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MEAN CURVATURE FLOW OF THE GRAPHS OF MAPS

BETWEEN COMPACT MANIFOLDS

KUO-WEI LEE AND YNG-ING LEE

Abstract. We make several improvements on the results of M.-T. Wang
(2002) and his joint paper with M.-P. Tsui (2004) concerning the long time
existence and convergence for solutions of mean curvature flow in higher co-
dimension. Both the curvature condition and lower bound of ∗Ω are weakened.
New applications are also obtained.

1. Introduction

From the first variation formula of area for a submanifold in a Riemannian
manifold, we can consider the mean curvature vector as the negative gradient of
the area functional. The area of the submanifold will decrease most rapidly if
we deform the submanifold in the direction of its mean curvature vector. Such a
deformation is called mean curvature flow. It is a very natural way to find minimal
submanifolds or canonical representatives. The study of mean curvature flow/curve
shortening flow is very active and has had much advancement in the past thirty
years. It started from the work of Brakke [1], and the paper of Huisken [3] opened
a new era on the mean curvature flow of hypersurface. New developments were
obtained in recent years on mean curvature flow in higher co-dimension. Since our
work mainly focuses on generalizing the results in [7] and [8], we do not intend to
list all important developments and papers on mean curvature flow here. Please
refer to the papers [7, 8] and the references therein.

In this paper, we prove the following theorems:

Theorem 1. Let (N1, g) and (N2, h) be two compact Riemannian manifolds, and
let f be a smooth map from N1 to N2. Assume that KN1

≥ k1 and KN2
≤ k2 for

two constants k1 and k2, where KN1
and KN2

are the sectional curvature of N1 and
N2, respectively. Suppose either k1 ≥ 0, k2 ≤ 0, or k1 ≥ k2 > 0. Then the following
results hold:

(i) If
det((g+f∗h)ij)

det(gij)
< 4, then the mean curvature flow of the graph of f remains

the graph of a map and exists for all time.
(ii) Furthermore, if k1 > 0, then the mean curvature flow converges smoothly

to the graph of a constant map.
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Theorem 2. Assume the same conditions as in Theorem 1. Then the following
results hold:

(i) If f is a smooth area-decreasing map from N1 to N2, then the mean cur-
vature flow of the graph of f remains the graph of an area-decreasing map
and exists for all time.

(ii) Furthermore, if k1 > 0, then the mean curvature flow converges smoothly
to the graph of a constant map.

In Theorem 1 and Theorem 2 , we generalize the curvature conditions on N1

and N2 of the main theorems in [8] and [7] from constant sectional curvature to

varied ones. Moreover, in Theorem 1 the upper bound on
det((g+f∗h)ij)

det(gij)
in [8] is

relaxed from 2 to 4, which should also be observed from [7]. However, since it is
not mentioned and proved there, for completeness we treat this generalization as
well. We also want to remark that the correct condition (which is related to ∗Ω) in
[8] should be

√
det(gij)√

det((g+f∗h)ij)
instead of 1√

det((g+f∗h)ij)
.

We can apply Theorem 2 to show

Corollary 1. Let N1, N2 be compact manifolds and dim N1 ≥ 2. Suppose that
there exist Riemannian metrics g1 and g2 on N1 and N2 with sectional curvature
KN1(g1) > 0 and KN2(g2) ≤ 0. Then any map from N1 to N2 must be homotopic to
a constant map.

Corollary 2. Let (N1, g1), (N2, g2) be compact Riemannian manifolds with KN1(g1)

≥ k1, KN2(g2) ≤ k2, and both k1 and k2 are positive constants. If the 2-dilation of

f : (N1, g1) → (N2, g2) is less than
k1
k2

, then f is homotopic to a constant map.

We made most of the observations in this paper a few years ago and explained the
arguments to M.-T. Wang and M.-P. Tsui in 2004 when the second author visited
them at Columbia University. We thank M.-T. Wang for suggesting we write this
paper and telling us of the interest in k-dilation maps. The authors also express
their gratitude to the referee for a few helpful suggestions. A version of Theorem 2
in the pseudo-Riemannian case was obtained recently in [5].

To prove Theorems 1 and 2, we first need to show that the solution of mean
curvature flow remains the graph of a map satisfying the same constraint as the
initial map. This step depends on the curvature condition. Once we obtain the
inequality in the first step, a similar argument as in [8] shows that the solution
exists for all time. A refined inequality is needed to show that ∗Ω will converge to
1 as t tends to infinity. We also need the curvature condition in this part. The last
step, which is to show that the limit is a graph of a constant map, is the same as
in [8].

We list basic definitions and properties in §2 as preliminaries. Theorem 1 is
proved in §3, and for completeness we also sketch the argument for the part which
is similar to [8]. In §4, we discuss the area-decreasing case and prove Theorem 2.
The applications are given in §5.

2. Preliminaries

Assume that N1 and N2 are two compact Riemannian manifolds with metric g
and h, and of dimension n and m, respectively. Let f : N1 → N2 be a smooth map
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and denote the graph by Σ. Then Σ is an embedded submanifold in the product
manifold M = N1 ×N2 with F = id.× f : N1 → M .

A smooth family Ft : N1 → M is called a mean curvature flow of Σ if it satisfies⎧⎪⎨
⎪⎩

(
∂Ft(x)

∂t

)⊥
= H(x, t),

F0(N1) = Σ,

where H is the mean curvature vector of Ft(N1) = Σt and (·)⊥ denotes the projec-
tion onto the normal bundle NΣt of Σt. By standard theories, the flow has short
time existence.

Let Ω be a parallel n-form on M . We can evaluate this n-form on Σt. Choose or-
thonormal frames {ei}ni=1 on TΣt and {eα}n+m

α=n+1 on NΣt. The following evolution
equation for Ω is derived by M.-T. Wang:

Proposition 1 ([8]). If Ft is an n-dimensional mean curvature flow of Σ in M
and Ω is a parallel n-form on M , then Ω1···n = Ω(e1, . . . , en) satisfies

∂

∂t
Ω1···n =ΔΩ1···n +Ω1···n

∑
α,i,k

(hα
ik)

2

− 2
∑

α<β,k

(
Ωαβ3···nh

α
1kh

β
2k +Ωα2β···nh

α
1kh

β
3k

+ · · ·+Ω1···(n−2)αβh
α
(n−1)kh

β
nk

)
−

∑
α,k

(
Ωα2···nRαkk1 + · · ·+Ω1···(n−1)αRαkkn

)
,(1)

where Δ denotes the time-dependent Laplacian on Σt, hα
ij = 〈∇M

ei ej , eα〉 is the
second fundamental form, and R is the curvature tensor of M = N1 ×N2 with the
product metric g + h.

Remark 1. Here we use the same convention as in [8] that

R(X,Y )Z = −∇X∇Y Z +∇Y ∇XZ +∇[X,Y ]Z,

Rijkl = 〈R(ek, el)ei, ej〉,

and the sectional curvature is K(ek, ei) = 〈R(ek, ei)ek, ei〉, where {ei} are orthonor-
mal.

Since M = N1 × N2 is a product manifold, the volume form Ω1 of N1 can
be extended as a parallel n-form on M . At any point p on Σt, we have ∗Ω =
Ω1(e1, . . . , en) = Ω1(π1(e1), . . . , π1(en)), which is the Jacobian of the projection
from TpΣt to Tπ1(p)N1. By the implicit function theorem, we know ∗Ω > 0 near p
if and only if Σt is locally a graph over N1 near p.

When Σt is the graph of ft : N1 → N2, by the singular value decomposition
theorem, there exist an orthonormal basis {ai}ni=1 on Tπ1(p)N1 and {aα}n+m

α=n+1 on
Tπ2(p)N2 so that dft(ai) = λian+i for 1 ≤ i ≤ r and dft(ai) = 0 for r ≤ i ≤ n.
Note that r ≤ min(n,m) is the rank of dft at p and the λi’s are the eigenvalues of√
(dft)T dft. Hence λi ≥ 0 for all i = 1, . . . , n. We can use {ai}ni=1 and {aα}n+m

α=n+1

to construct special orthonormal bases {Ei}ni=1 on TpΣt and {Eα}n+m
α=n+1 on NpΣt
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as follows:

Ei =

{
1√
1+λ2

i

(ai + λian+i) if 1 ≤ i ≤ r,

ai if r + 1 ≤ i ≤ n,
(2)

En+q =

{
1√
1+λ2

q

(an+q − λqaq) if 1 ≤ q ≤ r,

an+q if r + 1 ≤ q ≤ m.
(3)

Thus,

∗Ω = Ω1(π1(E1), . . . , π1(En)) =
1√∏n

i=1(1 + λ2
i )
.

With these new bases (2) and (3), we can rewrite (1) as follows. This evolution
equation is derived in [8], and here we express the formula in a general form.

Proposition 2 ([8]). Suppose M = N1×N2 with the product metric g+h and Ω is
the parallel extension of the volume form of N1. Let Σ be an embedded submanifold
in M and a graph over N1. If the mean curvature flow of Σ is a graph over N1,
then ∗Ω satisfies the following equation:

∂

∂t
∗Ω =Δ ∗Ω+ ∗Ω|A|2 + ∗Ω

⎛
⎝2

∑
k,i<j

λiλjh
n+j
ik hn+i

jk − 2
∑
k,i<j

λiλjh
n+i
ik hn+j

jk

⎞
⎠

+ ∗Ω
∑
i,k

λ2
i

(1 + λ2
i )(1 + λ2

k)
〈R1(ak, ai)ak, ai〉

− ∗Ω
∑
i,k

λ2
iλ

2
k

(1 + λ2
i )(1 + λ2

k)
〈R2(an+k, an+i)an+k, an+i〉,(4)

where |A|2 denotes the norm square of the second fundamental form and where
R1, R2 denote the curvature tensors on N1, N2 with metric g, h, respectively.

Proof. From the evolution equation (1) and bases (2), (3), one has

Ω1···α···β···nh
α
ikh

β
jk = ∗Ωλiλj

(
hn+i
ik hn+j

jk − hn+i
jk hn+j

ik

)
,

Ω1···α···n = − ∗Ωλi,

R(n+i)kki =
−λiλ

2
k

(1 + λ2
i ) (1 + λ2

k)
〈R2(an+k, an+i)an+i, an+k〉

+
λi

(1 + λ2
i ) (1 + λ2

k)
〈R1(ak, ai)ai, ak〉.

The evolution equation (4) thus follows directly. �

When ∗Ω > 0, one can consider the evolution equation of ln ∗Ω instead and have
the following.
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Proposition 3 ([7]). The evolution equation (4) can be rewritten as the form

∂

∂t
ln ∗Ω =Δ ln ∗Ω+ |A|2 +

∑
i,k

λ2
i (h

n+i
ik )2 + 2

∑
k,i<j

λiλjh
n+j
ik hn+i

jk

+
∑
i,k

λ2
i

(1 + λ2
i )(1 + λ2

k)
〈R1(ak, ai)ak, ai〉

−
∑
i,k

λ2
iλ

2
k

(1 + λ2
i )(1 + λ2

k)
〈R2(an+k, an+i)an+k, an+i〉.(5)

Proof. Since ∂
∂t ln ∗Ω = 1

∗Ω
(

∂
∂t ∗Ω

)
, it implies ∂

∂t ∗ Ω = ∗Ω
(

∂
∂t ln ∗Ω

)
. Similarly,

one has

Δ ln ∗Ω =
Δ ∗Ω
∗Ω − |∇ ∗Ω|2

| ∗Ω|2 =
Δ ∗Ω
∗Ω − |Ω1···n,k|2

| ∗Ω|2 =
Δ ∗Ω
∗Ω −

∣∣∣∣∣∣
∑
i,k

λih
n+i
ik

∣∣∣∣∣∣
2

or

Δ ∗Ω = ∗Ω(Δ ln ∗Ω) + ∗Ω

⎛
⎝∑

i,k

λih
n+i
ik

⎞
⎠

2

.

Plugging these expressions into equation (4) and dividing ∗Ω on both sides, equation
(5) is then obtained. �

3. Proof of Theorem 1

Now we are ready to prove

Theorem 1. Let (N1, g) and (N2, h) be two compact Riemannian manifolds, and
let f be a smooth map from N1 to N2. Assume that KN1

≥ k1 and KN2
≤ k2 for

two constants k1 and k2, where KN1
and KN2

are the sectional curvature of N1 and
N2, respectively. Suppose either k1 ≥ 0, k2 ≤ 0, or k1 ≥ k2 > 0. Then the following
results hold:

(i) If
det((g+f∗h)ij)

det(gij)
< 4, then the mean curvature flow of the graph of f remains

the graph of a map and exists for all time.
(ii) Furthermore, if k1 > 0, then the mean curvature flow converges smoothly

to the graph of a constant map.

Proof of (i). For convenience, we write equation (5) as

(6)
∂

∂t
ln ∗Ω = Δ ln ∗Ω+ I + II,
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where

I = second fundamental form terms

=|A|2 +
∑
i,k

λ2
i

(
hn+i
ik

)2
+ 2

∑
k,i<j

λiλjh
n+j
ik hn+i

jk ,

II = curvature tensor terms

=
∑
i,k

λ2
i

(1 + λ2
i ) (1 + λ2

k)
〈R1(ak, ai)ak, ai〉

−
∑
i,k

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
〈R2(an+k, an+i)an+k, an+i〉

=
∑
i,k �=i

(
λ2
i

(1 + λ2
i ) (1 + λ2

k)
KN1

(ak, ai)−
λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
KN2

(an+k, an+i)

)
.

If we can show there exists δ > 0 such that

(7)
∂

∂t
ln ∗Ω ≥ Δ ln ∗Ω+ δ|A|2,

by the maximum principle (the minimum version), minΣt
ln ∗Ω is nondecreasing in

t and ∗Ω ≥ minΣt=0
∗Ω > 0. Thus Σt remains the graph of a map ft : N1 → N2

whenever the flow exists. Moreover, since

(8) ∗Ω =

√
det(gij)√

det((g + f∗h)ij)
=

1√∏n
i=1 (1 + λ2

i )
,

we have minΣt=0
∗Ω > 1

2 , and thus minΣt
∗Ω > 1

2 along the flow as well.
So we first aim at proving equation (7). From (8) and the compactness of N1,

it follows that
∏n

i=1

(
1 + λ2

i

)
≤ 4 − ε on Σt=0 for some ε > 0. By continuity and

the short time existence of the flow, the solution remains the graph of a map and
satisfies

∏n
i=1

(
1 + λ2

i

)
≤ 4− ε

2 for small t.

In particular, when i 
= j,
(
1 + λ2

i

)
(1 + λ2

j) ≤ 4 − ε
2 . By mean inequality, we

have |λiλj | ≤ 1− δ for δ = ε
8 > 0, i 
= j. Thus

I ≥ δ|A|2 + (1− δ)
∑
i,j,k

(
hn+i
jk

)2

− 2(1− δ)
∑
k,i<j

∣∣∣hn+i
jk hn+j

ik

∣∣∣
≥ δ|A|2 + (1− δ)

∑
k,i<j

(∣∣∣hn+i
jk

∣∣∣− ∣∣∣hn+j
ik

∣∣∣)2

≥ δ|A|2.(9)

For curvature tensor terms:

(a) If k1 ≥ 0, k2 ≤ 0, we have

II ≥
∑
i,k �=i

(
λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)
≥ 0.
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(b) If k1 ≥ k2 > 0, then

II ≥
∑
i,k �=i

(
λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑
i,k �=i

(
λ2
i − λ2

iλ
2
k

(1 + λ2
i ) (1 + λ2

k)

)
k2 =

∑
i<k

(
λ2
i + λ2

k − 2λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)

)
k2.

Since |λiλk| < 1,

λ2
i + λ2

k − 2λ2
iλ

2
k = (λi − λk)

2 + 2λiλk − 2λ2
iλ

2
k

= (λi − λk)
2 + 2λiλk(1− λiλk) ≥ 0.

Hence II ≥ 0.
Therefore (7) holds for small t. It follows that in fact ∗Ω ≥ minΣt=0

∗Ω > 1√
4−ε

for small t. Thus we can continue the same argument to conclude that the solution
remains the graph of a map and satisfies ∗Ω ≥ minΣt=0

∗Ω > 1√
4−ε

whenever the

flow exists.

Then by choosing u =
ln ∗Ω− lnΩ0 + c

− lnΩ0 + c
with c > 0 to replace ∗Ω, the same

proof as in [8] leads to the long-time existence of the flow. The only thing needed
in the proof is equation (7).

The idea goes as follows: To detect a possible singularity, say (y0, t0), one first
isometrically embeds M into R

N by Nash’s theorem, and introduces the backward
heat kernel from Huisken [4]

ρy0,t0 =
1

(4π(t0 − t))
n
2
e
− |y−y0|2

4(t0−t) .

Direct computation and using equation (7) gives

d

dt

∫
Σt

(1− u)ρy0,t0dμt ≤ C − δ

∫
Σt

|A|2ρy0,t0dμt(10)

for some C > 0. Therefore, lim
t→t0

∫
Σt
(1− u)ρy0,t0dμt exists. Consider the parabolic

dilation Dλ at (y0, t0), that is,

(y, t)
Dλ�−→ (λ(y − y0), λ

2(t− t0)),

and set s = λ2(t − t0). Denote the corresponding submanifold and volume form
after dilation by Σλ

s and dμλ
s , respectively. Because u is invariant under parabolic

dilation, inequality (10) becomes

d

ds

∫
Σλ

s

(1− u)ρ0,0dμ
λ
s ≤ C

λ2
− δ

∫
Σλ

s

ρ0,0|A|2dμλ
s .(11)

With further discussion from (11), one can find λj → ∞ and sj → −1 such that∫
Σ

λj
sj

∩K

|A|2dμλj
sj → 0 as j → ∞(12)

for any compact set K. One can conclude that Σ
λj
sj → Σ∞

−1 as a Radon measure
and Σ∞

−1 is the graph of a linear function with further investigation. Therefore,

lim
t→t0

∫
ρy0,t0dμt = lim

j→∞

∫
ρ0,0dμ

λj
sj = 1.
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This implies that (y0, t0) is a regular point by White’s theorem in [9], which is a
contradiction. Thus no singularity can occur along the flow. We refer to [8] for the
detailed argument. �

Proof of (ii). We use the same expression as in (6) and will first show that there
exists c0 > 0 which depends on ε, k1, n such that

II ≥ c0

n∑
i=1

λ2
i ≥ c0 ln

(
n∏

i=1

(
1 + λ2

i

))
= −2c0 ln ∗Ω.

(a) If k1 > 0, and k2 ≤ 0, we have

II ≥
∑
i,k �=i

(
λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑
i,k �=i

λ2
i k1

(1 + λ2
i ) (1 + λ2

k)

≥k1(n− 1)

4

n∑
i=1

λ2
i

≥k1(n− 1)

4

n∑
i=1

ln(1 + λ2
i ),(13)

since
1

(1 + λ2
i ) (1 + λ2

k)
≥ 1∏n

i=1 (1 + λ2
i )

≥ 1

4
and λ2

i ≥ ln(1 + λ2
i ). Hence

we can take c0 =
k1(n− 1)

4
.

(b) If k1 ≥ k2 > 0, we need to estimate curvature terms more carefully. Recall

II ≥
∑
i,k �=i

(
λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑
i,k �=i

(
λ2
i − λ2

iλ
2
k

(1 + λ2
i ) (1 + λ2

k)

)
k1 =

∑
i<k

(
λ2
i + λ2

k − 2λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)

)
k1.

As observed in the proof of (i), we have |λiλk| < 1− ε
4 for all t ≥ 0. Thus,

λ2
i + λ2

k − 2λ2
iλ

2
k = λiλk(λi − λk)

2 + (1− λiλk)(λ
2
i + λ2

k) ≥
ε

4
(λ2

i + λ2
k).

Therefore,

II ≥ εk1
16

∑
i<k

(λ2
i + λ2

k) =
εk1(n− 1)

16

n∑
i=1

λ2
i ≥ εk1(n− 1)

16

n∑
i=1

ln(1 + λ2
i ).

We can take c0 =
εk1(n− 1)

16
.

Hence we can rewrite (6) as

∂

∂t
ln ∗Ω ≥ Δ ln ∗Ω− 2c0 ln ∗Ω.(14)
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Consider a function f(t) which depends only on t and satisfies

(15)

⎧⎨
⎩

d

dt
f(t) = −2c0f(t),

f(0) = min
Σt=0

ln ∗Ω,

which gives f(t) = f(0)e−2c0t. From the inequality (14) and (15), we have

∂

∂t
(ln ∗Ω− f(t)) ≥ Δ(ln ∗Ω− f(t))− 2c0(ln ∗Ω− f(t)).

Because minΣt=0
(ln ∗Ω− f(t)) ≥ 0, by the maximum principle, we have

min
Σt>0

(ln ∗Ω− f(t)) ≥ 0.

Hence 0 ≥ ln ∗Ω ≥ f(0)e−2c0t on Σt≥0. Letting t → ∞, it gives ∗Ω → 1. Then
one can apply the same argument as in [8] to conclude that the solution converges
smoothly to a constant map at infinity. We outline the proof of this fact in the
next paragraph.

Given ε1 > 0, there exists T such that ∗Ω > 1√
1+ε1

for t > T . It implies∑
i λ

2
i < ε1 for t > T . The same method as in (9) and taking δ larger, for example

δ =
1

2
, gives

∂

∂t
∗Ω ≥ Δ ∗Ω+

1

2
∗Ω|A|2.(16)

The evolution inequality for the second fundamental form is

∂

∂t
|A|2 ≤ Δ|A|2 − 2|∇A|2 +K1|A|4 +K2|A|2 +K3(17)

for some constants K1,K2,K3 that depend on the curvature tensor of M and its co-
variant derivatives. The K1|A|4 term will cause some trouble, but one can consider
the evolution inequality of (∗Ω)−2p|A|2, which is

∂

∂t

(
(∗Ω)−2p|A|2

)
≤Δ

(
(∗Ω)−2p|A|2

)
+ 2(∗Ω)−2p∇

(
(∗Ω)−2p

)
· ∇

(
(∗Ω)−2p|A|2

)
+ (∗Ω)−2p

(
|A|4 (C1 − p+ 2p(2p− 1)nε1) + C2

)
.

Choose ε1 small, and a suitable p = p(n, ε1) so that the coefficient of (∗Ω)−2p|A|4 is
negative. By the maximum principle, one gets an upper bound of |A|2. Integrating
(16) and (17), we obtain

∫
Σt

|A|2dμt → 0 and also
∫
Σt

|A|4dμt → 0 as t → ∞ by

the boundedness of |A|2. Since |A|2 is uniformly bounded, evolution inequality (17)
implies ∂

∂t |A|2 ≤ Δ|A|2+C3 for some constant C3. For any positive function u(x, t)

satisfying ut ≤ Δu+f(x, t) in a parabolic regionQR = BR(x0, t0)×(t0−R2, t0+R2),
one has the following estimate [10, Theorem 4.4.2]

sup
QR

2

u ≤ c1R
−n

2 −1‖u‖L2(QR) + c2R
2‖f‖L∞(QR).(18)
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For any ε > 0 small enough, one can find T1 such that
∫
Σt

|A|4dμt ≤ εn+2 for

t > T1. Take R = ε, then (18) implies

|A|2(x, t) ≤
√
2c1ε+ c2ε

2C3 for all t > T1 + ε2 and x ∈ Σt.

Hence maxΣt
|A|2 → 0 as t → ∞. It implies that the mean curvature flow of Σ

converges to a totally geodesic submanifold of M . Since ∗Ω → 1 as t → ∞, we
have |dft| → 0 and the limit is a constant map. �

Remark 2. When n = 1, we have k1 = 0 and (ii) cannot apply. In fact, term
II vanishes in this case, and one cannot obtain the convergence using the same
method.

4. The area-decreasing case

In this section, we mainly follow the discussion and setup in [7]. Consider a
parallel symmetric two tensor S on M defined as

S(X,Y ) = g(π1(X), π1(Y ))− h(π2(X), π2(Y )),

where π1 and π2 are the projections into TN1 and TN2, respectively. The same
calculation as for ∗Ω leads to the following evolution equation for S on Σt, which
appears in [7],

(
∂

∂t
−Δ

)
Sij =− hα

ilh
α
kkSlj − hα

jlh
α
kkSli + RkikαSαj +RkjkαSαi

+ hα
klh

α
kiSlj + hα

klh
α
kjSli − 2hα

kih
β
kjSαβ ,

where Sij = S(ei, ej), Sαi = S(eα, ei), Sαβ = S(eα, eβ), i, j = 1, . . . , n;α, β = n +
1, . . . , n+m.

One can simplify the above equation in terms of evolving orthonormal frames.
Suppose that {ei}ni=1 is a basis for the tangent bundle TΣt and {eα}n+m

α=n+1 is a
basis for the normal bundle NΣt. Denote

ḡij = g(π1(ei), π1(ej)) + h(π2(ei), π2(ej)),

ḡαβ = g(π1(eα), π1(eβ)) + h(π2(eα), π2(eβ)),

and ḡij the inverse metric of ḡij . Now assume that F̄ = {F1, . . . , Fa, . . . , Fn} are
orthonormal frames on TpΣt. We evolve F̄ by the formula

∂

∂t
F i
a = ḡij ḡαβh

α
kjH

βF k
a ,(19)

where α and β are in the normal direction and Hβ is the β component of the mean
curvature vector.
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Let Sab = SijF
i
aF

j
b = S(Fa, Fb) be the component of S in F̄ . Then Sab satisfies

the following equation:

(
∂

∂t
−Δ

)
Sab = RcacαSαb +RcbcαSαa + hα

cdh
α
caSdb + hα

cdh
α
cbSda − 2hα

cah
β
cbSαβ .

(20)

We remark that when we use the bases (2) and (3), the expression of S is

S = S(Ei, Ej)1≤i,j≤n+m =

⎛
⎜⎜⎝

B 0 D 0
0 I(n−r)×(n−r) 0 0
D 0 −B 0
0 0 0 −I(m−r)×(m−r)

⎞
⎟⎟⎠ ,

where B and D are r by r matrices with

Bij = S(Ei, Ej) =
1− λ2

i

1 + λ2
i

δij and Dij = S(Ei, En+j) = − 2λi

1 + λ2
i

δij .

A map f : N1 → N2 is called area-decreasing if∣∣∣∣∧2
df

∣∣∣∣ (x) = sup
|u∧v|=1

∣∣∣∣
(∧2

df

)
(u ∧ v)

∣∣∣∣ = sup
|u∧v|=1

|df(u) ∧ df(v)| < 1.

In the bases (2) and (3), the area-decreasing condition is equivalent to∣∣∣∣∧2
df

∣∣∣∣ (x) = sup
i<j

λiλj < 1 ⇔ |λiλj | < 1 ∀ i 
= j .

On the other hand, the sum of any two eigenvalues of S is

1− λ2
i

1 + λ2
i

+
1− λ2

j

1 + λ2
j

=
2(1− λ2

iλ
2
j)

(1 + λ2
i )(1 + λ2

j)
.

Thus, the area-decreasing condition is equivalent to the two positivity of S.
Since S is bilinear, by the Riesz representation theorem, we can identify S with

a self-adjoint operator (still denoted by S). Hence, for the orthonormal frame F̄ ,
we have Sab = S(Fa, Fb) = ḡ(S(Fa), Fb), which implies S(Fa) = SabFb.

With this identification, we can construct a new self-adjoint operator S[2] = S⊗
1+1⊗S on TpΣt∧TpΣt, which is defined by S[2](w1∧w2) = S(w1)∧w2+w1∧S(w2).
If μ1 ≤ · · · ≤ μn are the eigenvalues of S with the corresponding eigenvectors
v1, . . . , vn, then S[2] has eigenvalues ui1 + ui2 with eigenvectors vi1 ∧ vi2 , i1 ≤ i2.
Thus, the positivity of S[2] is equivalent to the area-decreasing condition. Similarly,
for the metric ḡ, we can construct a self-adjoint operator ḡ[2] = ḡ ⊗ 1 + 1⊗ ḡ.

Note that {Fa ∧ Fb}a<b form an orthonormal basis for
∧2

TΣt and

S[2](Fa ∧ Fb) =S(Fa) ∧ Fb + Fa ∧ S(Fb) = SacFc ∧ Fb + Fa ∧ SacFc

=
∑
c<d

(Sacδbd + Sbdδac − Sadδbc − Sbcδad)Fc ∧ Fd,(21)

ḡ[2](Fa ∧ Fb) =
∑
c<d

(2δacδbd − 2δadδbc)Fc ∧ Fd.
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We can improve the main theorem in [7] to the following

Theorem 2. Let (N1, g) and (N2, h) be two compact Riemannian manifolds, and
let f be a smooth map from N1 to N2. Assume that KN1

≥ k1 and KN2
≤ k2 for

two constants k1 and k2, where KN1
and KN2

are the sectional curvature of N1 and
N2, respectively. Suppose either k1 ≥ 0, k2 ≤ 0, or k1 ≥ k2 > 0. Then the following
results hold:

(i) If f is a smooth area-decreasing map from N1 to N2, then the mean cur-
vature flow of the graph of f remains the graph of an area-decreasing map
and exists for all time.

(ii) Furthermore, if k1 > 0, then the mean curvature flow converges smoothly
to the graph of a constant map.

Proof of (i). Notice that we already proved in §3 that Σt remains the graph of a
map under the assumption whenever the flow exists. Now we want to prove that
the area-decreasing property is also preserved along the mean curvature flow. Since
the initial map is area-decreasing, there exists ε > 0 such that S[2] − εḡ[2] ≥ 0. We
want to show that the property S[2] − εḡ[2] is preserved along the mean curvature
flow. Let Mη = S[2] − εḡ[2] + ηtḡ[2]. Suppose the mean curvature flow exists on
[0, T ). Consider any T1 < T ; it suffices to show that Mη > 0 on [0, T1] for all
η < ε

2T1
. If it does not hold, there will be a first time that 0 < t0 < T1, Mη is

nonnegative definite, and there is a null eigenvector V = V abFa ∧ Fb for Mη at
some point x0 ∈ Σt0 . We extend V to a parallel vector field in a neighborhood of
x0 along geodesics emanating out of x0, and define V on [0, T ) independent of t.

Define a function f = Mη(V, V ). Then the function f has the following properties
at (x0, t0):

(F1) f = 0 (V is the null-eigenvector).
(F2) ∇f = 0 (At t = t0, f attains minimum on x0).
(F3)

(
∂
∂t −Δ

)
f ≤ 0 (At t = t0, f attains minimum on x0).

At (x0, t0), we choose the orthonormal basis {Fa} as {Ei} in (2) and rearrange
them such that the singular values λi satisfy λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Thus,

Snn =
1− λ2

n

1 + λ2
n

≥ · · · ≥ S22 =
1− λ2

2

1 + λ2
2

≥ S11 =
1− λ2

1

1 + λ2
1

.

Hence the null eigenvector must be V = E1 ∧ E2. From (F1), it follows that
f = S11+S22+2(ηt0− ε) = 0 at (x0, t0), which implies S11+S22 = 2(ε− ηt0) > 0.
Thus, we have

λ1λ2 < 1, and λi < 1 for i ≥ 2.(22)

Use (19) to evolve {Fa}. Then at (x0, t0), direct computation gives(
∂

∂t
−Δ

)
f = 2η + 2Rk1kαSα1 + 2Rk2kαSα2

+ 2hα
kjh

α
k1Sj1 + 2hα

kjh
α
k2Sj2 − 2hα

k1h
β
k1Sαβ − 2hα

k2h
β
k2Sαβ

= 2η + I + II,
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where

I = curvature tensor terms

= 2Rk1kαSα1 + 2Rk2kαSα2 = 2Rk1k(n+1)S(n+1)1 + 2Rk2k(n+2)S(n+2)2

=
∑
k �=1

2λ2
1

(1 + λ2
k)(1 + λ2

1)
2
〈R1(ak, a1)ak, a1〉

+
∑
k �=2

2λ2
2

(1 + λ2
k)(1 + λ2

2)
2
〈R1(ak, a2)ak, a2〉

−
∑
k �=1

2λ2
kλ

2
1

(1 + λ2
k)(1 + λ2

1)
2
〈R2(ak, a1)ak, a1〉

−
∑
k �=2

2λ2
kλ

2
2

(1 + λ2
k)(1 + λ2

2)
2
〈R2(ak, a2)ak, a2〉

≥
∑
k �=1

2λ2
1

(1 + λ2
k)(1 + λ2

1)
2
k1 +

∑
k �=2

2λ2
2

(1 + λ2
k)(1 + λ2

2)
2
k1

−
∑
k �=1

2λ2
kλ

2
1

(1 + λ2
k)(1 + λ2

1)
2
k2 −

∑
k �=2

2λ2
kλ

2
2

(1 + λ2
k)(1 + λ2

2)
2
k2.

II = second fundamental form terms

= 2hα
kjh

α
k1Sj1 + 2hα

kjh
α
k2Sj2 − 2hα

k1h
β
k1Sαβ − 2hα

k2h
β
k2Sαβ .

For curvature tensor terms I:

(a) If k1 ≥ 0, k2 ≤ 0, we have I ≥ 0.
(b) If k1 ≥ k2 > 0, then

I ≥ k1

⎛
⎝∑

k �=1

2λ2
1 − 2λ2

kλ
2
1

(1 + λ2
k)(1 + λ2

1)
2
+

∑
k �=2

2λ2
2 − 2λ2

kλ
2
2

(1 + λ2
k)(1 + λ2

2)
2

⎞
⎠

= k1

⎛
⎝ 2λ2

1 − 2λ2
2λ

2
1

(1 + λ2
2)(1 + λ2

1)
2
+

2λ2
2 − 2λ2

1λ
2
2

(1 + λ2
1)(1 + λ2

2)
2

+
∑
k≥3

2λ2
1 − 2λ2

kλ
2
1

(1 + λ2
k)(1 + λ2

1)
2
+

∑
k≥3

2λ2
2 − 2λ2

kλ
2
2

(1 + λ2
k)(1 + λ2

2)
2

⎞
⎠

≥ k1

(
2λ2

1 + 2λ2
2 − 4λ2

2λ
2
1

(1 + λ2
1)

3

)
+

∑
k≥3

k1

(
2λ2

1(1− λ2
k)

(1 + λ2
k)(1 + λ2

1)
2
+

2λ2
2(1− λ2

k)

(1 + λ2
k)(1 + λ2

2)
2

)

≥ k1

(
2(λ1 − λ2)

2 + 4λ1λ2(1− λ1λ2)

(1 + λ2
1)

3

)
(here we use (22))

≥ 0 (here we use (22).)

Since the second fundamental form terms do not involve curvatures, II is non-
negative as proved in [7]. Since both I ≥ 0 and II ≥ 0 at (x0, t0), we have(

∂
∂t −Δ

)
f ≥ 2η > 0 at (x0, t0), which contradicts (F3). Thus the area-decreasing

property is preserved by the mean curvature flow. We can also apply the same



5758 KUO-WEI LEE AND YNG-ING LEE

proof to obtain long-time existence as in §3 because the inequality (7) holds as long
as there exists δ > 0 such that |λiλj | < 1− δ for i 
= j.

Proof of (ii). From the proof of (i), we know there exists ε > 0 such that S[2] −
εḡ[2] ≥ 0 for all t ≥ 0. This condition is equivalent to

1− λ2
iλ

2
j

(1 + λ2
i )

(
1 + λ2

j

) ≥ ε for all i 
= j.

In particular, we have

ε
(
1 + λ2

i

)
≤

1− λ2
iλ

2
j

1 + λ2
j

≤ 1 ⇒ 1 + λ2
i ≤ 1

ε
for all i, and

1− λ2
iλ

2
j ≥ ε ⇒ |λiλj | ≤

√
1− ε ≤ 1− 1

2
ε.

These are the only estimates needed in the proof of convergence in Theorem 1.
The same argument shows that there exists c0 = c0(ε, k1, n) > 0 such that

II ≥ c0

n∑
i=1

λ2
i ≥ c0 ln

(
n∏

i=1

(
1 + λ2

i

))
= −2c0 ln ∗Ω.

This gives us the inequality (14), and the rest of the proof is the same as in Theo-
rem 1. �

5. Application

Corollary 1. Let N1, N2 be compact manifolds and dim N1 ≥ 2. Suppose that
there exist Riemannian metrics g1 and g2 on N1 and N2 with sectional curvature
KN1(g1) > 0 and KN2(g2) ≤ 0. Then any map from N1 to N2 must be homotopic to
a constant map.

Proof. For any given map f : N1 → N2, we can consider the singular value de-
composition of df with respect to g1 and g2. Denote the corresponding singular
values by λ1, . . . , λn. Since N1 is compact, there exists a positive constant L such
that λiλj ≤ L. Define a new metric ḡ1 = 2Lg1 on N1. The singular values of df

with respect to ḡ1 and g2 will be λ̄1 = λ1√
2L

, . . . , λ̄n = λn√
2L

. Therefore, we have

λ̄iλ̄j ≤ 1
2 < 1 and KN1(ḡ1) > 0. Applying the mean curvature flow to the graph of f

in (N1, ḡ1)× (N2, g2), by Theorem 2 we conclude that f is homotopic to a constant
map. �

For general cases, we can obtain the null homotopic property in terms of 2-
dilation. Recall that the 2-dilation (or more generally, k-dilation) of a map f
between N1 and N2 is said to be at most D if f maps each 2-dimensional (k-
dimensional) submanifold in N1 with volume V to an image with volume at most
DV . The 2-dilation can also be defined in terms of df , which is equal to the
supremum of the norm |

∧2df |.
We have the following corollary:

Corollary 2. Let (N1, g1), (N2, g2) be compact Riemannian manifolds with KN1(g1)

≥ k1, KN2(g2) ≤ k2, and both k1 and k2 are positive constants. If the 2-dilation of

f : (N1, g1) → (N2, g2) is less than
k1
k2

, then f is homotopic to a constant map.
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Proof. Consider the metrics ḡ1 = k1g1 and ḡ2 = k2g2. Then the sectional curvatures
satisfy KN1(ḡ1) ≥ 1,KN2(ḡ2) ≤ 1, and the map f : (N1, ḡ1) → (N2, ḡ2) satisfies

|
∧2df | < k1

k2
· k2

k1
= 1, which is an area-decreasing mapping. By Theorem 2, f is

homotopic to a constant map. �
Assume (N1, g1) has nonnegative Ricci curvature and dim N1 = 2. A classical

result in harmonic map theory tells us that there exists ε > 0 such that if a harmonic
map f : (N1, g1) → (N2, g2) satisfies E(f) =

∫
N1

‖df‖2 < ε, then f is a constant
map. As a final application of Theorem 2, one can prove a similar result. The
idea is first to obtain the pointwise bound of df by the total energy and then apply
Corollary 2 to conclude that f is homotopic to a constant map when K(g1) >
0. Such a pointwise estimate is obtained by Schoen [6] when dim N1 = 2, f is
harmonic, and the energy is sufficiently small in small balls. We remark that this
argument works in higher dimension whenever the pointwise estimate is obtained.
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