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INVARIANT CONFORMAL METRICS ON S
n

JOSÉ M. ESPINAR

Abstract. In this paper we use the relationship between conformal metrics
on the sphere and horospherically convex hypersurfaces in the hyperbolic space
for giving sufficient conditions on a conformal metric to be radial under some
constraints on the eigenvalues of its Schouten tensor. Also, we study confor-
mal metrics on the sphere which are invariant by a k−parameter subgroup
of conformal diffeomorphisms of the sphere, giving a bound on its maximum
dimension.

Moreover, we classify conformal metrics on the sphere whose eigenvalues
of the Shouten tensor are all constant (we call them isoparametric conformal
metrics), and we use a classification result for radial conformal metrics which

are solutions of some σk−Yamabe type problem for obtaining existence of rota-
tional spheres and Delaunay-type hypersurfaces for some classes of Weingarten
hypersurfaces in Hn+1.

1. Introduction

In the last 30 years, the Nirenberg Problem, i.e., which functions S : Sn −→ R

arise as the scalar curvature of some conformal metric on the sphere?, has received
an amazing number of contributions (see [1, 2, 3, 7, 11, 12, 13, 14, 15, 20, 23, 24, 25,
26, 34]), but sufficient and necessary conditions for the solvability are still unknown.

However, this problem opened the door of a rich subject in the last few years,
conformally invariant equations. Let F(x1, . . . , xn) denote a smooth functional,
and let Γ ∈ C∞(Sn). Does there exist a conformal metric g = e2ρg0 on Sn such
that the eigenvalues λi of its Schouten tensor satisfy

F(λ1, . . . , λn) = Γ on S
n?

Given (M, g) a Riemannian manifold, for n ≥ 3, the Schouten tensor of g is given
by

Schg :=
1

n− 2

(
Ric(g)− S(g)

2(n− 1)
g

)
,

where Ric(g) and S(g) are the Ricci tensor and the scalar curvature function of g,
respectively.

Note that, when F(x1, . . . , xn) = x1 + · · · + xn we have the Nirenberg Prob-
lem. Right now, the most developed topic for these equations occurs when we
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consider F(λ1, . . . , λn) ≡ σk(λi), as the k−th elementary symmetric polynomial of
its arguments, to be equal to a constant, i.e.,

(1.1) σk(λi) = constant.

Many deep results are known for these equations (see [7, 8, 9, 27, 28, 30, 31, 36]
and the references therein). Most of these results are devoted to solutions either on
Sn or Rn, and little is known when we look for conformal metrics on a domain of
the sphere (see [32, 33] and the references therein). Along this line, Chang, Han,
and Yang [10] have classified all possible radial solutions to the equation (1.1) “as
guidance in studying the behavior of singular solutions in the general situation”.
This is natural since radial solutions are the simplest examples. Thus, the next
step is: under what (local) conditions can we know that the solution is radial?

In a recent paper [21], the authors showed a correspondence between confor-
mal metrics on the sphere and horospherically convex hypersurfaces in hyperbolic
space. Here, they provide a back-and-forth construction which gives a hypersurface
theory interpretation for the famous Nirenberg Problem, relating it with a natural
formulation of the Christoffel problem in Hn+1. Moreover, this correspondence is
more general and it relates conformally invariant equations with Weingarten hy-
persurfaces horospherically convex. The main line in this paper is to use the deep
theorems on conformal geometry to infer results in hypersurface theory, but, how
can the hypersurface theory help to get information on conformal geometry?

We will see here that, using the hypersurface setting, we can obtain sufficient
conditions under which a conformal metric is radial among others on invariant
conformal metrics under a subgroup of conformal diffeomorphisms of the sphere.
We should mention that the theorems included here are local results, besides the
usual results in this direction that are from a global character.

In Section 2 we establish the necessary preliminaries on conformal geometry,
and it is also devoted to summarizing the correspondence developed in [21] be-
tween conformal metrics and horospherically convex hypersurfaces; that is, given a
conformal metric on the sphere, they construct a horospherically convex hypersur-
face in H

n+1 and vice versa. In Section 3 we establish that if a conformal metric
is invariant under a subgroup of conformal diffeomorphisms of the sphere, then its
associated horospherically convex hypersurface is invariant under the subgroup of
isometries induced by the subgroup of conformal diffeomorphism, and vice versa,
i.e.,

Lemma 3.2. Let φ : Ω ⊂ S
n −→ H

n+1 be a locally horospherically convex hyper-
surface with hyperbolic Gauss map G(x) = x, support function eρ : Ω −→ (0,+∞),
and let g = e2ρg0 denote its horospherical metric. Let T|Hn+1 ∈ I(Hn+1) be an
isometry and Φ ∈ D(Sn) be its associated conformal diffeomorphism. Thus, if φ is
T|Hn+1 −invariant, then g is Φ−invariant.

Conversely, let g = e2ρg0 be a conformal metric defined on a domain of the
sphere Ω ⊂ Sn such that the eigenvalues of its Schouten tensor, Schg, satisfy

sup {λi(x), x ∈ Ω, i = 1, . . . , n} < +∞.

Let Φ ∈ D(Sn) be a conformal diffeomorphism and T|Hn+1 ∈ I(Hn+1) be its
associated isometry. Thus, if g is Φ−invariant, then φ, given by (2.3), is T|Hn+1 −
invariant.
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In Section 4 we classify the conformal metrics on the sphere whose eigenvalues of
its Shouten tensor are all constant. We call these metrics isoparametric conformal
metrics. Since the above classification has not been done before (as far as we know),
we will include it here.

In Section 5 we state our main results. We give sufficient conditions under which
a conformal metric is radial in terms of the eigenvalues of its Shouten tensor.

Theorem 5.1. Let g = e2ρg0 be a conformal metric defined on a domain of the
sphere Ω ⊂ Sn such that the eigenvalues, λi, for i = 1, . . . , n, of its Schouten tensor,
Schg, satisfy

sup {λi(x), x ∈ Ω, i = 1, . . . , n} < +∞.

Furthermore, assume that the eigenvalues satisfy

λ = λ1 = · · · = λn−1,

ν = ν(λ) = λn,

λ− ν �= 0.

Then g is radial.

Moreover, we study conformal metrics on the sphere which are invariant by a
k−parameter subgroup of conformal diffeomorphisms of the sphere, giving a bound
on its maximum dimension.

Theorem 5.2. Let g = e2ρg0 be a conformal metric defined on a domain of the
sphere Ω ⊂ Sn such that g �∈ C(n) and the eigenvalues, λi, for i = 1, . . . , n, of its
Schouten tensor, Schg, satisfy

sup {λi(x), x ∈ Ω, i = 1, . . . , n} < +∞.

Suppose that g is invariant by a k−parameter subgroup of a conformal diffeo-

morphism G ≤ D(Sn). Then the maximum value of k is kmax = n(n−1)
2 , and if

k = kmax, the Schouten tensor of g, Schg has two eigenvalues λ and ν, where one
of them, say λ, has multiplicity at least n− 1. If, in addition, λ �= 0, ν = ν(λ) and
ν − λ �= 0, then g is radial.

Finally, in Section 6, we give some existence results for some classes of Wein-
garten hypersurfaces which are rotationally invariant and horospherically convex,
based on a result of Chang, Han, and Yang [10].

2. Preliminaries

2.1. On conformal geometry. Let (Mn, g), n ≥ 3, be a Riemannian manifold.
The Riemann curvature tensor, Riem, can be decomposed as

Riem = Wg + Schg 
 g,

where Wg is the Weyl tensor, 
 is the Kulkarni-Nomizu product, and

Schg :=
1

n− 2

(
Ricg −

S(g)

2(n− 1)
g

)
is the Schouten tensor. Here Ricg and S(g) stand for the Ricci curvature and scalar
curvature of g, respectively.

The eigenvalues of Schg are defined as the eigenvalues of the endomorphism
g−1Schg, and we will denote them by λi, i = 1, . . . , n.
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It is well known that the Schouten tensor encodes all the information on how
curvature varies by a conformal change of metric. It is worth it to remark that the
Weyl curvature tensor vanishes identically when (Mn, g) is locally conformally flat
since it is the situation of the present work. We will consider conformal metrics to
be the standard metric on the n−sphere, (Sn, g0), i.e.,

g = e2ρg0.

Definition 2.1. Let us denote by D(Sn) the group of conformal diffeomorphisms
on the sphere and let Φ ∈ D(Sn) be a conformal diffeomorphism. Let g = e2ρg0 be
a conformal metric defined on a domain Ω ⊂ Sn. g is Φ−invariant if

gx(u, v) = (Φ∗g)x(u, v), ∀x ∈ Ω, ∀u, v ∈ TxS
n, such that Φ(x) ∈ Ω.

Moreover, given a continuous subgroup of conformal diffeomorphisms G ≤ D(Sn),
g is G−invariant if it is Φ−invariant for all Φ ∈ G.

The basic example of a G−invariant metric is that which is radially symmetric,
i.e., when G is a subgroup of rotations. In this case, we say that g is radial.

2.2. On hypersurface theory. First, let us establish the necessary notation that
we will use throughout the work. Actually, here we will summarize the construction
developed in [21] for the sake of completeness; that is, in order to prove our results,
we will use the correspondence between conformal metrics on the sphere and locally
horospherically convex hypersurfaces in H

n+1. So, we will recall, briefly, how to
construct a locally horospherically convex hypersurface from a conformal metric on
the sphere.

Let us denote by Ln+2 the (n + 2)−dimensional Lorentz-Minkowski space, i.e.,
the vectorial space R

n+2 endowed with the Lorentzian metric 〈, 〉 given by

〈x̄, x̄〉 = −x2
0 +

n+1∑
i=1

x2
i ,

where x̄ ≡ (x0, x1, . . . , xn+1) ∈ Rn+2.
So, the (n+ 1)−dimensional hyperbolic space, de-Sitter space and null cone are

given, respectively, by the hyperquadrics

H
n+1 =

{
x̄ ∈ L

n+2 : 〈x̄, x̄〉 = −1, x0 > 0
}
,

S
n+1
1 =

{
x̄ ∈ L

n+2 : 〈x̄, x̄〉 = 1
}
,

N
n+1
+ =

{
x̄ ∈ L

n+2 : 〈x̄, x̄〉 = 0, x0 > 0
}
.

It is well known that Hn+1 inherits from (Ln+2, 〈, 〉) a Riemannian metric which
makes it the standard model of Riemannian space of constant sectional curvature
−1. Its ideal boundary at infinity, ∂∞Hn+1, will be denoted by Sn∞.

Horospheres will play an essential role in what follows, so, we go through describ-
ing their most important properties. In this model, horospheres in Hn+1 are the
intersection of affine degenerate hyperplanes of Ln+2 with H

n+1. Thus, it is clear
that the boundary at infinity is a single point x ∈ Sn∞. In this way, two horospheres
are always congruent, and they are at a constant (hyperbolic) distance if their re-
spective points at infinity agree. Moreover, given a point x ∈ Sn∞, horospheres
having x as its point at infinity provide a foliation of Hn+1.

From now on, φ : Mn −→ Hn+1 will denote an oriented immersed hypersurface
and η : Mn −→ S

n+1
1 its unit normal.
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Definition 2.2 ([17, 18, 4]). Let φ : Mn −→ Hn+1 denote an immersed oriented
hypersurface in Hn+1 with unit normal η. The hyperbolic Gauss map

G : Mn −→ S
n
∞ ≡ S

n

of φ is defined as follows: for every p ∈ Mn, G(p) ∈ Sn∞ is the point at infinity of
the unique horosphere in Hn+1 passing through φ(p) and whose inner unit normal
at p agrees with η(p).

Associated to φ, let us consider the map

ψ := φ+ η : Mn −→ N
n+1
+ ,

called the associated light cone map.
The map ψ is strongly related to the hyperbolic Gauss map G : Mn −→ Sn∞

of φ. Indeed, the ideal boundary of Nn+1
+ coincides with Sn∞ and can be identified

with the projective quotient space Nn+1
+ /R+. So, with all of this, we have G = [ψ] :

Mn −→ Sn∞ ≡ N
n+1
+ /R+.

Note that ψ0 > 0, given that ψ = (ψ0, ψ1, . . . , ψn+1) ∈ Ln+2. If we label
ψ0 := eρ, then we can interpret the hyperbolic Gauss map as the map

G : Mn −→ S
n = N

n+1
+ ∩

{
x ∈ L

n+2 : x0 = 1
}

given by

(2.1) ψ = eρ(1, G).

Moreover, we call eρ the horospherical support function. Also, if {e1, . . . , en}
denotes an orthonormal basis of principal directions of φ at p, and if κ1, . . . , κn are
the associated principal curvatures, it is immediate that

(2.2) 〈(dψ)p(ei), (dψ)p(ej)〉 = (1− κi)
2δij = e2ρ〈(dG)p(ei), (dG)p(ej)〉Sn .

Coming back to horospheres, we must remark that horospheres are the unique
hypersurfaces such that, innerly oriented (i.e., when the unit normal points to
the convex side), its associated light cone map is constant: φ + η = v ∈ N

n+1
+ .

Moreover, if we write v = eρ(1, x), we see that x ∈ S
n is the point at infinity of the

horosphere and ρ is the signed hyperbolic distance of the horosphere to the point
O = (1, 0, . . . , 0) ∈ Hn+1 ⊂ Ln+2.

In the hyperbolic setting we have a notion of convexity weaker than the usual
geodesic convexity, i.e.,

Definition 2.3 ([35]). Let Mn ⊂ Hn+1 be an immersed oriented hypersurface, and
let Hp denote the horosphere in H

n+1 that is tangent toMn at p, and whose interior
unit normal at p agrees with the one of Mn. We will say that Mn is horospherically
convex at p if there exists a neighborhood V ⊂ Mn of p so that V \ {p} does
not intersect Hp, and in addition the distance function of the hypersurface to the
horosphere does not vanish up to the second order at p in any direction.

Thus, from (2.2), we have the following characterization of horospherically con-
vex hypersurfaces:

Lemma 2.4. Let φ : Mn −→ H
n+1 be an oriented hypersurface. The following

conditions are equivalent at p ∈ Mn.

(i) All principal curvatures of Mn at p are simultaneously < 1 or > 1.
(ii) Mn is horospherically convex at p.
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In particular, if φ : Mn −→ Hn+1 is horospherically convex at p, then its Gauss
map satisfies dGp �= 0.

So, if Mn is horospherically convex at p, then dGp �= 0 and there exist neighbor-
hoods U ⊂ Mn and Ω ⊂ Sn such that G : U −→ Ω is a diffeomorphism, and

g = e2ρ〈dG, dG〉Sn
defines a conformally flat Riemannian metric on Mn, called the horospherical met-
ric. Since G is a diffeomorphism between U and Ω we can use it as a parametrization
of the hypersurface; i.e., we can assume that φ : Ω ⊂ Sn −→ Hn+1 and G(x) = x
on Ω ⊂ Sn.

Thus, if G : Mn −→ Ω ⊆ Sn is a global diffeormorphism of the hypersurface
onto a domain of the sphere, we can use the hyperbolic Gauss map as a global
parametrization of φ as above; i.e., φ : Ω −→ Hn+1 and G(x) = x. In this case, the
horospherical metric is given by

g = e2ρg0.

Now, we are ready to establish the mentioned relationship between conformal
metrics on the sphere and horospherically convex hypersurfaces.

Theorem 2.5 ([21]). Let φ : Ω ⊂ Sn −→ Hn+1 be a horospherically convex hyper-
surface with hyperbolic Gauss map G(x) = x, support function eρ : Ω −→ (0,+∞),
and let g = e2ρg0 denote its horospherical metric. Then it follows that

(2.3) φ =
eρ

2

(
1 + e−2ρ

(
1 + ||∇g0ρ||2g0

))
(1, x) + e−ρ(0,−x+∇g0ρ).

Moreover, the eigenvalues, λi, of the Schouten tensor of g, Schg, and the prin-
cipal curvatures, κi, of φ are related by

(2.4) λi =
1

2
− 1

1− κi
.

Conversely, given a conformal metric g = e2ρg0 defined on a domain of the
sphere Ω ⊂ Sn such that the eigenvalues of its Schouten tensor, Schg, are less than
1/2, then the map φ : Ω −→ H

n+1 given by (2.3) defines a horospherically convex
hypersurface in Hn+1 whose hyperbolic Gauss map is given by G(x) = x, x ∈ Ω.

Remark 2.6. We must say that the condition on the eigenvalues of the Schouten
tensor is easily removable; i.e., we only need to ask that

sup {λi(x), i = 1, . . . , n, x ∈ Ω} < +∞.

If this occurs, we can dilate the metric g as gt = etg for t > 0. Then, the
eigenvalues of Schgt are given by

λt
i = e−tλi.

Thus, for t big enough, we can achieve λt
i < 1/2 for i = 1, . . . , n.

3. Conformal diffeomorphisms and isometries

Let us denote by I(Ln+2), I(Hn+1) and I(Nn+1
+ ) the group of isometries of Ln+2,

the (n+ 1)−dimensional hyperbolic space and the (n+ 1)−dimensional null cone,
respectively.

It is well known (see [16]) that a conformal diffeomorphism Φ ∈ D(Sn) induces
a unique isometry in Ln+2, T ∈ I(Ln+2), such that restricted to Hn+1 and N

n+1
+
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induces an isometry in these spaces and vice versa. The restrictions of T ∈ I(Ln+2)
to Hn+1 and N

n+1
+ will be denoted by T|Hn+1 and T|Nn+1

+
, respectively. Moreover,

each isometry T|Hn+1 ∈ I(Hn+1) induces a unique isometry T|Nn+1
+

∈ I(Nn+1
+ ) and

vice versa.

Definition 3.1. Let Mn ⊂ Nn be a domain of an n−manifold N . Let φ : Mn ⊂
Nn −→ Hn+1 be a hypersurface and T|Hn+1 ∈ I(Hn+1) an isometry. φ is T|Hn+1 −
invariant if there exists iT|Hn+1 : Nn −→ Nn a diffeomorphism such that

(T|Hn+1 ◦ φ)(p) =
(
φ ◦ iT|Hn+1

)
(p), ∀p ∈ Mn such that iT|Hn+1 (p) ∈ Mn.

Moreover, given a continuous subgroup of isometries T ≤ I(Hn+1), φ is T −invar-
iant if it is T|Hn+1 −invariant for all T|Hn+1 ∈ T .

The next result states the relationship between conformal metrics on the sphere
which are invariant by a conformal diffeomorphism and horospherically convex hy-
persurfaces which are invariant by an isometry.

Lemma 3.2. Let φ : Ω ⊂ S
n −→ H

n+1 be a locally horospherically convex hyper-
surface with hyperbolic Gauss map G(x) = x, support function eρ : Ω −→ (0,+∞),
and let g = e2ρg0 denote its horospherical metric. Let T|Hn+1 ∈ I(Hn+1) be an
isometry and Φ ∈ D(Sn) its associated conformal diffeomorphism. Thus, if φ is
T|Hn+1 −invariant, then g is Φ−invariant.

Conversely, let g = e2ρg0 be a conformal metric defined on a domain of the sphere
Ω ⊂ Sn such that the eigenvalues of its Schouten tensor, Schg, are less than 1/2.
Let Φ ∈ D(Sn) be a conformal diffeomorphism and T|Hn+1 ∈ I(Hn+1) its associated
isometry. Thus, if g is Φ−invariant, then φ, given by (2.3), is T|Hn+1 −invariant.

Proof. On one hand, if φ is horospherically convex, φ is T|Hn+1 −invariant if and
only if its associated light cone map ψ is T|Nn+1

+
−invariant, i.e., if

(3.1)
(
T|Nn+1

+
◦ ψ

)
(x) = (ψ ◦ Φ) (x), x ∈ Ω such that Φ(x) ∈ Ω,

Φ ∈ D(Sn) being the conformal diffeomorphism associated to T|Nn+1
+

∈ I(Nn+1
+ ).

On the other hand, we have an explicit correspondence between conformal diffeo-
morphisms on the sphere and isometries on N

n+1
+ (see [16, Proposition 7.4]). Given

an isometry T|Nn+1
+

∈ I(Nn+1
+ ), at points (1, x) ∈ S

n = N
n+1
+ ∩

{
x ∈ L

n+2 : x0 = 1
}

we can see it as

T|Nn+1
+

((1, x)) = e−ω(x)(1,Φ(x)).

Then Φ : Sn −→ Sn defines a conformal diffeomorphism on the n−sphere with
conformal factor eω. Conversely, given a conformal diffeomorphism Φ ∈ D(Sn)
with conformal factor eω, at any point et(1, x) ∈ N

n+1
+ define

T|Nn+1
+

(et(1, x)) = ete−ω(x)(1,Φ(x)).

Then T|Nn+1
+

∈ I(Nn+1
+ ).

We first prove the converse. By the previous considerations, we only need to
prove (3.1). Thus, if g = e2ρg0 is Φ−invariant, hence by Definition 2.1 we have that

ρ(x) = ρ(Φ(x)) + ω(x), provided Φ(x) ∈ Ω.
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Let T|Nn+1
+

be the isometry of Nn+1
+ associated to Φ. Then(

T|Nn+1
+

◦ ψ
)
(x) = T|Nn+1

+
(eρ(x)(1, x)) = eρ(x)−ω(x)(1,Φ(x))

= eρ(Φ(x))(1,Φ(x)) = ψ(Φ(x)) = (ψ ◦ Φ) (x).
Now, if φ is T|Hn+1 −invariant, following the above computations, we can observe

that

ρ(x) = ρ(Φ(x)) + ω(x),

eω : Ω → R being the conformal factor of the conformal diffeomorphism, Φ, associ-
ated to T|Hn+1 . Thus, g is Φ−invariant. �

4. Isoparametric conformal metrics

Here, we will classify the class of conformal metrics on the sphere such that all
the eigenvalues of its Schouten tensor are constant. We denote this class by C(n).

The local classification of conformal metrics on the class g ∈ C(n) can be done
through a result of E. Cartan [5]. Suppose g ∈ C(n). Therefore, after possibly
a dilation, the associated hypersurface given by Theorem 2.5 is an isoparametric
hypersurface in Hn+1; i.e., all its principal curvatures are constant. Thus, it is a
piece of either a totally umbilical hypersurface (hypersphere, horosphere, totally
geodesic hyperplane and equidistant) or a standard product Sk × Hn−k in Hn+1.
For this reason, we will call a metric in C(n) an isoparametric conformal metric.

It is known that

• solutions of

σk(λi) = 1 on S
n

are given by conformal diffeomorphisms of the standard metric on the
sphere. Such a solution corresponds to a hypersphere via Theorem 2.5
(see [21]).

• Solutions of

σk(λi) = 0 on R
n

are explictly known (see [27]). Such a solution corresponds to a horosphere
via Theorem 2.5 (see [21]).

Now, our task is to compute explicitly the horospherical support function asso-
ciated to a totally geodesic hyperplane, an equidistant hypersurface and a standard
product Sk ×Hn−k. To do so, we will give the parametrization of such a hypersur-
face and its unit normal vector field and, by means of equation (2.1), we will have
an explicit formula for the horospherical support function and hyperbolic Gauss
map. Thus, for an isoparametric hypersurface φ : Ω ⊂ Rn −→ Hn+1 ⊂ Ln+2 with
unit normal η : Ω ⊂ Rn −→ S

n+1
1 ⊂ Ln+2, we will have

ρ : Ω ⊂ R
n −→ R,

and

G : Ω ⊂ R
n −→ D ⊂ S

n is a global diffeomorphism.

Hence, the isoparametric conformal metric associated to that hypersurface is
given by

(4.1) g = eρ(G
−1(y))g0, y ∈ D.
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Let us describe the announced examples:

(1) Totally geodesic hyperplanes:

Set Ω = {x ∈ Rn : |x| < r} and D =
{
y ∈ Sn ⊂ Rn+1 : yn+1 > 1−r2

1+r2

}
.

Then,

ψ(x) =

(
1 + r2

2
√
r2 − |x|

,
x√

r2 − |x|2
,

1− r2

2
√
r2 − |x|2

)
,

η(x) =

(
1− r2

2r
,0,

1 + r2

2r

)
.

Thus, from (2.1), we get

ρ(x) = ln

(
r(1 + r2) + (1− r2)

√
r2 − |x|2

2r
√
r2 − |x|2

)
,(4.2)

G(x) =

(
2rx

r(1 + r2) + (1− r2)
√
r2 − |x|2

,
r(1− r2) + (1 + r2)

√
r2 − |x|2

r(1 + r2) + (1− r2)
√
r2 − |x|2

)
.

(4.3)

In this case, the principal curvatures are all equal to zero, ki = 0, i =
1, . . . , n. Thus, the eigenvalues of the Shouten tensor associated to g (given
by (4.1)) are λi = −1/2, i = 1, . . . , n.

(2) Equidistant hypersurfaces:

Set t > 0, R2 = t2 + r2 and β(s) = −t +
√
R2 − s for s < r. Set Ω =

{x ∈ Rn : |x| < r} and D =
{
y ∈ Sn ⊂ Rn+1 : yn+1 > (R+ t)(1 + r2)

}
.

Then

ψ(x) =

(
1 + |x|2 + β(|x|2)2

2β(|x|2) ,
x

β(|x|2) ,
1− |x|2 − β(|x|2)2

2β(|x|2)

)
,

η(x) =

(
(1− t2 −R2)

√
R2 − |x|2 + 2tR2

2Rβ(|x|2) ,
tx

Rβ(|x|2) ,

(1 + t2 +R2)
√
R2 − |x|2 − 2tR2

2Rβ(|x|2)

)
.

Thus, from (2.1), we get

ρ(x) = ln

(
α(|x|2)

2Rβ(|x|2)

)
,(4.4)

G(x) =

(
2(R− t)x

α(|x|2) ,
R+

√
R2 − |x|2 + (R+ t)2(R−

√
R2 − |x|2)

α(|x|2)

)
,(4.5)

where

α(|x|2) = R+
√
R2 − |x|2 + (R+ t)2(R−

√
R2 − |x|2).

In this case, the principal curvatures are all equal to −t/R, ki = −t/R,
i = 1, . . . , n. Thus, the eigenvalues of the Shouten tensor associated to g
(given by (4.1)) are λi = −(R+ t)/2(R− t), i = 1, . . . , n.
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(3) Hk
(
− 1

1+r2

)
× Sn−k

(
1
r

)
:

For the sake of simplicity, we parametrize just a half of this hypersurface.
Set Ω =

{
x ∈ Rk

}
×
{
z ∈ Rn−k : |z| < r

}
⊂ Rn, where r > 0, and

D =

⎧⎪⎪⎨
⎪⎪⎩
(

s√
1 + r2 + s2

θ1,
t
√
1 + r2

r
√
1 + r2 + s2

θ2,

√
1 + r2

√
r2 − t2

r
√
1 + r2 + s2

)
:

θ1 ∈ Sk−1

θ2 ∈ S
n−k−1

s ≥ 0
t < r

⎫⎪⎪⎬
⎪⎪⎭

⊂ S
n.

Then,

ψ(x, z) =
(√

|x|2 + 1 + r2, x, z,
√
r2 − |z|2

)
,

η(x, z) =

(
r
√
|x|2 + 1 + r2√

1 + r2
,

rx√
1 + r2

,

√
1 + r2 z

r
,

√
1 + r2

√
r2 − |z|2

r

)
.

Thus, from (2.1), we get

ρ(x, z) = ln

(
(r +

√
1 + r2)

√
|x|2 + 1 + r2√

1 + r2

)
,(4.6)

G(x, z) =

(
x√

|x|2 + 1 + r2
,

√
1 + r2 z

r
√
|x|2 + 1 + r2

,

√
1 + r2

√
r2 − |z|2

r
√
|x|2 + 1 + r2

)
.(4.7)

In this case, the hypersuface has two principal curvatures given by ki =

− r√
1+r2

, for i = 1, . . . , k, and kj = −
√
1+r2

r , for j = k + 1, . . . , n. Thus,

the eigenvalues of the Shouten tensor associated to g (given by (4.1)) are

λi = − 1
2 − r2 + r

√
1 + r2, for i = 1, . . . , k, and λj =

1
2 + r2 − r

√
1 + r2, for

j = k + 1, . . . , n.

Remark 4.1. As we pointed out at the beginning of the section, hyperspheres and
horospheres are the only solutions for σk(λi) = 1 on Sn and σk(λi) = 0 on Rn.
The other cases define complete metrics on a subdomain of the sphere. So, the
natural question is: Are these solutions the only solutions for such domains under
the constraint σk(λi) = constant?

5. Invariant conformal metrics on the sphere

In this section we will give sufficient conditions for a conformal metric on the
sphere to be radial. The following local result is based on the correspondence
given in Theorem 2.5, Lemma 2.1 and a deep result of Do Carmo-Dajzcer for
hypersurfaces in hyperbolic space.

Theorem 5.1. Let g = e2ρg0 be a conformal metric defined on a domain of the
sphere Ω ⊂ Sn such that the eigenvalues, λi, for i = 1, . . . , n, of its Schouten tensor,
Schg, satisfy

sup {λi(x), x ∈ Ω, i = 1, . . . , n} < +∞.
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Furthermore, assume that the eigenvalues satisfy

λ = λ1 = · · · = λn−1,

ν = ν(λ) = λn,

λ− ν �= 0.

Then g is radial.

Proof. Consider t > 0 large enough such that the eigenvalues of the Schouten tensor
of gt = e2tg are less than 1/2 (see Remark 2.6). Consider the horospherically convex
hypersurface, φ : Ω −→ Hn+1, associated to gt, given by (2.3) in Theorem 2.5.
Hence, the principal curvatures of φ satisfy:

λ̃ = κ1 = · · · = κn−1,

ν̃ = ν̃(λ̃) = κn,

λ̃− ν̃ �= 0.

This follows from (2.4) and the assumptions on the eigenvalues of Schg. Hence, using
[6, Theorem 4.2], φ(Ω) is contained in a rotational hypersurface, which means, via
Lemma 3.2, that gt is radial, so g is radial. �

The next result is about determining which conformal metrics on the sphere are
invariant by a k−parameter subgroup of conformal diffeomorphisms of the sphere.
We should remove the class of conformal metrics on the sphere such that all the
eigenvalues of its Schouten tensor are constant, C(n), but this is not a significant
problem, since there are not too many of them and we have to classify them. Again,
the result is based on a theorem of M. Do Carmo and M. Dajczer.

Theorem 5.2. Let g = e2ρg0 be a conformal metric defined on a domain of the
sphere Ω ⊂ Sn such that g �∈ C(n) and the eigenvalues, λi, for i = 1, . . . , n, of its
Schouten tensor, Schg, satisfy

sup {λi(x), x ∈ Ω, i = 1, . . . , n} < +∞.

Suppose that g is invariant by a k−parameter subgroup of a conformal diffeo-

morphism G ≤ D(Sn). Then the maximum value of k is kmax = n(n−1)
2 , and if

k = kmax, the Schouten tensor of g, Schg has two eigenvalues λ and ν, where one
of them, say λ, has multiplicity at least n− 1. If, in addition, λ �= 0, ν = ν(λ) and
ν − λ �= 0, then g is radial.

Proof. As above, dilate g until the eigenvalues of the Schouten tensor are less than
1/2. Now, construct the horospherically convex hypersurface given by Theorem
2.5. The hypothesis on the G−invariance of g is translated into a T −invariance of
φ under a k−parameter subgroup T ≤ I(Hn+1). Thus, now applying [6, Theorem
4.7] we obtain the result. �

Remark 5.3. The above results hold for n ≥ 3. It is clear that for n = 2 they are
false.

6. A note on rotational hypersurfaces in H
n+1

In a recent paper [10], the authors have classified all possible radial solutions to
the equation

σk(λi) = c, c ≡ constant;
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that is, they consider conformal metrics g = v(|x|)−2|dx|2 on domains of the form

{x ∈ R
n, r1 < |x| < r2} ,

σk(λi) being the k−th elementary symmetric function of the eigenvalues of Schg,
and 0 ≤ r1 < r2 ≤ ∞.

From the point of view of hypersurfaces in hyperbolic space, this classification
result means (up to possibly a dilatation) that they have classified all rotational
horospherically convex hypersurfaces verifying the Weingarten relationship

σk

(
1 + κi

2(1− κi)

)
= c̃, c̃ ≡ constant.

It will take too long to describe all these solutions here, but we would like to
mention two cases when c > 0: Case I.1 and Case I.3.a in [10, Theorem 1]
give the existence of hyperspheres (which was already known) and Delaunay-type
hypersurfaces, respectively.

Remark 6.1. An interesting application of the above hypersurfaces could be to use
them as barriers for the Plateau problem at infinity in the hyperbolic space for
certain Weingarten functionals.
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321–347. MR955072

[5] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courboure constante,
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