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DEFORMATIONS OF FINITE CONFORMAL ENERGY:

BOUNDARY BEHAVIOR AND LIMIT THEOREMS

TADEUSZ IWANIEC AND JANI ONNINEN

Abstract. We study homeomorphisms h : X
onto−→ Y between two bounded

domains in Rn having finite conformal energy

E[h] =
∫
X

||Dh(x) || n dx < ∞ , h ∈ W 1,n(X,Y).

We consider the behavior of such mappings, including continuous extension to
the closure of X and injectivity of h : X → Y. In general, passing to the weak
W 1,n-limit of a sequence of homeomorphisms hj : X → Y one loses injectivity.

However, if the mappings in question have uniformly bounded L 1-average
of the inner distortion, then, for sufficiently regular domains X and Y, their

limit map h : X
onto−→ Y is a homeomorphism. Moreover, the inverse map

f = h−1 : Y
onto−→ X enjoys finite conformal energy and has integrable inner

distortion as well.
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1. Introduction

The present paper is a sequel of the authors’ endeavour to inaugurate a little
theory of quasiconformal hyperelasticity [4, 28, 31, 33, 32]. The subject matter is

about mappings h : X
onto−→ Y between two domains X,Y ⊂ Rn, n � 2. We make

three standing assumptions on the domains and maps under consideration:

• X and Y will be bounded domains of finite connectivity. Precisely, Rn \X =
X0 ∪ X1 ∪ ... ∪ X� and Rn \ Y = Y0 ∪ Y1 ∪ ... ∪ Y�, where X0 and Y0 are
the unbounded components. The outer boundaries of X and Y are ∂X0 and
∂Y0, while the other components, ∂Xi and ∂Yi, i = 1, ..., �, will be referred
to as inner boundaries.

• The mappings h : X
onto−→ Y will be homeomorphisms preserving the ori-

entation and the order of the boundary components. Since h need not be
defined on ∂X, the latter requirement means that

(1) h{∂Xi} = ∂Yi , i = 0, 1, ..., �,

where h{∂Xi} stands for the cluster set of h over ∂Xi. In particular, we
are assuming that h takes outer boundary of X into outer boundary of Y,
whereas the inner boundaries will be conveniently renumerated to meet our
notation. We denote by H(X,Y) a collection of all such homeomorphisms

H(X,Y) =
{
h : X

onto−→ Y : homeomorphisms preserving

orientation and the boundary components
}
.(2)

It may be noted that the inverse map, denoted byf = h−1 : Y
onto−→ X, lies

in H(Y,X).
• As regards the regularity, we assume that h belongs to the Sobolev class

W 1,n(X,Y) and has nonnegative Jacobian determinant. The conformal
energy of h = (h1, ..., hn) is then defined by

E [h] =

∫
X

||Dh(x) || n dx(3)

� n
n
2

∫
X

J(x, h) dx = n
n
2 |Y|,
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where the Jacobian matrix Dh =
[
∂hi

∂xj

]
∈ Rn×n, referred to as the deforma-

tion gradient, has nonnegative Jacobian determinant, J(x, h) = detDh(x)
� 0. Hereafter we use the Hilbert Schmidt norm of a matrix, so

||Dh || 2 =
∑

1�i,j�n

∣∣∣∣ ∂hi

∂xj

∣∣∣∣2 = Tr [D∗hDh] .

Denote by E(X,Y) the class of mappings h ∈ H(X,Y) having finite confor-
mal energy

(4) E(X,Y) =
{
h ∈ H(X,Y) :

∫
X

||Dh || n < ∞
}
.

In discussing the inverse map f = h−1 : Y
onto−→ X caution must be excercised

because it may not have finite conformal energy on Y, unless the inner
distortion function of h is integrable; see Proposition 1.1.

In dimension n = 2 the Dirichlet integral in (3) is central in the theory of harmonic
maps [18]. Because of conformal invariance we call E [h] the conformal energy
of h or, sometimes, n-harmonic energy. In higher dimensions, the n-harmonic
alternative to the classical Dirichlet integral has drawn the attention of researchers
in Geometric Function Theory [55, 7, 25, 62, 56, 29].

1. Boundary behavior. Let two bounded domains X and Y of the same
(finite) connectivity be given. We assume that the class E(X,Y) is nonempty; see
[33] for some results concerning the existence of such mappings.

Theorem 1.1. Suppose X and Y have at least two boundary components, � � 1.
Then there exists a continuous function η = η

X,Y
(x) defined on X, positive on X and

vanishing on ∂X, such that

(5) dist
(
h(x), ∂Y

)
� η

X,Y
(x) ||Dh ||

Ln(X)
for all h ∈ E(X,Y).

This also holds if X and Y have only outer boundary, � = 0, provided X is incom-
pressible.

Definition 1.1. A domain X ⊂ Rn is said to be (locally) compressible (to a point)

if for every compact set X ⊂ X there exist homeomorphisms gj : X
onto−→ X such that

lim
j→∞

diam gj(X) = 0. Otherwise we say that X is incompressible.

A ball B ⊂ Rn or B\Rk, 0 � k � n−2, is locally compressible. Each has a single
boundary component. A torus, on the other hand, is incompressible and still has
only one boundary component; see Section 10 for a brief discussion on this concept.

Specific bounds for the function η
X,Y

are available, provided the target domain Y
has some geometric regularity such as graph domains, polyhydra or more general
monotone domains.

Definition 1.2. A bounded domain Y ⊂ Rn of finite connectivity is said to be
monotone if for each boundary component Γ ⊂ ∂Y all the level sets

(6) Γε = {y ∈ Y : dist (y,Γ) = ε}
are connected for sufficiently small ε > 0.

We shall see that graph domains are monotone; see Corollary 10.1.
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Theorem 1.2. Under the assumption of Theorem 1.1, if Y is monotone, then

(7) η
X,Y

(x) � CX,Y log−1

(
e+

diamX
dist(x, ∂X)

)
.

No specific bounds like this can be obtained without restrictions on ∂Y; see
Example 8.1.

As in the theory of qusiconformal mappings [63, 52, 39], in order to extend a
given map h ∈ E(X,Y) continuously to the closure of X, we must assume some
geometric regularity of ∂X and ∂Y.

Definition 1.3. The boundary ∂X is said to be locally quasiconformally flat if

every point in ∂X has a neighborhood U ⊂ Rn and a homeomorphism g : U∩X
onto−→

{x : |x| < 1 and xn � 0} which is quasiconformal on U ∩ Xl; see [63].

Definition 1.4. The boundary ∂Y is a neighborhood retract [11] if there is a
neighborhood V ⊂ Rn of ∂Y and a continuous map χ : V → ∂Y which is an
identity on ∂Y.

Theorem 1.3. Let X and Y be bounded domains of finite connectivity. Suppose
∂X is locally quasiconformally flat and ∂Y is a neighborhood retract. Then every

h ∈ E(X,Y) extends to a continuous map h : X
onto−→ Y.

This theorem fails if ∂Y is not a neighborhood retract, even when X is a smooth
domain; see Section 6.1.

2. Distortion functions. The central objects in quasiconformal theory are
the distortion functions.

Definition 1.5. Let h : X → Rn be a mapping of Sobolev class W 1,1
loc (X,R

n) with
J(x, h) � 0, not necessarily a homeomorphism or continuous. The outer and inner
distortion functions of h are defined by the rules:

K
O
(x, h) =

⎧⎪⎨⎪⎩
1√
nn

||Dh(x) || n
J(x,h) if J(x, h) > 0,

1 if J(x, h) = 0 and Dh(x) = 0,

∞ if J(x, h) = 0 and Dh(x) �= 0,

(8)

K
I
(x, h) =

⎧⎪⎨⎪⎩
1√
nn

||D�h(x) || n
J(x,h)n−1 if J(x, h) > 0,

1 if J(x, h) = 0 and D�h(x) = 0,

∞ if J(x, h) = 0 and D�h(x) �= 0.

(9)

Here D�h(x) stands for the matrix of cofactors of Dh(x), which is determined by
Crammer’s rule D�h(x)Dh(x) = J(x, h) I.

As regards the cases KO(x, h) = ∞ or KI (x, h) = ∞, these will not occur
later on. Indeed, we will be dealing only with mappings of finite distortions. If
K

O
(x, h) (or K

I
(x, h)) is finite almost everywhere, then we say that h has finite

outer (inner) distortion, respectively. A map h is said to have integrable inner
distortion if

∫
X
KI (x, h) dx < ∞. Obviously, we have a pointwise inequality

KI (x, h) � Kn−1
O

(x, h).

Thus, if KO (x, h) ∈ L n−1(X), then KI (x, h) ∈ L 1(X). This brings us to a result
in [27, 53, 17, 33].
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Proposition 1.1. Let X and Y be arbitrary bounded domains in Rn and h : X
onto−→

Y an orientation preserving homeomorphism of Sobolev class W 1,n
loc (X,Y) with in-

tegrable inner distortion. Then the inverse map f = h−1 : Y
onto−→ X belongs to

W 1,n(Y,X), it has integrable inner distortion, and we have the identities∫
Y

||Df(y) || n dy = n
n
2

∫
X

KI (x, h) dx,(10)

n
n
2

∫
Y

K
I
(y, f) dy =

∫
X

||Dh(x) || n dx.(11)

The Jacobian determinants J(x, h) and J(y, f) are positive almost everywhere. In
particular, both h and f have finite outer distortion.

We now introduce a polyconvex variational integral for a homeomorphism h :

X
onto−→ Y,

(12) ET [h] =
∫
X

[
||Dh(x) || n + n

n
2 KI (x, h)

]
dx,

and a similar one for the inverse map f = h−1 : Y
onto−→ X,

(13) ET [f ] =
∫
Y

[
||Df(y) || n + n

n
2 K

I
(y, f)

]
dy.

There are two other ways to express these integrals:

(14) ET [h] = ET [f ] =
∫
X

||Dh(x) || n dx+

∫
Y

||Df(y) || n dy

or, equivalently,

(15) ET [h] = ET [f ] = n
n
2

∫
Y

K
I
(y, f) dy + n

n
2

∫
X

K
I
(x, h) dx.

We recall at this point the Teichmüller theory of planar quasiconformal mappings.
It amounts, loosely speaking, to studying homeomorphisms with smallest supremum
norm of the distortion; for instance,

(16) Kh = Kf = ||K
I
(x, h) ||

L∞(X)
+ ||K

I
(y, f) ||

L∞(Y)
.

Such a connection with (15) is of sufficient interest to call for closer examination of
so-called total conformal energy, especially the existence and uniqueness of injective
mappings which minimize the minimizer.

3. Total conformal energy. However, if one takes the challenge to develop
the concept of total energy in higher dimensions, one must include mappings which
are not necessarily homemorphisms. The first stage of the extension amounts to
defining a so-called total energy for arbitrary Sobolev mappings.

Definition 1.6. Let h : X → Rn be any mapping in the Sobolev space W 1,1
loc (X,R

n)
with J(x, h) � 0. The total energy of h is defined by

(17) ET [h] =
∫
X

[
||Dh(x) || n + n

n
2 K

I
(x, h)

]
dx.

A major problem we want to address here is the following:

Conjecture 1.1. A mapping h : X → Rn of finite total conformal energy with
J(x, h) ≡/ 0 (nonconstant if n = 2) is open and discrete. Its branch set has dimen-
sion not greater than n− 2.
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An affirmative answer is given to this question in dimension n = 2 [34]; see also
[26, 45, 35] for partial results in higher dimensions.

Let us introduce the class of mappings with finite total energy

ET (X,Y) = {h ∈ H(X,Y) : ET [h] < ∞}.

Proposition 1.1 tells us that the inverse map f = h−1 : Y
onto−→ X lies in ET (Y,X),

while Theorem 1.3 yields a Carathéodory type extension theorem for homeomor-
phisms of finite total energy. We refer the reader to [36, 15, 54, 39, 63, 52] for
related topics.

Corollary 1.1. Let X and Y be bounded domains with locally quasiconformally
flat boundaries. Then every h ∈ ET (X,Y) admits a homeomorphic extension to the

boundary, again denoted by h : X
onto−→ Y.

We should point out that locally quasiconformally flat boundaries are locally
graphs. On the other hand, the boundary of a graph domain is a neighborhood
retract. This fact, interesting on its own, is proven in Section 10.

4. Mappings of smallest energy. Before embarking upon formal results,
let us familiarize ourselves with some physical interpretations of the problem, es-
pecially those carried out in the theory of nonlinear elasticity [2, 5, 6, 16]. The
hyperelasticity is concerned with the energy integrals

(18) E [h] =
∫
X

E(x, h,Dh) dx,

where E : X × Y × Rn×n → R satisfies certain conditions characterizing mechani-
cal properties of the material. We shall confine ourselves to the quasiconformally
invariant class of integrals, which yields that E(x, h,Dh) � ||Dh || n; see [32] for
further discussion. The general task in the mathematical models of elasticity is to
find a deformation h ∈ H(X,Y) of smallest energy. These deformations are usually
found as weak limits of a minimizing sequence. However, in the limiting process
we lose the injectivity of h. Let us give a few instances of deformations of the
type that may appear. One more-or-less concrete realization of such a situation is
obtained by hammering a piece of metal. Suppose one strikes X repeatedly with
a hammer while the metal is hot. Each stroke gives rise to a homeomorphism
hk : X → Rn, k = 1, 2, .... When passing to a weak limit in W 1,n(X,Y), say
limhk = h : X → Rn, we lose injectivity. We refer to this incident as a permanent
damage in the material. It is nevertheless true that no holes or cracks will emerge
in this process. For example, consider the annuli X = {x ∈ R2 : 1/2 < |x| < 2}
and Y = {y ∈ R2 : 1 < |y| < 2} in the plane. It turns out that a minimizer

hmin : X
onto−→ Y of the conformal energy

E [h] =
∫
X

||Dh(x) || 2 dx

takes the form

hmin(x) =

⎧⎨⎩
x
|x| ,

1
2 < |x| � 1 , hammering part,

1
2

(
1 + |x|−2

)
x, 1 � |x| � 2 , harmonic part.

Such a minimizer is unique up to a rotation of annuli; see Figure 1.
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Figure 1. Hammering a portion of the annulus flat.

Note that hmin has a right inverse fmin(y) = y + y
√

1− |y|−2. That is,

hmin ◦ fmin = id : Y → Y.

A similar type of damage is observed for mappings between annuli in dimensions
n � 2, where the energy is the n-harmonic integral

E [h] =
∫
X

||Dh(x) || n dx.

We refer the reader to [31] for more reading on this subject, with some rather
surprising results. The hammering phenomena can only be observed when the
annulus X is conformally too fat, so a part of it must be hammered flat [31]. In
many ways the above example illustrates the worst behavior that can happen when
passing to a weak limit of a minimizing sequence.

Theorem 1.4 (Right inverse of a weak limit). Let X and Y be bounded domains of
finite connectivity having at least two boundary components. Suppose we are given a
sequence hj ∈ E(X,Y) converging weakly in W 1,n(X,Y) to a map h ∈ W 1,n(X,Rn).

Then h is continuous and Y ⊂ h(X) ⊂ Y. Furthermore, there exists a measurable
mapping f : Y → X, such that

(19) h ◦ f = id : Y → Y ,

everywhere on Y. This right inverse mapping has bounded variation. All the above
still hold if ∂X has only an outer boundary, provided X is incompressible.

Finally, applying this theorem to mappings hj ∈ ET (X,Y) ⊂ E(X,Y) and their
inverses fj ∈ ET (Y,X) ⊂ E(Y,X), we conclude with the following.

Corollary 1.2 (Weak compactness). Suppose that bounded domains X and Y of
finite connectivity have at least two boundary components or are incompressible
when having only one boundary component. Then the family

FM (X,Y) = {h ∈ ET (X,Y) : ET [h] � M}

is compact in weak topology of W 1,n(X,Rn).
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2. An example

The following example is well suited for several purposes of the present work.

Example 2.1 (Conformal automorphisms of the unit ball). To every point a ∈
B ⊂ Rn, a �= 0, there corresponds a conformal deformation ha : B

onto−→ B , defined
by

(20) ha(x) = ã+

(
|ã|2 − 1

)
(x− ã)

|x− ã|2
, where ã =

a

|a|2 .

Elementary computation shows that h(0) = a, h(a) = 0, and

(21) 1− |h(x)|2 =
(
1− |x|2

) |ã|2 − 1

|x− ã|2
.

These mappings and their inverses share the same conformal energy. Indeed, be-
cause of conformality, we have

(22)

∫
B

||Dha(x) || n dx = n
n
2

∫
B

J(x, ha) dx = n
n
2 |B|.

As a approaches one boundary point a◦ ∈ ∂B, we find that {ha} converges c-
uniformly (uniformly on compact subsets) to the constant mapping h(x) ≡ a◦,
so the injectivity is lost. The loss of injectivity would not have happened if the
mappings h were fixed at a given point, say h(p) = q for some p ∈ X and q ∈ Y. This
normalization amounts to saying that the mappings take the punctured ball B\{p}
onto the punctured ball B \ {q}. These domains have two boundary components.
For more details we refer the reader to Corollary 1.2 and Section 9.3.

The reader will also notice that B \ Rn−2, n � 3, is still a domain with one

boundary component. Moreover, if a ∈ Rn−2, then ha : B \ Rn−2 onto−→ B \ Rn−2.
We still lose injectivity in passing to the limit as |a| → 1. Actually, the reason
for losing injectivity of the limit map is that B \ Rn−2 is locally compressible to
a point; see Definition 1.1. Again, this would not have happened if we drilled a
tiny hole through the ball instead of removing a flat hyperplane of codimension
2. A topological torus, so obtained, becomes an incompressible domain with one
boundary component.

3. Oscillation inequalities

Definition 3.1. Let Ω be a domain in Rn. A continuous function u : Ω → R is
said to be monotone [42] if for every compact F ⊂ Ω, we have

(23) min
∂F

u = min
F

u � max
F

u = max
∂F

u.

In other words, u satisfies both the maximum and minimum principles.1

Proposition 3.1 (Oscillation on balls). Given concentric balls B ⊂ λB ⊂ Rn,
λ > 1, and a continuous monotone function u ∈ W 1,n(λB), then

(24)
[
oscu

B

]n
� Cn

log λ

∫
λB

|∇u(x)|n dx.

1For Sobolev functions the more relevant concept is that of weak monotonicity [44]. But we
do not enter into such generalities, as the need will not arise; see [21], [28], [59], [43].
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We include the derivation of this well-known inequality to keep our exposition
self-contained.

Proof. We consider a ball B with radius r and center at the origin, with the usual
notation B = Br = {x : |x| < r}. In view of monotonicity of u we can write

(25) oscu
B

� oscu
Bρ

= oscu
∂Bρ

for r � ρ � λr.

Next we apply Sobolev’s imbedding inequality on spheres,[
oscu

B

]n
� ρ

∫
∂Bρ

|∇u|n for all r � ρ � λr.2

We divide by ρ and integrate from r to λr,[
oscu

B

]n ∫ λr

r

dρ

ρ
�

∫ λr

r

(∫
∂Bρ

|∇u|n
)

dρ �
∫
λB

|∇u|n.

Hence the inequality (24) follows.

With a little additional work Proposition 3.1 gives a uniform continuity estimate
of u.

Lemma 3.1 (Modulus of continuity). Let u ∈ W 1,n(Ω) be continuous and mono-
tone. Then for every concentric ball B ⊂ 2B ⊂ Ω we have

(26) |u(x1)− u(x2)|n �
Cn

∫
2B

|∇u(x)|n dx
log

(
e+ diamB

|x1−x2|

) , for x1, x2 ∈ B.

Remark 3.1. Monotone functions in the Sobolev class W 1,p
loc (Ω) are differentiable

almost everywhere if p > n− 1, n � 3, but not necessary if p = n− 1. This is also
true for p � 1 if n = 2; see [47], [19], [22], [44] and [59].

Another useful inference from Proposition 3.1 is the oscillation of monotone
functions around a puncture; that is, in a domain Ω with one point x◦ ∈ Ω removed.

Lemma 3.2 (Oscillation on spheres). Suppose a continuous function u : Ω\{x0} →
R belongs to W 1,n(Ω \ {x0}) and is monotone. Then for every concentric ball
B = B(x0, r) ⊂ B(x0, 3r) = 3B ⊂ Ω we have

(27)

[
oscu
∂B

]n
�

∫
3B

|∇u(x)|n dx,

where the implied constant depends only on n.

Proof. It is geometrically clear that every two points x1, x2 ∈ ∂B can be connected
by two overlapping closed balls B1 and B2 of the same radius as B. Precisely,
x1, x2 ∈ B1 ∪B2 , B1 ∩B2 �= ∅ and

√
2B1 ∪

√
2B2 ⊂ 3B \ {x◦}. Hence

|u(x1)− u(x2)|n �
[
oscu
B1

+ oscu
B2

]n
�

∫
√
2B1

|∇u|n +

∫
√
2B2

|∇u|n �
∫
3B

|∇u|n,

as desired.

2The symbol A � B is merely an abbreviation for the inequality A � c ·B in which c > 0 ,
called the implied constant, plays no role. The quantities of interest to us are A � 0 and B � 0 .
The implied constant changes from line to line and can be easily identified from the context. Here
c depends on the dimension only.
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Remark 3.2. The reader may wish to infer from this lemma that u has a limit at
the point x◦, possibly +∞ or −∞. In this way u becomes a continuous function on

Ω with values in the extended real line R̂ = R∪{−∞,+∞}. The following example
u(x) = log log |x| illustrates that u need not be bounded.

It is worth further pursuing Lemma 3.2 on the assumption that u : Ω\{x0} → Rn

is a continuous injection. One can easily see, via additional topological arguments,
that u has a finite limit at the puncture. Precisely, we have

Theorem 3.1 (Removability of punctures). Let X be a domain in Rn, X′ = X\{x◦}
with x◦ ∈ X, and let h : X′ onto−→ Y′ ⊂ Rn be a homeomorphism of Sobolev class

W 1,n(X′,Rn). Then h extends to a homeomorphism h : X
onto−→ Y in the Sobolev

space W 1,n(X,Rn), where Y = Y′ ∪ {y◦} and y◦ = h(x◦).

This should be compared with Proposition 5.1 in [33] in which the singleton {x0}
is replaced by a closed set of zero dimension.

Lemma 3.3 (Vanishing oscillations). Let B be the unit ball in Rn and let h ∈
W 1,n

loc (B,Rn). Then there is a decreasing sequence of radii rν → 0 such that

1. h restricted to Srν = {x ; |x| = rν} is continuous,
2. diamh(Srν ) → 0 as rν → 0.

Proof. Upon a suitable choice of a representative of h ∈ W 1,n
loc (B,Rn), we may apply

Sobolev’s imbedding theorem on spheres to conclude that for almost every sphere
Sr, 0 < r < 1, the map h : Sr → Rn is continuous. Moreover, by Fubini’s theorem
we find that

(28)

∫ r

0

[diamh(St)]
n dt

t
� Cn

∫
|x|<r

|Dh(x)|n dx.

Hence we infer that lim inf
t→0

[diam h(St)] = 0, which yields assertion 2 in Lemma 3.3.

4. A bit of topology of domains in Rn

In spite of vast literature, predominantly analytical in nature, the topological
aspects of domains in Rn seem not to have been treated with sufficient clarity
and rigor. The goal of this section is to provide an account for the sometimes
cumbersome details associated with domains in Rn. The results here incorporate
all our intuition concerning connectedness and boundary components. The best
general reference is the monograph by K. Kuratowski, [37, 38].

4.1. Gaps in Rn. A domain Ω ⊂ Rn is any open connected subset of Rn. The
complement of Ω will be denoted by G = Rn \ Ω, and the common boundary by

Γ = ∂Ω = ∂G.

We consider the collection {Gi}i∈I of all components of G = Rn \ Ω . The index
set I may be uncountable. By definition, each Gi is a maximal connected subset
of G, properly contained in no other connected subset of G. Characteristically for
a domain, the sets Gi are mutually disjoint closed sets whose union is also closed:

(29) G =
⋃

ı∈I

Gi = Rn \ Ω.

We shall view those sets as gaps in Rn. It is worthwhile to begin with the following
decomposition of the boundary of G .
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Lemma 4.1. We have

(30) ∂G =
⋃

ı∈I

∂Gi.

4.2. Unicoherence. For further relations between Ω and the components Gi ⊂
G we will have to appeal to the unicoherence property of Rn, which is one of the
most effective tools when dealing with questions of connectedness. We state it as
follows.

Theorem 4.1 (Unicoherence of Rn). Let A and B be domains in Rn such that
A ∪ B = Rn. Then A ∩ B is connected.

Proof. We employ the Mayer-Vietoris long exact sequence:

H1(A ∪ B) −→ H0(A ∩ B) −→ H0(A)⊕ H0(B) −→ H0(A ∪ B) −→ 0.

Since A , B and A ∪ B = Rn are path connected, their homology in the zero
dimension is Z = {0,±1,±2, ...}. Also, we have H1(A ∪ B) = H1(Rn) = 0. This
makes our sequence

0 −→ H0(A ∩ B)
injection
−−−−−−→ Z⊕ Z

onto
−−−−→ Z −→ 0.

By the exactness of this sequence we infer that H0(A ∩ B) ≈ Z, which means that
A ∩ B is connected.

Here is a direct generalization of the unicoherence theorem.

Corollary 4.1. Let A and B be connected subsets of Rn such that A ∪ B = Rn.
Then A ∩ B is connected.

Corollary 4.2. A set A and its complement B = Rn\A have a common boundary,
∂A = ∂B = A ∩ B. If, in addition, A and B are connected, then so is the common
boundary.

As a simple consequence of unicoherence of Rn and De Morgan’s law, we obtain

Lemma 4.2. The intersection of a finite family of domains whose complements
are mutually disjoint is a domain.

Hint. It suffices to consider a family of two such domains. The general case will
result by induction, with the details being left to the reader.

4.3. Filling in the gaps. A somewhat dual statement to Lemma 4.2 asserts that
filling in the gaps does not disconnect the region. Precisely, this means that:

Lemma 4.3. For every subcollection {Gλ}λ∈Λ , Λ ⊂ J , the set

(31) Ω ∪ ⋃

λ∈Λ

Gλ = Rn \ ⋃

λ/∈Λ

Gλ is connected (not necessarily open).

This set is also open if the index set I is finite.

Proof. We express this set as

Ω ∪ ⋃

λ∈Λ

Gλ = F ∪ ⋃

λ∈Λ

Gλ , where F
def
== Ω ∪ ⋃

λ∈Λ

∂Gλ.

By Lemma 4.1 we see that Ω ⊂ F ⊂ Ω ∪ ∂Ω = Ω, and hence F is connected. Now
each of the components Gλ, λ ∈ Λ, intersects F. Therefore, the union F∪

⋃
λ∈Λ Gλ

remains connected. As a word of caution the sets Ω∪
⋃

λ∈Λ Gλ need not be open,
unless the family of unfilled gaps is finite.
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Consider a component Gi ⊂ G ; that is, a gap in Rn.

Lemma 4.4. The boundary of each Gi is connected and coincides with a compo-
nent of Γ = ∂Ω = ∂G.

Proof. We have a decomposition of Rn,

(32) Rn = Gi ∪
(
Ω ∪ ⋃

λ �=i

Gλ

)
,

where the set in parentheses is connected, by Lemma 4.3. Now, Corollary 4.2 tells
us that the boundary of Gi is connected. It is a subset of ∂G , by Lemma 4.1. Thus
∂Gi lies in one and only one component of ∂G. On the other hand any component
of ∂G which meets ∂Gi must lie in ∂Gi. Indeed, suppose ∂Gi ⊂ Γ◦, where Γ◦ is a
component of Γ = ∂G . Since Gi ∩Γ◦ �= ∅, the union Gi ∪Γ◦ is a connected subset
of G . This yields Gi ∪ Γ◦ = Gi and, hence, Γ◦ ⊂ Gi . Finally,

Γ◦ ⊂ Gi ∩ ∂G ⊂ Gi \ IntG ⊂ Gi \ IntGi = ∂Gi,

as desired.

Now, knowing that the sets ∂Gi are connected, it follows from Lemma 4.1 that
every component of Γ = ∂Ω coincides with the boundary of exactly one gap. Let
the components of ∂Ω be denoted by

Γi
def
== ∂Gi , i ∈ I , the components of Γ = ∂Ω.

The preceding discussion can be summarized in the following theorem.

Theorem 4.2 (Boundary components). Let Ω be any domain in Rn, so its bound-
ary consists of mutually disjoint closed connected sets Γi, i ∈ I. To every Γi there
corresponds one and only one component Gi of G = Rn \ Ω in such a way that
∂Gi = Γi.

4.4. Disconnection of Rn. A continuum K ⊂ Rn is said to disconnect Rn if Rn\K
is not connected. More generally, let Ω be any domain in Rn. A set K ⊂ Rn, not
necessarily closed, is said to disconnect Ω if Ω \K is not connected.

Theorem 4.3. No set K ⊂ Rn of a topological dimension dimK � n−2 disconnects
any domain. In particular, closed sets in Rn of Hausdorff dimension less than n−1
do not disconnect domains.

The classical Jordan Curve Theorem which is generalized to higher dimensions by
Brouwer [12], asserts that

Theorem 4.4 (Jordan-Brouwer Separation Theorem). A subset S ⊂ Rn which
is homeomorphic to Sn−1 disconnects Rn into two components. That is, Rn \ S
consists of two disjoint connected open sets U and V whose common boundary is S.

As a matter of fact, the set S in Theorem 4.4 can be replaced by any (n − 1)-
dimensional topological manifold, that is, connected and locally homeomorphic to
Rn−1; see [61, p. 294].

An intrinsic characterization of disconnecting compact sets in Rn is due to
K. Borsuk; see [8, 9, 10]. But we shall not enter into this theory here, as the
need will not arise. However, the following conclusions will be useful.
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Theorem 4.5. If a compact set X ⊂ Rn disconnects Rn, then so does its home-
omorphic image in Rn. The number of components in Rn \ X is a topological
invariance.

Remark 4.1. Let us also note an obvious fact that a connected open set Ω ⊂ Rn\X
is a component of Rn \ X if and only if ∂Ω ⊂ X.

Quite recently Theorem 4.4 has been generalized to noninjective images of Sn−1;
see J. F. Lafont [40, Theorem 1.3].

Theorem 4.6. Let S ⊂ Rn be homeomorphic to Sn−1 and let X � S be a proper
compact subset of S. Suppose we are given a continuous map Φ : S → Rn which is
injective on S \ X and Φ(S \ X) ∩ Φ(X) = ∅. Then:

• The set Φ(S) disconnects the space Rn .
• To every point p ∈ Φ(S \X) there correspond precisely two connected com-
ponents of ⊂ Rn \ Φ(S) which contain p in their closure.

See also [41] for noninjective images of (n − 1)-manifolds or even more general
spaces.

4.5. Domains of finite connectivity. From now on we assume that Ω is bounded
and its boundary Γ = ∂Ω consists of a finite number of mutually disjoint continua,
say

(33)

{
Γ = ∂Ω = Γ0 ∪ Γ1 ∪ · · · ∪ Γ� , � � 1,
Rn \ Ω = G0 ∪G1 ∪ · · · ∪G� , � � 1,

where Γi = ∂Gi, i = 0, 1, ..., �. Hereafter the zero subscript will always stand for
the unbounded component of Rn \ Ω. We call Γ0 = ∂G0 the outer boundary of Ω.
Note that the corresponding gaps are a positive distance apart:

(34) min
0�i<j��

dist (Γi,Γj) = min
0�i<j��

dist (Gi,Gj) > 0.

Such Ω will henceforth be referred to as an (� + 1)-connected domain. Note that
(�+ 1)-connectivity is topological invariance; that is, the image h(Ω) of an (�+ 1)-
connected domain Ω ⊂ Rn under a homeomorphism h : Ω → Rn is an (� + 1)-
connected domain. In the case � = 0 the complement of Ω is connected. Let a
positive number ε be chosen and fixed small enough to satisfy

(35) 2ε < dist (Γi,Γj) , for all 0 � i < j � �.

The ε neighborhoods of the gaps, defined by

Gε
i =

{
x ∈ Rn ; dist (x,Gi) < ε

}
, i = 0, 1, ..., �,

form a disjoint family of domains in Rn . Each of them contains exactly one bound-
ary component of Ω, namely Γi ⊂ Gε

i . The boundary of Gε
i (not necessarily con-

nected) is the level set of the distance function to Gi . In analogy with the notation
Γi = ∂Gi , we introduce

(36) Γ ε
i = ∂Gε

i =
{
x ∈ Ω ; dist (x, Gi) = ε

}
.

In general, Γ ε
i need not be connected.

Obviously, the boundary of the closure Gε
i =

{
x ∈ Rn ; dist (x,Gi) � ε

}
is

contained in Γε
i . But it may not coincide with Γε

i , even for arbitrarily small ε; see
Figure 2.
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Figure 2. Although Ω is monotone near the snake shaped bound-
ary, the points in the dotted lines have no escape to a farther dis-
tance from the snake.

5. The potential function and its level sets

Let Ω be a bounded domain in Rn whose complement Ω0 = Rn \ Ω is also
connected. Obviously, by virtue of unicoherence of Rn, the common boundary
∂Ω = ∂Ω0 = Ω ∩ Ω0 is also connected. Let Υ be a continuum in Ω. We consider
functions u ∈ W 1,p

0 (Rn) with some fixed exponent p > n, such that

(37) u ≡ 1 on Υ and u ≡ 0 on Ω0.

Among all such functions there is exactly one, denoted by U , which minimizes the
variational integral

(38) min

∫
Ω

(
1 + |∇u(y)|2

) p
2 dy =

∫
Ω

(
1 + |∇U |2

) p
2 .

This minimizer, referred to as the potential function of the condenser (Υ,Ω), is
C ∞-smooth in Ω \ Υ. It enjoys especially pleasing geometric behavior. First, U
is continuous in Rn, because p > n. It follows from the general elliptic theory of
variational integrals such as this that

(39) U ∈ C∞(Ω \Υ) and 0 < U < 1 on Ω \Υ.

These latter inequalities are a straightforward consequence of strong maximum and
minimum principles [25]. Further results demand a few geometric observations
concerning the level sets Γc = {y ∈ Rn ; U(y) = c} for 0 � c � 1. Thus Γ0 = Ω0

and Γ1 = Υ. The celebrated theorem of Sard [57] comes in handy. Recall that
0 < c < 1 is a regular value of U if ∇U �= 0 on Γc. Almost every c ∈ (0, 1) is a
regular value. Thus, by the Implicit Function Theorem the corresponding regular
level set Γc consists of a finite number of C ∞-smooth closed (n − 1)-manifolds.
In fact Γc is connected, thus a single (n − 1)-manifold. To see this let M be one
of the components of Γc. By the Jordan-Brouwer type separation theorem for
manifolds (see the comments after Theorem 4.4), we find that Rn \ M consists
of exactly two domains. We denote by V the bounded component of Rn \ M
and note that ∂V = M, so U|∂V

≡ c. It then follows that V cannot lie entirely
in Ω \ M, for otherwise the constant function c on V would give us the smallest
energy. But this contradicts c being a regular value. Since Γ0 is connected and
Γc ∩M = ∅, it must lie entirely in one of the components V or Rn \ V. Obviously,
Γ0 � V, because Γ0 is unbounded. Hence Γ0 ⊂ Rn \ V. On the other hand, since
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V � Ω \M = Rn \ (Γ0 ∪Υ ∪M), we then see that

V ∩ (Γ0 ∪Υ ∪M) �= ∅,

where V ∩ Γ0 = ∅ and V ∩M = ∅. This yields V ∩ Υ �= ∅. Since Υ is connected
and disjoint with M, we conclude that Υ ⊂ V.

Now, suppose that there exists another component M′ of the level set Γc. Then,
by the same reasoning, the bounded component of Rn \M′, denoted by V′, would
contain Υ. In particular V′ ⊃ V, because V is connected and disjoint with M′.
Similarly, by symmetry of reasonings, we find that V ⊃ V′, so V = V′. We just
proved the following:

Lemma 5.1. Every regular level set Γc, 0 < c < 1, of the potential function U is
a single C ∞-smooth (n− 1)-manifold which separates Υ from Ω0. The component
inside Γc is described precisely as V = {y ∈ Rn ; U(y) > c}.

6. A counterexample to the continuous extension

and the proof of Theorem 1.3

We begin with an example where continuous extension is impossible, due mainly
to the geometric irregularity of ∂Y.

6.1. A counterexample (volcanic hills of finite energy). We take for a do-
main X the lower half-ball in Rn:

X = UR =
{
x = (x1, ..., xn) ; |x| < R and xn < 0

}
⊂ Rn

−.

In fact, X can be any bounded domain in Rn
− whose flat top of the boundary

X ∩ Rn−1 has nonempty interior in Rn−1. Let U = U(a, r) be any lower half-ball
in X with radius r centered at a point a = (a1, ..., an−1, 0) ∈ X ∩ Rn−1. Let us
interpret U as a chamber of lava which is going to erupt from below the surface of
X ∩ Rn−1, cool and harden into a volcanic hill. For computational simplicity we
take a = 0.

xn

r

R n-1

Figure 3. The chamber of lava below the surface and the volcanic hill.

The emission of lava is expressed by a map ϕ : U → Rn given by the following
equation:

(40) ϕ(x) =
(
x1, ..., xn−1, xn + ε(x)

)
, x ∈ U,
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where

(41) ε(x) = 1− log(1 + λ|x|)
log(1 + λr)

� 0.

Here λ can be any positive parameter to be chosen depending on the energy we
want to designate for the specific amount of lava to be lifted up. In any case,
for each λ, the lava flow always reaches the top at ϕ(0) = (0, ..., 0, 1). Note that
ε(x) is strictly increasing with respect to the variable xn ∈ [−r, 0]. Therefore, ϕ
is a continuous injection (homeomorphism) of U onto a domain in Rn. Moreover,
ϕ = id on the lower round part of ∂U, because ε(x) = 0 for |x| = r. The flat top
part of ∂U, however, is lifted up into a spike-like formation. We regard ε as a small
perturbation of the identity map. Indeed, we have

E [ϕ− id] =

∫
U

|∇ε(x)|n dx =
1

2 logn(1 + λr)

∫
|x|�r

λn dx

(1 + λ|x|)n

=
ωn−1

2 logn(1 + λr)

∫ λr

0

sn−1 ds

(1 + s)n
� ωn−1

2 logn(1 + λr)
→ 0

as λr → ∞. We now consider a sequence of points ai ∈ Rn−1 on the upper flat part
of ∂X converging to a point a ∈ X ∩ Rn−1. Call ai the epicenters of volcanic hills.
The radii ri < R − |ai| are chosen to be small enough so that the lava chambers
Ui = U(ai, ri) ⊂ X are disjoint. Precisely,

ri + rj < |ai − aj | for all i, j = 1, 2, ....

Upon eruption (from each chamber) there will appear a sequence of volcanoes over
X ∩ Rn−1. The emergent region will be denoted by Y. Precisely, Y is the image of

X under a homeomorphism h : X
onto−→ Y defined by

h(x) = x+
∞∑
i=1

εi(x) en , en = (0, ..., 0, 1),

where

(42) εi(x) =

⎧⎨⎩1− log
(
1+λi|x−ai|

)
log

(
1+λiri

) for x ∈ Ui

0 otherwise.

Finally, we choose the parameters λi > 0 to ensure that h has finite conformal
energy. Indeed we have

(43) E [h− id] =

∞∑
i=1

∫
Ui

|∇εi(x)|n dx � ωn−1

2

∞∑
i=1

log1−n(1 + λiri).

This energy can be made as small as desired by taking sufficiently large λi’s; see
Figure 4.

Clearly h : X
onto−→ Y admits no continuous extension to X because diamh(Ui) > 1,

while diam (Ui) = 2ri → 0. Actually, no homeomorphism g : X
onto−→ Y admits a

continuous extension to X. This is because the entire interval I = {a + ten ; 0 <
t � 1} ⊂ ∂Y consists of inaccessible boundary points. Specifically, there is no
continuous path γ : [0, 1] ⊂ Rn, such that γ(0) ∈ I and γ(0, 1] ⊂ Y. Yet, every
point x ∈ ∂X can be connected with an interior point of X by a straight segment.
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1

xn

Rn-1

Figure 4. Volcanic hills converging to inaccessible boundary.

6.2. Proof of Theorem 1.3. In order to obtain continuity up to the closure of
X, we must assume some geometric regularity of ∂Y. Note that in the example of
volcanic hills, the boundary of Y was neither a neighborhood retract, nor was it
locally connected. We shall establish Theorem 1.3 if we prove the following:

Proposition 6.1. Suppose that for some k = 0, 1, ..., � the component ∂Xk is qua-
siconformally flat and that ∂Yk is a neighborhood retract. Then every h ∈ E(X,Y)
extends to a continuous map h : X ∪ ∂Xk

onto−→ Y ∪ ∂Yk.

Before embarking on the proof, let us make a few comments.
The boundary component ∂Xk is quasiconformaly flat if every point in ∂Xk has

a neighborhood U ⊂ Rn and a quasiconformal map g : U ∩ X → B+ = {x =
(x1, ..., xn) ∈ B , xn > 0} which extends homeomorphically to U. On the other
hand, ∂Yk is said to be a neighborhood retract if ∂Yk has a neighborhood V ⊂ Rn

and a continuous map χ : V
onto−→ Yk which is the identity on ∂Yk.

Every component of ∂Y which is locally a graph is a neighborhood retract; see
Corollary 10.2. One more point to emphasize is that a continuum in Rn which is
a neighborhood retract is locally connected. The converse is not always true, as
shown by the Hawaiian earring. The fundamental role played by the quasiconformal
mapping g : U ∩ X → B+ is that, upon using it as a change of variables, we get a
new mapping with finite conformal energy. This will reduce us to the case when
∂Xk is flat near the point at which continuity of h is in question. By contrast, local
analysis at a given point of ∂Yk is impossible because (a priori) the values of h may
scatter along all the boundary components of ∂Yk.

Proof of Proposition 6.1. It suffices to show that h : X
onto−→ Y has a limit at every

point x0 ∈ ∂Xk. Fix such a point. With the aid of a quasiconformal change of
variables near x0, we may assume that x0 is the origin of Rn and that ∂Xk contains
the (n− 1)-disk. That is,

B ∩ Rn−1 =
{
(x1, ..., xn) ; xn = 0 , x2

1 + · · ·+ x2
n−1 < 1

}
⊂ ∂Xk.

We may further assume that B+ ⊂ X and B− ⊂ Rn \X. The existence of the limit
lim

x→x0

h(x), where x ∈ X, reduces to showing that

(44) lim
r→0

diamh(B+
r ) = 0 , B+

r = B+ ∩ Br.
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As a first step we extend h = h(x1, ..., xn−1, xn) to B \ Rn−1 = B+ ∪ B− via even
reflection. We shall, by convenient abuse of notation, continue to denote it by the
same symbol:

h(x1, ..., xn−1, xn) =

{
h(x1, ..., xn−1, xn) if xn > 0 and |x| < 1 , x ∈ B+,

h(x1, ..., xn−1,−xn) if xn < 0 and |x| < 1, , x ∈ B−.

Of course, injectivity of h : B \Rn−1 → Rn is lost. It is a well-known fact, however,
that such an extension has a representative in the Sobolev space W 1,n(B,Rn). In
general, functions in W 1,n(B) need not be continuous. Nevertheless, they have
arbitrarily small oscillations around every point. Precisely, upon a suitable choice
of the representative, h becomes continuous on almost every sphere Sr = {x ; |x| =
r}, 0 < r � 1. Moreover, for some rν → 0 we have

(45) lim
rν→0

diamh(Sν) = 0 , Sν = Srν ;

see Lemma 3.3. Recall that we have a retraction χ : V
onto−→ ∂Yk of V onto ∂Yk. We

restrict our considerations to a sufficiently small ball Br, with 0 < r < r0 � 1, so
that

(46) h
(
B+
r ∪ B−

r

)
= h(B+

r ) ⊂ V , for all 0 < r < r0.

The existence of r0 is clear because h, being a homeomorphism on X, takes points
near ∂Xk uniformly close to ∂Yk. Now the Strong Separation Theorem, Theo-
rem 4.6, comes into play. In this theorem we take for S the sphere Sν , while for X
the lower hemisphere X = {(x1, ..., xn) ; xn � 0 and |x| = rν}. We then define a
continuous map Φ : Sν → Rn by the rule

(47) Φ(x) =

{
h(x) if x ∈ Sν ∩ X,

χ
(
h(x)

)
⊂ ∂Yk if x ∈ Sν ∩ Rn \ X.

Note that Φ is injective on Sν\X. Moreover, the sets Φ(X) ⊂ ∂Yk and Φ(Sν\X) ⊂ Y
are disjoint. By virtue of Theorem 4.6 the image Φ(Sν) disconnects the space. Let
us estimate its diameter

(48) diamΦ(Sν) � diamh(Sν) + diamχ
(
h(Sν)

)
because h(Sν) ∩ χ

(
h(Sν)

)
= h(X) �= ∅. This, in view of (45) and the uniform

continuity of χ, shows that diamΦ(Sν) → 0. Now, (44) will be established once
we show that h(B+

r ) lies in a bounded component of Rn \ Φ(Sν), for r < rν . First
we observe that the connected region h(B+

rν ) ⊂ Y does not intersect Φ(Sν); it must
lie entirely in one and only one component of Rn \Φ(Sν). Similarly, the remaining
connected region h(X \ B+

rν ) = Y \ h(B+
rν ) lies in one and only one component of

Rn \ Φ(Sν). Taking rν sufficiently small we see that the set h(X \ B+
rν ) is too large

to fit in any bounded component of Rn \ Φ(Sν). Therefore, h(X \ B+
rν ) must lie

in an unbounded component of Rn \ Φ(Sν). At this point in our argument the
second statement of Lafont’s Theorem 4.6 proves useful. Accordingly, to every
point p ∈ Φ(Sν \ X) there correspond precisely two connected components of Rn \
Φ(Sν) which contain p in their closure. On the other hand such a p belongs to

h(B+
rν )∩h(X \ B+

rν ) and is an interior point of h(B+
rν )∪h(X \ B+

rν ). This means that
h(B+

rν ) and h(X \ B+
rν ) are the only components which contain p in their closer. In

particular, these are different components of Rn \Φ(Sν). Finally, there is only one
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unbounded component. Therefore the set h(B+
rν ) lies in a bounded component of

Rn \ Φ(Sν), as does its subset h(B+
r ) for 0 < r � rν , as desired.

Remark 6.1. The reader may wish to observe that we actually proved more. Let
X be a quasiconformal crack in X of dimension n − 1. That is, each point in X

has a neighborhood U and a quasiconformal map g : U → B such that g(U ∩ X) =
g(U) ∩ Rn−1. On the other hand, let Υ ⊂ Y be a neighborhood retract. We view
X and Υ as boundary components of X \ X and Y \ Υ and h ∈ E(X \ X,Y \ Υ).
Obviously, X disconnects U. What we really proved is that h extends continuously
to the closure of every component of U \X, but not necessarily to U. The following
example illustrate this phenomenon.

Example 6.1 (A cavity). Let X be an (n−1)-dimensional disk in Rn = Rn−1×R
of the form X = {(w, 0) : |w| � 1 }. Define a C ∞-smooth homeomorphism h :
Rn \ X → Rn by the rule

h(x) = h(w, t) =

{
(w, t+ τ (w)) if t > 0,
(w, t) if t = 0 and |w| > 1,

where τ ∈ C ∞
◦ (Rn−1) is positive for |w| < 1 and vanishes for |w| � 1. This map

has a bounded gradient and yet makes a hole out of the disk X.

However, if the crack X ⊂ X has dimension less than n − 1, then we have the
following result [33].

Theorem 6.1. Suppose h ∈ W 1,n
loc (X,Rn) is a continuous injection outside a closed

set X ⊂ Rn, with dimX � n− 2. Then h extends continuously from X \ X to X.

7. Estimates of the distance to the boundary

As has been suggested by Definition 1.1, the notion of a Euclidean diameter of
a continuum X in a domain X ⊂ Rn is not best suited for our purpose.

7.1. The essential diameter. Let H(X,X) denote the collection of all homeo-

morphisms ϕ : X
onto−→ X (topological automorphisms) such that ϕ{∂Xi} = ∂Xi,

i = 0, 1, ..., �.

Definition 7.1. The essential diameter of a continuum X ⊂ X relative to X is
defined and denoted by

(49) diam(X,X) = inf{diamϕ(X) ; ϕ ∈ H(X,X)}.

As an illustration, every continuum X in a ball B ⊂ Rn can be compressed
by a homeomorphism in H(X,X) to a set of arbitrarily small diameter. Thus
diam(X,X) = 0. On the other hand, consider a circle X ⊂ Rn of radius R and the
torus X = {x ∈ Rn ; dist(x,X) < r}, 0 < r < R. The essential diameter of X
relative to X can easily be computed as

(50) diam(X,X) = 2(R− r).

Let us also note that every continuum X ⊂ X which separates the outer component
X0 of Rn \X from an inner component Xi, i = 1, 2, ..., �, has the essential diameter
not smaller than diamXi,

(51) diam(X,X) � diamXi.
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In particular, diam(X,X) is positive if the component Xi of Rn \ X is not a single
point (not a puncture in Rn). We also emphasize that if X separates X0 from two
punctures Xi = {ai} and Xj = {aj}, then

(52) diam(X,X) � |ai − aj | .

It is now well to point out that a domain X ⊂ Rn is incompressible if it contains a
continuum X ⊂ X such that diam(X,X) > 0.

For many analytic-geometric questions this property of X well compensates the
lack of existence of the inner boundaries. A little caution should be exercised since
domains of the same topological type as torus may be compressible, for example
B \ Rn−2.

7.2. The modulus of the distance to ∂Yi. Recall the family E(X,Y) of home-

morphisms h : X
onto−→ Y, h{∂Xi} = {∂Yi}, i = 0, 1, ..., �, with finite conformal

energy

(53) E [h] =
∫
X

|Dh|n < ∞.

Here, we are concerned with uniform estimates of the distance of h(x) to ∂Yi as x
approaches ∂Xi, in relation to the energy of h. Thus, we introduce the moduli of
the distance functions defined for x ∈ X by the rules.

(54) ηi(x) = sup
h∈E(X,Y)

distn[h(x),Yi]∫
X
|Dh|n , i = 0, 1, ..., �,

and

(55) η(x) = η
X,Y

(x) = sup
h∈E(X,Y)

distn[h(x), ∂Y]∫
X
|Dh|n = max

0�i��
ηi(x).

Theorem 7.1. Suppose that X has at least two boundary components or is incom-
pressible. Then for each component Xi of Rn \ X, i = 0, 1, ..., �, we have

(56) lim
x→Xi

ηi(x) = 0 , so lim
x→∂X

η
X,Y

(x) = 0.

7.3. Proof of Theorem 7.1. There are several cases to consider. First we handle
the inner components, 1 � i � �.

7.3.1. Estimates near the inner component. There are two types of inner compo-
nents.

Case 1. The component Xi is a single point, say Xi = {a}.

It is not difficult to see that the corresponding component Yi = h{Xi} is also a
single point, say Yi = {b}. Moreover, every h ∈ E(X,Y) extends to a homeomor-

phism h : X ∪Xi
onto−→ Y ∪Yi; see Theorem 3.1. We fix the parameter d > 0 so that

the ball 2B = B(a, 2d) lies in X ∪ Xi. By Lemma 3.1 we obtain

|h(x)− h(a)|n �
Cn

∫
2B

|Dh|n

log
(
e+ d

|x−a|

) for x ∈ B = B(a, d).

Thus lim
x→a

ηi(x) = 0, as claimed.



DEFORMATIONS OF FINITE CONFORMAL ENERGY 5625

Remark 7.1. We can state the result as

distn [h(x), ∂Yi] �
Cn(X,Y)

∫
X
|Dh|n

log
(
e+ diamX

dist(x, ∂Xi)

) .
This estimate will be generalized later for monotone components of ∂Y, which will
receive detailed consideration in Section 8.3.

The next case is the essence of Theorem 7.1. Its proof is the key to other cases,
so we give all details.

Case 2. Suppose Xi is an inner component of Rn \ X with positive diameter, say

(57) diamXi = 2d > 0.

We emphasize that the corresponding component Yi may still be a single point.
The general idea of the proof amounts to introducing a potential function in the
target space. Our choice of the potential function will depend on the regularity of
∂Yi. Specific estimates will be obtained if the target domain Y is monotone near
∂Yi; see Definition 8.1. However, in this section, we do not deal with quantitative
estimates, and that is why Theorem 7.1 requires no regularity of ∂Yi.

Let us begin with the set Ω = Rn \ Y0 = Y ∪ Y1 ∪ · · · ∪ Y�. By Lemma 4.3 this
is a bounded domain. Obviously its complement Rn \ Ω = Y0 is also connected.
We may, therefore, consider the potential function U for the condenser (Yi,Ω) as
discussed in Section 5; see Lemma 5.1 with Yi in place of Υ. By Sard’s theorem we
see that almost every level set Γc, 0 < c < 1, is a smooth (n − 1)-manifold which
separates Yi from Y0. Even more, if c is sufficiently close to 1, then Γc separates
Yi from all other components of Rn \ Y. In particular, the bounded component of
Rn \ Γc is contained in Y ∪ Yi. We fix such a value c and will only consider the
level sets Γt with c � t � 1. Let us truncate the potential function

(58) Uc = Uc(y)
def
== max{c, U(y)} , y ∈ Rn.

As a first step we observe that if f : Y
onto−→ X is a homeomorphism with f{∂Yi} =

∂Xi, for i = 0, 1, ..., �, then

Lemma 7.1. For every regular level set Γt of U , 0 < t < 1, it holds that

(59) diam f(Γt) � 2d.

Proof. By Theorem 4.6 the set Rn \ f(Γt) consists of exactly two components.
On the other hand Γt separates Yi from Y0, so f(Γt) separates Xi from X0. In
particular, the bounded component of Rn \ f(Γt) contains Xi. This is because X0,
being unbounded, does not fit into any bounded component. Hence

(60) diam f(Γt) � diamXi � 2d.

Lemma 7.2. Let h : X
onto−→ Y be a homeomorphism such that h{∂Xi} = ∂Yi,

i = 0, 1, ..., �. Consider the pullback of Uc under h, defined by

(61) V (x) = Vh(x) =

⎧⎪⎨⎪⎩
Uc

(
h(x)

)
if x ∈ X,

1 if x ∈ Xi,

c if x /∈ X ∪ Xi.
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Then V is continuous in Rn and monotone on every ball B ⊂ Rn of diameter not
greater than 2d. This means that

min
∂Q

V = min
Q

V � max
Q

V = max
∂Q

V

for every compact set Q ⊂ B, diamB � 2d.

For the proof of this lemma we fix a compact set Q ⊂ B in a ball B of diameter
2d. We aim to show that every value t ∈ [c, 1] of V|Q is actually attained on ∂Q. It
involves no loss of generality in assuming that Q is connected, since otherwise we
would restrict V to the component of Q containing a given point x with V (x) = t.
We may further assume that t is a regular value of U , because such values are
dense in [c, 1]. Now, the regular level set Γt = {y ∈ Y ; U(y) = t} contains the
point h(x). By Lemma 7.1 diam f(Γt) � 2d = diam B > diam Q. We see that
the continuum f(Γt) is too large to be contained in Q. Thus it must intersect ∂Q,
meaning that the value t is attained on ∂Q. This completes the proof of Lemma
7.2.

Further truncation of V near Xi will be necessary in order to control the gradient
of V . Given α ∈ (c, 1) we define

(62) V α(x) = V α
h (x) = min{Vh(x), α}.

Lemma 7.3. For every c < α < 1 the truncated potential V α(x) is still monotone
on balls B ⊂ Rn of diameter 2d.

This fact actually pertains to a truncation of every monotone function V ; the
proof is standard.

We now proceed to the proof of the limits of (56).

Proof of (56). Suppose that, on the contrary, there exist δ > 0, a sequence of points
xν ∈ X converging to x0 ∈ Xi, and homeomorphisms hν ∈ E(X,Y), such that

(63)
distn[hν(xν),Yi]∫

X
|Dhν |n

� δ, ν = 1, 2, ....

This yields, in particular, that the mappings hν have bounded energy. Precisely,
we have

(64)

∫
X

|Dhν |n � diamn Y
δ

, ν = 1, 2, ....

On the other hand,

distn[hν(xν),Yi] � δ

∫
X

|Dhν |n � δ|Y| , ν = 1, 2, ....

Therefore, all points hν(xν) ∈ Y lie in a compact subset of Y. By virtue of (39)
there exists α ∈ (c, 1), sufficiently close to 1 and independent of ν, such that

(65) c � Uc

(
hν(xν)

)
� α , ν = 1, 2, ....

We now fix α and select another parameter β such that c < α < β < 1. Consider

a sequence of functions V β
ν = V β

hν
(x) defined for x ∈ Rn. The reader may wish to

return to formulas (61) and (62) for the definition of V β
h . Clearly, if c � U

(
hν(x)

)
�

β, then V β
ν (x) = U

(
hν(x)

)
; otherwise ∇V β

ν (x) ≡ 0. Hence, we have the following

uniform bound of the gradient of V β
ν :∣∣∇V β

ν (x)
∣∣ � M |Dhν(x)| , where M

def
== || ∇U ||L ∞(c<U<β).
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Precisely, we have∫
X

|∇V β
ν (x)|n dx � diamn Y

δ
Mn , for ν = 1, 2, ....

Since V β
ν are monotone on every ball B of diameter 2d, it follows from Lemma 3.1

that ∣∣V β
ν (a)− V β

ν (b)
∣∣n �

Cn

∫
B

∣∣∇V β
ν

∣∣n
log

(
e+ d

|a−b|

) � Cn M
n diamnY

δ log
(
e+ d

|a−b|

)
whenever a, b ∈ Rn and |a− b| � d. This shows that the functions in the sequence
{V β

ν }∞ν=1 are equicontinuous on Rn. By the Ascoli-Arzelá Theorem there is a subse-
quence, again denoted by {V β

ν }∞ν=1, that converges uniformly on Rn to a continuous
function V β = V β(x),

V β
ν (x) ⇒ V β(x) , x ∈ Rn.

In particular,
V β
ν (xν)− V β(xν) → 0, as ν → ∞.

Also note that V β
ν ≡ β on Xi for all ν = 1, 2, .... Hence V β ≡ β on Xi as well. It

follows from the definition of V β
ν (xν) that

V β
ν (xν) = Uc

(
hν(xν)

)
because Uc

(
hν(xν)

)
< β.

For this, recall (65) and our choice of β ∈ (α, 1). Finally, passing to the limit as
xν → x0 ∈ Xi, we obtain a contradiction:

0 = lim
ν→∞

[
V β
ν (xν)− V β(xν)

]
� α− β < 0.

Remark 7.2. Let us emphasize that one of the essential points in this proof was
that the parameter d in Lemma 7.3 did not depend on h ∈ E(X,Y). However, the
same proof still works when d depends on the energy of h, but not on the individual
member of E(X,Y). This is because the energies of {hν} stay bounded anyway; see
(64). We shall face such a situation in Lemma 7.4 of Section 7.3.2.

7.3.2. Estimates near the outer component. We now examine the modulus of the
distance to Y0:

(66) η
0
(x) = sup

h∈E(X,Y)

distn[h(x),Y0]∫
X
|Dh|n .

The goal is to show that lim
x→X0

η
0
(x) = 0. Our proof is divided into Case 3 and Case

4. In Case 3 we assume that either � = 0 or

(67) diam(X1 ∪ · · · ∪ X�) � 2d > 0.

Recall that in case � = 0 we are given a compact set X ⊂ X of positive essential
diameter. This set will supersede X1 ∪ · · · ∪X�. The arguments are much the same
as in Case 2.

Case 3. Assume that either � � 1 and (67) holds or � = 0 and X is incompressible.
We only emphasize the main points of the proof. Consider a condenser (Υ,Ω) in
the target space where

Ω = Rn \ Y0 = Y ∪ Y1 ∪ · · · ∪ Y�.

As for Υ, we take a continuum which contains Y1 ∪ · · · ∪ Y� if � � 1. If � = 0,
we choose and fix a continuum X ⊂ X of positive essential diameter and take for
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Υ its image under any (also fixed) homeomorphism g ∈ H(X,Y). In this case the
parameter d is the one for which diam(XX) � 2d. The associated potential function
U , exploited effectively in Case 2, also serves well here. However, in order to follow
literally the notation and subsequent steps of Case 2, the reader may wish to replace
U by 1− U . Details are left to the reader.

Case 4. We now come to the last step in the proof of Theorem 7.1. That is, when
Rn \ X has two components X0 and a single point

Rn \ X = X0 ∪ {a}.

We know from Theorem 3.1 that h : X
onto−→ Y extends as a homeomorphism h :

X′ onto−→ Y′, where X′ = X ∪ {a} and Y′ = Y ∪ {b}, b = lim
x→a

h(x). But it does

not mean that we are reduced to Case 3 in which ∂X′ has only an outer boundary
component. This is because a compact set X ⊂ X′ of positive essential diameter is
unavailable this time. We compensate it by estimating the size of the image of a
neighborhood of a ∈ X under the mappings h ∈ (X′,Y′).

Consider a condenser (Υ,Ω), where Ω = Y′ and Υ ⊂ Ω is any (fixed) continuum
with nonempty interior, for instance containing some ball B(b, δ). The associated
potential function U , see Lemma 5.1, again works just as well. We propose to
replace U by 1 − U so that the notation and subsequent steps of Case 2 are in
force. The regular level sets Γt = {y ∈ Rn ; U(y) = t}, 0 < t < 1, are single
(n − 1)-manifolds separating Υ from ∂Y′. The only point remaining concerns a
uniform bound from below of the size of the sets h−1(Γt).

Lemma 7.4. Fix any positive number E. Then for every h ∈ E(X′,Y′), with
h(a) = b and

∫
X
|Dh|n � E, and for every regular value 0 < t < 1 of the potential

function U , it holds that

(68) diamh−1(Γt) � 2d > 0 , 0 < t < 1.

Here d depends only on X, Y and E.

Let us emphasize that d does not depend on any particular member of the family
E(X′,Y′), just on the upper bound of the conformal energy; see Remark 7.2.

Proof. We choose and fix a ball B(a, 2R) ⊂ X′. Now, consider any map h ∈
E(X′,Y′) with energy

∫
X
|Dh|n � E. By the continuity estimate in Lemma 3.1, we

have

(69) |h(x)− h(a)|n � Cn · E
log

(
e+ R

|x−a|

) ,
provided |x− a| � R. We now specify the parameter d for (68); namely,

(70) d = min{R, r},
where r is uniquely determined by the equation

(71) δn =
Cn · E

log
(
1 + R

r

) , recall that δ was fixed so B(b, δ) ⊂ Υ.

For (68), observe that h−1(Γt) separates Rn into two component. Let B(a, ε) denote
the largest ball centered at a which fits inside h−1(Γt). That is,

ε = inf
{
|x− a| ; x ∈ h−1(Γt)

}
.
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Therefore, diamh−1(Γt) � diamB(a, ε) = 2ε. Now (68) holds if ε � R. On the
other hand, if 0 < ε < R, we may apply inequality (69) with the point x ∈ h−1(Γt)
for which ε = |x− a|. This means that h(x) ∈ Γt and

|h(x)− h(a)| � dist{b,Γt} � dist{b, ∂Υ} = δ.

Hence

(72) δn � Cn · E
log

(
e+ R

ε

) <
Cn · E

log
(
1 + R

ε

) .
As a consequence of the definition of r at (71) this yields ε > r, establishing the
inequality (68). All cases have been considered completing the proof of Theorem
7.1.

8. Estimates near the monotone boundary

In this section we continue to study homeomorphisms h : X
onto−→ Y between two

bounded domains in Rn. Our objective is to examine more precisely how close
to ∂Y is h(x) when x approaches ∂X . As always, we assume that X and Y
are (� + 1)-connected, � � 1. Thus Y is a bounded connected open set whose
complement Rn \ Y consists of (� + 1)-components, denoted by Y0,Y1, ...,Y�. In
this numeration Y0 stands for the unbounded component. The boundaries of Yi

are the components of ∂Y, denoted by

(73) Γi = ∂Yi, i = 0, 1, ..., �.

8.1. Monotone domains.

Definition 8.1. A bounded domain Y ⊂ Rn of connectivity � + 1 is said to be
monotone near its boundary component Γi ⊂ ∂Y if for all sufficiently small ε > 0
the level sets

(74) Γ ε
i =

{
y ∈ Y ; dist (y, Γi) = ε

}
are connected. Furthermore, Y is monotone if it is bounded and monotone near
every boundary component.

Lemma 8.1 (The level sets). Let Y be a monotone domain and G = Rn \Y. Then
the sets

Yε =
{
y ∈ Y ; dist(y,G) > ε

}
, for 0 < ε � κ,

Fε =
{
y ∈ Y ; dist(y,G) � ε

}
, for 0 < ε � κ

are connected.

Remark 8.1. This lemma fails if Y is not monotone.

It is easy to see that

(75) ∂Yε ⊂ Γ ε
0 ∪ · · · ∪ Γ ε

�
def
== Γε = {y ∈ Y ; dist (y,Rn \ Y) = ε}.

In general, however, ∂Yε may be a proper subset of Γ ε
0 ∪ · · · ∪ Γ ε

� , no matter how
small ε is. We make this remark clear with an example of a snake shaped set as a
boundary component of Y; see Figure 2.
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Remark 8.2. This example also illustrates that the boundary components of a
monotone domain can be neither path connected nor locally connected. In our
analysis we do not rule out such boundaries. It is worth noting that such rather
bizarre boundaries are not present if the distance function

(76) dΩ(y)
def
== dist(y,G) , y ∈ Y,

is strictly monotone near ∂Y. The term strictly monotone refers to any function
on Y which assumes neither local maximum nor local minimum. As regards the
distance function, its local minimum is never attained in Y. However, in Figure 2,
the points in the dotted part of Γ ε cannot move farther away from ∂Y, meaning
that these are local maxima for d

Y
.

It is not generally true that coordinates of a homeomorphism h = (h1, ..., hn) :
X → Y extend continuously to X. Nonetheless, some functions of h do extend, such

as dist(h(x), ∂Y). If a homeomorphism h : X
onto−→ Y is fixed, it is not difficult to

construct a continuous function Θh : [0,∞) → [0,∞) increasing from 0 to ∞ such
that

(77) dist (h(x), ∂Y) � Θh(dist (x,R
n \ X)) , for all x ∈ X.

Indeed the function Θh(t) = sup
{
dYh(x) , dist(x,Rn \X) � t

}
works just as well.

Without any additional regularity of the target domain one cannot say more than
that. Let us take a moment for an example.

8.2. An example. We show that Θh can decrease to zero as slowly as we wish.
Precisely, we have

Example 8.1. Given any continuous function Θ : [0,∞) → [0,∞) increasing from
zero to infinity, there exist X and Y and a homeomorphism h : X → Y of Sobolev
class W 1,n(X,Y) such that

(78) lim
t→0

Θh(t)

Θ(t)
= ∞.

Proof. First we choose and fix a decreasing sequence of radii 1 = r1 > r2 > ...,
small enough to satisfy

(79)
∞∑
k=1

rk < ∞ and Θ(rk) �
1

2k
, for k = 1, 2, ....

Then we set Rk+1 = kΘ(rk), with R1 = 1. To define the domain X we consider an
infinite tower of balls Dk = B(ak, rk), each on top of the previous one. Consecutive
balls Dk and Dk+1 are connected by a tiny passage so that X becomes a domain.
These passages will play no role in computation since we can make them arbitrarily

thin. In exactly the same way we construct an infinite tower Y with the balls Bk
def
==

B(bk, Rk) and the passages between them. Consider similarity transformations

hk : Dk
onto−→ Bk, k = 1, 2, .... We assume that hk+1 agrees with hk at the point

where Dk+1 meets Dk . After making suitable extensions of hk to tiny passages, we
obtain a mapping h : X → Y of finite conformal energy. Specifically, if one ignores
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the energy over the tiny passages, then the computation goes as follows:

∞∑
k=1

∫
Dk

||Dh || n = n
n
2

∞∑
k=1

∫
Dk

J(y, h) dy = n
n
2

∞∑
k=1

volBk

� Cn

∞∑
k=1

Rn
k = Cn

(
1 +

∞∑
k=1

[kΘ(rk)]
n

)

� Cn

(
1 +

∞∑
k=1

kn

2nk

)
< ∞.(80)

The remaining integrals over the passages can be made arbitrarily small. Now
consider any 0 < t < 1. Thus t ∈ [rk+1, rk) for precisely one integer k � 1. Since
the centers of the balls Dk are mapped into the centers of Bk, we find that

(81) Θh(t) � Θh(rk+1) � Rk+1 = kΘ(rk) � kΘ(t).

This yields

(82) lim
t→0

Θh(t)

Θ(t)
= ∞.

8.3. Estimates near a monotone boundary, proof of Theorem 1.2. Here we
give qualitatively sharp estimates near any monotone component of ∂Y. Theorem
1.2 is then immediate from the estimates below.

Theorem 8.1. Let X have at least two boundary components or, otherwise, be
incompressible. Suppose that Y is monotone near ∂Yi, for some i = 0, 1, ..., �.
Then

(83) distn
(
h(x),Yi

)
�

C(X,Y)
∫
X
|Dh|n

log
(
e+ diamX

dist(x,Xi)

)
for every h ∈ E(X,Y).

Note that no regularity of ∂Xi is required.

Proof. We reexamine Cases 1, 2, 3, and 4 in Section 7.3, with a new choice of the
potential function U .

Case 1. This case has already been established; see Remark 7.1.

Case 2. Suppose Y is monotone near an inner component ∂Yi of ∂Y for some
i ∈ {1, ..., �}. We assume that the corresponding component of Rn \ X satisfies

(84) diamXi = 2d > 0.

Choose and fix a positive small number κ < dist (∂Yα, ∂Yi). For all α �= i, the level
sets

(85) Γε
i = {y ∈ Y ; dist(y, ∂Yi) = ε}, 0 � ε � κ,

are all connected. We consider the potential function in Rn,

(86) U(y) =

{
dist(y,Yi) if dist(y,Yi) � κ,

κ otherwise.
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Then we pull it back via the mapping h : X
onto−→ Y by the rule

(87) u(x) =

⎧⎪⎨⎪⎩
0 for x ∈ Xi,

U
(
h(x)

)
if x ∈ X and U

(
h(x)

)
� κ,

κ otherwise.

This function is continuous in Rn. As in Case 2 of Section 7.3 the function u(x) is
continuous and monotone on every ball B of diameter 2d. Each component of the
level set u(x) ≡ c, 0 < c � κ, is connected and separates ∂Xi from ∂X0. Thus it
has diameter at least d. This time, as an advantage, we have a uniform bound of
the gradient of u on the entire domain X:

(88) |∇u(x)| � |Dh(x)| in X.

That is why we do not need to cut off u near ∂Xi. Moreover, ∇u ≡ 0 outside X.
Using the inequality (26), we obtain

(89) |u(a)− u(b)|n �
Cn

∫
X
|∇u|n

log
(
e+ d

|a−b|

) �
Cn

∫
X
|Dh|n

log
(
e+ d

|a−b|

) ,
provided |a−b|�d. Given any point x ∈ X with dist(x, ∂Xi)�d and dist(h(x), ∂Yi)
� κ, we apply (89) to a = x and choose b ∈ ∂Xi such that |a − b| = dist(x, ∂Xi)
and

(90) distn
(
h(x),Yi

)
�

Cn

∫
X
|Dh|n

log
(
e+ d

dist(x,Xi)

) .
Note that if dist(x,Xi) � d and dist(h(x),Yi) � κ, then the required estimate is
trivial. Indeed, in such a case we have

distn
(
h(x),Yi

)
� [distY]n =

[diamY]n

|Y|

∫
X

J(x, h) dx

� [diamY]n

|Y|

∫
X

|Dh|n

� [diamY]n

|Y|
2
∫
X
|Dh|n

log
(
e+ d

dist(x,Xi)

) .(91)

We may summarize these two cases as

(92) distn
(
h(x), Yi

)
�

C(Y)
∫
X
|Dh|n

log
(
e+ d

dist(x,Xi)

)
whenever dist(h(x), Yi) � κ. Finally, suppose that dist(h(x), Yi) > κ. The level
set Γ = {y ∈ Y ; dist(y, Yi) = κ} separates Yi from the point h(x). Applying the
inverse map f = h−1 : Y → X we see that f(Γ) separates Xi from x. Take any
point xi ∈ ∂Xi which is the closest point to x. The straight line segment [xi, x]
contains some x′ ∈ f(Γ) for which

dist(x, Xi) = |x− xi| � |x′ − xi| � dist(x′, Xi).
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Inequality (92) is applicable to x′ because dist(h(x′), Yi) = κ. Hence,

κn = distn
(
h(x′), Yi

)
�

C(Y)
∫
X
|Dh|n

log
(
e+ d

dist(x′,Xi)

)
�

C(Y)
∫
X
|Dh|n

log
(
e+ d

dist(x,Xi)

) .(93)

We then conclude with the desired estimate

distn
(
h(x),Yi

)
� [diamY]n =

[diamY]n

κn
κn

� [diamY]n

κn

C(Y)
∫
X
|Dh|n

log
(
e+ d

dist(x,Xi)

)(94)

for every x ∈ X. Estimates (92) and (94) may be summarized by saying that

(95) distn
(
h(x), Yi

)
�

C(Y)
∫
X
|Dh|n

log
(
e+ diamX

dist(x,Xi)

)
for every x ∈ X.

Case 3. This case, being similar to Case 2, needs only clarification of the points of
difference. Assume that either

(96) diam(X1 ∪ · · · ∪ X�) = 2d > 0 , for � � 1 ,

or X is incompressible for � = 0. We consider a condenser (Υ,Ω) in the target
space,

Ω = Rn \ Y0 = Y ∪ Y1 ∪ · · · ∪ Y�.

First, we construct a continuum Υ. If � � 1, we take a continuum which contains
Y1 ∪ · · · ∪Y�. If � = 0, we choose a continuum X ⊂ X of positive essential diameter
and then take Υ ⊂ Y to be the image of X under a homeomorphism g ∈ H(X,Y).
In this case the parameter d is determined by 2d = diam(X,X). The potential
function U is defined by the rule

(97) U(y) =

{
dist(y,Y0) if dist(y,Y0) � κ,

κ otherwise.

Here κ is small enough so that dist{Υ, ∂Y0} > κ. Since Y is monotone near ∂Y0

we may also assume, taking κ even smaller, that (85) is satisfied for i = 0. The
remaining arguments are much the same as in Case 2.

Case 4. We now come to the last case in which Rn \ X has two components, the
outer component X0 and a single point {a}. This case requires additional care
because we want to achieve a linear dependence on the energy on the right hand
side of formula (83). Fix a ball B(a, 2R) ⊂ X∪{a}. We consider the same condenser
(Υ,Ω) as in Case 4 of Section 7.3.2, where Ω = Y′ = Y ∪ {b} and Υ ⊂ Ω contains
a ball B(b, δ) with 0 < δ < dist(b,Y0). We define the potential function

(98) U(y) =

{
dist(y,Y0) if dist(y,Y0) � κ,

κ otherwise.
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Here 0 < κ < dist(b,Y0) − δ. We also assume that κ is small enough so that the
level sets Γt = {y ∈ Y ; U(y) = t}, 0 < t � κ, are connected. Certainly these level
sets separate the ball B = B(b, δ) from Y0. Lemma 7.4 tells us that

(99) diam h−1(Γt) � 2d > 0 , 0 < t � κ,

where d = min{R, r} and

δn =
Cn E

log
(
1 + R

r

) ;
see (70) and (71). The associated pullback of U is defined by the rule

(100) u(x) =

⎧⎪⎨⎪⎩
0 if x /∈ X′,

U
(
h(x)

)
if x ∈ X′ and U

(
h(x)

)
� κ,

κ otherwise.

We note that u is continuous and monotone on every ball of diameter 2d. Hence,
we have the inequality

(101) |u(a)− u(b)|n �
Cn

∫
X
|∇u|n

log
(
e+ d

|a−b|

) .
Now, given x ∈ X such that dist

(
h(x),Y0

)
� κ, the above inequality applies to the

point b ∈ X0 which is the closest point (in X0) to x:

(102) distn
(
h(x),Y0

)
�

Cn

∫
X
|Dh|n

log
(
e+ d

dist(x,X0)

) .
What remains is to relax the assumption dist

(
h(x),Y0

)
� κ. First, we use the

same trick as in Case 2 to show that (102) is true for all x ∈ X. However, the
real problem we are facing here is to eliminate d so that it depends not only on X
but also on the energy of h. Precisely, we want to replace d by diamX in order to
conclude with the final estimate that

(103) distn
(
h(x),Y0

)
�

Cn

∫
X
|Dh|n

log
(
e+ diamX

dist(x,X0)

) .
This is done in two steps.

Step 1. Suppose
(
R
r

)2 � diamX
dist(x,X0)

. If d = R, then (103) is obvious. Thus we

assume that d = r. In this case we have

d � R

√
dist(x, X0)

diamX
,

so inequality (103) is a simple consequence of (102).

Step 2. If
(
R
r

)2 � diamX
dist(x,X0)

� 1, then

distn
(
h(x),Y0

)
� [diamY]n

δn
δn =

[diamY]n

δn
Cn E

log
(
1 + R

r

)
� 2[diamY]n CnE

δn log
(
e+ diamX

dist(x,X0)

) ,(104)

as desired.
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9. Remarks on the existence of a minimizing map

The aim of this section is first to briefly discuss the existence of mappings with
smallest conformal energy. Second, we will examine the invertibility features of the
extremal mappings.

9.1. Contenders. Although it appears at first sight that the direct method of
the calculus of variations can be applied directly to our problems, it turns out
that some details become more delicate. We emphasize that the mappings h :

X
onto−→ Y are not prescribed on the boundary of X as in the classical theory of

elasticity [5]. We allow “tangential slipping” while fixing the image of the boundary.
As pointed out by J. M. Ball these conditions can be realized physically for an
incompressible material confined in a box. We find ourselves forced to complete a
family of homeomorphisms in weak topology of the Sobolev space W 1,n(X , Y).

It should be noted that the notion of c-uniform convergence, when applied to a
sequence hj ∈ E(X,Y), of bounded energy actually agrees with that of weak W 1,n-
convergence. This is due to the modulus of continuity estimates for monotone
functions that have been discussed in Section 8. Indeed, let EM (X,Y) ⊂ E(X,Y)
denote the class of homeomorphism in E(X,Y) whose conformal energy is controlled
by a constant M > 0. As a consequence of Lemma 3.1 we have

Lemma 9.1 (Equicontinuity). The family EM (X,Y) is equicontinuous on each
compact subset K ⊂ X. In fact, we have a uniform estimate of the modulus of
continuity,

(105) |h(x1)− h(x2) |n � Cn(K) ·M
log

(
e+ diamX

|x1−x2|

) for all x1, x2 ∈ K.

By virtue of Ascoli’s theorem we can now speak of c-uniform convergence of min-
imizing sequences. The direct method in the calculus of variations can now be put
into effect so as to yield the existence of the minimizing map. The proof is routine.
However, numerous important questions arise. The first question is at the heart of
topology, as it concerns approximation of a mapping with homeomorphisms. We
recall that limits of homeomorphisms are cellular mappings ([23] and [24]), mean-
ing that the inverse image of a point is an intersection of a decreasing sequence of
n-cells, the notion introduced by Morton Brown [13]. In fact, Armentrout showed
[3] that cellular mappings of an n-manifold onto itself can be approximated with
homeomorphisms; see also Siebenmann [58]. The second question combines topol-
ogy and analysis. The task is to approximate a mapping h ∈ W 1,n(X , Y) with
homeomorphisms in the Sobolev class W 1,n(X , Y) and control their conformal
energy.

9.2. The image of X under the extremal map. The self-mappings hk(x) =
|x|kx of the unit ball B ⊂ Rn converge c-uniformly to zero, which lies inside the
target domain. The reader may wish to notice that this sequence of homeomor-
phisms is bounded in the Sobolev class W 1,1(B,B), but not in W 1,p(B,B) , with

p > 1. It is also possible that homeomorphisms hk : B
onto−→ B are bounded in

W 1,n(B,B) and still converge c-uniformly to a constant mapping h : B → {a◦}. In
this case, however, the constant value a◦ must lie in ∂B; see Example 2.1. These
observations actually reflect a general fact that the limit of homeomorphisms of
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bounded p-harmonic energy, p > 1, cannot take X into a compact subset in the
target.

Proposition 9.1. Let X and Y be bounded domains in Rn and let hk : X
onto−→ Y

be homeomorphisms converging c-uniformly to h . Suppose that h(X) is relatively
compact in Y. Then

(106) lim
k→∞

∫
X

||Dhk(x) || p dx = ∞ , for every p > 1.

Proof. The key ingredient in our proof is the following capacity estimate which is
known in Sobolev theory. Suppose u ∈ W 1,1

◦ (X) and u(x) � ρ > 0 on a compact
subset K ⊂ X . Then

(107)

∫
X

| ∇u(x) | dx � γn ρ |K |
n−1
n ,

where γn = n
√
nn−1 ωn−1 is the isoperimetric constant.

Having this estimate we fix a number 0 < ρ < dist(h(X), ∂Y ) and apply (107)
to

uk(x) = min { ρ, dist(hk(x), ∂Y) } ; thus | ∇uk(x) | � ||Dhk(x) || .
Given any compact set K ⊂ X , for sufficiently large integers k = k(K) we have

dist(hk(x), ∂Y) � ρ for all x ∈ K. This is obvious because hk ⇒ h , uniformly on
K . Thus uk(x) ≡ ρ on K , whence we can write∫

X\K

||Dhk(x) || dx �
∫
X\K

| ∇uk(x) | dx =

∫
X

| ∇uk(x) | dx � γnρ |K |
n−1
n .

Hölder’s inequality gives∫
X

||Dhk(x) || p dx � γp
n ρp |K |np−p

n

|X \K |p−1
for every compact K ⊂ X

The desired conclusion follows by letting K expand to the entire domain X .

9.3. BV-right inverse of the limit, proof of Theorem 1.4. Throughout this
section X and Y have at least two boundary components. We need to show that
the right inverse of the limit map, denoted by f , has bounded variation. In fact,
we shall see that the variation of the right inverse is controlled by the L 1-norm of
the cofactors of Dh:

|| f ||BV (Y)
def
== sup

∣∣∣∣∫
Y

[
DTϕ(y)

]
f(y) dy

∣∣∣∣ � ∫
X

||D�h(x) || dx(108)

� |X|
1
n ||Dh || n−1

L n(X) < ∞.(109)

The supremum runs over all test mappings ϕ ∈ C ∞
◦ (Y , Rn) with ||ϕ ||∞ = 1.3

Proof. Let M denote the upper bound of the sequence ||Dhj ||L n(X). We begin

with the following identity for the inverse mappings fj : Y
onto−→ X:

(110)

∫
Y

[D∗ϕ(y)] fj(y) dy = −
∫
X

[
D�hj(x)

]
ϕ
(
hj(x)

)
dx,

3For further reading about almost-everywhere injectivity in nonlinear elasticity, see [51], [60].
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where D∗ϕ stands for the transpose of Dϕ and D�hj for the cofactor matrix of
Dhj . �

Proof of (110). We consider functions Hk ∈ W 1,n
loc (Ω,Rn),

Hk(x) =
(
h1
j , ..., h

k−1
j , ω , hk+1

j , ..., hn
j

)
, where ω(x) =

n∑
i=1

xi ϕ
i
(
h(x)

)
.

The point is that the kth coordinate of Hk has compact support. Therefore,

(111)

∫
X

J(x,Hk) dx = 0.

We then look at the vector field V (x) = (J(x,H1), ..., J(x,Hn)). An elementary
computation shows that

(112) V (x) =
[
D�hj(x)

]
ϕ + J(x, hj) [D

∗ϕ]x,

where the vector field ϕ and the matrix field [D∗ϕ] are evaluated at the point
y = hj(x). Since

∫
Ω
V (x) dx = 0 ∈ Rn, it holds that∫
X

J(x, hj) [D
∗ϕ]x dx = −

∫
X

[
D�hj(x)

]
ϕ dx.

We now make a change of variables y = hj(x) on the left hand side. This step is

legitimate because hj is a homeomorphism of the Sobolev class W 1,n
loc (Ω,Rn); see

[55, Corollary 1, p. 182]. Accordingly,

(113)

∫
Y

[(D∗ϕ)(y)] fj(y) dy = −
∫
X

[
D�hj(x)

]
ϕ(hj(x)) dx.

This completes the proof of the identity (110).

Returning to the proof of (109) we note that the identity (110) yields a bound
independent of j,∣∣∣∣∫

Y

[D∗ϕ(y)] fj(y) dy

∣∣∣∣ � ||ϕ ||∞ |X|
1
n ||Dhj || n−1

L n(X)

� ||ϕ ||∞ |X|
1
n Mn−1,(114)

where M stands for the upper bound of the L n-norms of {Dhj}. Next, taking
supremum over all test mappings gives a bound for the BV -norm of fj ,

(115) || fj ||BV (Y) � |X|
1
n Mn−1.

It is a well-known fact concerning BV -functions that for every Lipschitz subdomain
U ⊂ Y the inclusion BV (U) ⊂ L p(U) is continuous if 1 � p � n

n−1 . This inclusion

is actually compact for p < n
n−1 ; see [1, Corollary 3.49, p. 152]. Thus we may pass

to the limit with a subsequence of {fj} to obtain a mapping f ∈ BV (U). We also
obtain a BV-estimate independent of U:

(116) || f ||BV (U) � |X|
1
n Mn−1.

This is still not good enough for (109); we have to replaceM by the norm ||Dh||L n(X)

of the limit map. However, with the aid of the uniform bounds at (115), we will
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be able to pass to the limit in the identity (110). Passing to the limit on the left
hand side poses no difficulty. To deal with the right hand side we make use of weak
continuity of the cofactors. We have D�hj ⇀ D�h weakly in L

n
n−1 (X,Rn×n).4 On

the other hand, ϕ ◦ hj → ϕ ◦ h in L p(X,Rn), for every 1 � p < ∞. Now, the limit
of (113) takes the form

(117)

∫
Y

[
DTϕ(y)

]
f(y) dy = −

∫
X

[
D�h(x)

]
ϕ
(
h(x)

)
dx

for all ϕ ∈ C∞
◦ (Y , Rn). This yields (109).5 Since fj → f in L p(Y,Rn), 1 � p <

n
n−1 , we know that {fj} contains a subsequence (again denoted by fj) converging
to f almost everywhere. Up to now, f is defined only almost everywhere; exactly
at the points where lim

j→∞
fj(y) exists. To define f for every y ∈ Y we look at the

sequence xj = fj(y) ∈ X. The key is the following remark:

(‡) Given any compact K ⊂ Y, the sets f1(K), f2(K), . . . stay away from the
boundary of X.

Precisely, by Theorem 1.1 we have

dist (K, ∂Y) = dist (hj

(
fj(K)

)
, ∂Y) � M log−

1
n

(
e+

diamX
dist (fj(K), ∂X)

)
.

Now we apply this inequality to K = {y} to see that the points xj = fj(y) stay
away from ∂X. We choose, arbitrarily, an accumulation point of {xj} to be the
value of f(y), say f(y) = x = lim

ν→∞
xiν . Obviously f is measurable. The identity

(19) is straightforward. Indeed,

h
(
f(y)

)
= lim

ν→∞
hjν (x) = lim

ν→∞
hjν (xjν ) = y

because hj ⇒ h, c-uniformly. In a similar fashion we argue for the inclusion Y ⊂
h(X). Given any y ∈ Y, consider any cluster point of {fj(y)}, say x = lim

ν→∞
fjν (y) ∈

X. Obviously, y = h(x) ∈ h(X). The proof of Theorem 1.4 is complete.

Remark 9.1. We observe that h, being a c-uniform limit of homeomorphisms, is
monotone in the sense of C. B. Morrey [48]. For an excellent old survey about
monotone mappings we refer to L. F. McAuley [46]. In view of Remark 3.1 we also
see that h is differentiable almost everywhere.

10. Compression-expansion process

Throughout this section Ω will be a bounded domain in Rn of finite connectivity.
We shall distinguish two open regions in Rn, Ω+ = Ω and Ω− = Rn \Ω, and denote

their common boundary by Γ = ∂Ω = Ω+ ∩ Ω−. It is convenient to view Ω as
a container filled with gas or fluid. Accordingly, the application of an external
pressure (from Ω−) compresses Ω into its subset, while the internal pressure (from
Ω+) expands Ω into a superset. Having in mind the principle of nonpenetration of
matter, we shall assume that the compression and expansion are injective.

4Weak continuity of the Jacobians and lower order minors go back at least to R. Caccioppoli
[14] and C. B. Morrey [49]. Nowadays, this subject has been developed profitably in nonlinear
elasticity [5], quasiconformal geometry [55, 30, 20], and calculus of variations [50].

5The reader may wish to observe at this point that the stronger estimate, stated in (108),
actually holds.
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Definition 10.1. A compression-expansion process of Ω is a homotopy (continuous
function) F : (−T, T )× Ω → Rn such that

• F◦ = id : Ω → Ω,
• Ft : Ω → Rn is injective for −T < t < T .

Here we adopted the usual notation F = Ft(y), for −T < t < T and y ∈ Ω.

A useful special case arises when one is able to compress or expand Ω into its
level sets. We shall work with the following oriented distance function:

(118) d(y) =

⎧⎪⎨⎪⎩
dist(y,Γ) if y ∈ Ω+,

0 if y ∈ Γ,

−dist(y,Γ) if y ∈ Ω−.

A compression-expansion process is said to be equidistant if for every −T < t < T

Ft(Ω) = Ωt
def
== {y ∈ Rn ; d(y) > t}.

We aim to prove the following theorem.

Theorem 10.1. Every bounded graph domain Ω ⊂ Rn is uniformly compressible
and expansible near its boundary. Precisely, there exists a continuous map F :
(−T, T )× Rn → Rn such that

• F◦ = id : Rn → Rn, for all t ∈ (−T, T ),

• Ft : Rn onto−→ Rn is a homeomorphism, −T < t < T ,
• Ft(Ω) = Ωt, for all t ∈ (−T, T ).

Definition 10.2 (Graph domain). An open bounded connected set Ω ⊂ Rn is
a graph domain if near every point a ∈ ∂Ω there exists a rectangular coordinate
system in which ∂Ω is a graph of a function and Ω lies on one side of the graph.

Corollary 10.1. Every graph domain Ω ⊂ Rn is monotone.

Proof of of Corollary 10.1. First we note that Ft(Γ) = {y ∈ Rn ; d(y) = t}.
Let Γ0,Γ1, ...,Γ� denote the components of Γ, and Γt

0,Γ
t
1, ...,Γ

t
� denote the com-

ponents of the level set {y ∈ Rn ; d(y) = t}. Since Ft : Rn onto−→ Rn is a
homeomorphism, there is a one-to-one correspondence between Ft(Γ0), ..., Ft(Γ�)
and Γt

0,Γ
t
1, ...,Γ

t
� . On the other hand F0 = id, so for sufficiently small t we obtain

F t
0 = Ft(Γ0), ..., F

t
� = Ft(Γ�). The latter sets, being continuous images of connected

sets, are also connected.

The proof of Theorem 10.1 is preceded by a number of geometric considerations.

Remark 10.1. The vertical line test asserts that to every point a ∈ Γ there corre-
spond a unit vector v (the direction of the vertical line) and a neighborhood O with
the following properties:

1. Γ splits O into two components, O+ = O ∩ Ω+ (the upper component)
and O− = O ∩ Ω− (the lower component), so that O \ Γ = O+ ∪ O− and

O ∩ Γ = O+ ∩O−.
2. There is δ > 0 such that

tv+O+ ⊂ Ω+ if 0 < t < 2δ. Thus slightly lifting up the closer of the
upper component will place it in the open region Ω+. Similarly,
tv +O− ⊂ Ω− if −2δ < t < 0.
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Lemma 10.1. Given a point a ∈ Γ there is a ball B = B(a, r) with small radius so
that for every y ∈ B the function

(119) t → d(y + tv) , −r < t < r,

is strictly increasing.

Proof of Lemma 10.1. We choose and fix 0 < r < δ such that B(a, 4r) ⊂ O. This
yields that y+tv ∈ B(a, 2r) ⊂ O. Let us examine two distinct values of the variable
t, −r < t1 < t2 < r. We are going to show that d(y + t1v) < d(y + t2v).

Case 1. Suppose d(y+ t1v)
def
== ρ > 0. Thus y + t1v ∈ Ω+ and ρ = dist(y+ t1v,Γ).

Since a ∈ Γ, we find that ρ � |y+ t1v− a| � |y− a|+ |t1| < r+ r = 2r. The closed
ball D = {z ; |z − (y + t1v)| � ρ} lies in the closure of Ω+, by the definition of ρ.
For each z ∈ D, we have

|z − a| � |z − (y + t1v)|+ |y − a|+ |t1| < ρ+ r + r < 4r.

This yields

D ⊂ B(a, 4r) ∩ Ω+ ⊂ O ∩ Ω+ ⊂ O+.

We now lift up D by the vector (t2 − t1)v, where 0 < t2 − t1 < 2r < 2δ. In view of
declaration 2 in Remark 10.1 we see that the closed ball (t2− t1)v+D lies in Ω+. It
is an open region. Therefore, the distance of the center (t2−t1)v+(y+t1v) = y+t2v
of this ball to the boundary Γ = ∂Ω+ is strictly greater than its radius ρ. This
summarizes to

d(y + t2v) > ρ = dist (y + t1v),

as desired.

The same proof works if ρ = 0. However, in this case D degenerates into a point.
We are left with the case:

Case 2. Suppose d(y+ t1v) < 0. There is nothing to prove if d(y+ t2v) � 0, so we

may assume that d(y + t2v)
def
== −ρ < 0. This means that y + t2v ∈ Ω− and that

ρ = dist (y + t2v,Γ). The rest of the arguments are the same as in Case 1, so we
only state the conclusion

dist (y + t1v , Γ) > ρ = dist (y + t2v , Γ).

This simply means that

d(y + t1v , Γ) < d(y + t2v , Γ),

completing the proof of Lemma 10.1.

Since Γ is compact we may cover it by a finite number of balls, denoted by
B1 = B(a1, r1), B2 = B(a2, r2), ..., Bm = B(am, rm), each of which satisfies the
assertion of Lemma 10.1. Precisely, to every Bi there corresponds a unit vector vi
such that the function

t → d(y + tvi) , −r < t < r , r = min{r1, ..., rm},

is increasing whenever y ∈ Bi. It turns out that the function d remains strictly
increasing in some directions different from v1, ..., vm.
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Lemma 10.2. Let y ∈ Bk1
∩ Bk2

∩ · · · ∩ Bk�
and

v = λ1vk1
+ · · ·+ λ�vk�

, λ1, ..., λ� > 0.

Then the function

(120) t → d(y + tv)

is strictly increasing near zero.

Proof. Since y can be any point in Bk1
∩ Bk2

∩ · · · ∩ Bk�
, we need only prove that

d(y + εv) > d(y) for sufficiently small ε > 0. To this end, we take ε small enough
so that ελ1 < r, ..., ελ� < r and so that all points

y◦ = y,

y1 = y + ε λ1vk1
,

y2 = y + ε λ1vk1
+ ε λ2vk2

...

y� = y + ε λ1vk1
+ ...+ ε λ�vk�

= y + ε v

belong to Bk1
∩ · · · ∩ Bk�

. We repeatedly use Lemma 10.1 to obtain a chain of
inequalities d(y + εv) = d(y�) = d(y�−1 + ελ�vk�

) > d(y�−1) > · · · > d(y1) =
d(y◦ + ελ1vk1

) > d(y◦) = d(y), as desired. The lemma is proved.

Next we fix nonnegative smooth functions ϕk ∈ C∞
◦ (Bk), k = 1, ..., �, such that

ϕ1(y) + · · ·+ ϕk(y) > 0 for y ∈ Γ, and we define

(121) V (y) =
m∑

k=1

ϕk(y)vk ∈ C ∞
◦ (Rn,Rn).

Lemma 10.3. The vector field V does not vanish on Γ.

Proof. For a given point y ∈ Γ we express V (y) as

V (y) = ϕk1
(y)vk1

+ · · ·+ ϕk�
(y)vk�

,

where we selected all the coefficients in (121) which are strictly positive at y. This,
in particular, means that y ∈ Bk1

∩ · · ·∩Bk�
. Then, by Lemma 10.2, for sufficiently

small ε > 0 we have d(y + εv) > d(y). This yields v �= 0 and the lemma follows.

We shall work in a neighborhood of Γ where V �= 0. Denote it by

U = {y ∈ Rn ; V (y) �= 0}.

Through every point y◦ ∈ Rn there passes exactly one integral curve γ = {y(t) ; −∞
< t < ∞}, where y = y(t) solves the equation

(122)

{
ẏ(t) = V

(
y(t)

)
, −∞ < t < ∞,

y(t◦) = y◦.

Note that y(t) is constant if y◦ ∈ Rn \ U. In this case γ reduces to one point {y◦}.

Lemma 10.4. Let y = y(t) be an integral curve. Then the function ρ(t) = d
(
y(t)

)
is nondecreasing.
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Proof. Choose and fix a point a ∈ R. First we observe that

(123) ρ(t)− ρ(a) � o(t− a) as t ↘ a.

Indeed, using Taylor’s expansion of y(t) near a, in view of Lipschitz continuity of
the distance function, we obtain

ρ(t)− ρ(a) = d
(
y(t)

)
− d

(
y(a)

)
= d

(
y(a) + ẏ(a)(t− a) + o(t− a)

)
− d

(
y(a)

)
= d

(
y(a) + (t− a)ẏ(a)

)
− d

(
y(a)

)
+ o(t− a).(124)

Clearly (123) holds if ẏ(a) = 0. If ẏ(a) �= 0, then we express it as

(125) ẏ(a) =
m∑

k=1

ϕk

(
y(a)

)
vk = λ1vk1

+ · · ·+ λ�vk�
.

Here again we selected all positive coefficients λ1 = ϕk1

(
y(a)

)
, ..., λ� = ϕk�

(
y(a)

)
.

In particular, y(a) ∈ Bk1
∩· · ·∩Bk�

. By Lemma 10.2 we conclude with the inequality

d
(
y(a) + (t− a)ẏ(a)

)
> d

(
y(a)

)
for t sufficiently close to a. Inequality (123) follows. On the other hand, we note
that ρ is Lipschitz continuous and differentiable almost everywhere. Moreover,

(126) |ρ̇(t)| � |ẏ(t)| �
m∑

k=1

ϕk

(
y(t)

)
� ||ϕ1 + · · ·+ ϕm ||∞

def
== L.

We aim to show that ρ̇(t) � 0 for almost every t ∈ R. Assume, on the contrary,
that there is an ε > 0 for which the set J = {t ∈ R ; ρ̇(t) � −2ε} has positive
measure. Let a ∈ J be a density point of J ; that is,

(127) lim
t↘a

|T ∩ (a, t)|
t− a

= 1.

Now the required contradiction follows from the inequality

ρ(t)− ρ(a) =

∫ t

a

ρ̇(τ ) dτ =

∫
J∩(a,t)

ρ̇(τ ) dτ +

∫
(a,t)\J

ρ̇(τ ) dτ

� −2ε |J ∩ (a, t)|+ |(a, t) \ J | · L � −(t− a)ε �= o(t− a).

Next we are able to improve Lemma 10.4.

Lemma 10.5. For each integral curve y = y(t) the function ρ(t) = d
(
y(t)

)
is

strictly increasing as long as y(t) ∈ U.

Proof. Suppose that ρ(t) is constant in an open (nonempty) interval I such that
y(t) ∈ U for all t ∈ I. Thus, in particular, ρ̇(t) = 0 for almost every t ∈ I. To reach
a contradiction we consider the equation

(128) ẏ(t) = V
(
y(t)

)
=

m∑
k=1

ϕk

(
y(t)

)
vk �= 0 for all t ∈ I.

Here the direction field does not vanish because y(t) ∈ U. We shall conveniently
narrow I to reach a nonempty subinterval I+ ⊂ I such that

(129) ẏ(t) = ϕk1

(
y(t)

)
vk1

+ · · ·+ ϕk�

(
y(t)

)
vk�

, for t ∈ I+,

where all the coefficients are strictly positive on I+. This can be achieved in the
following steps. Let us begin by discarding all the first terms in (128) which vanish
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identically on I, say ϕ1 ≡ · · · ≡ ϕk1−1 ≡ 0. Since ẏ(t) �= 0, some terms are
still left. The first remaining coefficient ϕk1

= ϕk1
(y(t)) is positive on some open

(nonempty) subinterval I1 ⊂ I. We then discard all the terms after ϕk1
, say

ϕk1+1 = · · · = ϕk2−1 = 0, which vanish identically on I1. Thus ϕk2
= ϕk2

(
y(t)

)
is

positive on some open (nonempty) subinterval I2 ⊂ I1. Continuing in this fashion
we end up with the interval I+ = I1 ∩ I2 ∩ · · · ∩ I� in which the formula (129) holds
with positive coefficients.

Now, since ρ(t) is constant on I+, we shall reach a contradiction if we fix a
point a ∈ I+ and show that d

(
y(t)

)
> d

(
y(a)

)
for all t > a sufficiently close

to a. The entire curve y = y(t) with t ∈ I+ lies in the affine space y(a) + V
where V = span {vk1

, ..., vk�
}. Moreover, y(a) ∈ Bk1

∩ · · · ∩ Bk�
. Select a basis

{v′1, ..., v′s} ⊂ {vk1
, ..., vk�

} for the space V . Taylor’s expansion formula for y(t) at
the point a takes the form

y(t) = y(a) + (t− a)v.

Here v = v(t) = ẏ(a) + o(1) as t ↘ a. It is also important that v lies in V . Since
v′1, ..., v

′
s are linearly independent, we find that

v(t)− ẏ(a) = ε1(t)v
′
1 + · · ·+ εs(t)v

′
s,

where all the coefficients ε1, ..., εs approach zero as t ↘ a; some may be negative.
We find that

v(t) = ϕk1

(
y(a)

)
vk1

+ · · ·+ ϕk�

(
y(a)

)
vk�

+ ε1(t)v
′
1 + · · ·+ εs(t)v

′
s

= λ1(t)vk1
+ · · ·+ λk�

(t)vk�
, t > a,(130)

with all coefficients λ1(t), ..., λk�
(t) strictly positive if t is sufficiently close to a.

Finally, by Lemma 10.2, we conclude that

ρ(t) = d
(
y(t)

)
= d

(
y(a) + (t− a)v

)
> d

(
y(a)

)
= ρ(a).

Thus ρ cannot be constant on I+. This contradiction proves Lemma 10.5.
Through any point z ∈ Rn there passes exactly one integral curve. We denote

and parametrize it as

γz = {y = y(t) , ẏ(t) = V
(
y(t)

)
, for −∞ < t < ∞ , and y(0) = z}.

From now on we restrict the parameter t to the interval −1 � t � 1. In other
words, the integral curves are cut at the points y(1) and y(−1). Let us examine
two functions defined for z ∈ Rn by the rules

d+(z) = d
(
y(1)

)
− d(z) � 0,(131)

d−(z) = d
(
y(−1)

)
− d(z) � 0.(132)

The above inequalities hold because d
(
y(t)

)
is nondecreasing. These functions are

continuous. To this effect we notice that both y(1) and y(−1) depend smoothly
on z. In fact, the entire solution y = y(t), −∞ < t < ∞, depends smoothly on
the initial data y(0) = z. Now it is obvious that d+(z) and d−(z) are compactly
supported. They are Lipschitz continuous and vanish outside U. More importantly,
d+(z) > 0 and d−(z) < 0 for z ∈ U, because d

(
y(t)

)
is strictly increasing as long

as y(t) ∈ U. Since Γ = ∂Ω ⊂ U is compact, there exists a small positive number
T > 0 such that

(133) d+(z) > 2T and d−(z) < −2T
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whenever z ∈ UT
def
== {z ; dist (z,Γ) < T}. We now define a function ω : [−T, T ]×

UT → UT . Precisely, for t ∈ [−T, T ] and z ∈ UT we set ω = ω(t, z) to be the
unique point on the integral curve γz such that d(ω) = t. To see the existence
of such a point ω ∈ UT (uniqueness is obvious), we consider the parametrization
of γz = {y(s) ; ẏ(s) = V

(
y(s)

)
}, −∞ < s < ∞, such that z = y(0). Then we

consider the function ρ(s) = d
(
y(s)

)
, with −1 � s � 1, to find that

ρ(1) = d+(z) + d(z) � 2T − T = T

and

ρ(−1) = d−(z) + d(z) � −2T + T = −T.

Since s → ρ(s) is continuous and strictly increasing, there exists exactly one pa-
rameter s = s(t) ∈ [−1, 1] such that ρ(s) = t ∈ [−T, T ]. We define

ω(t, z) = y(s) ∈ UT

for −T < t < T and z ∈ UT . Let us prove that

Lemma 10.6. The function ω = ω(t, z) is continuous on (−T, T )× UT .

Proof. If this were not so, there would exist parameters tj → t ∈ (−T, T ) and
points zj → z ∈ UT , where −T < tj < T and zj ∈ UT , j = 1, 2, ..., such that

ωj
def
== ω(tj , zj) → ω◦ �= ω

def
== ω(t, z).

Here, both points ωj and zj lie in the same integral curve, say γj . Also ω and z
lie in their own integral curve, say γ. In describing the passage from the curves γj
to the limit curves γ, we note that the points zj = yj(0) converge to z = y(0), so
yj(s) − y(s) ⇒ 0 uniformly for −1 � s � 1. This is immediate from the general
fact that the solutions yj = yj(t) depend continuously (actually smoothly) on the
initial data. In particular, yj(sj)− y(sj) → 0 whenever sj ∈ [−1, 1]. We determine
sj ∈ [−1, 1] uniquely by the conditions yj(sj) = ωj ∈ γj and d(ωj) = tj . Passing
to a subsequence we may assume that sj → s ∈ [−1, 1], so as to obtain

y(s) = lim y(sj) = lim yj(sj) = limωj = ω◦ ∈ γ.

Thus t = lim tj = limd(ωj) = d(ω◦) = d(limωj). On the other hand, by the
definition of ω = ω(t, z) ∈ γ we have d(ω) = t. In conclusion, we obtained two
points ω◦, ω ∈ γ such that d(ω◦) = d(ω) = t. Hence ω◦ = ω; this contradiction
completes the proof of Lemma 10.6.

Corollary 10.2. The boundary of a graph domain is a neighborhood retract.

Proof. The retraction γ : UT → Γ of a neighborhood UT of Γ is given by the rule
z → ω(0, z) for z ∈ UT .

Proof of Theorem 10.1. We shall now complete the proof of Theorem 10.1. To this
end we construct the compression-expansion map F : (−T, T )×Rn → Rn by using
ω : (−T, T )× UT → UT :

(134)

{
F (τ, z) = z for z ∈ Rn \ UT , −T < τ < T,

F (τ, z) = ω(t, τ ) for z ∈ UT , −T � τ � T,

where t = τ + d(z) − τ
T |d(z)| ∈ (−T, T ). This latter inclusion can easily be seen

since the function d → τ+d− τ
T |d| is strictly increasing for −T < d < T . Moreover,
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it assumes its minimum and maximum value at the endpoints of the interval, that
is, for d = ±T . Let us check that F (t, z) is well defined and continuous. We need
only verify compatibility of the above two formulas F (τ, z) at the points z ∈ ∂UT .
This means that d(z) = ±T , depending on whether z ∈ Ω+ or z ∈ Ω−. In either
case t = d(z) so ω(t, z) = z, by the definition of ω(t, z). Hence the verification of
compatibility is complete.

We now check that for τ fixed the mapping z → F (τ, z) is injective. Suppose
that F (τ, z1) = F (τ, z2). The case F (τ, z1) = F (τ, z2) ∈ Rn \ UT is trivial because
z1 = F (τ, z1) = F (τ, z2) = z2. Thus we assume that F (τ, z1) = F (τ, z2) ∈ UT .
This yields that ω(t1, z1) = ω(t2, z2), where

t1 = τ + d(z1)−
τ

|T | |d(z1)| and t2 = τ + d(z2)−
τ

|T | |d(z2)|.

Moreover, both points z1 and z2 belong to the same integral curve. By the definition
of ω(t, z) we have t1 = d

(
ω(t1, z1)

)
= d

(
ω(t2, z2)

)
= t2. Hence

τ + d(z1)−
τ

T

∣∣d(z1)∣∣ = τ + d(z2)−
τ

T

∣∣d(z2)∣∣.
As we have already noticed the function d → τ + d − τ

T |d| is strictly increasing.
Hence d(z1) = d(z2). But this equation holds only when z1 = z2, because z1 and
z2 lie in the same integral curve. In conclusion, the mappings Fτ (z) = F (τ, z) are
injective in Rn for all −T < τ < T .

On the other hand, it is a general fact that a continuous injection Fτ : Rn into−→
Rn which is the identity map outside a compact subset must be a homeomorphism
of Rn onto Rn. Thus, for each parameter τ ∈ [−T, T ] the mapping Fτ : Rn → Rn

is bijective. This map is the identity outside UT ,

Fτ : UT
onto−→ UT and Fτ = id : ∂UT → ∂UT .

For τ = 0, we have F◦ = id : Rn → Rn. Indeed, given any point z ∈ UT we define
F◦(z) = ω(t, z) where t = 0 + d(z)− 0

T |d(z)| = d(z), so ω(t, z) = z.
More generally, the image of Ω under the map Fτ , −T < τ < T , is the level set

Ωτ = {z ∈ Rn ; d(z) > τ} , −T < τ < T.

Indeed, given any point z ∈ ∂Ω = Γ, we have d(z) = 0, so F (τ, z) = ω = ω(t, z),
where t = τ+d(z)− τ

T |d(z)| = τ . This means that d(ω) = τ , which means ω ∈ ∂Ωτ ,
as required.
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Wydawnictwo Naukowe, Polish Scientific Publishers, Warsaw, 1968. MR0259835 (41:4467)

[39] Kuusalo, T. Quasiconformal mappings without boundary extensions. Ann. Acad. Sci. Fenn.
Ser. A I Math. 10 (1985), 331–338. MR802494 (87a:30035)

[40] Lafont, J. F. Strong Jordan separation and applications to rigidity. J. London Math. Soc. (2)
73 (2006), no. 3, 681–700. MR2241974 (2007h:53057)

[41] Lafont, J. F. A note on strong Jordan separation. Publ. Mat. 53 (2009), no. 2, 515–525.
MR2543863 (2010h:57036)

[42] Lebesgue, H. Sur le problème de Dirichlet. Rend. Circ. Palermo 27 (1907), 371-402.
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