalizations of u) whose limit
blows up instantaneously, in contradiction to the local theory. For further details,
see [I8, Corollary 3.6] or [16, Lemma 5.18]. We note that the argument requires
perturbation theory, which is an ingredient in the proof of Theorem [[7]

In view of (B9, it suffices to prove the result for intervals of the form [to,to +
SN (to)~1] for some small fixed § > 0. The simple argument that shows this requires
that I contain at least one interval of this form. This is the origin of the requirement
ty > t1 + N(t1)~! in the statement of the corollary; correspondingly, we require
6 < 1.

As noted in ([L.§]), the almost-periodicity of u and Sobolev embedding imply that
for any 1 > 0 there exists C'(n) > 0 so that

/ jut, )| % do <.
lz—z(t)|>C(n)/N(t)

Combining this with Lemma [34] yields the following: There exists C = C(u) so
that the set of

t € [to,to + 6N (to)~'] such that / lu(t,z)[>P/? dx >, 1
lz—=(t)|<C/N(t)
has measure =, N(to)~!. In view of this, it suffices to show that given 79 > 0 there
exists 1 = n1(u,np) > 0 so that

/ jult, ) do > mo
le—z(t)|<C/N(t)
— Nt fult, ) P2 da > .
lz—z(t)|<C/N(t)
The truth of this statement follows from the almost-periodicity of u. Indeed, passing
to the normalizations of u(t) and recalling that these form a precompact set in L / 2,
the statement reduces to the fact that if a sequence {f,} converges in L¥? and

. . . 3p/2
converges to zero in LPT2 then it converges to zero in Ly" /2, O
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4. GLOBAL ENEMIES ARE SUBLUMINAL

The principal goal of this section is to show that for the global enemies (the
soliton-like and frequency-cascade solutions) of Theorem [[.8] the center x(t) of the
wave packet travels strictly slower than the speed of light, at least on average,
over reasonably long time intervals. Note that Definition does not define z(t)
uniquely, but only up to a radius of about N(¢)~!. While this does not render
the goal of this section ambiguous, it is something of a nuisance in the proof.
For that reason, we first standardize x(¢) in some mild fashion. This is our first
proposition. The main result of the section, the subluminality of global enemies, is
Proposition 4.3

Proposition 4.1 (Centering x(t)). Let u be a global almost periodic solution to
[@I). The function z(t) can be modified so that it retains all properties stated in
Definition (though C(n) may need to be made larger) and in addition satisfies
the following: For some large constant Cy, and all w € S?,

(4.1) / Veeu(t, 2)[772 do > &
(z—z(t))>0 *

that is, each plane through x(t) partitions u into two nontrivial pieces. Moreover,
(4.2) |z(ty) — x(t2)| < |t1 — to] + CuN(t1) "+ CuN(t2)™'  for any ti,ts €R;
indeed, this was also true for the original z(t).

Before proceeding to the proof of this proposition, we pause to make the following
intuition precise: Compactness (modulo scaling) prevents the solution () from

concentrating on very narrow strips, provided the width is measured in units of
N(t)~%

Lemma 4.2 (Small on narrow strips). Let u be a global almost periodic solution
to (LI). Then for any n > 0 there exists a small constant c¢(n) > 0 so that

(4.3) sup [Viul(t, x)|% dz <.

wes? /w-(zx(t))|<6(n)/N(t)
Proof. For a single value of ¢ this follows from the Monotone Convergence Theorem;
it extends to the full orbit of V; zu(t) by compactness. O

Our first application of this lemma is to the proof of Proposition 1} we will use
it again in the proof of Proposition 3]

Proof of Proposition Il We first prove ([£2). As the veracity of this equation will
be deduced from the properties stated in Definition [[L6 it will be equally valid for
the modified version of x(t) which will be defined in due course.

Choose 7 > 0 to be a small number well below the H;c x Hge=! threshold for
the small data theory. By Definition [[L6] there is a constant C'(7) so that

449 le(ammet=)ultn, o) .. + o (ame=r) wtno)|| o <7

for some smooth cutoff ¢ : R? — [0, 0c0) with ¢(x) = 1 for |z| > 1 and ¢(z) = 0 for
|z| < 5. Thus, by the small data theory, there is a global solution to (II)) whose
Cauchy data at time ¢; match the combination of ¢ and u given in (@4)). Moreover,
per the small data theory, each critical Strichartz norm of this solution is controlled
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by a (p-dependent) multiple of . By simple domain of dependence arguments, this
new solution agrees with the original u on the set

Q) :={z:|jz—z(t)| >t —t:| + C(n)/N(t1)} forall teR
and hence, by Sobolev embedding,

||vt,xu(t)HL£% o) <p forall teR.

Now consider this estimate and (L&) with ¢ = ¢3 and 1 much less than half the

minimal L27 /P+2) yorm of Vi.zu(t), over time; this minimum is positive by virtue
of Lemma [3.3] Thus we may deduce that

{z:]e—z(t)] <fta —ta[ + C)/N(t)} N {x : |z — x(t2)| < C(n)/N(t2)} # 2,

from which ([@2) follows.
We now turn to the proof of [@Il). First, fix C > 0 so that B(t) := {|z — z(t)| <
C/N(t)} obeys

3p
(4.5) / |Vt,wu(t, x)‘ P2y >, 1
B(t)
uniformly for ¢ € R. This is possible by virtue of Lemma B3] and (LJ)). Now set

3p_
fB(t) [z — x(t)] [Veou(t, z)| P72 d
5 .
Sy Vewult, )7+ do

() = x(t) +

This definition immediately implies that |Z(t)—x(t)| < C/N(t); thus, Z(t) maintains
the properties stated in Definition [[L6] though the compactness modulus function
C(n) may need to be increased, say by the addition of C. In particular, (2]
remains valid after a suitable increase in the constant C,,.

By construction,

3p
/ w- [z —E(t)] | Viault,z)| 72 de =0
B(b)
for any (unit) vector w € S?, while by (@3] and Lemma 1.2
3p
/ lw- [z — 2)]| |[Vieu(t,z) |77 do 2, N(t)7"
B(t)
Putting these two results together yields

3p
{w- o — 5]}, [Vowut, )| dz 2u N(©)Y, where {y}; = max{0,y}.
B(t)
Therefore, as € B(t) implies that |z — Z(¢)| < 2CN(t)~!, we have
- -z~ (0]} 2,
Vigu(t, )| *™ de > / " Vi u(t,x) | de 2, 1,
/w»(w—i(t))>0 v | B 2C0N(t)! Vi |
which proves ([@1]). O

Proposition 4.3 (Global enemies are subluminal). Let u be a global almost periodic
solution to (L)) with N(t) > 1. Then there exists § = 6(u) > 0 such that

(4.6) 2(t) —x(T)| < (1= 6)|[t — 7| whenever |t —7|> 5.
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The proof of this proposition splits into two cases depending on whether or not
N (t) varies significantly over the time interval between ¢ and 7. Before turning to
the main part of the proof of Proposition [£.3] we present the key ingredient in the
case of significant variation as a lemma:

Lemma 4.4. For almost periodic solutions u to (ILI)), there exists ¢ = c¢(u) > 0 so
that

(4.7) [2(t1) — a(t2)| > [t1 — to| —cN(t))™" = N(tz) < ¢ >N(t1).
For a nonvacuous statement, we assign the names t1 and ta so that N(t1) < N(ta).

Proof. By time-reversal symmetry, we may assume that t; < t2. By space-trans-
lation symmetry, we set x(¢1) = 0 and by rotation symmetry, we assume that
l‘(tQ) = (.Il(tg),(), 0) with xl(tQ) Z 0.

Assume, toward a contradiction, that ¢N(t;)~! > ¢ !N (t2)~!. Then, by choos-
ing ¢ small enough (depending on 7) and invoking the almost periodicity of u, we
obtain

(4.8) ||¢(2v Zl)(t{zl) (2, HHC + Hw(%f)t?)“t t2, @ ||H5C 1=

for some smooth cutoff ¢ : R — [0, 00) with ¢(x) =1 for < —1 and ¢ (z) = 0 for
x > —1/2. Here 7 is chosen below the threshold for the small data theory. Using

this theory and simple domain of dependence arguments, we may deduce that
(4.9)

3p
/ ’Vt’mu(tl,x)’m dr < npe%, where Q) := {a: txp < .’L’l(tg)—(tz—tl)—CN(tl)_l}.
Q

Now by LHSET) and the standardizations introduced at the beginning of this
proof,

Q2 {z:(~e1) (z—z(t1)) > 2eN(t2) 1},

with the obvious consequence for the Lip /(p+2) norm of V; zu(1) on this set. Mak-
ing 1 small enough and then ¢ small enough, we deduce a contradiction to the
combination of Lemma 2 and ({.T]). O

Proof of Proposition [£3l We claim that it suffices to show that there exists A =
A(u) > 1 so that for all ¢y € R there exists t € [to, to + AN(ty) '] so that

(4.10) lz(t) — x(to)| < |t —to| — A"'N(to) ™"

Indeed, with this claim in hand, we may inductively construct a sequence of times
{t;} so that tg =0, 0 < t41 — tr, < AN(tx)"!, and

m—1
|I(tm) - x(tl)‘ < Z |tk+1 — tk| — AilN(tk)fl

T
o

(1= A7) ter — ti] < (1= A7)t — ta].
k=l
We may deduce the result for values of ¢ and 7 lying in [0, 00) between these sample
points by applying ([2]). Note that this requires choosing ¢ < %A‘2(A +2C,)7!
where C), is as in (£2)). By employing time-reversal symmetry, one similarly obtains
the result for ¢,7 € (—o00,0] and thence for all pairs of times via the triangle
inequality.
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We now turn to verifying the claim made at the beginning of this proof. Let ¢
be as in Lemma {4l If N(t) > ¢ 2N (tg) for some t € [to,to + AN(ty) '], then by
that lemma,

lz(t) — 2(to)| < |t —to] — eN(to) ™' < |t —to] — AN (o) 71,

provided we ensure A > c¢~!. This settles this case. Suppose now that N(t) <
2N (to) for some t € [tg,to + AN(to)~!]. Then by Lemma FZ]

lz(t) — 2(to)| < [t —to] —cN(t) ™' < |t —to| —c N (to) ™ F < |t —to| — A" N(to) ™1,

provided A is chosen so that A > ¢. This settles this case.
It remains to verify our claim in the case

(4.11) < N(t) <c 2 forall t€l[ty,to+ AN(to)™'],
N(to)

for which we will argue by contradiction. For notational convenience, we translate
so that tg = 0 and z(tg) = 0. Now by assuming that ([£I0) fails and making use of

(#2) and (@I, we deduce that
te[0,AN(0)7"] = |lz(t)| —t| < BN(0)~"

for some B = B(u) > C,(1+c¢~2)+1, where C,, is as in ({2)). By enlarging B and
using ([IT]), we can ensure that

{llz] —t| < B/N(0)} 2 {lo —2(t)] < C/N ()},

with C as in Corollary Using this corollary, it follows that
A/N(0) .
(4.12) / lu(t, z)[P*2 dx dt >, (A — B)N(0)» 2,
B/N(0) J||z|—t|<B/N(0)

whenever A > B + ¢ 2.

On the other hand, we can obtain an upper bound on LHS(@.I2]) from the energy
flux identity. As a first step, we observe that by Lemma we have
A/N(0)

/3 X{|z|<2B/N(0)} /| ‘ [u(t,y)[P*2 dS(y) dt da <, A5 B3N (0)» 2.
R: r—y|=t

B/N(0)
To continue, we change variables via y = x + z and then x = 2’ — z to obtain

A/N(0)

—4 4_
/N©) //| Jut, &)X (0212 /v (0)) dS(2) da’ dt S, AT2 BPN(0)7
B/N(0) JR3 J|z|=t

Noting that
/ X{la'—z|<22} dS(2) 2 L* when |lz'|—t| <L and [f|>L
|z|=t

for any L > 0 and hence for L = B/N(0), we are led to
A/N(O) \ \
/ lu(t, ") |P+? da’ dt <, A'"» BN(0)» 2.
B/N(0) J||='|-t|<B/N(0)
To finish the proof, we merely note that this contradicts (Z12) once A is chosen
sufficiently large. O
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5. ADDITIONAL DECAY

In this section we prove additional decay for the soliton-like and frequency-
cascade solutions described in Theorem [L.8]

Proposition 5.1 (L? breach of scaling). Let u be a global solution to (1)) that is
almost periodic modulo symmetries. In particular,

(5.1) [ ) || e s e e 1y < 00
Also assume that

) i > 1.
(5.2 N =1

Then u € L{PLY for 3’?'%# <q< 371’. In particular, w € L°LY (asp > 6) and
by Hélder’s inequality, F(u) € L°LL.

The remainder of this section is dedicated to the proof of Proposition .11

Let u be a solution to (1)) that obeys the hypotheses of Proposition Bl Let

n > 0 be a small constant to be chosen later. Then by almost periodicity modulo
symmetries combined with (B.2), there exists Ny = Ny(n) such that

(5.3) IV

c 1:71
’ PSNo“HLtWLg(]RxRS) + H|V|S PSNoutHLgOLg(Rfoi) s
Now for 37” < r < oo define

3_2
Ap(N)=Nr""» sup lun ()] zr

for frequencies N < 10pNy. The key to proving Proposition Bl is to show that
A,(N) decays well as N — 0; as one can interpolate with the trivial bound
Agp/2(N) Su 1, one need only consider the case when 7 is close to infinity. Note
that by Bernstein’s inequality combined with Sobolev embedding and (&),

(54) AN S ol S 1910 gy < 00

for all N < 10pNy.
We next prove a recurrence formula for A4, (N).

Lemma 5.2 (Recurrence). For 37” < r < oo we have
1-2_3 1—-2_3_ _
AN S G T Y (BT Ay

4r—6p

5 T el

for all N < 10pNy.

Proof. Fix N < 10pNy. By time-translation symmetry, it suffices to prove

N un Olle; S { ()7 T4 DD (BT A

(5.6) 4 (%)%Jr%*AT(M)p_l}W.



DEFOCUSING ENERGY-SUPERCRITICAL NLW IN 3 SPACE DIMENSIONS 3915

Using the Duhamel formula (I9) into the future we write
° sin(t|V
w@:/——lewmﬁ
0 V]

Now let T' > 0, to be chosen later. Using the explicit form of the propagator (cf.
Lemma [22]), Holder’s inequality, and the energy flux inequality Lemma 32 we
estimate the long-time contribution (without the Littlewood—Paley projection) as
follows:

tV <1
|- el < | [T Putpasw af
‘v‘ Lge |lz—y|= t L
A QR/
H ult,y)) dS(y dtH
R>TR lz—y|= t Le

<> ene| [ / [u(t.y)I"2dS (y)
R>T R J]z—y|=t
1 3 4yp+1
< —Riez RO
Su Y R R7R +
R>T
(5.7) S T75.
On the other hand, by (T9),
o t|\V TV
/ $M|MMWﬁ:m@MM) VD o,
T % %

and so, using Sobolev embedding and (B.I) we get

H/ s1ntvv F(u (t))dtHszg < 1v)Peu

Therefore, interpolation (and L"-boundedness of the Littlewood-Paley projection)
yields the following estimate for the long-time contribution:

sin t\V\ sin t|V| 3_2
VIV g H/ ¢ dtH <, T %
H / M W R O

valid for any P < r < oo. We will make use of this inequality without the frequency
projection in the next section; see (G.6]).
We now turn to the short-time contribution. By the Bernstein and Strichartz

|L§°Lg + H|V|8671ut”L§OLg Su L.

inequalities,
H/ sin(¢[V|) VD) b ue)) P /T s1n(t|V|)F (u(t))
u G u
v : o v 7
SN ||Fy(u)]| 2
~ N )HL;6L [0,T]xR3)
3 3, 46
(5.9) SNETEEN @ o

Collecting (B.8)) and (£9) we obtain

3_2 3_2 1,3 _2_3
(510)  NFFun(0)lz; Su (NT)F 5 + (NTHHENTT3 2 Fw)] e
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To estimate the right-hand side of the inequality above we decompose
U = UsN, + U<N, = U>N, T “WNPS-SNO + U<WNP

and thus, taking advantage of our assumption that the power p is even, we write

10p

p
_ +1 +1—k
(511) FN(U) = PN (U>N0 kz k+1 u>N0u<NO + Z p luz;%ﬁ'ﬁl\/o>'
=0

To estimate the contribution of the first term in this decomposition to (EI0),
we use Holder, Sobolev embedding, Bernstein, and (G.1)):

P

;D+1 k p—k
E k1 HPN U>N0U>NUU§NO)
k=0

[
LeeLr

LeL? >0 FLI

1,3
S Nullf V2" us,

L@ H3e HL,?"L%
71+—+;

SulNg 7 ||U>No||L;x>H;C
N()_1+%+%.

~Uu

To estimate the contribution of the second term on the right-hand side of (G.1T)
o (EI0), we first note that

o 10p Top L?CL’*1
p+1 D
Sl e an o prmr F Il s v <ol o
By Hélder, Bernstein, and (53] we estimate
p+1 .
Hu%§ SNDHLOQLT—I
N > lunillegerr -+ lluny o legenpllun, | 2o flun, ol 2
N tooLm P LtooLm P
Top SN1<-<Np11<No
Q_M 2_3<T2_*P) 9
T T
,S Z ||UN1 ”L‘,?OL;' T ||uNp—1 ”L,?C’L;Npp perl HUSNO HLfCI-'IjC
%<N <--<Np41<Ny
—14243
Su 1’ Z AT(NI)"'AT(prl)Np—l o
1—NPSN1S <Np-1<Np
2a7—14+243 N N\ p—1 p—1
SN (=) A +An(Np 1)
p—1
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Similarly, we estimate

P
H“<%“%S~SNOHL?OL;+1
Shigesmleze: 3 lowmlg s e s, | 2
N1 < <N <2 !

2 2 k
SuPNTER ST NP AN N AN )N, T

p
N1 < <N, <105

_342.3 2 _o\(p—
D DI S L FRA T
Ni< SNy <2

1,3_
<. PN Z (%)fm A (M)PL,

N
M<m

Putting everything together, we obtain

3_

3_2
N7 [Jun (0)]

1 Su (NTYFF 4 (N3 { () 77

we deduce (B8). This completes the proof of the lemma. O

To resolve the recurrence in Lemma and so prove Proposition 5.1l we need
the following simple lemma. The recurrence (.12)) in the lemma involves both the
past and the future (that is, I < k and [ > k), which makes it an acausal variant of
the usual Gronwall inequality.

Lemma 5.3 (Acausal Gronwall inequality). Given n,C,v,7 > 0, let {xg}r>o0 be
a bounded nonnegative sequence obeying

(5.12) x < C277F 4 nz 2 k=l + 7722_7%_”96; for all k>0.
1<k 1>k

Ifn < imin{l —277,1 - 2771 — 2077} for some 0 < p < 7y, then x; < (4C +
]l g ) 2775
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Proof. Let X}, := sup{x,, : m > k}, so that (B.I2)) implies

o0
X, <0277k 4 772 tilatlh (s UZ[TW’ + Q*V'P]Xk

<k p=0
<C27% 4 27X 4 L
<k
The result now follows by a simple inductive argument. O

Using this lemma we can now complete the

Proof of Proposition [5.1l For any positive r, the power appearing outside the braces
in (B3 is less than one. Thus, by concavity, Lemma [5.2] implies that

AN Sa () 42 Y (X)) A0S
B <M<No
S0 (A A, ()P,

N
M<m

for all

3 4r—6 4r—6
N <10pNy, P <r<oo, y<(1-2- %)T(TP_HS, and 7 < (3 + %)T(p+£.
When % < r < oo, the power atop A,(M) on the right-hand side of the
inequality above is > 1. Discarding surplus powers by invoking (5.4]), we can apply
Lemma [5.3] and deduce that

§+(1 2 3\ 4r—6p

(5.13) lunllpzory, Su Nv—rTO75 7956w
for all N < 10pNy. (In applying Lemma 5.3, we set N = 10p - 2% Ny, 2, =
A,(10p - 27%Np), and take 7 sufficiently small.)
To continue, we use interpolation followed by (E.I3]) and (&1):
r(g—2) 2(r—q)

lunllzzzs < lusllfe ) llunllf 2

p T

P

r(a—2)r2_3 2_3\4r—6p 2(r—q)(3_ 2
S'u, Nq(r72)[ +@a T)T(P+4)]7N7 q(r—2) 5—3)

for all N < 10pNy. Thus, letting r — oo, we get

6(q—2) _
lunll o rs Su NG %

~

for all N < 10pNy. Therefore, using Bernstein together with (&), for ?fﬁ# <
q < 37” we obtain
ullsors < lu<nollzeers + lusng lloeo s

6(¢—2) 3p—4 2_3
Su E N ap+4) ™ “pa + E Npr 4 /Su 1,
N<N N>No

which completes the proof of Proposition (.11 O
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6. QUANTITATIVE DECAY

In this section we consider the soliton-like and frequency-cascade solutions (in
the sense of Theorem [[§]) and obtain a quantitative bound for how such solutions
decay away from xz(¢) in a critical space, specifically, LY /2 Note that compactness

merely gives a nonquantitative decay.

Proposition 6.1 (Spatial decay). Let u be a global solution to (1)) that is almost
periodic modulo symmetries. Also assume that

(6.1) H(u’“t)HLgO(R;H;CxH;C*l) <oo and 2161]12]\7(15) > 1.
Then
(6.2) sup/ |u(t,x)|37p dr <, R™7
teR J|z—z(t)|>R
for any v < w and, in particular, for some v > 1 when p > 6.

3p
Proof. We prove this by bootstrap; the requisite smallness comes from compactness.
We elaborate upon this, before launching into the main part of the argument.

Let ¢ : R® — [0,1] be a smooth function with ¢(z) = 1 when |z| > 1 and
#(z) = 0 when |z| < L. As u is almost periodic modulo symmetries and (G.I)

2
holds, for any 1 > 0 we may choose Ry so that

©3)  swp{o(dle — O ull .. + loGle — @)l s } <

Requiring 7 to be small enough that the small-data global well-posedness theory
applies and making use of simple domain of dependence arguments, we deduce that

(6.4) sup{HuH ap(p=1) 12p(p—1)
TER L, *PT2 L7 ({Jo—a(T) |2 58 +|t-T})

+ ||V

Lf°Lv%<{|ac—ac(T>|z%+|t—T\}>}5 ”

We now turn to the main part of the proof of Proposition By the time-
translation symmetry of the problem, it suffices to consider a single time, say ¢t = 0.
By space-translation symmetry, we may set (0) = 0. Using Lemma we may
represent u(0) as an integral over [0,c0), which we choose to break here into two
pieces: [0,0R] U [0R,00). Thus u(0) = f + g with

°° sin R gin
(6.5) fi= /5R @F(u(t))dt and ¢ ::/0 %F(u(t)) dt.

Here § > 0 is a small number that will be chosen in due course.
The estimate we need for the long-time piece f was already obtained in (B.71):

_2
(6.6) I fll oo ey Su (6R) 7.

By contrast, we estimate ¢ in a more natural (scale-invariant) space. Note that by
finite speed of propagation, both for the propagator |V|~! sin(¢|V|) (cf. Lemma[2.2])
as well as for the center z(t) of the wave packet (cf. Proposition [l), we see that
for |x| > R the value of g(x) depends only on the values of u in the set

Qr:={(,z):t€[0,6R] and |x — z(t)| > (1 — 20)R — 2C, },
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where C,, is as in [@2)). With this in hand, we now estimate g using Sobolev
embedding (which is valid on the complement of a ball) together with the Strichartz
and Holder inequalities:

IR sin (¢|V|
g1l L20/2 (g5 1) S H/O #VF(u(t))dtH

LTI

toa

Hese=1(|lz|>R)

6.7 < Nul|, o ullPl _ Vu )
(6.7) ~ H HLt LZP/2(QR)H ‘L%L:?&S—ZJ)MR H HL;,QLP%%(QR)
Now requiring R > Ry(u) > 8C,, and ¢ < 1/8, we see that Qg is included in the
region where |z — z(t)] > R/2, which we apply to the first copy of u. If R > Ry,
then Qg also is included in the region covered by (6.4]), which we apply to the next
two factors. In this way we obtain

(6.8) gl 2r2 a5y S PPNl Loe 13972 @ (1o —aty 2 R 2)

for a fixed small 6 and R > Ry(n,u).

Next we put the two pieces, f and g, together to bound LHS([G.2)). This is a
simple application of standard tricks from real interpolation: Fix A > 0 so that
[ fllLee < A/2; note that by (68), A S, (6R)~*?. Then

3p—2¢q

Ju(0, )P < AT u(0,2)| + [2g(x) P72
and so, using (G.g)),

/ (0, 2)[*/2 dor s R
|z|>R

3p—

2q
7 u(0,z)

12 (23

+ 7P Sup/ lu(t, x)[*P/? da
t Jz—=z(t)|>R/2
for R > Ro(n,u).
We now have our basic inductive step. Defining

B(R) := sup/ lu(t, z)[>P/? d,
teR J|z—a(t)|>R
restoring space- and time-translation invariance, and invoking Proposition B.1], we
have . ,
B(R) Sus R™™7 +n’B(3R) forany g¢> W
and R > Ry(n,u). On the other hand, by (6I)) and Sobolev embedding, B(R) <, 1
for R < Ry(n,u). The desired estimate now follows by choosing 7 sufficiently small

and performing a simple induction. ([l

7. GLOBAL ENEMIES HAVE FINITE ENERGY

In this section, we prove that the soliton-like and frequency-cascade solutions
described in Theorem [[[§ have finite energy, that is, V; ,u is square integrable.
The first and main step is the following:

Theorem 7.1. Let u be a global solution to [LTl) that is almost periodic modulo
symmetries. Assume also that

inf N(t) > 1
teR
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and

(7.1) VIV at]| o < 00
for some 1 < s < s.. Then for all 0 < e < g¢(p),

(7.2) VI Vo] oo < 00,
provided s — 1 —e > 0.

Proof. By time-translation symmetry, it suffices to prove the claim for t = 0. By
space-translation symmetry, we may also assume z:(0) = 0.

By Bernstein’s inequality and (7)), it suffices to prove the following space-
localized low-frequency bound: For some 8 = §(g) > 0,

(7.3) 166G) P<a | V12 0u(0) | 2 5, S B

uniformly for R > Ro(u) and ‘Whitney’ balls B = {z € R3 : |z — x9| < R}
with |zg| = 3R. Here 0 is as defined in ([Z3]) and plays the role of a low-frequency
projection, but one whose convolution kernel has compact support; the utility of
this fact will be apparent in due course and is responsible for the appearance of 6
in Proposition

To see that ([Z3]) really does suffice, we note that

(7.4) 106V)Paifllzz ST = [[Paifllz S1
because [6(¢)| 2 1 for |¢| < 1%, which is the Fourier support of P<;.

To obtain (7.3) we use both Duhamel formulae in (L9) to write:
(7.5)

10(:V) P<1| V"~V 2u(0 ||i2 (Br)

/ / <v5m||vv“t)0 ,LV)|V|S_1_€F§1(t),

XV DY) V]2 Py (7)) dr

[es) 0
[T teosVI0pGm T Fa ),
XR COS(|V|T>9(iV)|V|s_1_€F§1(T)> dr dt,

where y g is a smooth cutoff function associated to the ball Bgr. More precisely, we
set

xr(@) = 6(*52),
where ¢ : R® — [0, 1] is a smooth function obeying ¢(z) = 1 for |x| < 1 and ¢(x) =
for |z| > 13. Recall that z¢ denotes the center of Bg and obeys |zo| = 3R.

In order to bound the time integrals, we need to use the fact that we can bound
Strichartz norms of u far from z(t). We used this argument already in Section
but will repeat the details here. By choosing Ry sufficiently large, compactness of
our solution guarantees that

(7.6) sup{HqSC( [z —z(t )UHHSC —l—Hng( [ —z(t )])utHHff’l} <mn,

where ¢° =1—¢ and § = §(u) > 0 denotes the subluminality constant from Propo-
sition Requiring 7 to be small enough that the small data global well-posedness
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theory applies and making use of simple domain of dependence arguments, we de-
duce that

(7.7) suplluf| e <gn forall Z<g<oco

TeR LILIP ({|le—a(T)|> 55 +[t-T1})

Returning to (ZH) and using the strong Huygens principle and the fact that
supp 8 C [—4,4]3, we see that we can insert a smooth cutoff x p,p to the appropriate
domain of dependence in the middle of each of the four products (iV)|V|5~17¢,
specifically to the set of spacetime points that have a light ray connecting them to
a point of the form (¢, ) with t = 0 and dist(z, supp xz) < 4v/3. In particular, we
can choose xpop so that

supp Xpop € {(t,2) € R X R : (1= gi5)lt] = §R < |o — wo| < (1+ 13)lt] + £R},
Xpop(t,x) =1 when Hx_x0|_|t\| SgR
and 10X pop| Ssa ([t| + R)~

for all multi-indices a. We will also need a slightly fattened version of x p,p, which
we call xpop. It is defined so that

Xpop(t,x) =1 when dist(z,supp xpon(t)) < 15 R + 106|t|
Supp)zDoD g {(t,.’lf) : ( - W)'ﬂ SR < |J) - $0| < (1 + 106)|t‘ + SR}
and |09 Xpop| Sa.s ([t| + R)~1*

for all multi-indices a.
By [@2), we have |z(t)| < |t| + 2C, for all t € R and thus, for R large enough
(to defeat C,),

(7.8) dist(x(t), supp Xpop(t)) > 55(|t| + B) for 0 <[t < &.

On the other hand, by the subluminality bound (8], we know that |z(¢)| < (1-9)[¢]
for |t| > 1/4. Thus,

2(t) —zo| < 3R+ (1—6)|t| for [t|> %
and hence, for |t| > 1R,

(7.9)
dist (@ (), supp ¥pon () = (1 — 25|t = ER) — (3R + (1 6)[t]) > & (It] + R).

The most dangerous regime is when [t| € [£, 12 R], for then z(t) may lie near

(indeed inside) the support of x p,p. Here we make use of a further smooth partition
of unity, namely, 1 = Xpear + X far With

SUPP Xnear C {(t,2) : F <[t| < PR and |z —z(t)| < 2(|t| + R)}
and
Xfar(t,2) =0 when £ < || <R and |z—a(t)| < %(W + R).
Note that this can be done in a manner such that

|85Xnear| + |8§Xfar‘ 50{,5 (|t| + R)ila"
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for all multi-indices a. It is for the sake of notational convenience that we have
defined Xpear to be identically equal to zero for ¢ outside the region < B <t < 1OR
and, correspondingly, X fqr = 1 there.

We will also need a slightly fattened version X fqr of X far, chosen so that
Xfar(t,z) =1 when dist(x,supp xfer(t)) < 40(\t| + R),
SUpp X far (t) C {:1: Do —x(t)] > %(\ﬂ —|—R)} when %R <t < 15_OR7
and 09X far| Sas (/1] + R)71,

for all multi-indices a.
Collecting (T.8), (C9), and the definition of X s4,, we note that

(7.10) dist(z(t), supp[Xpon X far) (t)) > 25(/t] + R).
On the other hand, for (¢, ), (7,y) € SUPP Xnear With ¢ > 0 and 7 < 0, we obtain
(7.11) t]+ 17 + || + [y <o R

and, more importantly,

Y

t—7l—lz—yl 2t —7| = (L= )|t — 7|~ 2(t+ R) — §(I7| + R)

Llt—7|-2R> 2R,

V

(7.12)

by subluminality and taking R > Ro(u) > 1/6. The significance of these inequalities
is that they allow us to apply Proposition 2.6} see Lemma below.

Before beginning to estimate (7)), we first note some consequences of (1) in
terms of our cutoffs:

Lemma 7.2. Under the assumptions above (and taking Ro even larger if neces-
sary),

P _ =
||XDODXjaTUHLqLﬁ(I ) Sugl forall §<qg<oo
uniformly for I = [——R, 150R] or I =[T,2T\U[-2T,-T] with T > TOR

Proof. We will only prove the claim for positive times ¢. For negative times, the
argument is similar.
Recall that by ([Z.1),
(7.13) supHuH 3pq Sgn forall £ <g<oo
TeR LiL:™" ({le—a(T)|> 55 +[t=T|})

Thus, choosing T' = 0, we obtain

|XDoDXfartt||  sea Sgn forall £ <g<oo
LILZ7P ([0, £]xR3)
since if 0 < ¢ < £ and Xpop(t,z) # 0, then |z| > 2R.
On the other hand, choosing T" > %OR gives
H)ZDOD)ZfarUH 3pd_ Sgn forall £ <g<oo

LILZTP ([T,2T]xR3)
Indeed, using ([@6), for (¢,z) € Supp XpopXfar and t > T > %R, we have
|z —2(T)| = |z — x| — [zo| — |2(T)]
> (1= f)lt—T| - (3 §)RJr(l—%)W

> (1- $)le—T|+ 8 + 5T
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and so |z — z(T)| > [t — T| + 32 provided 2%|t — T| < &7, which is true when
t e [T,2T).
It remains to consider % <t< %R. For this region, we choose a mesh

E_Ty<Ti<- <Tk =R with ZR<|T—Tha| <P

s 235 SR 1<k<K.

100

Note that K < 62, Then for (¢, ) € supp XDoDX far With t € [T_1,T}],

2= 2T 1)] > | —o(t)] — a(t) — o(Tir)
St + R) = [t = Tho1| — 20y > ER+ [t — Tio—1,

\%

provided R > Ry with Ry sufficiently large depending on w. Thus, using (Z.I13)
with T =Ty, for 0 < kK < K — 1 and summing, we derive

HXDODXfaruH 3pd_ <ano 2 <ugql forall B<g<oo
qL2q p([R IOR]X]R'g)

This concludes the proof of the lemma. O

After breaking up the integrals in () by introducing the cutoffs X popXnear
and XpopX far, the required estimate follows directly from the next three lemmas.

Lemma 7.3. Under the assumptions above, for some small 8 = B(e) > 0 we have

|| V2060 p00 o V1 Fa(0)
0

L3 (R3)

+ H/ cos(|V[1)0(iV) X popX far |V[* ™' " F<i (2 dt‘ L2 (k2 <., R7Y/2-18
and similarly,
H/ VD 0GV) X Don X far |V~ 7 Fea (7) dT‘ L2 (%)
0
+ H/ COS(|V|T)0(iV)XDoDXfar|V|S*17€F§1(’7') d’T‘ L2(R3) Su R-1/2-48

Proof. We will only present the proof of the first inequality; for negative times, the
argument is similar.
For the remainder of this proof, all spacetime norms are over the region [0, 00) x

R3. Also, to ease notation we write x = \/XDoDXfar a0d X = XDoDX far-
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Using the L2-boundedness of #(iV), then the Strichartz inequality (with 6 <
q < o) followed by Holder’s inequality, we obtain

(7.14)
H/ VNI (i) 32|V |1 Fea (1) dtH2

+| /0 cos(IVIH0V)IV "< Faa(t) dt |

SIVICIVIT T Fa|| 2 o

Lirepat

5HX2V\V\S‘1‘EF§HL;GLLI + Vol XV EF<1|\L%L§%
< Hxvlvls_l_EFﬁlHLﬁs L_L + HX|V|S . EF<1HL<1+6 Lﬁq—s
—1— ~ 1—
SNV RG] gy g + VI PG, s,
+ HXV|V|S*1*EP§1(>~<CF)HL;&L#% + ||x|v|5*1*€P§1(>2”F)HL%L%,

where x¢ =1 — P! so that F(u) = F(yu) + X°F(u).

To complete the proof, we have to show that each of the four terms appearing
on the right-hand side of (ZI4) is bounded by R~'/2=%%. In order to appeal to
Lemmal2] we will sometimes need to partition [0, c0) into the collection of intervals
I = [T}, Tj41) with Ty := 0 and T; = 2 R2771 for all j > 1.

We start with the first term in RHS(Z.I4). By the fractional chain and product
rules together with Holder’s inequality, Sobolev embedding, Lemma [[.2] Proposi-
tion Bl and the combination of Proposition [61] and (10,

[VIVIT PR 2e o)

tq+6Lf 1
SLIVVITT RG] s,
>0 S LA™Y (I;xR3)
SOMVEall o VPR el e
>0 L LI~ (I; xR3) L Ly (I;xR3) e d (I; xR3)
q(q+6) pigipfqgﬂi)
X HXUH _M_ ||XuHLooLP([ xR3) ||X’LLH q3p !
LIL2T7P (I; xR3) L2 (I; xR3)
Su 3Ty + RSV e
Jj>0 LPLi™" (I; xR3)

2_1_ d(at+6)

<, R~Ga= %5 ),

where p/2 < ¢ < co. In the last step, we used Sobolev embedding followed by

interpolation, (Z1]), and Proposition[5Il This requires o 31054 << ((3?2 128(;5) 1166))8
In order to make the power of R less than —1/2, it suffices to take ¢ large (which

in turn forces e to be small) and § close to p/2.
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Arguing similarly, we estimate the second term in RHS({T.I4]) as follows:
IV FP(xw)|| 20 s

q+6L2q—3
SOMVITT R
=0 LITO L2973 (I, xR3)
SY[IvE ] e
=0 L3 L2735 (I;xR3)
+H|V|S_1 X H I RS)HUH q(T?S-iq-m
L L (I; xR3)
B Q(g;rﬁ) 3p _3_p_Q(q2+6)
<lull * s KUl gy IRl
LILZTP (I;xR3) L L2 (I;xR3)

_(2_1_3d(a+6) _
S,u Z(T’J_;FR) (g é quq )7|||V|S SUH % 5
>0 L L™ (I;xXR3)
2_1_ d(a+6)

< R*(§*§*W)V7

which again yields the desired decay in R for ¢ large enough and ¢ close to p/2.
In order to estimate the remaining two terms in RHS(I4]), we note that

dist(supp x,supp X°) Zs [t| + R.

Hence, by the mismatch estimate Lemma together with Proposition 5.1

s—1—¢ ~c s—1l—e v
IXVIV| P<i(x F)||L?%L¥g1 + |[xIVI P<i(X°F) HLMnggS
_3
SNF@) e ra]|(lt] + Ry~ ',z
®([0,00))
<, R 274
provided 43 < s — 1 — e. This finishes the proof of the lemma. ([

Lemma 7.4. Under the assumptions above, for any 8 > 0 we have

H/ Sm‘(lvat ZV)XDODXTLEG.’I’“V‘ s—1= €F<1 dt‘

L2(R3)
+ H/ cos(|V[)8(iV)X Do Xnear| V|~ 5 F<i (1) dtH <, RV**6
0 L2 (®%)

and similarly,

0
sin(|V|1) o/ s—1—¢
"[mv |V‘ H(ZV)XDODXTLEGT|V| FSI(T) dT‘ Li(]R:g)

0
+| / cos(|VI)0V )X DoDXnear VI Fa(rydr|| S, RV,

L3 (Rg)

Proof. Again, we present the proof for positive times only.
First, recall that xpecqr is supported in the spacetime region where R <t< wR
Thus, for the remainder of this proof, all spacetime norms will be over the region

&, léoR} x R3,
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Now, by the Strichartz inequality followed by Holder’s inequality, Sobolev em-
bedding, Bernstein’s inequality, and Proposition (5.1l we obtain

H/ vbm‘(lvat Zv)XDoDXnear‘v‘ -1 8F<1 d ‘

L2 (R3)
. s—1—¢
+ H/O cos(|V|1)0(iV)X DopXmear| V"1~ Fey (£) dt’ .

SIVIF Rl sy, o+ 19 onxsen) 9P

i1t

SIvFFarl

SIF@

1
t x

1,3
7+7
Su B2,

for any 6 < g < co. The claim now follows by taking ¢ sufficiently large depending
on 3. O

We now turn to the most significant region of integration, where (¢, x(t)) and
(1,2(7)) may lie in the domain of dependence of Bg.

Lemma 7.5. With the assumptions above and 8 < 1/30, we have
(7.15)
[ ] (o060 91 s 0
XrVEEI0(V) X popXnear|V|* 1 Fi (7)) dr dt
+/0°° /000<cos(|V|t)6(iV)xDoDxnearVs15F§1(t),
X1 €08(|[V|7)0(V )X Do Xnear |V |* "5 F<y (7)) dr dt‘ <. R,
Proof. The claim will follow from Proposition 2.6 the hypothesis (23] holds by
virtue of (CII) and (ZI2)). Thus, using this proposition followed by Bernstein’s
inequality and Proposition [5.]], we obtain
LHS(ZIE) S ROV P [y S RTYOIF ey Su RV

This completes the proof of the lemma. O

We now return to the proof of Theorem [.1] Recall that it suffices to prove (7.3)).

This follows for 5 < 111111(3107 5= 41[5) by using Lemmas [[3] [[4] and to estimate

@) O

Corollary 7.6. Let u be a global solution to (II]) that is almost periodic modulo
symmetries. Recall that

(7.16) < 0.

H(u’ut)HLfc(]R;Hj“xHjC’l)
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Also assume that

inf N(t) > 1.

teR
Then Vi zu € LY L2; in particular, the energy E(u) of the solution is finite. More-
over, there exists B = B(p) > 0 so that

(7.17) [|(z — x(t)>ﬁP§1Vt7wuHLtmL2 <. 1
Proof. Applying Theorem [[1] iteratively, finitely many times, we conclude that
(7.18) Vieu € LPHS™! foreach 1<s5<s,.

To pass from this to finite energy, we follow the strategy used in Theorem[7T] indeed
with some simplifications due to the local nature of the operator V as opposed to
|V|s~17¢. As P« is also nonlocal, we replace it by (iV), which is almost local.

Note that it suffices to prove (CI7). Indeed, using this to bound the low-
frequency part of the solution and using (Z.16) and Bernstein’s inequality to bound
the high frequencies, we deduce that V;,u € L{°L2. This renders the first two
terms in the energy (LI) finite. Using Sobolev embedding and interpolation be-
tween u € L°°H1 and u € L"OH;L7 we also see that the potential energy term is
finite. Thus, E( ) < 00.

Therefore, it remains to establish (ZI7). By time-translation symmetry, it suf-
fices to prove the claim for ¢t = 0. By space-translation symmetry, we may also
assume z(0) = 0. Arguing as we did for (73], it suffices to show that
(7.19) ‘]9(@'V)2Vt,xu(0)||ii (5 Su BT
uniformly for R > Rg(u).

To obtain ([TI9) we use the Duhamel formulae (L9 to write:

(7.20) [|0(iV)*V¢zu(0 Hiz(BR)

/ / VIO 72 (1), xpVESID0(V)2F (7)) dr dt
[T (eosTI0069 @), i eos (V06T )

where xr is a smooth cutoff function associated to the ball Bg, as previously.

To estimate (Z20), we decompose spacetime in exactly the same manner as in
the proof of Theorem [Tl by introducing Xpop, Xnear; and X jqr between the two
copies of 8(iV). Lemmas [[2] [ and continue to hold when s — 1 —¢ =0
and with the replacement of P<; by 6(iV). In connection with this, we should note
that the Bernstein inequalities continue to hold:

10GV) fllLarsy + IVOGEV) fllLa sy S 1 f e rs)

forall 1 <p<q < oo.
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The only part of the proof of Theorem [ZI] that needs to change is the proof of
Lemma [73] Corollary thus follows from the following substitute:

Lemma 7.7. Under the hypotheses of Corollary [0,

) / V00 (59) o pas 069 F(1)

+ H/ cos(|V[£)0(iV)X poDX far 0 (iV) F
H / vsn(vin <Zv>xDoDxm9<z'V>F<T>dr!]2

+ HL£OS(|V|T)9(iV)XDoDXfaT0(iV>F(T)dTH2

Su ROV,

for some B = B(p) >0

Proof. We argue as in Lemma [7.3l Again, we only present the proof for positive

times. To ease notation, we write X = \/XDoDXfar a0d X = XDoDX far-
Using the Strichartz inequality (with 6 < ¢ < oo) followed by Hélder’s inequality,
we obtain

(7.22) H/ vERFI0 0(iv)x20(iV) F ‘

L2 R3)
+ H/ cos(|V|t)0(iV)x*0(iV)F ’
SIVDCOVF]| 2

L3 (R?)

< oGV VFH o+ [[Vxllze [|x (V) F]|L%Lgf_qsz_3
< [[x0(iv) VF||L;I%L¥31 + ||X0(iV)F||L;%L3333.

‘*-e
h
H-o

Noting that the convolution kernel associated to 6(¢V) has compact support, we
have

[X6GV)VE@)|

1

S H)ZPVF(t)HLL and er (iV)F H Ja < HXpF H o

q—1
x

Thus by Sobolev embedding, Lemmal[Z.2] Proposition 5.1 Proposition 6.1 combined
with (CI0Q), and (I8,

LHS([TZY)

B 6(%26) p— ;q (%gﬁ)
S[Ivul], ol 1l oy il
>0 LILZT7P (I;xR3) < L2 (I;xR3)

(G525

J

_1_
Su RT27%8,
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where « is as in Proposition and p/2 < § < co. To obtain the stated decay in
R in the last inequality, it suffices to take ¢ sufficiently large (depending on p) and
g close to p/2. This proves (.21]). O

This finishes the proof of the corollary. (|

8. THE FREQUENCY-CASCADE SOLUTION

In this section, we preclude the frequency-cascade solution described in Theo-

rem [L.8]

Theorem 8.1 (Absence of frequency-cascade solutions). There are no frequency-
cascade solutions to ([LI)) in the sense of Theorem [L8l

Proof. We argue by contradiction. Assume there exists a solution u : R x R3 — R
that is a frequency-cascade in the sense of Theorem [[8 We will prove that this
scenario is inconsistent with the conservation of energy.

Indeed, by Corollary [[.0] the energy F(u) is finite. Next, let 0 < M,n < 1 be
small constants to be chosen later. By almost periodicity modulo symmetries, there
exists ¢(n) sufficiently small so that

(8.1) lu<emn@ e e + 1P<cann@uellpee gze-1 <1

Now decompose u = U<y + Upr<.<c(n)N(t) T Usc(n)N(t)- 10 estimate the very
low frequencies of u, we use the full strength of Corollary Indeed, by Holder’s

inequality and (TI7),

HVU§M||L$OL3¢B + I Pepruell

S ||<x - x(t))BVuQHL?OLi + H<$ - x(t)>ﬁpﬁlut||Lg°Lg
1.

A

~U

Thus, by Bernstein’s inequality,

(8.2) IVusnrllporz + | Penruellpomre Su M7

To estimate the medium frequencies in the decomposition of u, we use Bernstein’s
inequality and (81):

IVurr<.<emn@lloserz + |1Pu<-<cmyn@ el nserz

S M [lugemyn g srze 1 Peemvyell oo grze—1]
(8.3) < M sen,
We estimate the high frequencies in the decomposition of u similarly:
IVusemnllieerz + I1P>emn@uelrerz
S letn)N(H)]' [||u2c(n)N(t)HL;_>CH;C + ||ch(n)N(t)ut||L§oH;c—1]

(8.4) Su ()N (@) .

~U

Putting together (B2]), B3), and [§4), we get
38 —s —s
(8.5) IVull ooz + luellpeerz Su M5 + M'™%en + [e(n)N(£)]* 5.
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By Sobolev embedding and interpolating between (8H) and the fact that u €
L H3e, we also obtain

38 —s —sc] a3
(8.6) el oo g S [M5 + M5+ [e(n) N ()] %] 772

Combining ([8H) and (86, we thus get

B(u) Su [MT + My + [N (0] ]

Taking M small, and then 7 small depending on M, and then ¢ sufficiently large
depending on 7 (and recalling that for a frequency-cascade solution, lim sup,_, . N (¢)
= o0), we may deduce that the energy, which is conserved, is smaller than any pos-
itive constant. Thus F(u) = 0 and so u = 0. This contradicts the fact that u is a
blow-up solution. O

9. THE SOLITON-LIKE SOLUTION

In this section, we preclude the soliton-like solution described in Theorem [I.8

Theorem 9.1 (Absence of solitons). There are no soliton-like solutions to (L)) in
the sense of Theorem [L8.

Proof. We argue by contradiction. Assume there exists a solution u : R x R3 — R
that is soliton-like in the sense of Theorem [[L8 We will show that this scenario is
inconsistent with the Morawetz inequality (LIT).

By Corollary [0l the soliton has finite energy; hence, the right-hand side in the
Morawetz inequality is finite and so

p+2
(9.1) / / ult. 2, dt S E(u) Su 1,
R3 \x|

for any T > 0. On the other hand, by Corollary we have concentration of
potential energy; that is, there exists C'= C(u) so that

to+1
/ / lu(t,z) P2 dadt >, 1,
to Jlo—at)<c

for any ¢y € R. Translating space so that 2(0) = 0 and employing finite speed of
propagation in the sense of ([£2]), we obtain that for T' > 1,

T p+2 T
LHS@I) > / / [t 2P zu/ _dt >, log(T).
0 lz—z(t)|<C 0 1

|| +t

Choosing T sufficiently large depending on u, we derive a contradiction to (@.1). O

10. THE FINITE-TIME BLOW-UP SOLUTION

In this section, we preclude the finite-time blow-up scenario described in The-
orem [L.8] by showing that such solutions are inconsistent with the conservation of
energy.

Theorem 10.1 (Absence of finite-time blow-up solutions). There are no finite-time
blow-up solutions to (L)) in the sense of Theorem [L8
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Proof. We argue by contradiction. Assume that there exists a solution u : I x R? —
R that is a finite-time blow-up solution in the sense of Theorem [[8 By the time-
reversal and time-translation symmetries, we may assume that the solution blows
up as t \, 0 =inf /.

First note that N(t) — oo as t — 0, for otherwise a subsequential limit of the
normalizations ul! would blow up instantaneously, in contradiction of the local
theory. Combining this with ([@2]), we deduce that lim; o z(¢) exists. By space-
translation symmetry, we may assume that lim; o 2(t) = 0.

Next we show that

(10.1) supp u(t) Usupp u:(t) C B(0,¢) forall tel,
where B(0,t) denotes the closed ball in R? centered at the origin of radius ¢. Indeed,
it suffices to show that

. 2
02) iy [ Vet ¢ Sl e =0 forall c>0,

because the energy on the annulus {z : t +¢& < |z| < 7! — ¢t} is finite and does not
decrease as t — 0. To obtain (I0.2), fix € > 0. As the parameters N(t) and x(t)
satisfy

}%N(t) =o0o and |z(t)| < |t|+ C.N(t) * forallt €I,

we deduce that for all n > 0 there exists tg = to(e,n) such that for 0 < t < ty we
have

{reR: t+e<|z|<e ' =t} C{x eR®: |z —a(t)| > C(n)/N()},
where C'(n) is as in (IL8). Thus by Hélder’s inequality and (L)),

2
/ 3| Veau(t, o)|” + Sslu(t, )P do
t+e<|z|<e—1—t

2

]| + lu)l”

3p_
LI ({lz—z ()| =C () /N ()}) L2 ({lz—=z()|>C(n)/N#)})
Ser 'y

for all 0 < ¢t < tg. As 7 can be made arbitrarily small, this proves (I0.2]) and hence

To continue, by (I0.1]), Holder’s inequality, and Sobolev embedding we obtain

E(u(t)) = /B( )(%|Vt’mu(t,x)|2 + ﬁ|u(t,x)|l>+2> dx

2 _4
S (1M @I s + o753 )7
L£+2 Lac2

< $1-3

~U
for all t € I. In particular, the energy of the solution is finite and converges to zero

as the time ¢ approaches the blow-up time 0. Invoking the conservation of energy,
we deduce that w = 0. This contradicts the fact that u is a blow-up solution. [
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