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ON THE REAL MULTIDIMENSIONAL

RATIONAL K-MOMENT PROBLEM

JAKA CIMPRIČ, MURRAY MARSHALL, AND TIM NETZER

Abstract. We present a solution to the real multidimensional rational K-
moment problem, where K is defined by finitely many polynomial inequalities.
More precisely, let S be a finite set of real polynomials in X = (X1, . . . , Xn)
such that the corresponding basic closed semialgebraic set KS is nonempty.
Let E = D−1R[X] be a localization of the real polynomial algebra and let TE

S
be the preordering on E generated by S. We show that every linear functional
L on E such that L(TE

S ) ≥ 0 is represented by a positive measure μ on a
certain subset of KS , provided D contains an element that grows fast enough
on KS .

1. Introduction

The moment problem for a commutative unital R-algebra E asks to characterize
real positive linear functionals on E which can be represented as integrals over
measures on an appropriate representation space of E. If supports of the measures
are required to lie in a prescribed subset K of the representation space, then we
talk about the K-moment problem on E.

A solution to the K-moment problem on R[X] = R[X1, . . . , Xn] for a compact
basic closed semialgebraic set K was given by K. Schmüdgen in [21]. The aim of
this paper is to extend his result, both in the compact and noncompact case, to
localizations of the polynomial algebra, i.e. to algebras of the form E = D−1R[X],
whereD is a multiplicative set. The case n = 1,D generated byX1−α for countably
many real α, and K a compact basic closed semialgebraic set, has already been
accomplished by J. D. Chandler in [8]. Several papers deal with the case n = 1,
D generated by X1 − α for countably many real α and K = R; see [6, 7] for
surveys. In this case the existence of the solution is rather trivial and the emphasis
is on the uniqueness of solutions. The multidimensional case with D generated by
1 +

∑n
i=1 X

2
i +

∑m
i=1 g

2
i , where g1 ≥ 0, . . . , gm ≥ 0 are the defining relations of K,

has been achieved by M. Putinar and F.-H. Vasilescu in [16].
To describe our main results we need some terminology. For a finite subset

S = {g1, . . . , gm} of R[X], write KS = {a ∈ Rn | g1(a) ≥ 0, . . . , gm(a) ≥ 0}
and TE

S for the set of all finite sums of elements of the form e2gν1
1 · · · gνm

m where
e ∈ E = D−1R[X] and ν1, . . . , νm ∈ {0, 1}. We say that a rational function R ∈ E

is � 0 on a set X ⊆ Rn if there exist f ∈ R[X] and d ∈ D such that R = f
d and

fd ≥ 0 on X . We write Z(d) for the set of real zeros of a polynomial d.
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Our main results can be summarized as follows:

Theorem. Let S be a finite subset of R[X], D a multiplicative subset of R[X] such
that 1 ∈ D, 0 �∈ D, and let R be an element of E = D−1R[X]. Assume there exists
an element p ∈ D such that p ≥ 1 on KS and kp ≥

∑n
i=1 X

2
i on KS for some

integer k ≥ 1. Then:

(1) R belongs to the closure of TE
S in the finest locally convex topology on E if

and only if R � 0 on KS \
⋃

d∈D Z(d).

(2) R belongs to the closure of TE
S in the topology of finitely open sets on E if

and only if R � 0 on KS.
(3) For every linear functional L on E such that L(TE

S ) ≥ 0, there exists a

measure μ on KS \
⋃

d∈D Z(d) such that

L

(
f

d

)
=

∫
f

d
dμ for every

f

d
∈ E.

See Theorems 1, 2 and 4. These results carry over to localizations of an arbitrary
finitely generated R-algebra; see Theorem 5. Assertion (3) of the Theorem solves
the moment problem on E. For the proof of assertion (3) we use assertion (1)
together with a certain rational version of the Riesz-Haviland Theorem which is a
generalization of [11, Theorem 3.2.2] and [24, Theorem 3.2]; see Theorem 3.

The conditions on the polynomial p (that p ≥ 1 on KS and kp ≥
∑n

i=1 X
2
i on

KS for some integer k ≥ 1) are paraphrased by saying that “p grows fast enough
on KS”. See also [11, Theorem 6.2.3] and [22, Theorem 5.1]. One can always take
p = 1 +

∑n
i=1 X

2
i (provided, of course, that 1 +

∑n
i=1 X

2
i ∈ D). If KS is compact

one can take p = 1, so, in this case, the only assumptions on the multiplicative set
D are the trivial ones 1 ∈ D, 0 /∈ D.

2. Preorderings and the finest locally convex topology

Definition. Let E be an R-vector space. A set U ⊆ E is called absorbent if for
every x ∈ E there exists λ > 0 such that x ∈ λU. U is called symmetric if λU ⊆ U
for all λ ∈ [−1, 1].

The set of all convex, absorbent and symmetric subsets of E forms a zero neigh-
borhood base of a vector space topology on E (see [5, II.25]). It is called the finest
locally convex topology on E, and the collection of all open sets is denoted by Tω.

The following are well known:

(T1) (E, Tω) is a topological vector space, i.e. addition and scalar multiplication
are continuous. Moreover, (E, Tω) is Hausdorff.

(T2) Every linear mapping from (E, Tω) to a vector space with any locally con-
vex topology is continuous. In particular, all functionals on (E, Tω) are
continuous.

These properties are proved in [5, II.26].
A subset T of a commutative ring E with 1 is a preordering if it is closed under

addition and multiplication and if it contains the set E2 = {a2 | a ∈ E}. As usual,∑
E2 denotes the preordering of E consisting of sums of squares.

Lemma 1. For any preordering T on any commutative R-algebra E, its closure in
Tω is also a preordering.
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Proof. Since T ⊆ T , E2 ⊆ T . Since the addition on E is continuous, it follows
that T is closed under addition. We can’t use the same argument for multiplication
because by [25, p. 734, Theorem 2] the multiplication on E = C(X) is not contin-
uous. However, for every f ∈ E, the mapping φf : E → E, φf (h) = fh is linear,
and hence continuous by (T2). So, for every f ∈ T ,

φf (T ) ⊆ φf (T ) ⊆ T

holds, as φf (T ) ⊆ T. It follows that for every g ∈ T ,

φg(T ) ⊆ φg(T ) ⊆ T ,

as φg(T ) ⊆ T , by the above consideration. So for any g, h ∈ T , g·h = φg(h) ∈ T . �
Remark. Note that every preordering T on an R-algebra E is a convex cone, so by
(T2) and the Separation Theorem for convex sets (e.g. [5, II.39, Corollary 5]), an
element x belongs to T if and only if L(x) ≥ 0 for every linear functional L on E
such that L(T ) ≥ 0. It follows that for all elements a, b ∈ E such that a + εb ∈ T
for every ε > 0, we have that a ∈ T .

From now on, we are mostly interested in localizations of the real polynomial
algebra R[X] in n variables X = (X1, . . . , Xn). So for a multiplicative set D ⊆
R[X] \ {0} containing 1, we examine E = D−1R[X].

Remark. While the vector space dimension of R[X] is countable, the dimension
of E can be uncountable. For example, if D is the set of polynomials without

real zeros, then the uncountable family
{

1
X2

1+c2
| c ∈ R �=0

}
⊆ D−1R[X] is linearly

independent.

For a set X ⊆ Rn, an arbitrary function φ : X → R and an element R ∈ E =
D−1R[X], we say

R � φ on X
if there exist f ∈ R[X] and d ∈ D such that R = f

d and (f − dφ)d ≥ 0 on X . This

just means that R has a representation f
d , f ∈ R[X], d ∈ D, where the function f

d
is ≥ φ pointwise on X , wherever it is defined. The set

PosE(X ) = {R ∈ E | R � 0 on X}
is a preordering in E. We also write

Pos(X ) = {f ∈ R[X] | f ≥ 0 on X}
for the preordering of all polynomials nonnegative on X in the usual sense. Note
that −1 �∈ Pos(X ) unless X is empty. On the other hand, −1 ∈ PosE(X ) if
X ⊆ Z(d) for some d ∈ D. However, if X \ Z(d) is dense in X for every d ∈ D,
such phenomena cannot occur.

Lemma 2. For every element R ∈ E = D−1R[X] and every set X ⊆ Rn such that
X \ Z(d) is dense in X for every d ∈ D, the following are equivalent:

(1) R ∈ PosE(X ),

(2) for every representation R = f
d with f ∈ R[X] and d ∈ D, we have that

fd ∈ Pos(X ),
(3) if we consider R as an element of R(X) and write R = a

b where a, b ∈ R[X],
b �= 0 and gcd(a, b) = 1, then ab ∈ Pos(X ).

In particular, for all f ∈ R[X], f
1 ∈ PosE(X ) if and only if f ∈ Pos(X ).
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Proof. Suppose that R = f
d = a

b , where a, b ∈ R[X], b �= 0, satisfy gcd(a, b) = 1
and f ∈ R[X], d ∈ D. Then there exists u ∈ R[X] \ {0} such that f = ua and
d = ub. Clearly, fd = abu2 ∈ Pos(X ) if and only if ab ∈ Pos(X \ Z(bu)). By the
assumption on X , this is equivalent to ab ∈ Pos(X ). Therefore, (1), (2) and (3) are
equivalent. The last claim is a special case of (3). �

For a finite subset S = {g1, . . . , gm} of R[X] let

KS = {a ∈ Rn | g1(a) ≥ 0, . . . , gm(a) ≥ 0}

be the basic closed semialgebraic set defined by S. Let

TS = {
∑

ν∈{0,1}m

sνg
ν1
1 · · · gνm

m | sν ∈
∑

R[X]2}

and

TE
S = {

∑
ν∈{0,1}m

sνg
ν1
1 · · · gνm

m | sν ∈
∑

E2}

be the preorderings generated by S in R[X] and E = D−1R[X], respectively. We
always assume KS �= ∅, so −1 �∈ TS . If KS is not contained in any Z(d), d ∈ D,
then −1 �∈ TE

S also.
The following is our main result:

Theorem 1. Let D ⊆ R[X] \ {0} be a multiplicative set containing 1 and S a
finite subset of R[X]. Suppose there is some p ∈ D such that p ≥ 1 on KS and
kp−

∑n
i=1 X

2
i ≥ 0 on KS for some k ≥ 1. Then

TE
S = PosE(KS \

⋃
d∈D

Z(d))

holds in E = D−1R[X].

The set X = KS \
⋃

d∈D Z(d) satisfies the assumptions of Lemma 2, which gives

two characterizations of PosE(X ). Another characterization is that R ∈ PosE(X )
if and only if χ(R) ≥ 0 for every unital R-algebra homomorphism χ : E → R such
that χ(S) ≥ 0.

We will give the proof of Theorem 1 in Section 3. In Section 4, we will show that
Theorem 1 implies the solution of the real multidimensional rational K-moment
problem. In Section 5 we will prove a variant of Theorem 1 for the topology of
finitely open sets.

Note that in the case where KS is compact, we can always take p = 1 in the
Theorem. In the noncompact case, the polynomial p = 1+

∑n
i=1 X

2
i can always be

used in the application of Theorem 1, as long as it belongs to the multiplicative set
D. We record an easy corollary of Theorem 1, in which this is the case. Therefore
let R(X;P) be the algebra of real rational functions with (real) poles only in a
given set P ⊆ Rn. It is the localization of the polynomial algebra with respect to
the set D of nonzero polynomials with real zeros only in P. The set of zeros of
elements from D equals P. The polynomial p = 1 +

∑n
i=1 X

2
i belongs to D.

Corollary 1. In E = R(X;P) = D−1R[X] we have for arbitrary finite sets S ⊆
R[X],

TE
S = PosE(KS \ P).
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In particular, ∑
R(X;P)2 = PosE(Rn \ P).

If P = Rn, then R(X;P) = R(X) and PosE(Rn \ P) = R(X), so∑
R(X)2 = R(X).

In particular, there is no positive linear functional on R(X).

The last claim of Corollary 1 also follows from [14, 9.7.29].

Remark. Let L/R be a proper field extension. We claim that there is no nontrivial
positive linear functional on L. If L is not real, then every element is a sum
of squares, so there is clearly no nontrivial positive linear functional. Otherwise,
every element a of L \ R is transcendental over R. So R(a) is isomorphic to R(X),
and by Corollary 1 there is no nontrivial positive linear functional on R(a).

Remark. When KS is compact and disjoint from
⋃

d∈D Z(d), we can prove Theo-
rem 1 by the usual analytic trick. Namely, in this case Wörmann’s trick implies
that TE

S is archimedean. (Since Wörmann’s trick works only for finitely gener-
ated R-algebras, we apply it first to algebras R[X]d and then use the fact that
E = D−1R[X] is equal to

⋃
d∈D R[X]d.) Then the Kadison-Dubois Representation

Theorem implies that the closure of TE
S is equal to PosE(KS). We refer the reader

to [11] for the statement of Wörmann’s trick and the Representation Theorem. We
will not pursue this idea further.

3. The proof of Theorem 1

The easy inclusion TE
S ⊆ PosE(KS \

⋃
d∈D Z(d)) follows from the obvious fact

that evaluation in a point from KS \
⋃

d∈D Z(d) defines a linear functional L on E

such that L(TE
S ) ≥ 0.

The proof of the difficult inclusion TE
S ⊇ PosE(KS \

⋃
d∈D Z(d)) will be split

into several lemmas.

Lemma 3. Let D ⊆ R[X] \ {0} be a multiplicative set containing 1, K a compact
set contained in P =

⋃
d∈D Z(d), and c ∈ R>0. Then every neighborhood of zero

in D−1R[X] (in the finest locally convex topology) contains an element R such that
R � c · χK globally, where χK is the characteristic function of K.

Proof. Let N be a neighborhood of zero in D−1R[X]. Without loss of generality
assume that N is convex and absorbent. Hence for any f ∈ D−1R[X] there is a
number δ(f) > 0 such that λf ∈ N for all λ ∈ [−δ(f), δ(f)].

For every a ∈
⋃

d∈D Z(d) we have da(a) = 0 for some da ∈ D, so that da(x) =
(∇da)(a) · (x − a) + o(‖x − a‖). Write ca = ‖(∇da)(a)‖+ 1 and pick ηa > 0 such
that

(1) |da(x)| ≤ ca‖x− a‖ on B(a, ηa).

Let W be a cube containing K and let Bn be the unit ball in Rn. Define

(2) λ :=
1

6

(
vol(Bn)

c vol(W )

) 1
n

and

(3) ra := min{λ c−2
a δ(d−2n

a )
1
n , vol(W )

1
n , ηa}.
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Therefore, ra > 0 and

K ⊆
⋃
a∈K

B(a,
ra
3
),

where B(a, ra3 ) denotes the open ball of radius ra
3 around a. By Wiener’s Covering

Lemma, [10, Lemma 4.1.1], there are a1, . . . , at ∈ K such that

K ⊆
t⋃

i=1

B(ai, rai
)

and the B(ai,
rai

3 ) are pairwise disjoint.
For every ball B with center in W and with radius less than or equal to half the

side length of W , we have

vol(B ∩W ) ≥ 1

2n
vol(B),

since vol(B ∩W ) is minimal if the center of B lies in one of the corners of W . In
particular, this is true for B = B(ai,

rai

3 ), i = 1, . . . , t, by (3). Since B(ai,
rai

3 ) are
pairwise disjoint, it follows that

t∑
i=1

1

2n
vol

(
B(ai,

rai

3
)
)
≤ vol(W ).

Combining this with the volume formula

vol
(
B(ai,

rai

3
)
)
=

(rai

3

)n

vol(Bn),

we get

(4)
t∑

i=1

rnai
≤ 6n vol(W )

vol(Bn)
=

1

λnc
,

where the last equality follows from (2). Now define

R :=
1

λn
∑t

i=1 r
n
ai

·
t∑

i=1

r2nai
c2nai

d2nai

=
t∑

i=1

rnai∑t
j=1 r

n
aj

·
rnai

c2nai

λnd2nai

.

Clearly R ∈ D−1R[X] and, as
rnai

c2nai

λn ≤ δ(d−2n
ai

) by (3), each
rnai

c2nai

λnd2n
ai

lies in N .

So R, as a convex combination of such elements, also lies in N . By (1) and (3),
r2nai

c2nai

d2n
ai

� χB(ai,rai
) globally, so one checks that

t∑
i=1

r2nai
c2nai

d2nai

� χK .

Therefore, R � c · χK by (4). �

Lemma 4. Let D ⊆ R[X] \ {0} be a multiplicative set containing 1 and S ⊆ R[X]
finite. Assume there is some p ∈ D such that p ≥ 1 on KS , and kp−

∑n
i=1 X

2
i ≥ 0

on KS for some k ≥ 1. Let K be a compact subset of P =
⋃

d∈D Z(d). Then every

f ∈ R[X] which is nonnegative on KS \K belongs to TE
S in E = D−1R[X].



ON THE REAL MULTIDIMENSIONAL RATIONAL K-MOMENT PROBLEM 5779

Proof. Take any neighborhood of zero N in E. Let m be the minimum of f on
KS ∩ K. By Lemma 3, there exists R ∈ N such that R � −m · χK . Hence we
find a representation f + R = u

v with uv ≥ 0 on KS . By [22, Theorem 5.1],1 the

polynomial uv belongs to the closure of the preordering generated by S in R[X, 1
p ],

so also to the closure of TE
S . Therefore, f + R = ( 1v )

2uv ∈ (f + N) ∩ TE
S . Hence

f ∈ TE
S , as N was arbitrary. �

In the next lemma we eliminate the compactness assumption:

Lemma 5. Lemma 4 also holds when K = P.

Proof. For every ε > 0, f + εpdeg(f)+1 is nonnegative on KS \ Bε for a closed ball
Bε around 0. Define

Kε := {a ∈ KS ∩Bε | f(x) ≤ −ε} .
Kε is a compact subset of P =

⋃
d∈D Z(d), and f + ε+ εpdeg(f)+1 is nonnegative

on KS \ Kε. By Lemma 4, f + ε + εpdeg(f)+1 belongs to the closure of TE
S in

E = D−1R[X]. As this is true for all ε > 0, f belongs to TE
S . �

Now we give the

Proof of Theorem 1. Take f
d ∈ E with fd ∈ Pos(KS \P). Then apply Lemma 5 to

obtain fd ∈ TE
S and multiply with ( 1d )

2. �

4. Rational moment problems

The aim of this section is to prove the following existence result for the mul-
tidimensional rational K-moment problem, which in the one-dimensional compact
case extends [8, Theorem 5].

Theorem 2. Let D ⊆ R[X] \ {0} be a multiplicative set containing 1 and let
S ⊆ R[X] be finite. Assume there is some p ∈ D such that p ≥ 1 on KS, and
kp−

∑n
i=1 X

2
i ≥ 0 on KS for some k ≥ 1.

Then, for every linear functional L on E = D−1R[X] such that L(TE
S ) ≥ 0,

there exists a measure μ on KS \
⋃

d∈D Z(d) such that

L

(
f

d

)
=

∫
f

d
dμ

for every f
d ∈ D−1R[X].

If KS has empty intersection with P =
⋃

d∈D Z(d), then Theorem 2 follows
from our Theorem 1 and [11, Theorem 3.2.2]. To prove the general case, we need
the following generalization of [11, Theorem 3.2.2] (applied to A = R[X], X =

KS \
⋃

d∈D Z(d), â = a|X and q =
∑

X2
i ).

Theorem 3 (Rational Haviland’s Theorem). Let A be a unital R algebra, D a
multiplicative subset of A containing 1, X a nonempty Hausdorff topological space

1Note that our assumption on p implies that condition (∗) of [22, Theorem 5.1] is satisfied. If p
satisfies, instead of p ≥ 1 on KS , the stronger assumption p−1 ∈ TS (e.g. when p = 1+

∑n
i=1 X

2
i ),

then we can use [11, Theorem 6.2.3] (or [12, Corollary 3.2]), which is a slightly weaker version of
[22, Theorem 5.1].
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and :̂ A → C(X ,R) an R-algebra homomorphism. Suppose that:

(1) there exists q ∈ A such that q̂ ≥ 0 on X and, for each k ≥ 1, the set
Xk = {x ∈ X | q̂(x) ≤ k} is compact,

(2) for every d ∈ D, the zero set Z(d̂) of d̂ in X has empty interior,
(3) every open subset of X is σ-compact (= a countable union of compact sets).

Then, for any linear functional L : D−1A → R satisfying

∀a ∈ A, ∀d ∈ D, âd̂ ≥ 0 on X ⇒ L(a/d) ≥ 0,

there exists a Borel measure μ on X such that

∀a ∈ A, ∀d ∈ D, L(a/d) =

∫
X
â/d̂ dμ.

The idea is to follow the proof of [11, Theorem 3.2.2] (or [13, Theorem 3.1]) and
use [24, Theorem 3.2] instead of Riesz’s Theorem. We start with a few remarks:

R1. Assumption (1) implies that X is locally compact.

R2. For every d ∈ D, the following assertions are equivalent:

(a) X \ Z(d̂) is dense in X ,

(b) Z(d̂) has empty interior,

(c) for every f ∈ C(X ,R), if fd̂2 ≥ 0 on X , then f ≥ 0 on X ,

(d) for every f ∈ C(X ,R), if fd̂ ≡ 0 on X , then f ≡ 0 on X .

Every locally compact Hausdorff space is completely regular, which means that
points can be separated from closed sets by continuous functions (Urysohn’s Lemma;
see [19, 2.12]), so we have that (d) ⇒ (b). Implications (a) ⇔ (b) ⇒ (c) ⇒ (d) are
clear.

R3. Assumption (2) implies that 0 �∈ D̂, hence 0 �∈ D. Therefore, D−1A and

D̂−1C(X ,R) are nontrivial R-algebras.

R4. The homomorphism :̂ A → C(X ,R) extends uniquely to a homomorphism

:̂ D−1A → D̂−1C(X ,R). Its image is D̂−1A = D̂−1Â.

R5. L̄ : D̂−1Â → R defined by L̄(â/d̂) = L(a/d) is well-defined. This follows from
the positivity assumption on L. (See Claim 1 in the proof of [11, Theorem 3.2.2].)

R6. We can assume that d̂ ≥ 0 on X for every d ∈ D. Namely, every element

f/d̂ ∈ D̂−1C(X ,R) can be written as f/d̂ = fd̂/d̂2 and d̂2 ≥ 0 on X . The positivity
assumption on L then simplifies to: ∀a ∈ A, ∀d ∈ D, â ≥ 0 on X ⇒ L(a/d) ≥ 0.

R7. Let B = D̂−1C′(X ,R), where C′(X ,R) = {f ∈ C(X ,R) | ∃ a ∈ A : |f | ≤
â on X}. Note thatB is a subalgebra of D̂−1C(X ,R) and B = {f/d̂ ∈ D̂−1C(X ,R) |
∃ a ∈ A, s ∈ D : |f |ŝ ≤ âd̂ on X}. Namely, if |f |ŝ ≤ âd̂ on X , then f/d̂ = fŝ/d̂s
and fŝ ∈ C′(X ,R). The other inclusion is clear.
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R8. The algebraB obviously contains both D̂−1Â and D̂−1Cc(X ,R). Here, Cc(X ,R)
denotes the algebra of continuous functions with compact support.

Lemma 6. L̄ extends to a linear functional L̄ on B = D̂−1C′(X ,R) such that

L̄(f/d̂) ≥ 0 for every d ∈ D and every nonnegative f ∈ C′(X ,R).

Proof. The proof is similar to the proof of Claim 2 in the proof of [11, Theorem
3.2.2]. This result is also a special case of a more general extension theorem for
positive functionals; see [2, Theorem 2.6.2, p. 69]. �

Lemma 7 (Rational Riesz’s Theorem). For every linear functional L̄ : D̂−1Cc(X ,R)

→ R such that L̄(f/d̂) ≥ 0 for every nonnegative f ∈ Cc(X ,R), there exists a unique

Borel measure μ on X such that L̄(f/d̂) =
∫
X f/d̂ dμ for every f/d̂ ∈ D̂−1Cc(X ,R).

Proof. (Based on the proof of [24, Theorem 3.2].) For every s ∈ D define a func-
tional L̄s : Cc(X ,R) → R by L̄s(f) = L̄(f/ŝ). Since L̄s(f) ≥ 0 for every f ≥ 0,
there exists by Riesz’s Theorem (see [19, Theorem 2.14]), a unique regular Borel
measure μs on X such that L̄s(f) =

∫
X f dμs for every f ∈ Cc(X ,R). Write μ = μ1

and note that ∫
X
f dμ =

∫
X
fŝ dμs

for every f ∈ Cc(X ,R). By [19, Theorem 1.29], ŝ dμs is a Borel measure on X .
To prove that ŝ dμs is regular, we apply [19, Theorem 2.18]. (Here we need our
assumption (3) and the continuity of ŝ.) By the uniqueness part of Riesz’s Theorem,
μ = ŝ dμs.

Now, we will prove that μs(Z(ŝ)) = 0. By a version of Urysohn’s Lemma (see
[19, Theorem 2.12]), there exists for each integer k a function uk ∈ Cc(X ,R) such
that 0 ≤ uk ≤ 1 on X and uk = 1 on Z(ŝ) ∩ Xk. For all integers i, k, the function
fk,i = uk min{1, 1/iŝ} belongs to Cc(X ,R), 0 ≤ fk,i ≤ 1 on X and fk,i = 1 on
Z(ŝ) ∩ Xk. It follows that

μs(Z(ŝ) ∩ Xk) ≤
∫
X
fk,i dμs

= L̄s(fk,i) = L̄(fk,i/ŝ) ≤ (1/i)L̄(uk/ŝ
2).

Sending i → ∞, we get μs(Z(ŝ) ∩ Xk) = 0 for every k, hence μs(Z(ŝ)) = 0. In
particular, μ(Z(ŝ)) = 0 (which is also a consequence of μ = ŝ dμs). Finally, for
every f ∈ Cc(X ,R) and every s ∈ D we have that∫

X
f/ŝ dμ =

∫
X\Z(ŝ)

f/ŝ dμ =

∫
X\Z(ŝ)

(f/ŝ)ŝ dμs

=

∫
X\Z(ŝ)

f dμs =

∫
X
f dμs = L̄s(f) = L̄(f/ŝ).

�

Lemma 8. For every nonnegative function f ∈ C′(X ,R), there exists a mono-
tonically increasing sequence of nonnegative functions fi ∈ Cc(X ,R) such that
(f+q̂)2

i ≥ f − fi ≥ 0 on X for every i.

This is Claim 3 in the proof of [11, Theorem 3.2.2]. No changes are needed.
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Proof of the Theorem. Let L̄ be a linear functional on D̂−1Â such that L̄(f/d̂) ≥ 0

for every nonnegative f ∈ Â and every d ∈ D. By Lemma 6, we can extend L̄ to

a linear functional L̄ on D̂−1C′(X ,R) such that L̄(f/d̂) ≥ 0 for every nonnegative

f ∈ C′(X ,R). Lemma 7 gives us a Borel measure μ on X such that L̄(f/d̂) =∫
X f/d̂ dμ for every f ∈ Cc(X ,R). Lemma 8 implies that L̄(f/d̂) =

∫
X f/d̂ dμ for

every f ∈ C′(X ,R). Namely,∫
X
f/d̂ dμ = lim

i→∞

∫
X
fi/d̂ dμ = lim

i→∞
L̄(fi/d̂) = L̄(f/d̂),

by the Monotone Convergence Theorem, the inequality (f+q̂)2

i ≥ f − fi ≥ 0 and

the positivity of L̄. In particular, L(a/d) = L̄(â/d̂) =
∫
X â/d̂ dμ for every a ∈ A

and d ∈ D. �

5. Preorderings and the topology of finitely open sets

Definition. Let E be an R-vector space and O a subset of E. We say that O
is open in the topology of finitely open sets if for every finite-dimensional vector
subspace U of E, O ∩ U is open in the usual topology of U . Write Tfin for the set
of all open sets.

We recall the following results from [3]:

(F1) If E has countable dimension, then the topology Tfin is equal to the topology
Tω. If E does not have countable dimension, then the topology Tfin is
strictly finer (= has more open sets) than the topology Tω. In particular,
Tfin is not a locally convex topology in this case.

(F2) If E does not have countable dimension, then the addition is not continuous
in the topology Tfin.

(F3) Let E be an R-vector space and D the set of all countable-dimensional
subspaces of E. Then, for every subset A of E

A =
⋃

D∈D
A ∩D.

The following should be well known, but we were unable to find a reference:

(F4) Any linear mapping between any two vector spaces both having the topol-
ogy of finitely open sets is continuous. In particular, every functional on
every vector space with the finitely open topology is continuous.

Proof. Let L : (E, Tfin) → (E′, T ′
fin) be a linear mapping and O ∈ T ′

fin. Pick any
finite-dimensional subspace V of E. Clearly, the subspace L(V ) of E′ is also finite-
dimensional. By the definition of T ′

fin, O ∩ L(V ) is open in the usual topology
of L(V ). Every linear mapping between two finite-dimensional vector spaces is
continuous in the usual topologies. In particular L|V : V → L(V ) is continuous in
the usual topologies of V and L(V ). It follows that the set (L|V )−1(O ∩ L(V )) is
open in the usual topology of V . Note that (L|V )−1(O ∩ L(V )) = L−1(O) ∩ V ,
hence L−1(O) ∩ V is open in the usual topology of V . Since V was arbitrary, it
follows by the definition of Tfin that L−1(O) is open. Since O was arbitrary, L is
indeed continuous. �

Lemma 9. For a preordering T on a commutative R-algebra E, its closure in Tfin
is also a preordering.
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Proof. For any f1, f2 ∈ T , there exist, by (F3), countable-dimensional subspaces
D1, D2 of E such that fi ∈ T ∩Di for i = 1, 2. The subspace D = D1 + D2

is also countable-dimensional, and T ∩Di ⊆ T ∩D for i = 1, 2. It follows that
f1, f2 ∈ T ∩D. Since D is countable-dimensional, T ∩D is closed under addition;
hence f1+f2 ∈ T ∩D ⊆ T . The proof that T is closed under multiplication follows
again from the fact that u �→ ru is continuous for all r ∈ E. (See the proof of
Lemma 1.) �

Lemma 10. Let D ⊆ R[X] \ {0} be a multiplicative set containing 1. Then a
preordering T in E = D−1R[X] is closed if and only if T ∩R[X] is closed in R[X].

Proof. One direction is obvious. Therefore, assume that T ∩R[X] is closed in R[X].
Let V be a finite-dimensional subspace of E. We claim that V ∩ T is closed. Pick
a nonzero square d ∈ D such that dV ⊆ R[X]. Then

d(V ∩ T ) = dV ∩ dT = dV ∩ T.

The first equality follows from the fact that the mapping u �→ du is bijective on E,
and the second follows from T = dT (d is an invertible square in E). Since T ∩R[X]
is closed and dV ⊆ R[X], d(V ∩ T ) is closed in dV . As the mapping u �→ du is a
homeomorphism by (F4), it follows that the set V ∩ T is closed in V . As V was
arbitrary, T is closed in E. �

The next lemmas are needed in the proof of the main theorem of this section.
See [4, Chapter 2] for general notions such as the semialgebraic set, semialgebraic
homeomorphism, semialgebraic dimension, etc.

Lemma 11. Let K ⊆ Rn be a semialgebraic set. Then there are finitely many
semialgebraic subsets C1, . . . , Cs of K such that

(i) K = C1 ∪ . . . ∪ Cs,
(ii) each Ci is semialgebraically homeomorphic to some Rdi ,
(iii) each Ci has irreducible Zariski closure.

Proof. The proof is by induction on the semialgebraic dimension of K. If dim(K) =
0, the result is clear, as K is a finite union of points. Hence assume dim(K) =
m, and the result is true for all semialgebraic sets of smaller dimension. Let V
be the Zariski closure of K and V1, . . . , Vr be its irreducible components. We
consider without loss of generality only K1 := K ∩V1. The usual semialgebraic cell
decomposition allows us to write

K1 = C̃1 ∪ . . . ∪ C̃k,

where each C̃j is a semialgebraic set and semialgebraically homeomorphic to some

Rdj . Now if a C̃j has the same dimension as V1, its Zariski closure equals V1, due to
the irreducibility of V1. Therefore, we use all these Cj for our desired decomposition
of K. The union of all lower-dimensional Cj is a semialgebraic set of strictly smaller
dimension than m, so we can apply the induction hypothesis to it. This yields the
result. �

Lemma 12. For every semialgebraic set K in Rn and every nonempty multiplica-
tive subset D of R[X], there exists an element dK ∈ D such that K \ Z(dK) ⊆
K \ Z(d) for every d ∈ D.
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Proof. Write K = C1 ∪ . . . ∪ Cs with the properties from Lemma 11. For each i ∈
{1, . . . , s} and d ∈ D there are two possibilities. First, dim(Ci ∩ Z(d)) < dim(Ci).
Since semialgebraic homeomorphisms respect dimensions ([4, Theorem 2.8.8]), we

see that Ci ∩ Z(d) has a (relative) empty interior in Ci, so Ci \ Z(d) = Ci. The
second possibility is dim(Ci ∩ Z(d)) = dim(Ci). Since the Zariski closure of Ci is
irreducible, it equals the Zariski closure of Ci∩Z(d). But this means d must vanish

on the whole of Ci, so Ci \ Z(d) = ∅. We have proved that for every d ∈ D,

K \ Z(d) =

s⋃
i=1

Ci \ Z(d) =
⋃

i∈I(d)

Ci,

where I(d) = {i | dim(Ci∩Z(d)) < dim(Ci)}. There exist finitely many d1, . . . , dt ∈
D such that

⋂
d∈D I(d) =

⋂t
j=1 I(dj). Set dK :=

∏t
j=1 dj and note that I(dK) =⋂t

j=1 I(dj). It follows that for every d ∈ D,

K \ Z(dK) =
⋃

i∈I(dK)

Ci ⊆
⋃

i∈I(d)

Ci = K \ Z(d).

�

Lemma 13. For any semialgebraic set K ⊆ Rn, the preordering

PosE(K) = {R ∈ D−1R[X] | R � 0 on K}

is closed in Tfin.

Proof. Lemma 12 implies that the set X = K \ Z(dK) satisfies the assumptions of

Lemma 2, hence PosE(X ) ∩ R[X] = Pos(X ). The set Pos(X ) is closed in R[X], as

evaluations in points are linear and therefore continuous. So PosE(X ) is closed by
Lemma 10.

We also have that PosE(X ) = PosE(K). Namely, if R = f
d with f ∈ R[X] and

if d ∈ D such that fd ∈ Pos(K \ Z(dK)), then also R = fdK

ddK
with (fdK)(ddK) ∈

Pos(K). The opposite inclusion is trivial. �

The following main theorem of this section is an analogue of Theorem 1 above.

Theorem 4. Let D ⊆ R[X]\{0} be a multiplicative set containing 1 and S ⊆ R[X]
be finite. Suppose there is p ∈ D with p ≥ 1 on KS and kp−

∑n
i=1 X

2
i ≥ 0 on KS

for some k ≥ 1. Then in the topology Tfin on D−1R[X] we have

TE
S = PosE(KS).

Proof. First take R ∈ PosE(KS), so R = f
d for some f ∈ R[X], d ∈ D, with fd ≥ 0

on KS . We apply [22, Theorem 5.1] and find fd lying in the closure of TE
S in a

finite-dimensional subspace of D−1R[X]. Hence fd, and therefore R belongs to TE
S .

Since TE
S ⊆ PosE(KS) ⊆ TE

S , it remains to show that PosE(KS) is closed in Tfin.
This is Lemma 13. �

Remark. We can also deduce Theorem 4 from Theorem 1 and Lemma 13. Namely,⋃
d∈D

PosR[X]d(KS) ⊆
⋃
d∈D

PosR[X]pd(KS) ⊆
⋃
d∈D

T
R[X]pd
S ⊆

⋃
d∈D

T
R[X]d
S
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by application of Theorem 1 to the algebra R[X]pd. We use the fact that Tω and
Tfin coincide in the countable-dimensional case. Now, using Lemma 13,

TE
S ⊆ PosE(KS) ⊆

⋃
d∈D

PosR[X]d(KS) ⊆
⋃
d∈D

T
R[X]d
S ⊆ TE

S .

The following is a counterpart to Corollary 1.

Corollary 2.
∑

R(X)2 is closed in R(X) with respect to Tfin.

Proof. Every globally nonnegative rational function is a sum of squares of rational
functions. �

Example. In R(X; ∅), the sums of squares are not closed. It has been long known
that there are nonnegative polynomials which cannot be written as a sum of squares
of rational functions without poles. See for example [20, Lemma 1.1] or [18, Para-
graph 6]. But as we have seen, these polynomials belong to the closure of the sums
of squares in R(X; ∅).

6. Extension to finitely generated R-algebras

The aim of this section is to extend Theorems 1, 2 and 4 from polynomial rings
to finitely generated R-algebras.

Let A be a finitely generated R algebra. A character of A is a unital R-algebra
homomorphism from A to R. Write V (A) for the set of all characters of A. Elements
from A define functions on V (A) by a(χ) := χ(a). We equip V (A) with the coarsest
topology making all these functions continuous. One can embed V (A) into some
Rn by choosing generators x1, . . . , xn of A and sending χ �→ (χ(x1), . . . , χ(xn)). In
that case, the topology on V (A) coincides with the usual topology from Rn (see for
example [11, Section 5.7]).

Let D be a multiplicative subset of A\{0} which contains 1. There is a canonical
homomorphism ι : A → F = D−1A which, however, is not necessarily one-to-one.
For every d ∈ A write ZA(d) = {χ ∈ V (A) | χ(d) = 0}. Note that the set
V (A) \

⋃
d∈D ZA(d) consists of all characters of A which can be extended (via ι) to

a character of F .
Let S be a finite subset of A. Write KA

S = {χ ∈ V (A) | χ(S) ≥ 0}. Let TF
S be

the preordering in F generated by the set ι(S).
For every subset X of V (A) write Pos(X ) for the set of all a ∈ A such that

χ(a) ≥ 0 for every χ ∈ X and write PosF (X ) for the set of all elements R ∈ F
which have a representation R = a

d with a ∈ A, d ∈ D and ad ∈ Pos(X ).

Theorem 5. Assume that A,D, S, F are as above. Also assume that there is an
element p ∈ D such that p− 1 ∈ Pos(KA

S ) and kp−
∑n

i=1 x
2
i ∈ Pos(KA

S ) for some
integer k ≥ 1 and generators x1, . . . , xn of A. Then:

(1) The closure of TF
S in (F, Tω) is PosF (KA

S \
⋃

d∈D ZA(d)).

(2) The closure of TF
S in (F, Tfin) is PosF (KA

S ).
(3) For every linear functional L on F such that L(TF

S ) ≥ 0, there exists a

measure μ on KA
S \

⋃
d∈D ZA(d) such that

L

(
f

d

)
=

∫
f

d
dμ for every

f

d
∈ F.
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Note that the set PosF (KA
S \

⋃
d∈D ZA(d)) consists of all R ∈ F such that

τ (R) ≥ 0 for every character τ of F which satisfies τ (ι(S)) ≥ 0.

Proof. Let π : R[X] → A be the unital R-algebra homomorphism defined by Xi →
xi for i = 1, . . . , n and let π∗ : V (A) → Rn be the corresponding embedding defined
by χ �→ (χ(x1), . . . , χ(xn)). If f1, . . . , ft are generators of the ideal I = kerπ, then
π∗(V (A)) = K{±f1,...,±ft}. Similarly, for a given set S = {g1, . . . , gm} ⊆ A take
elements g̃i ∈ R[X] such that π(g̃i) = gi and note that

π∗(KA
S ) = K

˜S , where S̃ :=
{
g̃1, . . . , g̃m,±f̃1, . . . ,±f̃t

}
.

Let D̃ := π−1(D) denote the localization D̃−1R[X] by E. π extends uniquely to a
homomorphism π̃ : E → F , making the following diagram commutative:

E
π̃ �� F

R[X]
π ��

��

A.

ι

��

The preorderings T
˜S ⊆ R[X] and TE

˜S
⊆ E do not depend on the specific choice

of the f̃i, g̃i but only on I and S. We have

(*) π̃(TE
˜S
) = TF

S .

Now suppose D contains an element p with the properties required in Theorem 5.
Any preimage p̃ of p under π will have the corresponding property with respect to
K

˜S .

For any linear functional L on F with L(TF
S ) ≥ 0, the functional L̃ := L◦π̃ fulfills

L̃(TE
˜S
) ≥ 0, and it is therefore an integration on K

˜S \
⋃

d̃∈ ˜D Z(d̃) by Theorem 2. It

follows that L is an integration on

KA
S \

⋃
d∈D

Z(d)) = (π∗)−1(K
˜S \

⋃
d̃∈ ˜D

Z(d̃)).

Therefore, we have proved assertion (3) of Theorem 5. Assertions (1) and (2) of
Theorem 5 follow from Theorems 1 and 4, observations

π̃(PosE(K
˜S \

⋃
d̃∈ ˜D

Z(d̃))) = PosF (KA
S \

⋃
d∈D

ZA(d)),

π̃(PosE(K
˜S)) = PosF (KA

S )

and (*) and from the following lemma. �

Lemma 14. Let E and F be R-vector spaces, π̃ : E → F a linear mapping which
is onto and C a convex cone in E which contains ker π̃. Then

π̃(C) = π̃(C),

where either E,F are both equipped with Tω or both with Tfin.

Proof. Suppose that E,F are equipped with Tω. The inclusion π̃(C) ⊆ π̃(C) follows
from the fact that π̃ is continuous in Tω. To prove the opposite inclusion, pick
π̃(e) ∈ π̃(C). Then L(π̃(e)) ≥ 0 for every linear functional L on F such that
L(π̃(C)) ≥ 0. Every linear functional L′ on E such that L′(C) ≥ 0 factors through
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π̃ because ker π̃ ⊆ C. It follows that L′(e) ≥ 0 for every linear functional L′ on E
such that L′(C) ≥ 0. Therefore, e ∈ C which implies that π̃(e) ∈ π̃(C).

Now suppose that E,F are equipped with Tfin. First note that by the same
argument as in Lemma 9, the closure of a convex cone with respect to Tfin is again
a convex cone. Now the formula π̃(C) ⊆ π̃(C) follows from the fact that π̃ is
continuous. To prove the opposite inclusion it suffices to show that π̃(C) is closed
for every closed cone C containing ker π̃. Suppose that C is such a cone and pick a
finite-dimensional subspace W of F . Let V be a finite-dimensional subspace of E
such that π̃(V ) = W . By assumption, C∩V is closed in V in the Euclidean topology,
hence also in the finest locally convex topology. Since C ∩ V is a closed cone in
V which contains V ∩ ker π̃ = ker π̃|V , it follows by the first paragraph (applied
to π̃|V : V → W instead of π̃ : E → F ) that π̃(C ∩ V ) is closed in W = π̃(V ). It
remains to show that π̃(C ∩ V ) = π̃(C)∩ π̃(V ). Pick π̃(e) ∈ π̃(C)∩ π̃(V ). We have
that e = c + i = v + j for some c ∈ C, v ∈ V and i, j ∈ ker π̃. Since ker π̃ ⊆ C,
c + i − j = v belongs to C ∩ V . It follows that π̃(e) = π̃(v) belongs to π̃(C ∩ V ).
The opposite inclusion is clear. �

It would be interesting to know whether Theorem 5 also holds for the algebra
A = O(Rn) of analytic functions on Rn. In this case we can use [1, Theorem 2.4]
instead of [22, Theorem 5.1], so the assumption p ∈ D for certain p may not be
necessary.
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