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BIFURCATION FROM CODIMENSION ONE RELATIVE

HOMOCLINIC CYCLES

ALE JAN HOMBURG, ALICE C. JUKES, JÜRGEN KNOBLOCH,
AND JEROEN S.W. LAMB

Abstract. We study bifurcations of relative homoclinic cycles in flows that
are equivariant under the action of a finite group. The relative homoclinic
cycles we consider are not robust, but have codimension one. We assume real
leading eigenvalues and connecting trajectories that approach the equilibria
along leading directions. We show how suspensions of subshifts of finite type
generically appear in the unfolding. Descriptions of the suspended subshifts
in terms of the geometry and symmetry of the connecting trajectories are
provided.

1. Introduction

This paper contains a study of codimension one bifurcations from nonrobust het-
eroclinic networks, in ordinary differential equations that are equivariant under the
action of a finite group. An example that gives an impression of possible geometry
and of occurring dynamics and bifurcations is contained in [31] by Matthies on a
Takens-Bogdanov bifurcation with D3-symmetry. The bifurcations studied in [31]
occur in systems for three coupled oscillators and for mode interactions in convec-
tion problems [14]. Matthies computes a normal form for differential equations on
C2 that, truncated at second order terms, has the expression

v̇ = w,

ẇ = μ1v + μ2w + v̄2 − v̄w̄.

In the bifurcation scenario, varying parameters μ1, μ2, a D3-symmetric configura-
tion of three Z2-invariant homoclinic trajectories to the same (D3-invariant) equi-
librium arises. In the unfolding Matthies found a suspended topological Markov
chain.

To discuss the setting of our bifurcation study and to connect it to existing
works on homoclinic and heteroclinic cycles in equivariant flows, we start with
some generalities. Consider an ordinary differential equation ẋ = f(x) with x ∈ Rn.
Given two equilibria p− and p+, a heteroclinic trajectory (or connecting trajectory)
{γ(t)}t∈R is a solution that converges to p± as t → ±∞. A heteroclinic cycle consists
of disjoint equilibria p1, . . . , pk (with k ≥ 1) and heteroclinic trajectories γ1, . . . , γk
such that limt→−∞ γi(t) = pi−1 and limt→∞ γi(t) = pi with indices taken modulo k.
This definition includes a homoclinic loop: the case with k = 1 of a single trajectory
asymptotic to the same equilibrium for positive and negative time (a homoclinic
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trajectory). Heteroclinic networks are connected sets that can be written as a finite
union of heteroclinic cycles.

For general differential equations, stable and unstable manifolds of hyperbolic
equilibria with the same index (dimension of the unstable manifold) will typically
not intersect. Indeed, by the Kupka-Smale theorem [33] the set of Ck differential
equations with such a heteroclinic trajectory forms a set of Baire first category.
Transversality arguments show that in one parameter families of differential equa-
tions one can expect an intersection to occur persistently at an isolated parameter
value. As a homoclinic trajectory is obviously a connecting trajectory between
equilibria of the same index, homoclinic trajectories can be expected to occur per-
sistently in one parameter families.

To make this more precise, suppose p−, p+ are hyperbolic equilibria with indices
ind(p−) and ind(p+). Heteroclinic trajectories from p− to p+ can occur persistently
only if p− has a larger index than p+. In fact, the set of heteroclinic connections
forms a manifold of dimension ind(p−) − ind(p+) if the unstable manifold of p−
intersects the stable manifold of p+ transversally. If the index of p− is smaller or
equal to the index of p+, heteroclinic connections from p− to p+ can only be found
persistently (at isolated parameter values) in k-parameter families of differential
equations for k = ind(p+)− ind(p−)+1. What is needed is a transverse intersection
of the stable and unstable manifolds of the equilibria in the product Rn × Rk of
state space and parameter space. The number k is called the codimension of the
heteroclinic trajectory.

The situation is markedly different for differential equations that possess a dis-
crete symmetry. The context we will assume in this paper is of a parameter-
dependent differential equation

(1.1) ẋ = f(x, λ),

with x ∈ Rn, λ ∈ R, that is equivariant under the linear action (representation) of
a finite group G [13]. Thus x(t) is a solution of (1.1) precisely if gx(t) is a solution
of (1.1) ∀g ∈ G or, equivalently,

(1.2) gf(x, λ) = f(gx, λ), ∀g ∈ G.

We recall the notions of isotropy group and fixed point space. The isotropy group
Gq of a point q is defined by

Gq = {g ∈ G | gq = q}.
Note that each point of a trajectory γ has the same isotropy subgroup, so it makes
sense to speak of the isotropy subgroup Gγ of γ. The fixed point space of a subgroup
H ⊂ G is defined as

FixH = {x ∈ R
n | gx = x for g ∈ H}.

Recall further that a (real) linear representation is called absolutely irreducible if
the set of linear maps commuting with this representation is isomorphic to R [13].

Within a fixed point subspace, equilibria can have different indices even if they
possess the same indices in Rn, thus altering the codimension of the heteroclinic
trajectory. As a consequence, heteroclinic connections between equilibria of equal
index may occur robustly in equivariant flows; see dos Reis [8], Field [9], Guck-
enheimer and Holmes [15]. The geometry that is often considered is where in-
side a fixed point space there is a heteroclinic trajectory from an equilibrium with
one-dimensional unstable manifold to an asymptotically stable equilibrium. Such
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connections are clearly robust. There has been much interest in the existence, as-
ymptotic stability and also bifurcations of robust heteroclinic cycles or networks;
see [10, 11, 26, 5, 29, 36, 1, 22, 2] and the references therein.

In this paper, we discuss the occurrence of heteroclinic networks Γ of codimen-
sion one, i.e. networks which typically appear persistently in a one parameter
family of (equivariant) differential equations. We focus on generic codimension one
heteroclinic networks for which none of the constituting heteroclinic connections
are robust (i.e. of codimension zero). Such a heteroclinic network is a relative
homoclinic cycle: there is a heteroclinic trajectory γ connecting equilibria p and hp
for some h ∈ G, such that

(1.3) Γ = Gγ,

the group orbit of the closure of a single heteroclinic trajectory. The equilibria will
be assumed hyperbolic. The most important restriction we assume is the condi-
tion that the heteroclinic trajectories are tangent to the leading directions at the
equilibria (the notions of leading eigenvalues and leading directions are given in
Section 2). Although this is the typical case for general systems, it does not al-
ways hold for systems with symmetry. An important manifestation of symmetry
is that it may enforce the linearization at a symmetric equilibrium point to have
multiple leading eigenvalues. Symmetry can also force the simultaneous occurrence
of several heteroclinic trajectories, all related by symmetry. We show how Lin’s
method, an analytic tool for the derivation of bifurcation equations for heteroclinic
bifurcations [30, 34, 25], can be applied to study the dynamics near codimension
one relative homoclinic cycles. While Lin’s method was developed for simple lead-
ing eigenvalues, we apply the techniques to heteroclinic bifurcations with multiple
leading eigenvalues by using the fact that they arise in a semisimple way.

The common picture in the bifurcations we encounter is the following. The
relative homoclinic cycle exists at an isolated parameter value. When breaking the
relative homoclinic cycle by varying the parameter, a recurrent set appears. The
recurrent set, or at least subsets of it, can be described through a conjugation with
a topological Markov chain (or a subshift of finite type; the reader can consult [21]
for generalities on topological Markov chains). The dynamics on both sides of the
bifurcation value differ and are described by different topological Markov chains.
We explain the constructions of the topological Markov chains which describe the
changes in the recurrent set. There is a natural way to use symbolic dynamics in
the description of the recurrent set, that is, by using the language of topological
Markov chains mentioned above. Each heteroclinic connection is thereto assigned
a symbol (e.g. a unique integer), and trajectories near the relative homoclinic
cycle are assigned a list of symbols describing near which connection the trajectory
traverses. In this context, we recall the notion of the connectivity matrix C = (cij)
of a heteroclinic network with heteroclinic trajectories γi, where cij = 1 if the
endpoint (the ω-limit ω(γi)) of heteroclinic connection γi is equal to the starting
point (the α-limit α(γj)) of heteroclinic connection γj .

Below we state a general bifurcation theorem that makes this scenario more
precise. The complete constructions and conditions can be found in Section 2, where
the main bifurcation theorem, Theorem 2.4, is formulated. A detailed account of
relative homoclinic cycles consisting of homoclinic loops and their bifurcations will
be given for differential equations with dihedral symmetry; see Section 5. This
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generalizes the motivating example in [31] on a Takens-Bogdanov bifurcation with
D3-symmetry.

We introduce notation for topological Markov chains. Let

(1.4) Σk = {1, . . . , k}Z

denote the set of double infinite sequences κ : Z → {1, . . . , k}, i �→ κi, equipped with
the product topology. Let A = (aij)i,j∈{1,...,k} be a 0-1 matrix, that is, aij ∈ {0, 1}.
By ΣA we denote the topological Markov chain defined by A,

ΣA = {κ ∈ Σk | aκiκi+1
= 1}.

Let σ be the left shift operating on Σk,

σ : Σk → Σk, (σκ)i = κi+1.

Observe that ΣA is σ-invariant; we also write σ for the left shift restricted to ΣA.

Theorem 1.1. Let ẋ = f(x, λ) be a one parameter family of differential equations
equivariant with respect to a finite group G, with the following properties:

(1) At λ = 0, there is a codimension one relative homoclinic cycle Γ with
hyperbolic equilibria.

(2) The connecting trajectories in Γ are nondegenerate (as formulated by Hy-
pothesis (H 6) below).

(3) The isotropy subgroup Gp of an equilibrium p in Γ acts absolutely irreducibly
on the leading stable eigenspace at p, and the leading stable eigenvalues
of the linearized vector field about p are closest of all eigenvalues to the
imaginary axis (see Hypothesis (H 3) below).

(4) The connecting trajectories in Γ approach the equilibria along the leading
stable directions (a nonorbit-flip condition). The connecting trajectories in
Γ satisfy a noninclination-flip condition (as formulated by Hypothesis (H 5)
below).

Write γ1, . . . , γk for the connecting trajectories that constitute Γ. There is an ex-
plicit construction of k× k matrices A− and A+ with coefficients in {0, 1} and the
nonzero coefficients in mutually disjoint positions so that the following holds for
any generic family unfolding a relative homoclinic cycle as above.

Take cross sections Si transverse to γi and write Πλ for the first return map

on the collection of cross sections
⋃k

j=1 Sj. For λ > 0 small enough, there is an

invariant set Dλ ⊂
⋃k

j=1 Sj for Πλ such that for each κ ∈ ΣA+
there exists a

unique x ∈ Dλ with Πi
λ(x) ∈ Sκi

. Moreover, (Dλ,Πλ) is topologically conjugate to
(ΣA+

, σ). An analogous statement holds for λ < 0 with ΣA+
replaced by ΣA− .

This above description of the dynamics provides a complete picture of the local
nonwandering dynamics near Γ if and only if

(1.5) A+ +A− = C,

where C denotes the connectivity matrix of the relative homoclinic cycle.

Example 1.2. We illustrate the result of Theorem 1.1 in the case of homoclinic
bifurcation to a hyperbolic equilibrium of saddle type with D3-symmetry, where the
relative homoclinic cycle consists of three connecting trajectories γi, i = 1, 2, 3, that
each have isotropy equal to Z2. A complete treatment for relative homoclinic cycles
with Dm-symmetry is in Section 5.2. We furthermore assume that the leading (say,
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stable) eigenvalue at the equilibrium is real. As all three connecting trajectories
are connecting to the same equilibrium, the connectivity matrix C is given by

C =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ .

The different ways in which this bifurcation may take place are characterized
by the (generically) absolutely irreducible action of the group D3 on the leading
eigenspace. This irreducible representation is one-dimensional and trivial or is two-
dimensional and acting as the symmetry group of the equilateral triangle.

In case the representation of D3 on the leading eigenspace is trivial, the leading
eigenspace will generically be one-dimensional so that the connecting trajectories
γi (i = 1, 2, 3) come into the equilibrium in the same direction (tangent to each
other). We will see that the matrices A−, A+ are given by

A− =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , A+ =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ ,

so that there is a nonwandering set that is topologically conjugate to the suspension
of a full shift on three symbols if λ < 0 and no nontrivial nonwandering dynamics
near the relative homoclinic cycle if λ > 0.

Figure 1. Illustration of three homoclinic trajectories approach-
ing p when dim(Es

p) = 2. Note that the state space has to be at
least four-dimensional.

In case the representation of D3 on the leading eigenspace is nontrivial, the
leading eigenspace will generically be two-dimensional with the connecting trajec-
tories γi, i = 1, 2, 3, coming into the equilibrium in three different directions (each
separated by an angle of 2π/3); see Figure 1. This configuration appears in the
previously mentioned study by Matthies. It turns out that the matrices A−, A+

are given by

A− =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , A+ =

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠ .

If λ < 0 the nonwandering set consists of three periodic solutions, shadowing the
individual connecting trajectories γi (i = 1, 2, 3). If λ > 0 the nonwandering
dynamics is more complicated, with all trajectories avoiding shadowing twice the
same connecting trajectory.
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It should be noted that (1.5) is often, but not always, satisfied. In the latter case,
the topological Markov chain described above describes part of the recurrent set.
It is however possible to describe the situations where we need to confine ourselves
as describing invariant subsets of the recurrent set. At this place we just comment
that depending on the group and its representations on leading eigenspaces, the
obstructions are either always avoided, or generically avoided, or enforced. We
finally note that we do not prove hyperbolicity of the recurrent sets.

For an extension to codimension two bifurcations involving relative homoclinic
cycles with resonance conditions among the leading eigenvalues, giving rise to
saddle-node and period-doubling bifurcations of suspended topological Markov
chains, see [20, 17].

The remainder of this paper is organized as follows. In the next section we start
with the standing assumptions for our study and give a precise formulation of our
main results. A more technical section, Section 3, follows, in which the techniques
developed by Lin [30] and Sandstede [34] to derive bifurcation equations for trajec-
tories in the recurrent set are adapted to the present context. In Section 4 these
techniques are applied to prove the main theorem, Theorem 2.4. A catalogue of bi-
furcation scenarios for relative homoclinic cycles in systems with dihedral symmetry
is derived in Section 5.

2. Setting and main results

In this section we introduce conditions on the action of the symmetry and the
geometry of the flow, and present the general bifurcation theorem, Theorem 2.4.
We will focus on bifurcations from relative homoclinic cycles. In this context, we
note the following lemma.

Lemma 2.1. Let γ be a heteroclinic trajectory connecting equilibria p and hp for
some h ∈ G. Then Gγ is connected, and thus a relative homoclinic cycle, if and
only if

G = 〈h,Gp〉.
Proof. Note that Γ1 = 〈h〉γ is trivially connected. Define inductively Γi+1 =⋃

q∈Γi
GqΓi, where the union is over equilibria in Γi. Each Γi is obviously con-

nected. Since G is finite this process terminates and yields the relative homoclinic
cycle Γ. We remark that for Abelian groups G, the isotropy groups Gp are iden-
tical for all equilibria p in Γ, and thus Γ = Γ2. In general, the construction shows
that isotropy groups of equilibria in Γ are conjugate to Gp via elements of 〈h,Gp〉.
Therefore, Γ = 〈h,Gp〉γ. �

To summarize, we assume the following to hold:

(H 1) Γ is a relative homoclinic cycle equal to the group orbit of the closure
of a heteroclinic trajectory γ connecting hyperbolic equilibria p to hp
for some h ∈ G.

By hyperbolicity of the equilibria in Γ, we may assume that their positions do
not depend on the parameter λ, for λ close to 0.

As formulated by the following hypothesis, inside FixGγ the connection is as-
sumed to be of codimension one (note that γ ⊂ FixGγ). Write indFixGγ

(p) for the
index dim(Wu(p) ∩ FixGγ) of p inside FixGγ .

(H 2) indFixGγ
(p) = indFixGγ

(hp).



CODIMENSION ONE RELATIVE HOMOCLINIC CYCLES 5669

The leading eigenvalues at a hyperbolic equilibrium p are the eigenvalues of
Df(p, λ) nearest to the imaginary axis, either with positive or negative real parts.
Leading stable eigenvalues are the leading eigenvalues with negative real part; lead-
ing unstable eigenvalues have positive real part. The leading (stable or unstable)
directions are the corresponding sums of generalized eigenspaces. By Es

p and Eu
p

we denote the leading stable and unstable directions at the equilibrium p.
In the codimension one bifurcation problem we are considering, it is readily

verified that the action of G on Es
hp and Eu

p is generically irreducible or is the

direct sum of two isomorphic absolutely irreducible representations; cf [13].
As a spectral condition, we assume that (by changing the direction of time, if

necessary) for λ = 0:

(H 3) The leading stable eigenvalue μs is real, and the isotropy subgroup Ghp

acts absolutely irreducibly on Es
hp. Moreover, |μs| < Re(μu) for each

leading unstable eigenvalue μu.

If the absolutely irreducible representation has dimension m, then consequently
μs has multiplicity m (and is semisimple). Note that D1f(q, λ) is conjugate to
D1f(p, λ) for each q in the group orbit Gp, and so has identical spectrum. Denote
by μs(λ) the leading stable eigenvalues of D1f(p, λ) for λ near 0, assuming without
loss that the above hypothesis applies for all λ. By the smoothness of the vector
field, μs(λ) depends smoothly on λ.

As further clarified by Lemma 3.3, we assume that γ approaches hp along a
leading stable direction:

(H 4) eshp = limt→∞ γ(t)/‖γ(t)‖ ∈ Es
hp.

We note that the isotropy subgroup of γ is a subgroup of the isotropy group of
eshp: Gγ ⊂ Geshp

. Consequently, we have eshp ∈ FixGγ .

The demand that eshp lies inside the leading direction leaves out an interesting

class of codimension one relative homoclinic cycles where the symmetry (to be pre-
cise, the representations on leading eigenspaces) forces the connections to approach
the equilibria along nonleading directions (compare the orbit flip in [34]).

In order to avoid a geometric configuration of manifolds similar to that arising
at an inclination flip in systems without symmetry [16], we require that

(H 5) FixGγ ∩ Es
p 
= {0}.

Again, we need to emphasize that there exist certain equivariant codimension one
bifurcations where (H5) is not satisfied. For the group G = Z2 � (Z2)

2 we give an
example of a network in R5 for which FixGγ ∩Es

p = {0}; that is, Hypothesis (H 5)

is violated. Let the elements of G act on R5 as

a(x1, x2, x3, x4, x5) = (−x1,−x2, x3, x4, x5),

b(x1, x2, x3, x4, x5) = (x1, x2,−x3,−x4, x5)

for (Z2)
2 and

c(x1, x2, x3, x4, x5) = (x3, x4, x1, x2,−x5)

for the remaining Z2. Note that c does not commute with a or b. The fixed
point spaces FixZ2(a) = {(x1, x2, x3, x4, x5) ∈ R

5 | x1 = x2 = 0} and FixZ2(b) =
{(x1, x2, x3, x4, x5) ∈ R5 | x3 = x4 = 0} are three-dimensional and are interchanged
by c. Let the equilibrium p be at (0, 0, 0, 0, v); then cp = (0, 0, 0, 0,−v). Suppose
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that the connection γ from p to cp is contained in FixZ2(a) but not in FixZ2(b) and
that the leading unstable eigenvector and two stable directions of Df(p) lie within
FixZ2(a). Thus cγ ⊂ FixZ2(b), and by assumption (H 4) we have esp ∈ FixZ2(b).
The connection approaches the equilibrium along the leading stable eigendirection.
However, Es

p ∩ FixGγ = Es
p ∩ FixZ2(a) = {0}.

Continuing our list of hypotheses, we assume that the heteroclinic trajectory γ
is nondegenerate:

(H 6) The intersection of the tangent spaces along the unstable manifold
Wu(p) of p and along the stable manifold W s(hp) of hp is equal to the
tangent space along γ.

We note that we use this hypothesis in our analysis, but we cannot exclude the
fact that there exist situations where equivariance forces this hypothesis to fail.

The remaining condition we formulate implies that γ is a codimension one con-
necting trajectory, unfolding generically with the parameter λ. The condition con-
tains the familiar nondegeneracy condition for general flows to avoid inclination flip
inside the flow invariant fixed point space FixGγ .

A local center unstable manifold W cu(p) of p is a locally invariant manifold
with as tangent space at p the direct sum of the unstable and the leading stable
directions. Likewise, a local center stable manifold W cs(hp) of hp is a locally
invariant manifold with as tangent space at hp the direct sum of the stable and
the leading unstable directions. Local center (un)stable manifolds are not unique
but possess unique tangent spaces along the (un)stable manifold. See e.g. [16] for
further generalities on invariant manifolds and foliations near equilibria.

The following hypothesis concerns the vector field ẋ = f(x, λ) restricted to
FixGγ , which is a flow-invariant subspace. Denote by Fss

x the strong stable fibers
inside the stable manifold of hp and let F ss =

⋃
x∈γ Fss

x . Let the subscript FixGγ

denote a restriction to FixGγ .

(H 7) F ss
FixGγ

and W cu
FixGγ

(p) intersect transversally along γ (in FixGγ):

(2.1) F ss
FixGγ

�γ W cu
FixGγ

(p).

The bifurcation unfolds generically:

(2.2) Wu
FixGγ

(p) and W s
FixGγ

(hp) split with positive speed in λ.

The transversality expressed by (2.1) implies that a tangent space TxFss
x plus a

tangent space TxW
cu(p) spans a subspace of maximal dimension.

Condition (H 3) implies a nonresonance condition for the flow restricted to FixGγ .
See [6] for homoclinic bifurcation problems in generic systems with resonant eigen-
values. Condition (H4) excludes an orbit flip condition (see [34]), while (2.1) is a
generalization of the noninclination flip condition (see [23, 19]). Note that these
conditions are automatically satisfied if FixGγ is two-dimensional, independent of
the dimension of the entire space.

Lemma 2.2. Suppose Hypotheses (H 1) – (H 6) are met. Then by an arbitrary
small perturbation of the differential equation, Hypothesis (H7) will be met, and
inside FixGγ ,

(2.3) TFss is a continuous vector bundle along γ.
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Proof. Initially, we require only a small perturbation of the vector field restricted
to FixGγ , the existence of which follows from the general theory without symmetry
[16]. Those perturbations can be extended to a small equivariant perturbation of
f in the phase space in the neighborhood of FixGγ . Note that by averaging over

the group a small perturbation f̃ can be made equivariant:

1

|G|
∑
g∈G

gf̃g−1

is equivariant (here |G| is the cardinal number of G). The first part of the lemma
follows.

Statement (2.3) is a variant of the strong lambda-lemma as found in [7]. As the
statement is for λ = 0, we will write f(x) = f(x, 0). Denote by ϕt the flow of f .
Then Dϕt(x) is the flow of the variational equation along {ϕt(x)}. Let Gss(R

n) be
the Grassmannian manifold of linear subspaces in R

n with dimension dimEss. Lift
f to an induced vector field f̄ on Rn × Gss(R

n) by defining its flow:

ϕ̄t(x, α) = (ϕt(x), Dϕt(x)α).

Observe that this is a skew product flow. Clearly, (p,Ess) is an equilibrium of f̄ . A
direct computation shows that (p,Ess) is a hyperbolic equilibrium and the unstable
directions include the tangent space of the fiber {p} × TEssGss(R

n); see e.g. [16].
Consider Fss

q at a point q near p. As Fss
q is transversal to W cu(p), TqFss

q is
close to Ess by standard cone field constructions; see e.g. [21]. The trajectory of
(q, TqFss

q ) under the flow of f̄ therefore lies in the unstable manifold of (p,Ess).
This implies continuity of the bundle TxFss

x , x ∈ γ. Continuity of TxFuu
x , x ∈ γ, is

similar. �

Consider that Γ consists of finitely many, namely k = |G|/|Gγ |, connecting
trajectories γ1, . . . , γk (here |H| denotes the cardinal number of the group H). We
can choose the time parameterization of the connecting trajectories so that for each
i ∈ {1, . . . , k} there is a gi ∈ G with γi(0) = giγ(0).

Because G is compact we may assume that a G-invariant 〈·, ·〉 inner product is
given. This inner product induces a structure of a Hilbert space on the state space
Rn. We may choose 〈·, ·〉 so that TpW

s(p) ⊥ TpW
u(p) for an equilibrium p in Γ

and therefore by Hypothesis (H 1) for each equilibrium in Γ. Write

(2.4) Xi = span {f(γj(0), 0)}

for the tangent space to the trajectory γi(t) at t = 0. Then

(2.5) Si = γi(0) +X⊥
i , i ∈ 1, . . . , k,

is a hyperplane intersecting γi transversally at γi(0). Due to the G-invariance of
the inner product 〈·, ·〉, we have GS1 = {Si | i = 1, . . . , k}. As usual, denote by
α(γi), ω(γi) the α and ω limits of γi, which are equilibria here. Let

(2.6) Zi =
(
Tγi(0)W

s(ω(γi)) + Tγi(0)W
u(α(γi))

)⊥
.

Note that the subspaces Zi, i = 1, . . . , k, are g-images of each other. Further,
Zi ⊂ X⊥

i , and so γi(0) + Zi ⊂ Si. As a consequence of Hypothesis (H6),

dimZi = 1
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for all i. We can thus take a unit vector ψ1 ∈ Z1 spanning Z1. Take further vectors
ψi ∈ Zi belonging to the G-orbit of ψ1 ∈ Z1. Due to the invariance of the inner
product, all ψi have norm 1.

Lemma 2.3. For each λ close to 0 there are unique pairs (γ+
i (λ)(·), γ−

i (λ)(·)) of
trajectories of (1.1) such that:

(i) γ±
i (·)(0) smooth and γ±

i (0)(0) = γi(0),

(ii) γ+
i (λ)(0) ∈ Si ∩W s(ω(γi), λ), γ−

i (λ)(0) ∈ Si ∩Wu(α(γi), λ),

(iii) |γ+
i (λ)(t)− γi(t)| small ∀t ∈ R

+ and |γ−
i (λ)(t)− γi(t)| small ∀t ∈ R

−,

(iv) γ+
i (λ)(0)− γ−

i (λ)(0) ∈ Zi.

Proof. The statements are a direct consequence of transversality, for fixed λ, of
the intersection of

⋃
x∈W s(ω(γi),λ)

(x+ Zi) with Wu(α(γi), λ) inside Si near γi(0).

That the intersection is transversal follows from Hypothesis (H 6). Observe that
the intersection is a single point, which we denote by γ−

i (λ)(0). The point γ+
i (λ)(0)

is given as
(
γ−
i (λ)(0) + Zi

)
∩W s(ω(γi), λ). �

In [34, 25] integral expressions are derived for the difference γ+
i (λ)(0)−γ−

i (λ)(0).
For κ ∈ Σk, we denote a trajectory of (1.1) by x(λ, κ)(·) if there is a monotoni-

cally increasing sequence (τi)i∈Z such that

x(λ, κ)(τi) ∈ Sκi
, x(λ, κ)(t) 
∈

k⋃
j=1

Sj , if t 
∈ {τi, i ∈ Z}.

We call κ the itinerary of x(λ, κ)(·). Let Πλ be the first return map defined on⋃k
j=1 Sj (in fact the domain of Πλ is only a subset of

⋃k
j=1 Sj):

(2.7) Πλ :

k⋃
j=1

Sj →
k⋃

j=1

Sj , Πλ(x(λ, κ)(τi)) = x(λ, κ)(τi+1).

The main result below describes the way recurrent sets change through the bi-
furcation. The following definitions serve to define the topological Markov chains
to which the first return map on (subsets of) the recurrent set is conjugate. Define

esi = lim
t→∞

γi(t)/‖γi(t)‖.

To elucidate the symmetrical relation with definitions of further vectors e−j below,

we provide an equivalent definition via the variational equation. Let ζi(t) = γ̇i(t)
be the solution to

v̇(t) = D1f(γi(t), 0)v(t), v(0) = −γ̇i(0).

Then

esi = lim
t→∞

ζi(t)/‖ζi(t)‖.

By Hypothesis (H 7) (more precisely, (2.2)), one can choose the unit vectors ψi ∈ Zi

so that additionally

(2.8) ∂/∂λ〈γ+
i (λ)(0)− γ−

i (λ)(0), ψi〉 > 0.

That is, ψi is chosen such that the splitting of stable and unstable manifolds is in
the direction of ψi. Let ψj(t) be the solution to the adjoint variational equation

ẇ(t) = −D1f(γj(t), 0)
∗w(t), w(0) = ψj .
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The initial condition guarantees that ψj(t) converges to 0 as t → ±∞; see Section 3.
Define

e−j = lim
t→−∞

ψj(t)/‖ψj(t)‖.

The existence of the limit is guaranteed by Lemma 3.4. By Hypothesis (H5), the
vector e−j is contained in the leading unstable space E− of D1f(α(γj))

∗, which
equals Es

α(γj)
by the choice of inner product.

Theorem 2.4. Assume Hypotheses (H1) - (H 7) and define the matrix M =
(mij)i,j∈{1,...,k} by

mij =

{
0, if ω(γi) 
= α(γj),
sgn 〈esi , e−j 〉, if ω(γi) = α(γj).

Write

A+ = 1/2(M + |M |), A− = −1/2(M − |M |).
For λ > 0 small enough, there is an invariant set Dλ ⊂

⋃k
j=1 Sj for Πλ such that

for each κ ∈ ΣA+
there exists a unique trajectory x(λ, κ)(·) with x(λ, κ)(0) ∈ Dλ.

Moreover, (Dλ,Πλ) is topologically conjugated to (ΣA+
, σ).

An analogous statement holds for λ < 0 with ΣA+
replaced by ΣA− .

If the inner products 〈esi , e−j 〉 are different from 0 for all i, j with ω(γi) = α(γj),
then the recurrent set for λ = 0 is the relative homoclinic cycle Γ. In this case
the above described recurrent trajectories for λ > 0 and λ < 0 provide the entire
recurrent set.

Applied to a single symmetric homoclinic trajectory, Theorem 2.4 gives the sym-
metric equivalent to the usual blue sky catastrophe [35].

Corollary 2.5. Assume in addition to Hypotheses (H 1) - (H 7) that γ is a sym-
metric homoclinic trajectory to a symmetric equilibrium p: Gγ = Gp = G. Then
f has a symmetric periodic solution for λ on one side of 0. This periodic solution
converges as a set to γ when λ → 0, while developing infinite period and disappears
in λ = 0.

Proof. We get M = (±1). �

Remark 2.6. The structure of M depends on the isotropy group of γ and the G-
action on Es

hp (the eigenvalue condition in Hypothesis (H 3) is the reason that it

does not depend on the G-action on Eu
p ). Every column and every row in M

contains the same number of equal coefficients 0,−1 or 1.

Examples studied in Section 5 provide several examples of the matrix M . Dy-
namics near relative homoclinic cycles in systems that are equivariant with respect
to an action of a dihedral group G = Dm are classified in Section 5.

3. Lin’s method

The following concept for analyzing the dynamics near a heteroclinic chain (an
infinite sequence of consecutive heteroclinic trajectories) is due to Lin [30]; the ideas
for estimating the jumps have been introduced by Sandstede [34]. See also [25] for
a presentation of Lin’s method.

In our presentation we restrict ourselves to chains which are related to the bifur-
cation problem stated in Section 2. Recall that heteroclinic trajectories γ1, . . . , γk
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are given. Let κ ∈ Σk, where Σk is the set if double infinite sequences on k sym-
bols (see (1.4)), be fixed. A heteroclinic chain γκ is a double infinite sequence of
connecting trajectories γκi

, i ∈ Z, so that ω(γκi−1
) = α(γκi

). Write

pκi
= ω(γκi−1

) = α(γκi
).

Thus for each fixed index i ∈ Z, γκi
lies in the intersection of the unstable manifold

Wu(pκi
) of pκi

and the stable manifold W s(pκi+1
) of pκi+1

.

3.1. Lin trajectories. Recall that Si is a cross section transverse to γi and the
subspace Zi gives the direction perpendicular to the stable and unstable manifolds
W s(ω(γi)), W

u(α(γi)) at γi(0); see (2.5), (2.6). Given a sequence ω = (ωi)i∈Z of
sufficiently large transition times ωi > 0, one can prove the existence of a unique
piecewise continuous trajectory x = (xi)i∈Z with the following properties:

1. Each xi is a trajectory of the vector field, starting at a point on Sκi−1
, staying

close to γκi−1
until it reaches a neighborhood of pκi

, and then continuing close
to γκi

until it reaches Sκi
at time 2ωi.

2. The jump Ξi, defined as the difference between the initial point of xi+1 and the
final point of xi, belongs to the subspace Zκi

.

Figure 2 visualizes the trajectories with jumps in the cross sections. In what
follows we will refer to such trajectories with jumps as Lin trajectories.

γκi−1

SκiSκi−1

xi+1

Ξκi

γκi

pκi
pκi+1

γκi
(0)

γκi
(0) + Zκi

x+
i−1 x−

i

xi

Figure 2. Lin’s method involves the construction of piecewise
continuous orbits following a heteroclinic chain with jumps in a
fixed direction at points in cross sections.

Both the Lin trajectory x and the corresponding jump Ξ = (Ξi)i∈Z depend on
ω, λ and κ ∈ Σk:

x = x(ω, λ, κ), Ξ = Ξ(ω, λ, κ).

In order to obtain an actual trajectory which stays for all time close to the hete-
roclinic chain γκ, one has to set the jumps equal to zero, yielding the bifurcation
equation

Ξ(ω, λ, κ) = 0.

The single jumps take the form

Ξi(ω, λ, κ) = ξ∞κi
(λ) + ξi(ω, λ, κ),
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where ξ∞κi
(λ) measures the splitting of the stable and unstable manifolds of pκi+1

and pκi
, respectively. The expression ξi(ω, λ, κ) is shown to be exponentially small

as ω tends to infinity; also, explicit expressions are obtained for the leading terms
of ξi(ω, λ, κ).

In [34, 25] the estimates of the leading terms of ξi are derived for simple leading
eigenvalues μs and μu. In the present paper leading eigenvalues are in general
semisimple. Although the estimates here can be attained in the same way as for
simple leading eigenvalues, we will present the main steps in their derivation. For
that purpose we must in some detail treat the construction of Lin trajectories.

Actually xi+1(·) will be composed of trajectories x+
i (·) and x−

i+1(·) which are
defined on [0, ωi+1] and [−ωi+1, 0], respectively. This requires coupling conditions

(3.1) x+
i (ωi+1) = x−

i+1(−ωi+1)

and jump conditions

(3.2) Ξi = x+
i (0)− x−

i (0) ∈ Zκi
,

for i ∈ Z. We look for solutions of the form

(3.3) x±
i (t) = γ±

κi
(t) + v±i (t),

where γ±
κi

are given by Lemma 2.3. We also write e.g. γ±
κi
(λ)(t) to include depen-

dence on λ in the notation.
The following proposition ensures the existence of Lin trajectories for each given

sequence of transition times.

Proposition 3.1. Let κ ∈ Σk be fixed. There is C > 0, so that for each sequence
ω = (ωi)i∈Z with supi∈Z

ωi > C and each λ there is a unique Lin trajectory: there

are unique functions v±i (ω, λ, κ)(·) such that x±
i (defined in accordance with (3.3))

satisfy both the coupling condition (3.1) and the jump condition (3.2).

Proof. We give merely an outline of the arguments, providing some statements for
later use. Detailed proofs can be found in [38, 34, 24].

First we define appropriate direct sum decompositions and projections. Assigned
to γj(0), j ∈ {1, . . . , k}, consider the following orthogonal direct sum decomposi-
tions of Rn (recall (2.4)):

(3.4) R
n = Xj ⊕W+

j ⊕W−
j ⊕ Zj ,

where W+
j = Tγj(0)W

s(ω(γj)) ∩X⊥
j and W−

j = Tγj(0)W
u(α(γj)) ∩X⊥

j . Consider
the variational equations

v̇ = D1f(γ
±
j (λ)(t), λ)v,

defined on R±, and the corresponding transition matrices Φ±
j (λ, ·, ·). One can define

projections P±
j satisfying

kerP+
j (λ, 0) = Tγ+

j (λ)(0)W
s(ω(γj)), imP+

j (λ, 0) = W−
j ⊕ Z,

kerP−
j (λ, 0) = Tγ−

j (λ)(0)W
u(α(γj)), imP−

j (λ, 0) = W+
j ⊕ Z

that are commuting with Φ±
j (λ, ·, ·),

P±
j (λ, t)Φ±

j (λ, t, s) = Φ±
j (λ, t, s)P

±
j (λ, s).
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These projections are related to the exponential dichotomies of the variational
equations. In the limit t → ±∞, P±

j (λ, t) converge to projections onto stable and
unstable subspaces at the equilibria,
(3.5)
ker lim

t→∞
P+
j (λ, t) = Tω(γ+

j )W
s(ω(γj)), im lim

t→∞
P+
j (λ, t) = Tω(γ+

j )W
u(ω(γj)),

ker lim
t→−∞

P−
j (λ, t) = Tα(γ−

j )W
u(α(γj)), im lim

t→−∞
P−
j (λ, t) = Tα(γ−

j )W
s(α(γj)).

For a given sequence of transition times ω we denote by Vω the space of all sequences
v = ((v+i , v

−
i ))i∈Z with (v+i , v

−
i ) ∈ C[0, ωi+1]× C[−ωi, 0]. Endowed with the norm

‖v‖ := max{supi∈Z
‖v+i ‖, supi∈Z

‖v−i ‖}, Vω is a Banach space.

The v±i introduced in (3.3) solve the (nonlinear) variational equation along γ±
κi
:

(3.6) v̇±i (t) = D1f(γ
±
κi
(λ)(t), λ)v±i (t) + h±

κi
(t, v±i (t), λ),

where

h±
κi
(t, v, λ) = f(γ±

κi
(λ)(t) + v, λ)− f(γ±

κi
(λ)(t), λ)−D1f(γ

±
κi
(λ)(t), λ)v.

Here v±i must satisfy certain boundary conditions stipulated by coupling and jump
conditions on x±

i :

v+i (ωi+1)− v−i+1(−ωi+1) = γ−
κi+1

(λ)(−ωi+1)− γ+
κi
(λ)(ωi+1) =: di+1(ω, λ, κ),

(3.7)

v+i (0)− v−i (0) ∈ Zκi
.(3.8)

Write d(ω, λ, κ) = (di(ω, λ, κ))i∈Z.
In order to solve the boundary value problem (3.6)–(3.8) we perform several

steps. First we “linearize” equation (3.6) by replacing h+
κi

and h−
κi

by some g+i ∈
C[0, ωi+1] and g−i ∈ C[−ωi, 0], respectively:

(3.9) v̇±i (t) = D1f(γ
±
κi
(λ)(t), λ)v±i (t) + g±i (t, λ).

Simultaneously, we replace the boundary condition (3.7) by prescribing projections
a+i and a−i of v+i−1(ωi) and v−i (−ωi):

(3.10) a+i = (id− P+
κi−1

(λ, ωi))v
+
i−1(ωi), a−i = (id− P−

κi
(λ,−ωi))v

−
i (−ωi).

The corresponding sequences we denote by g = (g+i , g
−
i )i∈Z and a = (a+i , a

−
i )i∈Z.

The variational equation (3.9) with boundary conditions (3.8), (3.10) has a unique
solution v̄(ω, λ,g, a, κ) = (v̄+i , v̄

−
i )i∈Z. We remark that the quantities v̄±i do not

depend on the entire sequences a and κ, but only on a+i+1, a
−
i and κi:

(3.11) v̄±i = v̄±i (ω, λ,g, (a+i+1, a
−
i ), κi).

Next we consider (3.9) with the original boundary conditions (3.7), (3.8). We
claim that there exists a(ω, λ,g,d, κ) so that

(3.12) v̂(ω, λ,g,d, κ) = v̄(ω, λ,g, a(ω, λ,g,d, κ), κ)

solves (3.9) with boundary conditions (3.7), (3.8). By (3.5), for ωi large enough,
im (id−P+

κi−1
(λ, ωi))⊕ im (id−P−

κi
(λ,−ωi)) = Rn. Hence, combining the boundary

conditions (3.7), (3.10), a is obtained from

(3.13) a+i − a−i = di − P+
κi−1

(λ, ωi)v̄
+
i−1(ωi) + P−

κi
(λ,−ωi)v̄

−
i (−ωi).



CODIMENSION ONE RELATIVE HOMOCLINIC CYCLES 5677

Note that a±i do not depend on the entire sequences d and κ but only on di and
κi−1, κi:

(3.14) a±i = a±i (ω, λ,g, di, (κi−1, κi)).

The original boundary value problem (3.6) with boundary conditions (3.7), (3.8)
is now equivalent to the following fixed point equation in Vω:

(3.15) v = v̂(ω, λ,H(v, λ, κ),d(ω, λ, κ), κ),

with

H(v, λ, κ) = (H+
i (v, λ, κ), H−

i (v, λ, κ))i∈Z, H±
i (v, λ, κ)(t) = h±

κi
(t, v±i (t), λ).

This equation has a unique solution v(ω, λ, κ); the mapping v(·, ·, κ) is differen-
tiable. �
Remark 3.2. It follows from the derivation that v̂(ω, λ, ·, ·, κ) is linear.

In the following section we discuss asymptotic expansions for v±i (ω, λ, κ)(·).
These will lead to bifurcation equations.

3.2. Reference trajectories. In the derivation of bifurcation equations certain
reference trajectories play a central role. The reference trajectories are defined ei-
ther for positive or negative time. The trajectories γ±

i (t) constructed in Lemma 2.3
are reference trajectories. The others are solutions ψ±

i to adjoint variational equa-
tions along γ±

i (t). They are given as solutions to the following equations. Let ψ−
i (t)

be the solution for t ≤ 0 to

ẇ(t) = −D1f(γ
−
i (t), λ)∗w(t), w(0) = ψi.

Likewise, let ψ+
i (t) be the solution for t ≥ 0 to

ẇ(t) = −D1f(γ
+
i (t), λ)∗w(t), w(0) = ψi.

In this section we present asymptotic expansions for these reference trajectories;
see Lemmas 3.5 and 3.6 below.

We first give two general lemmas providing asymptotic expansions for solutions
of certain nonlinear and autonomous linear equations involving semisimple lead-
ing eigenvalues. The estimates are related to [34, Lemma 1.7], which however is
formulated for simple leading eigenvalues.

Lemma 3.3. Let x = 0 be an asymptotically stable equilibrium of a smooth family
of vector fields f : Rn × R → Rn. We assume that spec(D1f(0, λ)) = {μs(λ)} ∪
specss(λ), where Re μ < αss < μs(λ) < αs < 0 for all μ ∈ specss(λ). For all λ
the (real) leading stable eigenvalue μs(λ) is assumed to be semisimple. We choose
αs such that 2αs < μs(λ) for sufficiently small λ. Let Es(λ) and Ess(λ) be the
(generalized) eigenspaces assigned to μs(λ) and specss(λ), respectively, and let Ps(λ)
be the projection on Es(λ) along Ess(λ). Then there is a δ > 0 such that for all
trajectories x(·) of ẋ = f(x, λ) with ‖x(0)‖ < δ, there exists the limit η(x(0), λ) =
limt→∞ e−D1f(0,λ)tPs(λ)x(t) ∈ Es(λ). Furthermore, there is a constant c such that

(3.16) ‖x(t)− eD1f(0,λ)tη(x(0), λ)‖ ≤ cemax{αss,2αs}t.

Proof. In order to prove this lemma we use the fact that any trajectory within the
stable manifold tends exponentially fast towards the equilibrium. More precisely
(assuming that x = 0 is the equilibrium), for each αs < 0 which is larger than the
(real) leading stable eigenvalue, there is a C such that ‖x(t)‖ < Ceα

st; see [39].
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The vector field allows a representation f(x, λ) = D1f(0, λ)x + g(x, λ), where
g(0, λ) = D1g(0, λ) = 0. Then x(·) is a trajectory of ẋ = f(x, λ) if and only if it
solves

(3.17) x(t) = eD1f(0,λ)(t−s)x(s) +

∫ t

s

eD1f(0,λ)(t−τ)g(x(τ ), λ)dτ.

Therefore, because Ps(λ) and eD1f(0,λ) commute,

e−D1f(0,λ)tPs(λ)x(t) = e−D1f(0,λ)sPs(λ)x(s) +

∫ t

s

e−D1f(0,λ)τPs(λ)g(x(τ ), λ)dτ.

Hence there is a K > 0 such that for sufficiently small ‖x(s)‖,

‖e−D1f(0,λ)t1Ps(λ)x(t1)− e−D1f(0,λ)t2Ps(λ)x(t2)‖

≤
∫ t1
t2

‖e−D1f(0,λ)τPs(λ)‖ ‖g(x(τ ), λ)‖dτ.

The right-hand side of the last inequality can be estimated by∫ t1

t2

‖e−D1f(0,λ)τPs(λ)‖ ‖g(τ, λ)‖dτ ≤
∫ t1

t2

Ke−μs(λ)τe2α
sτ .

This shows that limt→∞ e−D1f(0,λ)tPs(λ)x(t) indeed exists.
Next we turn towards the estimate (3.16). For that we write (3.17) as a system

Ps(λ)x(t) = eD1f(0,λ)(t−s)Ps(λ)x(s) +

∫ t

s

eD1f(0,λ)(t−τ)Ps(λ)g(x(τ ), λ)dτ,

(id− Ps(λ))x(t) = eD1f(0,λ)(t−s)(id− Ps(λ))x(s)

+

∫ t

s

eD1f(0,λ)(t−τ)(id− Ps(λ))g(x(τ ), λ)dτ.

In the first equation the limit s → ∞ does exist (see the first part of the proof),
and we get

Ps(λ)x(t) = eD1f(0,λ)tη(x(0), λ)−
∫ ∞

t

eD1f(0,λ)(t−τ)Ps(λ)g(x(τ ), λ)dτ.

Therefore we find

‖x(t)− eD1f(0,λ)tη(x(0), λ)‖ ≤ ‖eD1f(0,λ)(t−s)(id− Ps(λ))x(s)‖

+‖
∫ ∞

t

eD1f(0,λ)(t−τ)Ps(λ)g(x(τ ), λ)dτ‖

+‖
∫ t

s

eD1f(0,λ)(t−τ)(id− Ps(λ))g(x(τ ), λ)dτ‖.

The single terms on the right-hand side of this inequality can be estimated as
follows:

‖eD1f(0,λ)(t−s)(id− Ps(λ))x(s)‖ ≤ c1e
αss(t−s)‖x(s)‖ ≤ c2e

αsst,

‖
∫∞
t

eD1f(0,λ)(t−τ)Ps(λ)g(x(τ ), λ)dτ‖ ≤
∫∞
t

eα
s(t−τ)‖x(τ )‖2 ≤ c3e

2αst,

‖
∫ t

s
eD1f(0,λ)(t−τ)(id−Ps(λ))g(x(τ ), λ)dτ‖≤

∫ t

s
eα

ss(t−τ)‖x(τ )‖2≤c4(e
αsst+e2α

st).

This finally gives the desired estimate (3.16). �
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The lemma (although it is only formulated for asymptotically stable equilib-
ria) shows that any trajectory x in the stable manifold of an equilibrium has an
asymptotic expansion

x(t) = eD1f(0,λ)tη(x(0), λ) +O(emax{αss,2αs}t).

Moreover, η(x(0), λ) = 0 if and only if x(0) belongs to the strong stable manifold.
A corresponding assertion for linear nonautonomous differential equations is con-

tained in the next lemma. The proof runs along the same lines as the proof of the
previous lemma.

Lemma 3.4. Consider a smooth family of linear (nonautonomous) differential
equations ẋ = (A(λ) +B(t, λ))x, and assume that

(i) spec(A(λ)) = specss(λ) ∪ {μs(λ)}, where Re μ < αss < μs(λ) < αs < 0 for all
μ ∈ specss(λ).

(ii) The leading eigenvalue μs(λ) is for all λ semisimple.

(iii) There is a β < 0 such that ‖B(t, λ)‖ < eβt and αs + β < μs.

Let Es(λ) and Ess(λ) be the eigenspaces of A(λ) assigned to μs(λ) and specss(λ),
respectively, and let Ps(λ) be the projection on Es(λ) along Ess(λ). Then there
exists the limit η(x(0), λ) = limt→∞ e−A(λ)tPs(λ)x(t) ∈ Es(λ). Furthermore, there
is a constant c such that

(3.18) ‖x(t)− eA(λ)tη(x(0), λ)‖ ≤ cemax{αss,(αs+β)}t.

If ẋ = (A(λ) + B(t, λ))x has an exponential dichotomy on R+, then one can
speak of stable and strong stable subspaces (which, of course, will depend on t) of
this differential equation. Then, similar to our above comment, the lemma tells us
that trajectories starting in the stable subspace (at t = 0) can be written as

x(t) = eA(λ)tη(x(0), λ) +O(emax{αss,(αs+β)}t),

and η(x(0), λ) = 0 if and only if η(x(0), λ) belongs to the strong stable subspace
(at t = 0).

We conclude the section with two lemmas yielding asymptotic expansions for
reference trajectories, resulting from the above material.

Lemma 3.5. There are constants δ > 0, c > 0, so that the following holds. There
are vectors ηsi ∈ Es, ηui ∈ Eu depending smoothly on λ with

‖γ+
i (λ)(t)− eD1f(ω(γi),λ)tηsi (λ)‖ ≤ ce(α

s−δ)t,

for t ≥ 0 and

‖γ−
i (λ)(t)− eD1f(α(γi),λ)tηui (λ)‖ ≤ ce(α

u+δ)t,

for t ≤ 0.

Lemma 3.6. There are constants δ > 0, c > 0, so that the following holds. There
are vectors η−i (λ) ∈ Es, η+i (λ) ∈ Eu depending smoothly on λ with

‖ψ−
i (t)− eD1f(α(γi),λ)

∗tη−i (λ)‖ ≤ ce(−αs+δ)t,

for t ≤ 0 and

‖ψ+
i (t)− eD1f(ω(γi),λ)

∗tη+i (λ)‖ ≤ ce(−αu−δ)t,

for t ≥ 0.
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3.3. Bifurcation equations. In this section asymptotic expansions for the bifur-
cation equations are given. Although we sketch steps in the construction, for the
derivation of the estimates we refer to [34, 25]. From the decomposition (3.3), the
jumps Ξi have the form

(3.19) Ξi(ω, λ, κ) = ξ∞κi
(λ) + ξi(ω, λ, κ),

where

(3.20) ξ∞κi
(λ) = γ+

κi
(λ)(0)− γ−

κi
(λ)(0),

and

(3.21) ξi(ω, λ, κ) = v+i (ω, λ, κ)(0)− v−i (ω, λ, κ)(0).

Proposition 3.7. There is a smooth reparameterization of the parameter λ so that
for fixed κ ∈ Σk the bifurcation equation Ξi = 0 is equivalent to

(3.22) 〈Ξi(ω, λ, κ), ψκi
〉 = λ−e2μ

s(λ)ωi〈ηsκi−1
(λ), η−κi

(λ)〉+Ri(ω, λ, κ) = 0, i ∈ Z,

with Ri(ω, λ, κ) = O(e2μ
s(λ)ωi+1δ) +O(e2μ

s(λ)ωiδ) for some δ > 1.

Proof. We sketch steps in the construction of the bifurcation equations. A precise
version of the following reasoning (see [34, 25]), yields the asymptotic expansions
for the bifurcation equations.

First consider ξ∞κi
(λ). Our symmetry assumption implies that the vectors ξ∞j (·),

j ∈ {1, . . . , k}, are g-images of each other. Because 〈·, ·〉 is G-invariant, we may
identify

ξ∞(·) = 〈ξ∞j (·), ψj〉, j ∈ {1, . . . , k}.
Of course ξ∞(0) = 0, because for λ = 0 the unstable manifold Wu(p) intersects the
stable manifold W s(hp) along γ. By (2.2) in Hypothesis (H7), Dξ∞(0) 
= 0. We
may therefore assume

(3.23) ξ∞(λ) = λ.

Next we turn to ξi(ω, λ, κ) = 〈ψκi
, ξi(ω, λ, κ)〉ψκi

. Write

ξi(ω, λ, κ) =
(
〈ψκi

, P+
κi
(λ, 0)v+i (ω, λ)(0)〉 − 〈ψκi

, P−
κi
(λ, 0)v−i (ω, λ)(0)〉

)
ψκi

.

As in [34] or [25] one can show that the leading order terms (as ω → ∞) of ξi(ω, λ, κ)
are contained in the expression(

T 1
κi
(ωi+1, λ)− T 2

κi
(ωi, λ)

)
ψκi

,

where

T 1
κi
(t, λ) = 〈Ψ+

κi
(λ, t, 0)P+

κi

∗
(λ, 0)ψκi

, Qκi+1
(λ, t)γ−

κi+1
(λ)(−t)〉

and

T 2
κi
(t, λ) = 〈Ψ−

κi
(λ,−t, 0)P−

κi

∗
(λ, 0)ψκi

, (id−Qκi
(λ, t))γ+

κi−1
(λ)(t)〉.

Here Ψ±
κi
(λ, ·, ·) is the transition matrix of v̇(t) = −(D1f(γ

±
κi
(λ)(t), λ))∗v(t), P ∗

stands for the adjoint of the projection P , and Qκi
(λ, t) is the projection with

imQκi
(λ, t) = imP+

κi−1
(λ, t), kerQκi

(λ, t) = imP−
κi
(λ,−t).

Recall from (3.5) that

(3.24) im lim
t→∞

Qκi
(λ, t) = Tpκi

Wu(pκi
), ker lim

t→−∞
Qκi

(λ, t) = Tpκi
W s(pκi

).
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Let us consider T 2
κi
(t, λ) somewhat closer. By Lemma 3.5, γ+

κi−1
(λ)(t) behaves

asymptotically as t → ∞ like eD1f(pκi
,λ)tηsκi−1

(λ). From (3.24) we see that this is

also true for (id−Qκi
(λ, t))γ+

κi−1
(λ)(t). Similarly Ψ−

κi
(λ,−t, 0)P−

κi

∗
(λ, 0)ψκi

behaves

asymptotically as t → ∞ like e(D1f(pκi
,λ))T tη−κi

(λ), by Lemma 3.6 and

im lim
t→∞

Ψ−
κi
(λ,−t, 0)P−

κi

∗
(λ, 0) = Tpκi

Wu(pκi
)⊥.

So the leading term L2
κi
(t, λ) of T 2

κi
(t, λ) is

L2
κi
(t, λ) = 〈e(D1f(pκi

,λ))T tη−κi
(λ), eD1f(pκi

,λ)tηsκi−1
(λ)〉

= 〈η−κi
(λ), eD1f(pκi

,λ)2tηsκi−1
(λ)〉.

Since μs(λ) is semisimple,

(3.25) L2
κi
(t, λ) = e2μ

s(λ)t〈η−κi
(λ), ηsκi−1

(λ)〉.

In the same way we find for the leading term L1
κi

of T 1
κi
(t, λ),

(3.26) L1
κi
(t, λ) = e−2μu(λ)t〈η+κi

(λ), ηuκi+1
(λ)〉.

Summarizing, we get

〈Ξi, ψκi
〉 = λ+ L1

κi
(ωi+1, λ)− L2

κi
(ωi, λ) + R̃i(ω, λ)

= λ+ e−2μu(λ)ωi+1〈η+κi
(λ), ηuκi+1

(λ)〉 − e2μ
s(λ)ωi〈η−κi

(λ), ηsκi−1
(λ)〉+ R̃i.

Estimates for the higher order terms R̃i are derived in [34, 25]:

R̃i = R̃i(ω, λ, κ) = O(e−2μu(λ)ωi+1δ) +O(e2μ
s(λ)ωiδ),

for some δ > 1. Taking the eigenvalue condition in Hypothesis (H3) into account
proves the result. �

Finally, we mention that similar estimates also hold for the derivatives of ξi. For
that, consider 〈ξi, ψκi

〉 as a mapping l∞ × R × Σk → R. The following assertion
can be taken from [34] or [25].

Lemma 3.8. For fixed κ the mapping ξi(·, ·, κ) is smooth, and for j ∈ {1, 2} one
has for some δ > 1,

Dj〈ξi(ω, λ, κ), ψκi
〉 = Dj

(
e2μ

s(λ)ωi〈ηsκi−1
(λ), η−κi

(λ)〉
)

+O(e2μ
s(λ)ωi+1δ) +O(e2μ

s(λ)ωiδ).

4. Proof of the general bifurcation result

The proof of Theorem 2.4 will be given in this section, relying on expansions for
the bifurcation equation from Proposition 3.7 and Lemma 3.8. The statement on
the existence of a topological conjugacy between a first return map restricted to an
invariant set and a topological Markov chain is proved in Section 4.2.

The matrix M = (mij)i,j∈{1,...,k} is given, as in the statement of Theorem 2.4,
by

(4.1) mij = sgn 〈ηsi (0), η−j (0)〉

for ω(γi) = α(γj). Due to (H 4), (H 5) and (2.1), both ηsi (0) and η−j (0) are different

from zero. Therefore, mij depend only on the relative position of the vectors ηsi (0)
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and η−j (0). Note that, for κ ∈ ΣA+/− and ω large, a necessary condition to fullfill

(3.22) is
sgnλ = sgn 〈ηsκi−1

(λ), η−κi
(λ)〉.

This gives rise to the following definition:

Definition 4.1. For λ > 0/λ < 0 a sequence κ ∈ Σk is admissible if κ ∈ ΣA+/− .
A heteroclinic chain γκ is admissible if κ is admissible.

In Section 4.1 we will show that for λ 
= 0, the bifurcation equation (3.22) can
be uniquely solved for ω = ω(λ, κ) for all admissible κ. Given the solution ω(λ, κ),
let x(ω(λ, κ), λ, κ)(·) be the corresponding trajectory of (1.1). Then

(4.2) x(ω(λ, κ), λ, κ)(τn) ∈ Sκn
, for τn =

⎧⎨
⎩

∑n
i=1 2ωi(λ, κ), n ∈ N,

0, n = 0,∑0
i=n+1 −2ωi(λ, κ), n ∈ −N.

Define the set Dλ in the union of cross sections
⋃

1≤i≤k Si by

Dλ = {x(ω(λ, κ), λ, κ)(τn) | n ∈ Z, κ admissible}.
Uniqueness of ω implies

ω(λ, σκ) = σ̂ω(λ, κ),

where σ̂ is the left shift on the set of ω-sequences which is defined in the same
way as σ: (σ̂ω)i = ωi+1. Note that the set ΣA+/− of admissible sequences κ is
σ-invariant. Hence

Dλ = {x(ω(λ, κ), λ, κ)(0) | κ admissible}.
The first return map Πλ on

⋃
1≤i≤k Si leaves Dλ invariant and

Πλ : Dλ → Dλ, x(ω(λ, κ), λ, κ)(0) �→ x(ω(λ, κ), λ, κ)(τ1) = x(ω(λ, σκ), λ, σκ)(0).

The map

(4.3) Φλ : ΣA+/− → Dλ, κ �→ x(ω(λ, κ), λ, κ)(0)

is one-to-one. Therefore
Πλ ◦ Φλ = Φλ ◦ σ,

that is, the systems (Dλ,Πλ) and (ΣA+/− , σ) are conjugated. For topological con-

jugacy the continuity of Φλ and Φ−1
λ must also be established.

In the following two subsections we first solve the bifurcations equations, thus
showing that Φλ is well defined, and we then prove that Φλ is a homeomorphism, to
conclude that Φλ defines the topological conjugacy of Πλ on Dλ with the subshift.

4.1. Solving the bifurcation equations. In order to prove Theorem 2.4 it re-
mains to demonstrate the solvability of the bifurcation equation (3.22) and to prove
topological conjugacy. Here we solve bifurcation equation (3.22). Without loss of
generality we take λ > 0. The following hypothesis ensures that κ is admissible:

(H 8) sgn 〈ηsκi−1
(0), η−κi

(0)〉 = 1.

Rewrite (3.22) for fixed κ ∈ ΣA+
by introducing the notation

r̂i = e2μ
s(0)ωi , r̂ = (r̂i)i∈Z

into

(4.4) λ− r̂i〈η−κi
(λ), ηsκi−1

(λ)〉+ R̂i(r̂, λ, κ) = 0, i ∈ Z.
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Our goal is to solve this equation near (λ, r̂i) = (0, 0) for r̂i = r̂i(λ, κ). Note that

only r̂i ≥ 0 makes sense. To avoid a discussion of possible extensions of R̂i to
r̂j < 0, we introduce the rescaling

(4.5) λri = r̂i.

For convenience we write r = λ. Then, using r = (ri)i∈Z, the bifurcation equations
read as

(4.6) r − rri〈η−κi
(r), ηsκi−1

(r)〉+ R̂i(rr, r, κ) = 0.

Note that R̂i(rr, r, κ) = O(rδ), δ > 1. Factoring out r yields

(4.7) 1− ri〈η−κi
(r), ηsκi−1

(r)〉+O(rθ) = 0,

with some positive θ. By (H8) this equation can be solved for r = r(r, κ) near
(r, ri) = (0, 〈η−κi

(0), ηsκi−1
(0)〉−1); see also Remark 4.2 below. Note that ri(r, κ) > 0

(because 〈η−κi
(0), ηsκi−1

(0)〉 > 0) and hence for r > 0 also rri > 0. Finally we find
the following expression for ωi in terms of λ and κ:

(4.8) ωi = ωi(λ, κ) =
1

2μs(0)

(
ln(λ) + ln ri(λ, κ)

)
.

Remark 4.2. In order to solve (4.7) we use the implicit function theorem. For that
we consider the left-hand side of (4.7) as an operator

X : l∞ × R× ΣA → l∞, (r, r, κ) �→ X (r, r, κ).

By construction X (·, ·, κ) is smooth for r > 0 and ri > 0, i ∈ Z. Furthermore,
there exists a differentiable extension to r ≤ 0 (as long as the ri stay away from
zero – recall that we solve (4.7) near (r, ri) = (0, 〈η−κi

(0), ηsκi−1
(0)〉−1) 
= (0, 0)).

Note further that due to Lemma 3.8 the partial derivative with respect to r of the
O-term in (4.7) can be made arbitrarily small by letting r tend to zero.

Remark 4.3. For any λ > 0, κ ∈ ΣA+
there is a unique r satisfying (4.4). Assume

namely that there are two sequences r1 and r2 satisfying this equation. Then

(r̂1i − r̂2i )〈η−κi
(λ), ηsκi−1

(λ)〉+ R̂i(r̂
1, λ, κ)− R̂i(r̂

2, λ, κ) = 0, i ∈ Z.

Because the derivative of R̂i with respect to r̂ becomes arbitrarily small, this equa-
tion is only fulfilled for r̂1i = r̂2i .

Summarizing: for each λ > 0 and each κ ∈ ΣM+
there is a unique ω = ω(λ, κ)

such that

Ξi(ω(λ, κ), λ, κ) = 0, i ∈ Z.

4.2. Topological conjugation. Next we prove the topological conjugacy claimed
in Theorem 2.4. Let v = v(ω, λ, κ) be the unique solution of (3.15). Some of our
estimates are based upon the asymptotic behavior of variational equations along
the trajectories γ±

j . For that we assume that infi∈Z ωi is sufficiently large.
We start with an arithmetical lemma.

Lemma 4.4. Let (a±i )i∈Z and (di)i∈Z be sequences of positive numbers such that
for all j ∈ Z, a−j + a+j ≤ 1

4 (a
−
j−1 + a+j+1). Then, for any i ∈ N,

a−j + a+j ≤ 1

2i+1
(a−j−i−1 + a+j+i+1).
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Proof. An induction argument shows (a−−i + a+i ) + (a+−i + a−i ) ≤ 1
2 (a

−
−i−1 + a+i+1).

In particular,

(4.9) a−−i + a+i ≤ 1

2
(a−−i−1 + a+i+1).

Follow the next procedure. Consider (4.9) for i = 0. Then replace a−−1 + a+1 by the

estimate given by (4.9). Continue replacing in each case the expression a−−j + a+j .
This procedure finally gives

(4.10) a−0 + a+0 ≤ 1

2i+1
(a−−i−1 + a+i+1).

The same procedure yields a similar estimate for a−j + a+j . �

Lemma 4.5. The mapping ΣA → R
n × R

n, κ �→ v0(ω, λ, κ)(0) is continuous.

Proof. Let κ1, κ2 ∈ ΣA be two sequences which coincide on a block of length 2N+1
centered at i = 0:

κ1
i = κ2

i , i ∈ [−N,N ] ∩ Z.

We will establish that ‖v0(ω, λ, κ1)(0) − v0(ω, λ, κ2)(0)‖ = O(1/2N), implying the
lemma.

By (3.15) we get

‖v0(ω, λ, κ1)(0)− v0(ω, λ, κ2)(0)‖ =

‖v̂0(ω, λ,H(v, λ, κ1),d(ω, λ, κ1), κ1)(0)− v̂0(ω, λ,H(v, λ, κ2),d(ω, λ, κ2), κ2)(0)‖.
If N ≥ 1, then we have, due to (3.11), (3.12) and (3.14), that

v̂0(ω, λ,H(v, λ, κ2),d(ω, λ, κ2), κ2) = v̂0(ω, λ,H(v, λ, κ2),d(ω, λ, κ2), κ1).

By linearity of v̂(ω, λ, ·, ·, κ), recall Remark 3.2,

‖v0(ω, λ, κ1)(0)− v0(ω, λ, κ2)(0)‖ = ‖v̂0(ω, λ,ΔH,Δd, κ1)(0)‖,
where ΔH = H(v, λ, κ1) − H(v, λ, κ2) and Δd = d(ω, λ, κ1) − d(ω, λ, κ2). Note
that �di = 0 for i ∈ [−N + 1, N ] ∩ Z; compare (3.7).

Invoking (3.12) again we find

v̂0(ω, λ,ΔH,Δd, κ1)(0) = v̄0(ω, λ,ΔH, a(ω, λ,ΔH,Δd, κ1), κ1)(0).

Henceforth we will use the shorthand notation Δa = a(ω, λ,ΔH,Δd, κ1).
Recall that v̄±0 (ω, λ,g, a, κ)(·) solves

(4.11) v̇(t) = D1f(γ
±
κ0
(λ)(t), λ)v(t) + g±0 (t)

and boundary conditions (3.8) with i = 0 and

a+1 = (id− P+
κ0
(λ, ω1))v

+
0 (ω1), a−0 = (id− P−

κ0
(λ, ω0))v

−
0 (−ω0).

Exploiting the asymptotic behavior of (4.11) we find, similar to the estimates used
in the proof of [24, Lemma 5.1],

‖v0(ω, λ, κ1)(0)− v0(ω, λ, κ2)(0)‖ ≤ ‖�a+1 ‖+ ‖�a−0 ‖.
Following the procedure of [24] we get for i ∈ [−N + 1, N − 1],

‖�a−i ‖+ ‖�a+i ‖ ≤ 1/4(‖�a−i−1‖+ ‖�a+i+1‖).
Now the statement follows from Lemma 4.4 because Δa is bounded. �
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The sequences ω are elements of l∞. On l∞ we introduce the metric � which
induces the product topology by

�(ω1,ω2) =
∑
i∈Z

1

2|i|
|ω1

i − ω2
i |.

Denote by (l∞, �) the set l∞ equipped with the metric �.

Lemma 4.6. Let ω be the sequence of transition times which are defined by (4.8).
Then the mapping ΣA → (l∞, �), κ �→ ω(λ, κ) is continuous.

Proof. Actually we prove the continuous dependence of (ri)i∈Z (see (4.5) and (4.8))
on κ. We confine ourselves to showing continuous dependence of r0. More precisely,
we show that for two sequences κ1, κ2 ∈ ΣA which coincide on a block of length
2N +1 centered at i = 0, the difference |r0(λ, κ1)− r0(λ, κ

2)| tends to zero of order
O(1/2N). The same arguments apply for ri, i 
= 0.

In order to prove the assertion for r0 we reconsider the solving process of the
bifurcation equation as outlined in Section 4.1. Recall from Section 4.1 that r0
solves the fixed point equation

r0 = 1
〈η−

κ0
(r),ηκ−1

(r)〉 +
1

r〈η−
κ0

(r),ηκ−1
(r)〉 R̂0(rr, r, κ) =: F0(r, r, κ).

Now consider

|r0(r, κ1)− r0(r, κ
2)|

= |F0(r(κ
1), r, κ1)− F0(r(κ

2), r, κ2)|
≤ |F0(r(κ

1), r, κ1)− F0(r(κ
2), r, κ1)|+ |F0(r(κ

2), r, κ1)− F0(r(κ
2), r, κ2)|.

For our further consideration we exploit that κ1 and κ2 coincide on a block of length
2N + 1 centered at i = 0. With that we find for the first term on the right-hand
side of the last inequality

|F0(r(κ
1), r, κ1)− F0(r(κ

2), r, κ1)|
= θ(r, κ1)|R̂0(rr(κ

1), r, κ1)− R̂0(rr(κ
2), r, κ1)|

≤ c|r0(r, κ1)− r0(r, κ
2)|,

for some c < 1. Here θ(r, κ1) = 1/r〈η−
κ1
0

(r),η
κ1
−1

(r)〉. The latter estimate is a conse-

quence of Lemma 3.8. Hence

(1− c) |r0(r, κ1)− r0(r, κ
2)| ≤ |F0(r(κ

2), r, κ1)− F0(r(κ
2), r, κ2)|.

With the definitions of F0 and R̂0, again using the fact that κ1 and κ2 coincide on
a block of length 2N + 1 centered at i = 0, we find

(1− c)|r0(r, κ1)− r0(r, κ
2)|

≤ θ(r, κ1)|ξ0(ω(κ2), r, κ1)− ξ0(ω(κ
2), r, κ2)|

≤ 2θ(r, κ1)|v0(ω(κ2), r, κ1)− v0(ω(κ
2), r, κ2)|.

The initially stated assertion concerning |r0(r, κ1)− r0(r, κ
2)| follows from the con-

siderations in the proof of Lemma 4.5. �
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Lemma 4.7. The conjugation Φλ introduced in (4.3) is a homeomorphism.

Proof. Since x(ω(λ, κ), λ, κ) defined in (4.2) are trajectories, we have

x−
0 (ω(λ, κ), λ, κ)(0) = x+

0 (ω(λ, κ), λ, κ)(0).

Hence

(4.12) Φλ(κ) = x+
0 (ω(λ, κ), λ, κ)(0) = γ+

κ0
(0) + v+0 (ω(λ, κ), λ, κ)(0).

Now, let κ1, κ2 ∈ ΣA be two sequences which coincide on a block of length 2N + 1
centered at i = 0:

κ1
i = κ2

i , i ∈ [−N,N ] ∩ Z.

Then, because γ+
κ1
0
(0) = γ+

κ2
0
(0),

‖Φλ(κ
1)− Φλ(κ

2)‖ ≤ ‖v+0 (ω(λ, κ1), λ, κ1)(0)− v+0 (ω(λ, κ2), λ, κ1)(0)‖
+‖v+0 (ω(λ, κ2), λ, κ1)(0)− v+0 (ω(λ, κ2), λ, κ2)(0)‖.

Because of Lemma 4.6 the first term on the right-hand side can be estimated by
means of [30, Lemma 3.4]. On the second term we can apply Lemma 4.5. This
shows that ‖Φλ(κ

1)− Φλ(κ
2)‖ tends to zero as N tends to infinity.

Compactness of ΣA implies that Φ−1
λ is also continuous. �

5. Examples

In this section we consider examples of relative homoclinic cycles that satisfy
the assumptions of Theorem 2.4. We provide a detailed study of bifurcations from
relative homoclinic cycles with dihedral symmetry with real leading eigenvalues.
We first summarize the theory from a practical point of view.

5.1. Methodology. Following the setup in Section 1, the relative homoclinic cycle
is determined by an equilibrium p with isotropy Gp and a connecting trajectory γ
that is asymptotic to p as t → −∞ and to hp as t → ∞, where h ∈ G and
G = 〈h,Gp〉 is the group generated by h and Gp. The case that γ is G-invariant is
governed by Corollary 2.5.

The resulting relative homoclinic cycle Γ = Gγ consists of |G|/|Gp| equilibria
and k = |G|/|Gγ | connecting trajectories.

After deciding on a labeling of the connecting trajectories in the network, in
order to find the matrix M that describes the shift dynamics, as in Theorem 2.4,
we need to examine the relative position of the vectors ηsi (0) and η−j (0) for all i and

j whenever the network admits the corresponding connection (as can be found from
the connectivity matrix). Because of the symmetry, we need in fact to determine
one row or column, as the others follow by symmetry. Recall that eshp is the direction
inside Es

hp along which γ approaches hp as t → ∞. This limit is well defined by

Lemma 3.3. Note that TpW
s(p), TpW

u(p), Es
p and the strong stable subspace Ess

p

are all Gp-invariant. Hence, we can choose a Gp-invariant inner product 〈·, ·〉 so
that

(5.1) TpW
s(p) ⊥ TpW

u(p) and Es
p ⊥ Ess

p .
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From (3.16) we get the following expansion for γi(·):

(5.2) γi(t) = eD1f(ω(γi),0)tηsi (0) +O
(
emax{αss,2αs}t

)
, as t → ∞.

We note that esi and ηsi (0) are parallel and, moreover, that there is a positive
constant ki such that

(5.3) esi = kiη
s
i (0), ki > 0.

Write ηs(0) ∈ Es
p so that for the reference connecting trajectory γ (5.2) reads

(5.4) γ(t) = eD1f(hp,0)thηs(0) +O
(
emax{αss,2αs}t

)
, as t → ∞.

Let γi(g) = gγ and let γi(g)(·) be the corresponding solution with γi(g)(0) in Sg = gS.
Since gD1f(p, 0) = D1f(gp, 0)g, the expansion (5.2) yields

γi(g)(t) = eD1f(ω(γi(g)),0)tghηs(0) +O
(
emax{αss,2αs}t

)
, as t → ∞.

Hence

(5.5) ηsi(g)(0) = ghηs(0).

Considerations in Section 3.1 give a bounded solution ψj to the adjoint varia-
tional equation

ẇ = −(D1f(γj(t), 0))
∗w.

The vector η−j (0) is obtained as the leading order term of e−D1f(α(γj),0)
∗tψj(t) as

t → −∞; η−j (0) belongs to the eigenspace of the leading unstable eigenvalue of

−(D1f(α(γj), 0))
∗. Hypotheses (H5) and (H7) imply that

(5.6) η−j (0) ∈ Es
α(γj)

.

Write ψ = ψi(id) and η−(0) = η−i(id)(0) (note that η−(0) ∈ Es
p). Exploiting symme-

try and (3.18) we obtain

(5.7) η−i(g)(0) = gη−(0).

Finally, by the G-invariance of the inner product, it follows that

(5.8) 〈gηsi (0), gη−j (0)〉 = 〈ηsi (0), η−j (0)〉.
This can be used to compute M given the entries in one column.

5.2. Bifurcation with dihedral symmetry. The dihedral group Dm is the sym-
metry group of the regular m-gon in the plane. As an abstract group, Dm can be
written in terms of generators (a, b) and relations as

〈a, b|am = b2 = (ab)2 = 1〉.
In this section we consider relative homoclinic cycles with Dm symmetry. We recall,
for reference, that Matthies [31] discussed an example with D3-symmetry.

There are several different types of relative homoclinic cycles with dihedral sym-
metry, identifiable by the isotropy subgroup Gp of the equilibria p and its represen-
tation on leading eigenspaces and by the isotropy subgroup Gγ of the connecting
trajectories γ.

Let us first consider the options for Gγ . If Gγ = Dk (with k|m), then, necessarily,
all equilibria and connections are pointwise Zk-invariant. In this case the group does
not act faithfully on the network as Dm but as Dm/k. Similarly, if Gγ = Zk, with
k|m, then all equilibria and connections are pointwise Zk-invariant and Dm acts as
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Dm/k. Without loss, we assume that Dm acts faithfully on the relative homoclinic
cycle. Consequently, we are led to consider the following isotropy subgroups of the
connection γ: {id} (trivial) and Z2 (generated by akb, for some k ∈ {0, . . . ,m−1}).

We further seek combinations of isotropy Gp and some h ∈ G so that Gγ ⊂
Gp ∩ Ghp and G = 〈h,Gp〉. If Gp = Dm, then h = id. If Gp = Dk with k|m
(and k 
= m), then h needs to satisfy h2 = id and k = m/2 (and m even). If
Gp = Zk(a

m/k) with k|m, then h needs to satisfy h2 = id and k = m. Finally, if
Gp = Z2(a

kb), then h must have order m.
We now consider the (real) irreducible representations of the dihedral group Dn.

They are all absolutely irreducible, and act in one of the following three ways:

• One-dimensional trivial representation: Dn acts as {id}.
• One-dimensional nontrivial representation: Dn acts as Z2. There is one of
these if n is odd and three if n is even.

• Two-dimensional representations: Dn acts as Dk with k|n.
Finally, we consider the representations of Z2 and Zn. There are two one-dimen-
sional representations of Z2: a trivial one and a nontrivial one. For Zn there is
always the trivial one-dimensional representation, and if m is even there is also a
nontrivial one-dimensional representation isomorphic to Z2. Furthermore, Zn has
two-dimensional representations isomorphic to Zk, for all k > 2 a divisor of n.

A list of all the cases can be found in Tables 1, 2 and 3. We now proceed with
the description of the codimension one homoclinic bifurcations in these networks
(the results of which are summarized in the same tables).

5.2.1. One-dimensional Es
p. If dimEs

p = 1, Gp must act on Es
p as the trivial repre-

sentation or nontrivial representation isomorphic to Z2. In this subsection we derive
the transition matrices for all networks in Tables 1, 2 and 3 with dim(Es

p) = 1.
The tables list all possible cases. In particular, if the representation of Gp on Es

p

equals Z2, then Gγ cannot be Z2. That is, Case 10 and Case 11 are the only cases
where the representation of Gp on a one-dimensional Es

p equals Z2. Indeed, in this

case h has order m and Ghp = hGph
−1 differs from Gp. Hence, Gγ ⊂ Gp ∩ Ghp

is {id}. Also for Gp = Zm, Gγ ⊂ Gp cannot contain Z2(a
kb) and thus is {id}.

That is, Case 7 and Case 8 are the only cases where the representation of Gp on a
one-dimensional Es

p equals Zm.
We leave a detailed discussion of Cases 12, 13, 14, 15 in Table 3, which are

similar to Cases 1, 2, 3, 4 in Table 1 except for the occurrence of two equilibria in
the network Γ, to the reader.

The next proposition and the text immediately below treat Cases 1, 2, 7, 10 in
the tables, for which Gp acts trivially on Es

p.

Proposition 5.1. Assume the hypotheses of Theorem 2.4 and suppose that dimEs
p

= 1 with a trivial representation for Gp on Es
p. Then M = C (with an appropriate

choice of sign).

Proof. There are
|Gp|
|Gγ | connections approaching p as t → ∞, in the manner sketched

in Figure 3. Due to (5.3) and (5.5) all homoclinic trajectories that approach p as
t → ∞ do so from the same direction; more precisely ηsi(gh−1)(0) = ηs(0) for all

g ∈ Gp. For g ∈ G\Gp, η
s
i(gh−1)(0) is contained in a different subspace, Es

gp. Notice

that
〈ηsi(gh−1)(0), η

−(0)〉 = 〈ηs(0), η−(0)〉 
= 0
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p

Ess
p

Es
p

Figure 3. Sketch of the homoclinic connections approaching p
when dimEs

p = 1 and the representation of Gp on Es
p is trivial,

with G = Gp = D3 and Gγ = {id}.

for all g ∈ Gp. Using (4.1), this gives all the entries in one column of M . These are
nonzero if these entries for C are nonzero. The remaining entries of M follow by
symmetry, using (5.8), leading to a matrix with all nonzero entries being identical.

�

It is important to note that Proposition 5.1 applies in the case of any finite
symmetry group, and not just dihedral ones. Any relative homoclinic cycle that
satisfies the assumptions of Proposition 5.1 features on one side of the bifurcation
a suspended horseshoe (a shift whose transition matrix is the connectivity matrix)
and no recurrent dynamics on the other side (apart from the equilibrium). We note
that previously, full shifts were well known to occur in bifurcations from homoclinic
bellows [37, 18].

The transition matrices A± may also be represented by a Markov graph where
each vertex represents a connecting trajectory. For fixed parameter λ there is a
directed edge from vertex A to vertex B if the ABth entry in M is of the same
sign as λ. We adopt the convention that an edge carries an arrow if it is uni-
directional and no arrow if it is bi-directional. Note that both graphs are mutually
complementary with respect to the full shift, as are the matrices.

For example, in Case 10 of Table 2 it is more convenient to represent the Markov
chain by its graph than by its matrix. To construct the Markov graphs given in
Table 2 we use the following labels; the equilibria are p, ap,..., am−1p, and we label
the connections such that

γj = aj−1γ, for j = 1, ...,m,
γj = baj−1γ, for j = m+ 1, ..., 2m.

(5.9)

This gives the action of a and b on the set of heteroclinic trajectories as, in cycle
notation,

a = (1...m)(2m...m+ 1),

b = (1m+ 1)(2m+ 2)...(m 2m).

The situation with G = D3, Gp = Z2 and Gγ = {id} is sketched in Figure 4.
We now consider the situation when the representation of Gp on Es

p is nontrivial
(isomorphic to Z2). These are the remaining Cases 3, 4, 8, 11 in the tables.

Proposition 5.2. Assume the hypotheses of Theorem 2.4 and suppose dimEs
p = 1

with nontrivial representation of Gp on Es
p isomorphic to Z2. Then M contains

equal numbers of entries 1 and −1.
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(a) p

ap

a2p

1

2

3

4

5
6

(b)

1

2

3 4

5

6

Figure 4. (a) Schematic representation of the connections of a
relative homoclinic cycle with G = D3, Gp = Z2 and Gγ = {id}.
(b) Markov graph representing the nonwandering shift dynamics
that exists on one side of the homoclinic bifurcation, in the case of
trivial representation of Gp on Es

p (Case 10 of Table 2).

Proof. The way the homoclinic trajectories approach p as t → ∞ is illustrated in
Figure 5; this figure is for the case Gp = G = D3 and Gγ = {id}. The proof is

p

Ess
p

Es
p

Figure 5. Sketch of the homoclinic connections approaching p
when dim(Es

p) = 1 with nontrivial representation of Gp isomorphic
to Z2, with G = Gp = D3 and Gγ = {id}.

similar to that of Proposition 5.1, but here the connecting trajectories come in pairs:
a trajectory and its Z2-image which approach p along Es

p in opposite directions,
by the Dm-action. Let gr be an element of G that acts nontrivially on Es

p. Then
for each i, γi and γr

i := grγi form such a pair at an equilibrium. In this way
the connecting trajectories in Γ approaching each equilibrium are divided into two
groups characterized by the direction from which they approach the equilibrium in
positive time. By definition,

lim
t→∞

γi(t)

‖γi(t)‖
= − lim

t→∞

γr
i (t)

‖γr
i (t)‖

.

By equations (5.3) and (5.5) we find

ηsi = −ηs

for exactly half of the connecting trajectories at p.
Given the sign of 〈ηs(0), η−(0)〉 and then using the above we obtain for each

g ∈ Gp the signs of 〈ηsi(gh−1)(0), η
−(0)〉 giving, using (4.1), one column of M . Using

equation (5.8) then gives the remaining entries. �
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Proposition 5.2 applies in the case of any finite group. In the dihedral case, there
exists a choice of labels of the connections, such that M admits a block structure
where the nonzero blocks take the form

(
1 −1

−1 1

)
,

where blocks 1 and −1 represent m̄× m̄ matrices, m̄ =
|Gp|
2|Gγ | , with all entries equal

to 1 and −1, respectively. Details of the corresponding Markov chains for relative
homoclinic cycles with dihedral symmetry are provided in Tables 1 and 2, and Cases
3, 4, 8 and 11. We continue to discuss these in more detail.

In Cases 3 and 4, we number the connections in such a way that γ1, . . . , γm̄
approach p from the same direction and their pairs are ordered such that γi and
γi+m̄ form a pair. If λ > 0, say, then each of the sets γ1, . . . , γm̄ and γm̄+1, . . . , γ2m̄
generate dynamics similar to that described in Case 1: each one exhibiting a full
shift of finite type among its connections. If λ < 0, there is a single transitive
recurrent set. If m = 1, this bifurcation is precisely the gluing bifurcation near
a“figure-8” configuration with Z2 symmetry, as discussed in [12], with periodic
solutions replaced by more general transitive sets.

In Case 4, the representation of Gp on Es
p, Z2, is generated by akb, for some k.

We need to distinguish between the cases when m is odd and m is even.
We first consider the situation when m is odd. When m is odd there is only one

nontrivial one-dimensional representation of Dm isomorphic to Z2. Since dim(Es
p) =

1, the fixed point space of the action of this nontrivial representation on Es
p is the

origin. As the representation on Es
p thus does not have a nontrivial intersection

with FixGh−1γ , η
s(0) cannot lie in Es

p. Consequently, with this configuration the
homoclinic connections cannot approach along the leading eigenspace, so that Hy-
pothesis (H 4) is not satisfied. Thus m needs to be even.

When m is even, there are three irreducible representations of Dm which act as
Z2. Since Gp acts as Z2 on Es

p, two of these representations act trivially on Es
p

(this includes the representation of Z2(a
m/2) and one of Z2(ab) or Z2(b)). If Gγ

acts nontrivially on Es
p we have the same problem as in the case when m is odd,

but in the other two cases Es
p lies entirely inside the fixed point space of Gγ so

that Hypothesis (H 4) can be satisfied. With Gγ = Z2(ab) or Gγ = Z2(b), the
homoclinic connections lie pairwise in fixed point subspaces of anb with n odd or
n even, respectively.

In Case 11, when Gp = Z2 and Gγ = {id}, we define the labeling of connections
as in Case 10 (see (5.9)) and obtain the Markov graphs given in Table 2. As an
illustration, we present in Figure 6 the Markov graphs for Case 11 with G = D3

(with connections as in Figure 4(a)). Before and after the bifurcation, the shift
dynamics here consist of a finite set of periodic solutions. Notice also that the two
Markov graphs add up to the Markov graph Figure 4(b) of Case 10, reflecting the
equality (1.5) of Theorem 1.1.

5.2.2. Two-dimensional Es
p. The remaining cases in Tables 1 and 2, and Cases 5,

6 and 9, are described by the following three propositions. The remaining cases in
Table 3 where Gp acts on Es

p as Dm/2 instead of Dm, and Cases 16 and 17, are
similar and will not be considered further.
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(a)
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3 4
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6

(b)

1

2

3 4
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6

Figure 6. Markov graphs representing the nonwandering shift
dynamics on either side ((a) and (b)) of the bifurcation point in
Case 11 of Table 2, with G = D3.

The following proposition is listed as Case 6 in Table 1, under the further re-
striction that Gp acts as Dm on Es

p. The discussion of a representation as a smaller
group Dk for some k|m follows after the proof.

Proposition 5.3. Assume the hypotheses of Theorem 2.4 and suppose that Gp =
Dm, dimEs

p = 2, the representation of Gp on Es
p is isomorphic to Dm, and Gγ =

Z2 (generated by akb, for some k). Then, up to a relabeling of the homoclinic
connections, the elements mij of M are given by

mij =

⎧⎨
⎩

1, |i− j| < m/4,
0, |i− j| = m/4,

−1, |i− j| > m/4.
(5.10)

The difference i− j is calculated in Zm, and |i− j| := min{i− j, j − i}.
Proof. The way the homoclinic connections approach p as t → ∞ is depicted in
Figure 7. The fixed point subspace FixGγ is invariant under the flow of the differ-

p

Es
p

Ess
p

Figure 7. Sketch of the homoclinic connections approaching p in
Case 6, with G = D3.

ential equation (1.1). For that reason we have ψ ∈ FixGγ . Within this fixed point
subspace esp is the only weak stable direction. Hence both ηs and η− are parallel
to esp. Without loss of generality we assume that their scalar product is positive.

Now, let g 
∈ Gγ . Then Ggγ = gGγg
−1 and hence FixGgγ = gFixGγ . Therefore

ηsi(g) and η−i(g) are parallel to gesp, and their scalar product is positive.

But the scalar product of ηsi(g) and η− depends on g. For the computation

hereof it suffices to consider elements g acting on Es
p as a rotation by an angle

2lπ/m around the origin for some l = 1, . . . ,m. Hence sgn 〈ηsi(g)(0), η−(0)〉 depends
on l. This scalar product is positive if l < m/4, it vanishes if l = m/4, and it is
negative if l > m/4. If we number the homoclinic trajectories γl = glγ, where gl is
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assigned to the rotational angle 2lπ/m, then up to a multiple of −1, M is given by
(5.10). �

To complete the description of Case 6 in Table 1 we need to consider when the
representation of Gp on Es

p is isomorphic to Dk for k a divisor of m. In that case
there are m

k homoclinic trajectories approaching p along each fixed point space in
Es

p rather than just one when k = m. The corresponding matrix M takes the
form of a k × k block matrix defined in the same way as in (5.10), but where each
entry is a m

k × m
k matrix with all entries 0, 1 or −1 as indicated. We observe that

A+ + A− 
= C if m is a multiple of four. In that case the matrices A± may not
necessarily describe the complete recurrent dynamics.

As an illustration, let us consider G = D3; then

M =

⎛
⎝ 1 −1 −1

−1 1 −1
−1 −1 1

⎞
⎠ .

Correspondingly, if λ > 0, the nonwandering dynamics consist of three periodic
solutions, sequences κ with κi = κi+1 for all i. For λ < 0 the set of nonwandering
dynamics is nontrivial, consisting of trajectories that each time pass an equilibrium
that is different from those previously passed. This is characterized by sequences κ
satisfying κi 
= κi+1 for all i. This is precisely the bifurcation observed by Matthies
[31].

Next we consider Case 5 of Table 1, again treating a representation of Gp on Es
p

as Dm in the proposition and representations Dk for some k|m in the text following
its proof.

Proposition 5.4. Assume the hypotheses of Theorem 2.4 and suppose that Gp =
Dm, dimEs

p = 2, the representation of Gp on Es
p is isomorphic to Dm, and Gγ =

{id}. Then, typically M has no zeros but the entries depend on αs := �(ε, ηs) and
α− := �(ε, η−), where ε is a basis of a one-dimensional fixed point space within
Es

p.

Proof. The way the homoclinic trajectories approach p as t → ∞ is depicted in
Figure 8. Generically for i 
= j, i, j = 1, . . . , 2m, we have

p
Es

p

Ess
p

Figure 8. Sketch of the homoclinic connections approaching p in
Case 5, with G = D3. The dashed lines represent the fixed point
spaces of the elements akb for k = 1, ...,m.

lim
t→∞

γi(t)

‖γi(t)‖

= lim

t→∞

γj(t)

‖γj(t)‖
.

That is, esp will typically lie outside the fixed point subspaces of the reflections in
the two-dimensional representation isomorphic to Dk. Let the representation of
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gr ∈ Dm on Es
p be a reflection. Let {ε} be a basis of the fixed point subspace of

gr restricted to Es
p. The relative homoclinic cycle Γ originates from {γ, grγ, p} by

rotation through angles 2lπ/m, l = 1, . . . ,m− 1.
By αs we denote the angle between ηs and ε measured counter-clockwise:

αs := �(ε, ηs).

Similarly we define

α− := �(ε, η−).

The other η−j will be generated by rotations of η− or grη−, respectively, by 2lπ/m.

It turns out that the matrix M depends on the parameters (αs, α−) on the torus.
The mij have been defined by (4.1). So mij = 0 if and only if the angle between

ηsi and η−j is some multiple of π/2. The above considerations give

�(ηsi , η
−
j ) = α− ± αs + 2lπ/m

for some l = 0, . . . ,m−1. On the two-dimensional torus parameterized by (αs, α−),
there are finitely many simply connected open regions separated by lines so that
mij are different from zero within each of these regions. The union of the closures
of these regions is the entire torus. At the transition from one region to an adjacent
one some of the mij change sign. �

To complete the description of Case 5 we need to consider when the represen-
tation of Gp on Es

p is Dk, with k|m. Then there are m
k homoclinic trajectories

approaching p along the same direction. In the notation of the proof of Proposition
5.4 this is m

k homoclinic trajectories tangent to esp and m
k tangent to gresp. Then

rotations of 2πl
k for l = 0, . . . , k−1 of this pair give the remaining connections. The

transition matrix M can be viewed as a 2k × 2k block matrix where each block is
an m

k × m
k matrix with identical entries.

The following proposition and the text below treat Case 9 of Table 2.

Proposition 5.5. Assume the hypotheses of Theorem 2.4 and suppose that Gp =
Zm, dimEs

p = 2, the representation of Gp on Es
p is isomorphic to Zm, and Gγ =

{id}. Then M is a 2m× 2m matrix which depends on α := �(η−, ηs). Generically
M has no zero entries other than those implied by the connectivity matrix.

Proof. In this network there are |G|
|Gp| = 2 equilibria and |G|

|Gγ | = 2m heteroclinic

trajectories, with m approaching each equilibrium as t → ∞. The connecting
trajectories that approach p as t → ∞ do approach the two-dimensional Es

p as
sketched in Figure 9. Now given the position of ηs in Es

p the position of gηs,

p

Es
p

Ess
p

Figure 9. Sketch of the heteroclinic trajectories approaching p in
Case 9, with G = D3.
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g ∈ Gp, is a rotation of ηs over a multiple of 2π
m , according to the representation

of g; similarly for η−. The relative position of ηs and η− is free due to the trivial
isotropy of the connections. Define

α := �(η−, ηs).

Then the signs of 〈ηs, gη−〉 depend on α. Typically in each row and column of M
there will be m nonzero entries, and up to a change of sign m

2 each of +1 and −1

for m even and m−1
2 +1 and m+1

2 −1 for m odd. The exact ordering depends on
the labeling of the heteroclinic trajectories. �

Similar to Cases 5 and 6 the representation of Gp on Es
p can be Zk for k a

divisor of m. Then there are m
k heteroclinic trajectories approaching p along each

direction.
To illustrate this result we consider the case when m = 3 and the representation

of Gp on Es
p is isomorphic to Z3. We choose the labeling on the heteroclinic tra-

jectories as in (5.9). Using the Z3 symmetry on Es
ap, rotations of ηs1 over 2π

3 and
4π
3 give ηs2 and ηs3. Similarly, rotations of η−4 give η−6 and η−5 . To calculate the first

row of M we need to consider the positions of η−4 , η
−
5 and η−6 relative to ηs1. Up

to a sign change there are typically two −1 and one +1 in each row of the matrix.
On the boundaries there is a zero in each row of M where one entry changes sign
between adjacent regions. There are six different regions of Es

ap in which ηs = ηs1
can lie, as shown in Figure 10. We illustrate one of these transitions from region I
to region II marked in Figure 10. If ηs lies in region I, then m14 > 0, m15 < 0

Es
bp

η−4 = bη−

η−6 = abη−η−5 = a2bη−

I

II

Figure 10. Illustration of the fact that the sign of the entries in
M depends on the regions of Es

p in which ηs lies, with G = D3.

and m16 < 0. If ηs lies in region II, then m14 > 0, m15 > 0 and m16 < 0. Only one
sign in each row of M has changed. The remaining signs can be calculated from
these using (5.8). This gives the following two situations in regions I and II:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 −1 −1
0 0 0 −1 −1 1
0 0 0 −1 1 −1
1 −1 −1 0 0 0

−1 −1 1 0 0 0
−1 1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 −1
0 0 0 1 −1 1
0 0 0 −1 1 1
1 1 −1 0 0 0
1 −1 1 0 0 0

−1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The graphs representing these dynamics are given in Figures 11 and 12, respectively.
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λ > 0

1

2

3 4

5

6

λ < 0

1

2

3 4

5

6

Figure 11. Symbolic dynamics in region I of Figure 10.

λ > 0

1

2

3 4

5

6

λ < 0

1

2

3 4

5

6

Figure 12. Symbolic dynamics in region II of Figure 10.
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