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LABELED TREES AND LOCALIZED AUTOMORPHISMS

OF THE CUNTZ ALGEBRAS

ROBERTO CONTI AND WOJCIECH SZYMAŃSKI

Abstract. We initiate a detailed and systematic study of automorphisms of
the Cuntz algebras On which preserve both the diagonal and the core UHF-
subalgebra. A general criterion of invertibility of endomorphisms yielding such
automorphisms is given. Combinatorial investigations of endomorphisms re-
lated to permutation matrices are presented. Key objects entering this analysis
are labeled rooted trees equipped with additional data. Our analysis provides
insight into the structure of Aut(On) and leads to numerous new examples. In
particular, we completely classify all such automorphisms of O2 for the permu-
tation unitaries in ⊗4M2. We show that the subgroup of Out(O2) generated
by these automorphisms contains a copy of the infinite dihedral group Z�Z2.

‘Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura,
ché la diritta via era smarrita.’

Dante Alighieri, La Divina Commedia, Inferno

‘Macbeth shall never vanquished be, until
great Birnam wood to high Dunsinane hill
shall come against him.’

William Shakespeare, Macbeth
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1. Introduction

In recent years endomorphisms of Cuntz algebras have received a lot of attention
and have been deeply investigated from the point of view of Jones’ index theory
and sector theory [10, 12, 17, 4, 13, 3, 8, 14, 15]. In these theories, emphasis
is often placed on proper endomorphisms rather than automorphisms. However,
automorphisms of Cuntz algebras have also been studied, sometimes in connection
with the classification of group actions (for example, see [1, 6, 19, 16, 11, 20]). In
the present paper, our main interest lies in the classification of a special class of
localized automorphisms of On.

In his beautiful paper [6], Joachim Cuntz initiated systematic investigations of
the automorphism group of On. In particular, he showed that the group of those
automorphisms which preserve the diagonal subalgebra contains a maximal abelian
normal subgroup whose quotient (the Weyl group) is discrete. Restricting even
further to those automorphisms which preserve both the diagonal and the core UHF-
subalgebra one finds even nicer structure. Thus Cuntz suggested that classification
of all elements of this restricted Weyl group ‘is a combinatorial problem, and should
be possible’. By now thirty years have passed and this classification has not been
achieved, nor is it even in sight. Presumably, this is due not to lack of interest of
high power researchers in this exciting problem but rather to the great difficulties
involved. It appears that there are two sources of these difficulties.

First, as demonstrated by Cuntz [6], automorphisms of On are best seen as a
special class of endomorphisms. The latter are in a one-to-one correspondence with
unitary elements of On via a certain natural correspondence U(On) � u �→ λu ∈
End(On). The problem is that in general there is no easy way of verifying which
unitaries u give rise to invertible endomorphisms (i.e. automorphisms) λu. In the
present article we provide a remedy to this problem for a large class of endomor-
phisms related to unitary matrices in Mnk(C) contained in the UHF-subalgebra
(see Theorem 3.2, below, which relies on a combination of results in [4] and [26]).

Second, again as shown by Cuntz [6], analysis of the Weyl group reduces to
endomorphisms λu corresponding to unitaries u in the normalizer of the diagonal.
Thanks to Power’s work [21] the structure of this normalizer is well understood. In
the case of a restricted Weyl group everything boils down to analysis of endomor-
phisms corresponding to permutation unitaries in Mnk(C). Thus one might hope
that some straightforward combinatorial manipulations (perhaps computer aided)
with permutations will bring a solution. Unfortunately, as in level k there are nk!
such permutations, the size of the problem grows too rapidly and already for very
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small parameters exceeds the computational capacity of modern computers. For
example, 43! > 1089 is greater than the number of atoms in the universe.

In order to address both problems mentioned above, we develop a novel combina-
torial approach to the study of permutation related endomorphisms (see Corollary
4.12, below). Its essence is the reduction of determining invertibility of λu to a
sequential process involving several steps. In this process labeled rooted trees are
associated to permutations, and certain partial orders on pairs of labels are con-
sidered. These labeled trees also serve as invariants of outer automorphism classes.
Our approach reduces the computational complexity so dramatically as to allow for
a relatively simple solution in such cases as e.g. n = 2, k = 4. Despite 24! > 2 ·1013
permutations to be considered in this case, a pen and paper calculation (later
verified on a computer) was possible and led to a complete classification of all per-
mutation related automorphisms of O2 corresponding to level 4 (see Subsection 5.3,
below).

In examples illustrating our theory we pay particular attention to the case of O2,
since in some sense this case is the most untractable. Indeed, concrete examples
of permutation related outer automorphisms of On, n ≥ 3, have already been
known. It was shown recently in [26] that such automorphisms corresponding to
level 2 generate in Out(On) a group containing the free product Z3 ∗ Z2. On the
other hand, precious little has been known until now about permutation related
automorphisms of O2. To the best of our knowledge, the only known example of
an outer automorphism of O2 of this type was Archbold’s flip-flop [1]. Our results
explain why this was so. Namely, new outer automorphisms of O2 appear only in
level 4, and to find them one has to sift through more than 2 · 1013 permutations.

Our paper is organized as follows. In Section 2, we set up notation and present
basic structural results about diagonal preserving automorphisms of On which fol-
low more or less directly from the works of Cuntz and Power. In Section 3, we give
a general criterion of invertibility of localized endomorphisms. We also present a
criterion for a localized endomorphism to restrict to an automorphism of the diago-
nal. In Section 4, we develop a labeled tree approach to the search for permutation
related automorphisms. We also discuss the effect of inner automorphisms and thus
show that unlabeled trees are inner equivalence invariants. In Section 5, we apply
the above-mentioned techniques to the case of O2. In Section 6, we give tables
summarizing the results of our automorphism search for small values of the param-
eters n and k. These tables were produced through massive computer calculations
involving all of the techniques developed in the present paper.

2. Setup

If n is an integer greater than 1, then the Cuntz algebra On is a unital, simple
C∗-algebra generated by n isometries S1, . . . , Sn, satisfying

∑n
i=1 SiS

∗
i = I [5]. We

denote by W k
n the set of k-tuples α = (α1, . . . , αk) with αm ∈ {1, . . . , n}, and by

Wn the union
⋃∞

k=0 W
k
n , where W 0

n = {0}. We call elements of Wn multi-indices.
If α = (α1, . . . , αk) ∈ Wn, then Sα = Sα1

. . . Sαk
(S0 = I by convention). Every

word in {Si, S
∗
i | i = 1, . . . , n} can be uniquely expressed as SαS

∗
β, for α, β ∈ Wn

[5, Lemma 1.3]. If α ∈ W k
n , then l(α) = k, the length of α.

Fk
n is the C∗-algebra generated by all words of the form SαS

∗
β , α, β ∈ W k

n , and

it is isomorphic to the matrix algebra Mnk(C). Fn, the norm closure of
⋃∞

k=0Fk
n ,
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is the UHF-algebra of type n∞, called the core UHF-subalgebra of On [5]. There
exists a faithful conditional expectation F0 : On → Fn [5].

Dn denotes the diagonal subalgebra of On, i.e. the C∗-subalgebra generated by
the projections Pα = SαS

∗
α, α ∈ Wn. As remarked by Cuntz [6, 7], Dn is a max-

imal abelian subalgebra, regular both in Fn and On. Dn is naturally isomorphic
to C(Xn), where the spectrum Xn is the collection of infinite words in the alpha-
bet {1, . . . , n} [7]. Xn with the product topology is a Cantor set, i.e. a compact,
metrizable, totally disconnected space with no isolated points. There exists a faith-
ful conditional expectation from Fn onto Dn and whence from On onto Dn as well.
We denote Dk

n = Dn ∩ Fk
n .

Let P k
n denote the group of permutations of W k

n . For σ ∈ P k
n there is a cor-

responding unitary u ∈ Fk
n (we write u ∼ σ), u =

∑
α∈Wk

n
Sσ(α)S

∗
α. We denote

Pk
n = {u | ∃σ ∈ P k

n , u ∼ σ} and Pn =
⋃∞

k=0 Pk
n . We have NFn

(Dn) = U(Dn) · Pn,
where NFn

(Dn) denotes the (unitary) normalizer of Dn in Fn and U(Dn) is the
unitary group of Dn (see the paragraph preceding Theorem 2.1).

For B ⊆ A algebras, we denote Aut(A,B) = {σ ∈ Aut(A) | σ(B) = B},
AutB(A) = {σ ∈ Aut(A) | σ|B = idB}, Inn(A) the inner automorphisms, Out(A) =
Aut(A)/Inn(A), and π : Aut(A) → Out(A) the canonical quotient map.

We recall some notation and results from [6]. End(On) is a semigroup (with
composition) of unital endomorphisms of On. We have a canonical map ϕ ∈
End(On), ϕ(a) =

∑n
i=1 SiaS

∗
i . There is a map λ : U(On) → End(On), deter-

mined by λu(Si) = u∗Si. λ is a semigroup isomorphism if U(On) is equipped
with the convolution multiplication u ∗ w = uλu(w). The inverse of λ is the
map ρ �→

∑n
i=1 Siρ(S

∗
i ). Furthermore, Aut(On) = {λu | u∗ ∈ λu(On)}1 and

Inn(On) = {λu | u = ϕ(w)w∗, w ∈ U(On)}. The map U(On)/T1 → Inn(On), given
by u �→ λϕ(u)u∗ = Ad(u), is a group isomorphism. We say that λu is invertible if

λu ∈ Aut(On). For E ⊆ U(On) we denote λ(E)−1 = {λu | u ∈ E} ∩Aut(On).
As shown in [6] we have Aut(On,Dn) = λ(NOn

(Dn))
−1 and AutDn

(On) =
λ(U(Dn))

−1 � U(Dn). More recently, Power determined in [21] (see also [9, 22]) the
structure of NOn

(Dn). Namely, every w ∈ NOn
(Dn) has a unique decomposition

as w = tu with t ∈ U(Dn) and u a finite sum of words. That is, u is a unitary
such that u =

∑m
j=1 Sαj

S∗
βj

for some αj , βj ∈ Wn. Clearly, such unitaries form

a group, which we denote by Sn, and this group acts on U(Dn) by conjugation.
Thus, Power’s result says that NOn

(Dn) has the structure of a semi-direct product
U(Dn)� Sn. Therefore, one obtains the following result [26, 18].

Theorem 2.1. Aut(On,Dn) � U(Dn)� λ(Sn)
−1. In particular, λ(Sn)

−1 is a sub-
group of Aut(On,Dn).

Turning back to automorphisms which preserve both the diagonal and the UHF-
subalgebra, one easily deduces from the above that NFn

(Dn) = U(Dn) � Pn as
Pn = Sn ∩ Fn. Consequently, one has the following result [26].

Theorem 2.2. Aut(On,Dn) ∩ Aut(On,Fn) = λ(NFn
(Dn))

−1 � λ(U(Dn))�
λ(Pn)

−1 . In particular, λ(Pn)
−1 is a subgroup of Aut(On,Dn) ∩ Aut(On,Fn).

Proof. At first we show that Aut(On,Dn)∩Aut(On,Fn) = λ(NFn
(Dn))

−1. If λw ∈
Aut(On,Dn) ∩ Aut(On,Fn), then it follows from [6, Prop. 1.5, Prop. 1.2(b)]
that w ∈ NOn

(Dn) ∩ Fn = NFn
(Dn). On the other hand, if w ∈ NFn

(Dn) and

1In general, it may happen that λu is an automorphism but λu∗ is not.
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λw ∈ Aut(On), then λw ∈ Aut(On,Dn) and λw(Fn) ⊂ Fn and the conclusion
follows immediately from [26, Lemma 2].

Let u ∈ Pn and let λu be invertible. Then λ−1
u belongs to Aut(On,Dn) ∩

Aut(On,Fn) and thus λ−1
u = λz with z ∈ NFn

(Dn). Thus, by [21, Lemma 5.4,
(i)], there are v ∈ Pn and y ∈ U(Dn) such that z = vy. We have id = λuλvy

and hence 1 = uλu(v)λu(y). Thus Pn � uλu(v) = λu(y
∗) ∈ U(Dn). Therefore

y = 1 and consequently λ−1
u = λv. It follows that λ(Pn)

−1 is a subgroup of
Aut(On,Dn) ∩ Aut(On,Fn). Clearly, λ(Pn)

−1 acts on AutDn
(On) = λ(U(Dn)) by

conjugation.
Now, by Theorem 2.1, λw ∈ Aut(On,Dn)∩Aut(On,Fn) can be uniquely written

as a product of two elements from λ(Sn)
−1 and λ(U(Dn)), λw = λuλs∗ , u ∈ Sn,

s ∈ Dn. But then λwλs(Fn) = Fn and u ∈ Sn ∩ Fn = Pn. �

A slightly weaker version of the following lemma was given in [26].

Lemma 2.3. Let w ∈ Pn. If λw ∈ Inn(On), then there exists u ∈ Pn such that
w = ϕ(u)u∗. Moreover, for k ≥ 2, if w ∈ Pk

n, then u ∈ Pk−1
n .

Proof. The proof of the first statement can be found in [26]. Suppose that w =
ϕ(u)u∗ ∈ Fk

n with u ∈ Fh
n for some h. Observe that if h ≥ k, then Fh

n ⊃ Fk
n so

that ϕ(u) ∈ Fh
n and u ∈ Fh−1

n . Therefore h < k and necessarily one must have
h = k − 1. �

Since Pn � λ(Pn)
−1∩ Inn(On) via u �→ Ad(u) [6], there exists an exact sequence

(1) 1 → Pn → λ(Pn)
−1 → π(λ(Pn)

−1) → 1 .

The natural inclusion Pk
n ⊂ Pk+m

n corresponds to the embedding P k
n ↪→ P k+m

n ,
φ �→ φ×idm, where idm denotes the identity on Wm

n (we have W k+m
n = W k

n×Wm
n ).

With this identification Pn =
⋃

k P
k
n becomes a group isomorphic to Pn. We

note that the imbedding Pk
n ↪→ Pk+m

n , u �→ ϕm(u), corresponds to the imbedding
P k
n ↪→ P k+m

n , φ �→ idm × φ. If φ ∈ P k
n and r ≥ 1, then we define φ(r) ∈ P k+r−1

n as

(2) φ(r) = (idr−1 × φ) (idr−2 × φ× id1) . . . (φ× idr−1) .

In particular, φ(1) = φ. For u ∈ Pk
n , u ∼ φ, w = ϕ(u)u∗ (i.e., λw = Ad(u)),

w ∼ ψ, we have ψ = (id1 × φ)(φ−1 × id1), ψ
(r) = (idr × φ)(φ−1 × idr) and thus

ψ(k) = φ−1 × φ.
The map Pk

n ×Pr
n → Pk+r−1

n , (u,w) �→ u ∗w = uλu(w) corresponds to the map
P k
n × P r

n → P k+r−1
n ,

(3) (α, β) �→ α ∗ β = (α× idr−1)(α
(r))−1(β × idk−1)α

(r) .

If a permutation φ ∈ P is ∗-invertible, then we denote its inverse by φ.
For later use we highlight a simple but suggestive reformulation of the second

statement in Theorem 2.2.

Proposition 2.4. Let w ∈ Pk
n and suppose that λw ∈ Aut(On). Then λ−1

w is also
induced by a unitary in Ph

n , for some h.

We will see later that indeed h ≤ n2(k−1); see Corollary 3.3.
Following [4], we call “localized” an endomorphism of the Cuntz algebra On of

the form λu with u a unitary in
⋃

k Fk
n . Of course, by the very definition, all the

λw’s with w ∈ Pk
n are localized endomorphisms and, by the above, automorphisms
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induced by permutation unitaries are examples of localized automorphisms whose
inverse is (induced by a permutation unitary and thus) still localized.

Now the natural question arises whether one can find an effective algorithm
to identify all the permutation unitaries inducing automorphisms of the Cuntz
algebra. Eventually, one might also like to give a closer look at the properties of
these (possibly outer) automorphisms. Especially, one interesting problem is to
determine the structure of the groups π(λ(Pn)

−1) for n ≥ 2. As shown in [26,
Example 9], the groups π(λ(Pn)

−1) for n ≥ 3 are quite “big” in the sense that they
contain nonamenable subgroups, notably Z2 ∗ Z3. The same question for n = 2 is
more subtle. On the basis of general results [24, 11, 20], it has been known for some
time that the automorphism group of O2 is in some sense considerably “smaller”.
Our computations provide very concrete evidence to this effect.

3. Searching for automorphisms

3.1. Invertibility of localized endomorphisms. In this subsection, we obtain
the crucial Theorem 3.2 as the result of a clarifying interaction between the ideas
in [26] and in [4]. We start recalling the argument in [26, Theorem 7] and then
explain how to combine it with the analysis in [4], notably Proposition 6.1 therein,
to get indeed a very satisfactory picture that opens the way to the combinatorial
analysis discussed in the next section.

Let w ∈ Pk
n be a permutation unitary. We set

(4) Bw = {w,ϕ(w), . . . , ϕk−2(w)}′ ∩ Fk−1
n

if k ≥ 2 and Bw = C1 otherwise. That is, b ∈ Fk−1
n is in Bw if and only if, for any

α, β ∈ W l
n, l ∈ {0, . . . , k − 2}, S∗

αbSβ commutes with w. Of course, Bw(= Bw∗) is
a unital ∗-subalgebra of Fk−1

n . Notice that if b ∈ Bw, then λw(b) = b. Also, for
i, j ∈ {1, . . . , n} we define maps awij : Fk−1

n → Fk−1
n by

(5) awij(x) = S∗
i wxw

∗Sj , x ∈ Fk−1
n .

We denote Vw = Fk−1
n /Bw. Since awij(Bw) ⊆ Bw, there are induced maps ãwij :

Vw → Vw. We define Aw as the subring of L(Vw) generated by {ãwij | i, j = 1, . . . , n}.

Lemma 3.1 ([26]). If w ∈ Pn, then λw is invertible if and only if Aw is nilpotent.

Proof. Necessity. Let w ∈ Pk
n and λw be invertible. By Proposition 2.4, λ−1

w is
then induced by some (permutation) unitary in some finite matrix algebra. Let
λ−1
w (Fk−1

n ) ⊆ F l
n. For a ∈ F l

n the sequence Ad(w∗ϕ(w∗) . . . ϕm(w∗))(a) stabi-
lizes from m = l − 1 at λw(a). Consequently, for any b ∈ Fk−1

n the sequence
Ad(ϕm(v) . . . ϕ(w)w)(b) stabilizes from m = l − 1 at λ−1

w (b). There are cγρ ∈ C1
such that ∑

γ,ρ∈W l
n

Sγcγρ(b)S
∗
ρ = Ad(ϕl−1(w) . . . ϕ(w)w)(b) ∈ F l

n .

If α = (i1, . . . , il), β = (j1, . . . , jl), Tα,β = awiljl . . . a
w
i1j1

, and b ∈ Fk−1
n , then

Tα,β(b) = cαβ(b) ∈ C1 ⊂ Bw. Consequently, A
l
w = 0.

Sufficiency. Let w ∈ Pk
n and assume that Al

w = 0. Let b ∈ Fk−1
n and let Tα,β

be as above. By hypothesis, Tα,β(b) commutes with ϕm(w) for any m. Hence, if
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r ≥ 1, we have

Ad(ϕl−1+r(w) . . . ϕ(w)w)(b) = Ad(ϕl−1+r(w) . . . ϕl(w))
( ∑

α,β∈W l
n

SαTα,β(b)S
∗
β

)

=
∑

α,β∈W l
n

SαAd(ϕr−1(w) . . . w)(Tα,β(b))S
∗
β

=
∑

α,β∈W l
n

SαTα,β(b)S
∗
β .

Thus, for any b ∈ Fk−1
n , the sequence Ad(ϕm(w) . . . ϕ(w)w)(b) stabilizes from m =

l − 1. Let w∗ =
∑n

i,j=1 SibijS
∗
j , bij ∈ Fk−1

n . By the above, the sequence

Ad(ϕm(w) . . . ϕ(w)w)(w∗) =
n∑

i,j=1

Ad(ϕ(ϕm−1 . . . ϕ(w)w))(SibijS
∗
j )

=
∑
i,j

SiAd(ϕm−1(w) . . . ϕ(w)w)(bij)S
∗
j

stabilizes from m = l at λ−1
w (w∗) and hence λw is invertible. �

In turn, inspection of the proof shows that a similar characterization holds true
for any unitary u ∈ Fk

n such that λu is invertible with a localized inverse. (If
λ−1
u = λv with v ∈ Fh

n , one can choose l = k + h − 2 in the above argument.)
Moreover, we can adapt some arguments from section 6 of [4] to our situation. We
denote by H the linear span of the Si’s. Given a unitary u ∈ Fk

n , following [4, p.
386], we define inductively

(6) Ξ0 = Fk−1
n , Ξr = λu(H)∗Ξr−1λu(H) , r ≥ 1 ;

that is, Ξr = (λu(H)r)∗Fk−1
n (λu(H))r. It readily follows that (Ξr)r is a nonin-

creasing sequence of subspaces of Fk−1
n that stabilizes at the first value p for which

Ξp = Ξp+1. Let Ξu :=
⋂

r Ξr = Ξp.

Theorem 3.2. Let u be a unitary in Fk
n for some k ≥ 1. Then the following

conditions are equivalent:

(1) λu is invertible with localized inverse;
(2) the sequence of unitaries(

Ad(ϕm(u)ϕm−1(u) . . . ϕ(u)u)(u∗)
)
m≥1

eventually stabilizes;
(3) Au is nilpotent;
(4) Ξu ⊆ Bu;
(5) Ξu = C1.

Proof. (1) ⇒ (2): Let v ∈ Fh
n be such that λuλv = id. Thus uλu(v) = 1; that is,

u∗ϕ(u∗) · · ·ϕm(u∗)vϕm(u) · · ·ϕ(u)u = u∗

for every m ≥ h− 1.
(2) ⇒ (1): Suppose that there exists some positive integer l for which

ϕm(u) . . . ϕ(u)u∗ϕ(u∗) . . . ϕm(u∗) = ϕl(u) . . . ϕ(u)u∗ϕ(u∗) . . . ϕl(u∗)

for every m ≥ l. Call v the resulting unitary, clearly in Fk+l
n . Then uλu(v) =

u(u∗ . . . ϕk+l−1(u∗))v(ϕk+l−1(u) . . . u) = uu∗ = 1, and therefore λv = λ−1
u .
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The equivalence of (1) and (3) follows by Lemma 3.1, mutatis mutandis. As (4)
is nothing but a reformulation of the nilpotency condition, (3) and (4) are clearly
equivalent.

(1) ⇒ (5): It follows from [4, Proposition 6.1], where we take as Φ the (normal
extension of the) localized automorphism λu

−1.2

(5) ⇒ (4): This is obvious. �

Corollary 3.3. Let u ∈ Fk
n be a unitary satisfying the equivalent conditions of

Theorem 3.2. Then λ−1
u is induced by a unitary v ∈ Fh

n with h = n2(k−1).

Proof. Let K = λu(H). As the sequence of finite dimensional subspaces Fk−1
n ⊃

K∗Fk−1
n K ⊃ K∗2Fk−1

n K2 ⊃ . . . is decreasing until it stabilizes to C, dim(Fk−1
n ) =

n2(k−1) and at each step the dimension drops by one at least, one has (K∗)pFk−1
n Kp

= C for some p ≤ n2(k−1) − 1.
Next observe that

K∗p+1Fk
nK

p+1 = K∗pFk−1
n Kp = C .

That is,

H∗p+1ϕp(u) · · ·uFk
nu

∗ · · ·ϕp(u∗)Hp+1 = C

and v := ϕp(u) · · ·uu∗u∗ · · ·ϕp(u∗) ∈ Fp+1
n . This shows the statement. �

At this stage it is not clear whether it is possible to improve the exponential
bound on h in the last corollary. This would be rather useful for computational
purposes.

3.2. Automorphisms of the diagonal. It follows from [6, Proposition 1.5] that
if w ∈ Fk

n is in the normalizer of the diagonal subalgebra Dn, then for λw to be
invertible it is necessary that λw(Dn) = Dn. It turns out that the method of Lemma
3.1 and Theorem 3.2 can also provide a criterion of invertibility of the restriction
of such an endomorphism λw to the diagonal Dn.

Indeed, let w ∈ Fk
n ∩ NOn

(Dn). Then both Dk−1
n and Bw ∩ Dk−1

n are invariant
subspaces for all the operators awij associated with w. Denote the restriction of awij
to Dk−1

n by bwij . Each bwij induces a linear transformation b̃wij : V D
w → V D

w , where

V D
w = Dk−1

n /(Bw ∩ Dk−1
n ). We denote by AD

w the subring of L(V D
w ) generated

by {b̃wij | i, j = 1, . . . , n}. Also, we consider the subspace of Dk−1
n defined by

ΞD
w :=

⋂
r(K

∗)rDk−1
n Kr, where K is the linear span of w∗S1, . . . , w

∗Sn.

Theorem 3.4. Let w be a unitary in Fk
n ∩ NOn

(Dn). If the ring AD
w is nilpo-

tent, then λw restricts to an automorphism of Dn. More precisely, the following
conditions are equivalent:

(1) λw restricts to an automorphism of the algebraic part
⋃

s Ds
n of Dn;

(2) the ring AD
w is nilpotent;

(3) ΞD
w ⊆ Bw ∩ D;

(4) ΞD
w = C1.

Proof. We only give details of the proof of the implication (2) ⇒ (1). The other
implications are established through arguments very similar to those of Lemma 3.1
and Theorem 3.2.

2We warn the reader about a slightly confusing change in the conventions. The λu in [4]
corresponds to λu∗ here.



LABELED TREES AND AUTOMORPHISMS OF THE CUNTZ ALGEBRAS 5855

Suppose that AD
w is nilpotent. We show by induction on r ≥ k that all Dr

n are
in the range of λw restricted to

⋃
s Ds

n.

If x ∈ Dk
n, then the same argument as in the proof of the sufficiency part

in Lemma 3.1 shows that x belongs to λw(
⋃

s Ds
n). In fact, the sequence

Ad(ϕm(w) . . . ϕ(w)w)(x) stabilizes at λ−1
w (x) ∈

⋃
s Ds

n.
For the inductive step, suppose that r ≥ k and Dr

n ⊂ λw(
⋃

s Ds
n). Since Dr+1

n is
generated by Dr

n and ϕr(D1
n), it suffices to show that ϕr(y) belongs to λw(

⋃
s Ds

n) for
all y ∈ D1

n. However, ϕr(y) commutes with w and ϕr−1(y) ∈ Dr
n is in λw(

⋃
s Ds

n).
Thus, we see that the sequence

Ad(ϕm(w) . . . ϕ(w)w)(ϕr(y)) = ϕ(Ad(ϕm−1(w) . . . ϕ(w)w)(ϕr−1(y)))

stabilizes at λ−1
w (ϕr(y)) ∈

⋃
s Ds

n. �

It is not difficult to verify that if w ∈ Pn and λw(Dn) = Dn, then λw satisfies
condition (1) of Theorem 3.4.

4. Applications of labeled trees to the search for automorphisms

Let w ∈ Pk
n. Take {SαS

∗
β}α,β∈Wk−1

n
, a basis of Fk−1

n , so that {SαS
∗
α} are the

first block of the basis. With respect to this basis, each awij , i, j ∈ {1, . . . , n} has a
matrix

(7) awij =

(
bwij cwij
0 dwij

)

with entries in {0, 1}, as awij(SαS
∗
β) =

∑
m S∗

i Sσ(α,m)S
∗
σ(β,m)Sj , where w ∼ σ.

In the sequel of this section, we will explain how the condition that λw ∈ Aut(On)
for w ∈ Pk

n translates in terms of the awij ’s. In turn, this boils down to two separate
arguments for the (sub)matrices [b] and [d]. As a matter of fact, [c] turns out to be
irrelevant for the following discussion. Indeed, since awij(I) ∈ {I, 0}, each awij gives

rise to a map from Fk−1
n /C to itself, whose matrix has a block form

(8)

(
b̂wij ∗
0 dwij

)
.

It is an immediate corollary of Lemma 3.1 and Theorem 3.2 that λw is invertible

if and only if both rings generated by {b̂wij |i, j = 1, . . . , n} and by {dwij | i, j =
1, . . . , n}, respectively, are nilpotent. Furthermore, it follows from Theorem 3.4

that nilpotency of the ring generated by {b̂wij | i, j = 1, . . . , n} implies that the
endomorphism λw restricts to an automorphism of Dn.

4.1. Upper left corner [b]. The plan of this subsection is as follows. We first
convert the matrix [b] into functions on indices. Trees then pop up as diagrams of
these functions. Next we discuss labeling. The automorphism condition will lead
us to trees with a suitable labeling, that is, inducing a certain partial order relation.

If i �= j, then bwij = 0. Hence we can write bwi := bwii. Since

(9) bwi (SαS
∗
α) =

∑
m

S∗
i wSαSmS∗

mS∗
αw

∗Si ,

wSαSmS∗
mS∗

αw
∗ being a minimal projection in Dk

n, it follows that each column of
bwi has at most n nonzero entries, but fixing a column and summing over i we get
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exactly n. Furthermore, since bwi (1) = 1, we have

(10)
∑
α

SαS
∗
α =

∑
α

bwi (SαS
∗
α)

and hence each row of bwi has exactly one 1 and the rest 0.
Suppose that λw is an automorphism of On. Then the equivalence of conditions

(1), (3) and (5) of Theorem 3.2 easily implies the following condition on the upper
left corner of the matrix [awij ]: sufficiently long products of the operators {bwi | i =
1, . . . , n} have the form

(11)

⎛
⎜⎜⎜⎝
λ1 λ2 · · · λnk−1

λ1 λ2 · · · λnk−1

...
...

...
λ1 λ2 · · · λnk−1

⎞
⎟⎟⎟⎠ ;

that is, they are constant along the columns. However, since for any i each row of
bwi contains exactly one nonzero entry, the same is true for products of the {bwi }s.
Thus each of the above matrices as in (11) must actually have the form

(12)

⎛
⎜⎜⎜⎝
0 · · · 1 · · · 0
0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0

⎞
⎟⎟⎟⎠ ,

i.e. one column of 1’s and 0’s elsewhere.
Since each row of the matrix bwi has a 1 exactly in one column and 0’s elsewhere,

the bwi can be identified with a function fw
i : W k−1

n → W k−1
n defined by

(13) fw
i (α) = β

whenever bwi has a 1 in the (α, β) entry. Suppose that w comes from a permutation
σ. Then

fw
i (α) = β ⇐⇒ ∃m such that (i, α) = σ(β,m)(14)

⇐⇒ SαS
∗
α ≤ S∗

i wSβS
∗
βw

∗Si .(15)

It is not difficult to verify that the product bwi b
w
j corresponds to the composition

fw
j ◦fw

i (in reversed order of i and j). In what follows we often omit the superscript
w in fw

i when no confusion may arise.
We omit an easy proof of the following lemma.

Lemma 4.1. The ring generated by {b̂wi | i = 1, . . . , n} is nilpotent if and only
if all sufficiently long composition products of mappings {fi | i = 1, . . . , n} have
ranges consisting of a single element.

Lemma 4.2. A necessary condition of nilpotency of the ring generated by {b̂wi | i =
1, . . . , n} is that each fi must have the following structure:

• exactly one fixed-point;
• no periodic orbits of length ≥ 2.

Proof. The first condition clearly follows by considering, for any given index i, only
powers of the matrix bi or, equivalently, compositions of the same function fi. The
second condition follows since otherwise some power of bi would have more than
one fixed point. �
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From this lemma we deduce that the diagrams of the fi’s are rooted trees, where
the root corresponds to the unique fixed point. By a diagram we mean the graph
with vertices labeled by elements of W k−1

n and with a directed edge from vertex α
to vertex β if fi(α) = β. By convention, we do not include in the diagram the loop
from the root (fixed point) to itself.

Example 4.3. The pair of labeled trees corresponding to σ = id in P 3
2 . All the

edges are downward oriented.

• •

•

�

.......................................................................

.........................................................................................................................

f1

21 22

12

11

• •

•

�

.......................................................................

.........................................................................................................................

f2

11 12

21

22

Example 4.4. Let u ∈ P1
n, so that λu is a Bogolubov automorphism of On. If

we view u as an element of Pk
n , then all n unlabeled trees corresponding to u

are identical; the root receives n − 1 edges from other vertices, each other vertex
receives either none or n edges, and the height of the tree (the length of the longest
path ending at the root) is minimal and equal to k − 1. In particular, all such
unitaries have the corresponding n-tuples of unlabeled trees identical with those of
the identity.

Lemma 4.5. The ring generated by {b̂wi | i = 1, . . . , n} is nilpotent if and only if
there exists a partial order ≤ on the cartesian product W k−1

n ×W k−1
n such that:

(i) Each element of the diagonal (α, α) is minimal.
(ii) Each (α, β) is bounded below by some diagonal element.
(iii) For every i and all (α, β) such that α �= β, we have

(16) (fi(α), fi(β)) ≤ (α, β) .

Proof. Suppose that the ring generated by {b̂wi | i = 1, . . . , n} is nilpotent. Define
a relation ≤ as follows. For any α, (α, α) ≤ (α, α). If γ �= δ, then (α, β) ≤ (γ, δ)
if and only if there exists a sequence j1, . . . , jd, possibly empty, such that α =
fj1 ◦ · · · ◦ fjd(γ) and β = fj1 ◦ · · · ◦ fjd(δ).

Reflexivity and transitivity of ≤ are obvious. Suppose (α, β) ≤ (γ, δ) and (γ, δ) ≤
(α, β). If (α, β) �= (γ, δ), then, by definition of ≤, α �= β, γ �= δ and there exist
indices j1, . . . , jd, k1, . . . , kh such that (α, β) = (fj1 ◦ · · · ◦ fjd)(γ, δ) and (γ, δ) =
(gk1

◦ · · · ◦ gkh
)(α, β). Then (α, β) = (fj1 ◦ · · · ◦ fjd ◦ gk1

◦ · · · ◦ gkh
)(α, β). That is,

t = fj1 ◦ · · · ◦ fjd ◦ gk1
◦ · · · ◦ gkh

has two distinct fixed points, a contradiction. Thus
(α, β) = (γ, δ) and ≤ is also antisymmetric.

We must still show that each (α, β), α �= β, is bounded below by a diagonal
element. If not, then counting shows that there exists a sequence f1, . . . , fd such
that (α, β) = f1 ◦ · · · ◦ fd(α, β) and again, f1 ◦ · · · ◦ fd has two distinct fixed points.

Conversely, suppose such a partial order exists. We must show that each compo-
sition of sufficiently many functions {fi} has range consisting of exactly one element.
By counting, to this end it suffices to show that for any subset X ⊆ W k−1

n with at
least two elements and a sufficiently large r the set f1 ◦ · · · ◦ fr(X) has at least one
element less than X. To see this take any two distinct elements α �= β ∈ X. Then,
by the conditions on ≤, eventually f1 ◦ · · · ◦ fr(α) = f1 ◦ · · · ◦ fr(β), and this does
the job. �
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Theorem 3.4 and Lemma 4.5 yield the following.

Corollary 4.6. Let w ∈ Pk
n. If there exists a partial order on W k−1

n × W k−1
n

satisfying the conditions of Lemma 4.5, then the endomorphism λw restricts to an
automorphism of Dn.

The relation used in Lemma 4.5 can be explicitly described as follows. We have
that (α, β) ≤ (γ, δ) if and only if either α = γ and β = δ, or γ �= δ and there exist
i0, . . . , ir such that

(17)

(i0, γ) = σ(γ1, k1), (i0, δ) = σ(δ1, h1),
(i1, γ1) = σ(γ2, k2), (i1, δ1) = σ(δ2, h2),

. . . . . .
(ir, γr) = σ(α, kr+1), (ir, δr) = σ(β, hr+1).

In order to give an equivalent reformulation of Lemma 4.5 we define inductively
a nested sequence of subsets Σw

m of W k−1
n ×W k−1

n , as follows:

Σw
0 = {(α, α) | α ∈ W k−1

n },(18)

Σw
m+1 = {(α, β) | (fi(α), fi(β)) ∈ Σw

m, i = 1, . . . , n} ∪ Σw
m.(19)

We omit an easy proof of the following proposition.

Proposition 4.7. The relation ≤ defined by (17) satisfies the conditions of Lemma
4.5 if and only if

(20)
⋃
m

Σw
m = W k−1

n ×W k−1
n .

4.2. Effect of inner automorphisms. If w ∼ σ ∈ Pk
n (w =

∑
Sσ(α)S

∗
α) and

u ∼ φ ∈ Pk−1
n , then Ad(u)λw = λϕ(u)wu∗ and ϕ(u)wu∗ ∼ (1× φ)σ(φ−1 × 1).

Let fi and gi be the self-mappings of W k−1
n corresponding to w and ϕ(u)wu∗,

respectively, as in (13). Then (i, α) = σ(β,m) if and only if (i, φ(α)) = (1 ×
φ)σ(φ−1 × 1)(φ(β),m). Thus fi(α) = β if and only if gi(φ(α)) = φ(β). That is,

(21) gi = φfiφ
−1 , i = 1, . . . , n .

Consequently, the action of inner automorphisms corresponds to permutation of
labels. Thus, combining this observation with Lemma 2.3 we obtain the following.

Proposition 4.8. Suppose that u,w ∈ Pk
n and both λu and λw are automorphisms

of On. If there exists an i such that the tree corresponding to fu
i is not isomorphic

to the tree of fw
i (as a directed tree, no labeling involved), then λu and λw give rise

to distinct elements of Out(On).

Now the following question arises: how many distinct permutations τ ∈ P k
n

give rise to the same collection of labeled trees as σ? The structure and labels on
the trees {f1, . . . , fn} corresponding to σ are determined by the identity (i, α) =
σ(β,m), in which m ∈ {1, . . . , n} can be chosen freely. Thus, simple counting leads
to the following. Given any w ∈ Pk

n with corresponding functions {fw
i }, there are

exactly n!n
k−1

elements u of Pk
n yielding identical maps fu

i = fw
i .
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4.3. Lower right corner [d]. Now consider the corner dwij of awij , where w ∼ σ ∈
P k
n .
The matrix dwij has a 1 in the (α, β) row and the (γ, δ) column if and only if

there exists an m ∈ {1, . . . , n} such that SαS
∗
β = S∗

i wSγSmS∗
mS∗

δw
∗Sj , if and only

if there exists some m such that

(i, α) = σ(γ,m),(22)

(j, β) = σ(δ,m).

Each row of dwij can have just one 1 or be all 0’s. Summing over all dwij , i, j = 1, . . . , n,
each column has a 1 in at most n places (possibly less).

Let Wk−1
n be the union of the set of off-diagonal elements of W k−1

n ×W k−1
n and

{†}, where † is a symbol not inW k−1
n ×W k−1

n . Define mappings fw
ij : Wk−1

n → Wk−1
n

as

(23) fw
ij (α, β) = (γ, δ)

if the entry of dwij in row (α, β) and column (γ, δ) is 1, and as

(24) fw
ij (α, β) = †

if the (α, β) row of dwij consists of all 0’s. In the latter case we think of fw
ij as

“annihilating” (α, β). Also, we put fij(†) = † for all i, j.
Then dwijd

w
rs corresponds to fw

rs◦fw
ij . Again, in the sequel we drop the superscript

w when no confusion may arise.
We omit an easy proof of the following proposition.

Lemma 4.9. Let w ∈ Pk
n. Then the matrices {[dwij ] : i, j = 1, . . . , n} generate a

nilpotent ring if and only if all sufficiently long composition products of mappings
{fij | i, j = 1, . . . , n} have ranges consisting of the single element †.

Lemma 4.10. Let w ∈ Pk
n. Then the matrices {[dwij ] : i, j = 1, . . . , n} generate a

nilpotent ring if and only if there exists a partial order ≤ on Wk−1
n such that:

(i) The only minimal element with respect to ≤ is †.
(ii) For every (α, β) ∈ Wk−1

n and all i, j = 1, . . . , n,

(25) fij(α, β) ≤ (α, β).

Proof. Suppose that the ring generated by {[dwij ] : i, j = 1, . . . , n} is nilpotent.

Define a binary relation ≤ in Wk−1
n by (25) and take its reflexive and transitive

closure. Suppose for a moment that (α, β) �= (γ, δ) but both (α, β) ≤ (γ, δ) and
(γ, δ) ≤ (α, β). Then, by definition of ≤, there are sequences i1, . . . , ik and j1, . . . jk
such that fi1j1 ◦ · · · ◦ fikjk(α, β) = (α, β). But then all composition powers of
fi1j1 ◦ · · · ◦ fikjk have (α, β) in their range, a contradiction.

Conversely, suppose that there is a partial order ≤ on Wk−1
n satisfying condition

(ii) above. Then, by counting, each sufficiently long composition product of map-
pings {fij} has range consisting of a single element, which is minimal for ≤. By
(i), this element must be †. �

Let w ∈ Pk
n . We define inductively a nested sequence of subsets Ψw

m of Wk−1
n ,

as follows:

Ψw
0 = {†},(26)

Ψw
m+1 = {(α, β) ∈ Wk−1

n | fij(α, β) ∈ Ψw
m, i, j = 1, . . . , n} ∪ {†} .(27)
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We omit an easy proof of the following proposition.

Proposition 4.11. There exists a relation ≤ satisfying the conditions of Lemma
4.10 if and only if

(28)
⋃
m

Ψw
m = Wk−1

n .

4.4. A characterization of automorphisms in λ(Pn)
−1. From Theorem 3.2,

Lemma 4.5 and Lemma 4.10 we obtain the following.

Corollary 4.12. Let w ∈ Pk
n. Then λw ∈ Aut(On) if and only if the following two

conditions are satisfied:

(1) There exists a partial order on W k−1
n ×W k−1

n satisfying the conditions of
Lemma 4.5.

(2) There exists a partial order on Wk−1
n satisfying the conditions of Lemma

4.10.

5. Applications of labeled trees to automorphisms of O2

If w ∈ Pk
2 , then the labeled trees associated with fw

1 and fw
2 have the following

properties:

• α receives two edges in fw
i if and only if α receives no edges in fw

3−i;
• α receives one edge in fw

i if and only if α receives one edge in fw
3−i.

It follows that the number of leaves (0-receivers) on both trees are identical and
coincide with the number of 2-receivers (including the root) on these trees. In such
a case we say that these two (unlabeled) trees are matched.

Given w ∈ Pk
2 with corresponding functions fw

1 , fw
2 and fixed i ∈ {1, 2}, we

define

(29) G(fw
i ) := {σ ∈ P k−1

2 | σfw
i σ−1 = fw

i }
and call it the stabilizing group of fw

i . Let T be the unlabeled rooted tree corre-

sponding to fw
i . If φ ∈ P k−1

2 , then we have G(fw
i ) ∼= G(φfw

i φ−1), through the map
σ �→ φσφ−1. Thus the groups G(fw

i ) do not depend on the choice of labels and we
have

(30) G(fw
i ) ∼= Aut(T ),

where Aut(T ) is the automorphism group of the unlabeled rooted tree T . Of course,
a similar construction can be carried over for any n.

5.1. Case of P2
2 . This case has already been well studied. There are precisely four

permutations in P2
2 yielding automorphisms of O2. If F := S1S

∗
2 + S2S

∗
1 ∈ F1

2 de-
notes the flip-flop selfadjoint unitary, then the four automorphisms are id, λF ,Ad(F )
= λϕ(F )F = λFϕ(F ), and Ad(F )λF = λϕ(F ). They form in Aut(O2) a copy of
Klein’s four-group. In Out(O2), they give Z2 with nontrivial generator the class of
Archbold’s flip-flop (Bogolubov) automorphism λF ; see e.g. [14, 15].

Our labeled tree approach gives all these results with almost no effort at all. The
only pair of labeled trees satisfying Lemma 4.5 is

•

�

..................................................

α

β

•

�

..................................................

β

α
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Each is realized by 4 permutations and there are 2 such labelings. Thus there are
2! · 22 = 2 · 4 = 8 permutations in P 2

2 yielding elements of Aut(D2). Of these 8 only
4 give automorphisms of O2.

5.2. Case of P3
2 . Only two graphs are possible (each self-dual), namely

•

•

•

�

......................................................................................................................................................

• •

•

�

.......................................................................

.........................................................................................................................

However, there is no labeling of the first graph, which yields a correct partial
order ≤ on pairs. So only the second graph remains. The only possible labeling
satisfying the conditions of Lemma 4.5 is

• •

•

�

.......................................................................

.........................................................................................................................

f1

γ δ

β

α

• •

•

�

.......................................................................

.........................................................................................................................

f2

α β

γ

δ

Given a pair of labeled trees as above, there are 24 permutations σ ∈ P 3
2 yielding

that pair. There are 4! possible choices of labels. Hence, there are

(31) 4! · 24 = 24 · 16 = 324

permutations in P 3
2 satisfying the conditions of Lemma 4.5 and thus yielding ele-

ments of Aut(D2).
Then considering 16 permutations giving rise to a fixed labeling, as above, one

finds that only two of them satisfy the conditions of Lemma 4.10. Thus, taking into
account the action of inner automorphisms corresponding to permutations in P 2

2 , we
see that there are exactly 48 automorphisms of O2 corresponding to permutations
in P 3

2 . These are precisely the ones inner equivalent to the identity or the flip-flop.
Thus, very surprisingly, among 8! = 40, 320 endomorphisms of O2 from λ(P3

2 ) the
only outer automorphism is the familiar flip-flop. This is in stark contrast with the
case of Cuntz algebras On with n ≥ 3, where numerous new outer automorphisms
already appear in λ(P2

n) (see the tables in Section 6, below).
Despite the large scale of the problem, our techniques allowed us to obtain these

results through easy and straightforward pen and paper calculations. These were
further confirmed through a brute force computer calculation.

5.3. Case of P4
2 . We begin by determining the number of automorphisms in λ(P4

2 ).

Theorem 5.1. We have

#{λw | w ∈ P4
2 and λw|D2

∈ Aut(D2)} = 8! · 28 · 17 = 175, 472, 640 ,

#{λw | w ∈ P4
2 and λw ∈ Aut(O2)} = 8! · 14 = 564, 480 .

Thus in λ(P4
2 )

−1 there are exactly 14 representatives of distinct inner equivalence
classes.
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Proof. There are exactly 23 directed rooted trees (unlabeled) with 8 vertices sat-
isfying our conditions (i.e. each vertex other than the root emits one edge and
receives a maximum of 2 edges; the root is a minimal element and receives one
edge from a different vertex). A computer calculation shows that there are only 3
matched pairs of such trees admitting labelings satisfying the conditions of Propo-
sition 4.7. These are: TA − TA, TA − TJ and TJ − TA, where TA and TJ are as
follows (downward oriented):

• •••

• •

•

�

.............................................................

.............................................................

.............................................................

.......................................................................................................................................................

............................................................................................................................................

TA

•

•

•

•

•

•

•

�

.......................................................................................... .......................................................................................... ..........................................................................................

........................................................................................................................................................................................................

TJ

We fix arbitrarily labels on one of the trees in each pair, taking it to be TJ in the
second and third cases. Then a computer calculation shows the following numbers
of labelings of the other tree which satisfy (20): 40 for the pair TA − TA and 12
for each of the other two pairs. The groups of automorphisms of the rooted trees
TA and TJ have 8 and 2 elements, respectively. Thus, taking into account that
each pair of labeled trees under consideration is realized by 28 distinct permuta-
tions, and factoring in the action of 8! inner automorphisms (which permute the
labels simultaneously on both trees), we obtain the following number of distinct
permutations in P 4

2 giving rise to automorphisms of the diagonal:

28 · 8!

|Aut(TA)|
· 40 + 2 · 28 · 8!

|Aut(TJ )|
· 12 = 28 · 8! · 17 = 175, 472, 640.

Then a computer calculation shows that among these permutations there are only
8! · 14 = 564, 480 satisfying (28) and thus yielding automorphisms of O2. Dividing
out 8! inner automorphisms from level 3, we finally get 14 inner equivalence classes
of automorphisms in λ(P4

2 )
−1. �

Our next goal is to describe explicitly representatives of inner equivalence classes
from λ(P4

2 )
−1 and to find some infinite subgroups of Out(O2) generated by them.

We begin by considering two permutations A and B of the set W 4
2 given respec-

tively by

A(1211) = 1211 A(1212) = 1212 A(1222) = 1222 A(1221) = 1221
A(1121) = 1121 A(1122) = 1122 A(1111) = 1112 A(1112) = 1111
A(2222) = 2111 A(2221) = 2121 A(2211) = 2112 A(2212) = 2122
A(2122) = 2222 A(2121) = 2221 A(2112) = 2212 A(2111) = 2211

B(1211) = 1211 B(1212) = 1212 B(1222) = 1222 B(1221) = 1221
B(1121) = 1121 B(1122) = 1122 B(1111) = 1112 B(1112) = 1111
B(2122) = 2111 B(2121) = 2112 B(2211) = 2121 B(2212) = 2122
B(2222) = 2212 B(2221) = 2221 B(2112) = 2222 B(2111) = 2211

Note that the first two rows of these two permutations are identical. That is,
A(1 ∗ ∗∗) = B(1 ∗ ∗∗). Also, of the first eight arguments, six are fixed points. The
labeled trees corresponding to A are:
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• •••

• •

•

�

.............................................................

.............................................................

.............................................................

.......................................................................................................................................................

............................................................................................................................................

fA
1

222221211 212

121 122

112

111

• •••

• •

•

�

.............................................................

.............................................................

.............................................................

.......................................................................................................................................................

............................................................................................................................................

fA
2

122112111 121

222 221

212

211

In the sequel, for notational convenience, we equip W k
2 with the reversed lex-

icographic order and enumerate its elements as {1, 2, . . . , 2k} accordingly. Then,
the permutations A and B above correspond to A = (1, 9)(2, 4, 10, 12, 14, 16)(6, 8)
and B = (1, 9)(2, 4, 6, 10, 16, 12, 14). With a slight abuse of notation we also denote
simply by A and B the associated unitaries and by λA and λB the corresponding
endomorphisms of O2.

Using Corollary 4.12 one can verify that λA and λB are automorphisms of O2.
In fact, these permutations were found through pen and paper calculation based
on Corollary 4.12. One checks by a computer calculation based on Section 6.1 that
the inverses of the automorphisms λA and λB are induced by unitaries in P7

2 .

Proposition 5.2. In Out(O2), one has

λFλAλF = λ−1
A = λB .

Proof. One has Ad(z)λAλB = id, where z ∈ P6
2 is given by

z ∼ (2, 4, 8)(3, 7, 15)(5, 13, 29)(9, 25)(10, 12)

(18, 20, 24)(19, 23)(26, 28)(34, 36, 40)

(35, 39, 47)(37, 45)(42, 44)(50, 52, 56)(51, 55)(58, 60).

Also, one has Ad(y)λFλA = λBλF , where y ∼ (1, 3, 5, 7)(2, 4, 8) ∈ P 3
2 . �

For the reader’s convenience, in Appendix 8 we provide the action of λA on
diagonal projections Pα’s with |α| ≤ 5.

Lemma 5.3. With the above notation, for each word μ̃ there exist words ν1, ν2 with
|νi| = |μ̃|+ 1 such that

λA(Pμ̃211) = Pν1211 + Pν2222 ,

λA(Pμ̃212) = Pν1212 + Pν2221 .

Furthermore, if α is a word which ends neither with 211 nor with 212, then there
is a word β such that |α| = |β| and λA(Pα) = Pβ.

Proof. We prove the first claim by induction on |μ̃|. If |μ̃| ≤ 2 these relations are
verified by direct computation. Now let us suppose that μ̃ = (μ1, . . . , μl) and l ≥ 3.
Then

λA(Pμ̃211) = λA(Pμ1...μl211) = A∗Sμ1
λA(Pμ2...μl211)S

∗
μ1
A

= A∗Sμ1
(Pν̃1211 + Pν̃2222)S

∗
μ1
A

= A∗(Pμ1ν̃1211 + Pμ1ν̃2222)A

= P···211 + P···222,
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where in the second line we have used the induction hypothesis and in the last line
we have used the fact that |μ1ν̃1| = |μ1ν̃2| ≥ 4. The other relation can be handled
similarly.

The proof of the second claim proceeds by induction on |α|. For |α| ≤ 3 this
follows from the table in Appendix 8. For the inductive step we notice that there
exist two unitaries u1, u2 in F3

2 such that λA(Si) = Siui, i = 1, 2. Thus, we
have λA(Piα) = λA(Si)λA(Pα)λA(Si)

∗ = SiuiPβu
∗
iS

∗
i = Piμ for some word μ with

|μ| = |α|. �

Proposition 5.4. λA has infinite order in Out(O2).

Proof. It is a consequence of Lemma 5.3 that λA has infinite order in Aut(O2). To
see this, fix some μ̃. If some power of λA were the identity, then, using the relations
in Lemma 5.3, one should have that Pμ̃211 is a sum of subprojections including one
of the form Pρ211. But then Pρ212 should also be a subprojection of Pμ̃211. On the
other hand, by the same relations, Pρ212 should be a subprojection of Pμ̃212 and
thus orthogonal to Pμ̃211, a contradiction.

Now it follows from the implication (1) ⇒ (2) of [26, Theorem 6] that λA has
infinite order in Out(O2). �

Corollary 5.5. The subgroup of Out(O2) generated by λA and λF is isomorphic
to the infinite dihedral group Z � Z2.

Let J be a transposition in P 4
2 which exchanges 2112 with 2212 (and fixes all

other elements of W 4
2 ):

J(2112) = 2212 and J(2212) = 2112.

The labeled trees corresponding to J are:

• •••

• •

•

�

222221211 212

121 122

112

111

.............................................................

.............................................................

.............................................................

.......................................................................................................................................................

............................................................................................................................................

fJ
1

•

•

•

•

•

•

•

�

121

212

211

221

222

122

111

112

.......................................................................................... .......................................................................................... ..........................................................................................

........................................................................................................................................................................................................

fJ
2

With a slight abuse of notation, we denote by J the associated unitary and by λJ

the corresponding endomorphism of O2. One checks that

(32) λ2
J = id.

Clearly (see Example 4.4), the two trees corresponding to the identity in P 4
2 are

both of type TA. Likewise, both trees corresponding to the flip-flop λF are also
of type TA. Since fJ

2 is of type TJ �= TA, it follows from Proposition 4.8 that λJ

is an outer automorphism of O2 not inner equivalent to the flip-flop. Incidentally,
outerness of λJ can also be derived from [19], since λJ (S1) = S1.

Proposition 5.6. The automorphisms λF and λJ generate a subgroup of Out(O2)
isomorphic to the free product Z2 ∗ Z2.

Proof. The proof is very similar to the argument of Proposition 5.4 and Lemma
5.3, so we only sketch the main idea.
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At first one shows by induction on the word length that for each word μ there
exists a word ν with |ν| = |μ|+ 2 such that

λFλJ (Pμ22) = Pν22 +
∑
i

Pγi
,

λFλJ (Pμ21) = Pν21 +
∑
j

Pζj ,

with γi, ζj words of lengths not greater than |ν|+2. This implies that the automor-
phism λFλJ has infinite order. Consequently, it has an infinite order in Out(O2),
and the claim follows. �

Let G be a 3-cycle in W 4
2 such that

G(1112) = 1122, G(1122) = 1222, and G(1222) = 1112.

That is, in the shorthand notation, G = (9, 13, 15). The trees corresponding to G
are:

• •••

• •

•

�

122121111 112

211 212

221

222

.............................................................

.............................................................

.............................................................

.......................................................................................................................................................

............................................................................................................................................

fG
2

•

•

•

•

•

•

•

�

212

121

112

122

111

211

222

221

.......................................................................................... .......................................................................................... ..........................................................................................

........................................................................................................................................................................................................

fG
1

One checks that

(33) λ6
G = id

but none of λG, λ
2
G, λ

3
G is inner. Also note that λG(S2) = S2.

Taking into account the results of this subsection and considering the convolution
multiplication and Lemma 2.3 (and preferably helped by a computer), one verifies
the following theorem.

Theorem 5.7. The following automorphisms give a complete list of representatives
of distinct classes in Out(O2) appearing in λ(P4

2 )
−1:

{id, λF },
{λA, λAλF , λFλA, λFλAλF },
{λJ , λJλF , λFλJ , λFλJλF },
{λG, λGλF , λFλG, λFλGλF }.

6. Tabulated results

In this section, we collect our results about automorphisms λ(Pn)
−1 of the Cuntz

algebras in the form of tables. They provide solutions to several enumeration prob-
lems.

In the first table, we provide the number Nk
n of all such automorphisms of On

at level k (i.e. in λ(Pk
n)

−1), for small values of n and k. In the second table, we
plot the number Ck

n of classes modulo inner ones (as in Subsection 4.2, only inner
perturbations by permutation unitaries are being considered). Of course, we have

Nk
n = nk−1! Ck

n .
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The last table contains numbers sfk
n of square-free automorphisms in λ(Pk

n)
−1.

Nk
n :

k \ n 2 3 4

1 2 6 24
2 4 576 5,771,520
3 48
4 564,480

Ck
n:

k \ n 2 3 4

1 2 6 24
2 2 96 240,480
3 2
4 14

sfk
n :

k \ n 2 3 4

1 2 4 10
2 4 52 2,032
3 20
4 1,548

These figures have been obtained through a combination of all the techniques
developed in this article and large scale computer calculations. To give the reader
an idea of the scale of the problem and the difficulties involved, let us just mention
that computation of N2

4 (and thus C2
4 ) took about 70 processor days.

7. Concluding remarks

If n ≥ 3, then the image of λ(P2
n)

−1 in Out(On) contains Z3 ∗ Z2 (see [26]) and
thus it is nonamenable. In the case of O2 we still do not know if the group λ(Pn)

−1

(and its image in Out(O2)) is amenable or not. It would be interesting to find the
lowest level k (if any) for which λ(Pk

2 )
−1 is nonamenable. Our results show that

k must be at least 4, and this question can perhaps be settled by determining the
group generated by λ(P4

2 )
−1.

Going beyond automorphisms of On preserving the UHF-subalgebra, one may
pose the question if any aspects of the theory developed in the present article can
be extended to λ(Sn)

−1. This is certainly far from obvious and undoubtedly a very
challenging task. Even the inner part of λ(Sn)

−1, that is, the group Sn itself, is
nonamenable and has a very complicated structure. In fact, in the case of O2, it
contains a copy of Z3∗Z2 whose action on the diagonal results in the crossed product
isomorphic to O2 [25]. Finding a criterion of invertibility of endomorphisms from
λ(Sn) should certainly be regarded as an important first step.

Our labeled tree approach allows for the relatively easy construction of certain
special automorphisms of the diagonal Dn, which in turn gives rise to dynamical
systems on the Cantor set. They certainly deserve further investigations. In partic-
ular, a question arises if they may result in minimal dynamical systems. Also, their
relation with other better known classes of symbolic dynamical systems is worth
elucidation.
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Going beyond the Cuntz algebras, it is natural to expect that parts of our analysis
may be extended to more general graph C∗-algebras. Every graph algebra admits
a gauge action of the circle group whose fixed point algebra is AF (e.g. see [23]).
For a large class of graph algebras, a Cartan subalgebra with a totally disconnected
spectrum is contained in this core AF -subalgebra. Then, for such graph algebras,
one should be able to say much about the automorphisms preserving both the core
AF and the Cartan subalgebra along the lines of [6], [26] and the present article.

8. Appendix

Pα λA(Pα) λG(Pα) λJ (Pα)

P1 P1 P1 P1

P2 P2 P2 P2

P11 P11 P111 + P1121 + P1222 P11

P12 P12 P1122 + P121 + P1221 P12

P21 P22 P21 P2111 + P212 + P2212

P22 P21 P22 P2112 + P2211 + P222

P111 P111 P1111 + P12221 + P11122 P111

P112 P112 P11121 + P1121 + P12222 P112

P121 P122 P121 P12111 + P1212 + P12212

P122 P212 P1122 + P1221 P12112 + P12211 + P1222

P211 P2211 P2111 + P21121 + P21222 P2111 + P2212

+P2222

P212 P2212 P21122 + P2121 + P21221 P212

+P2221

P221 P212 P221 P2112 + P22111 + P22212

P222 P211 P222 P22112 + P22211 + P2222

P1111 P1112 P11111 + P111122 + P111221 P1111

P1112 P1111 P111121 + P111222 + P12221 P1112

P1121 P1122 P1121 P112111 + P11212 + P112212

P1122 P1121 P12222 + P11121 P112112 + P112211 + P11222

P1211 P12211 P12111 + P121121 + P121222 P12111 + P12212

+P12222

P1212 P12212 P121122 + P12121 + P121221 P1212

+P12221

P1221 P1212 P1221 P12112 + P122111 + P122212

P1222 P1211 P1122 P122112 + P122211 + P12222

P2111 P2222 P21111 + P211122 + P212221 P2111

P2112 P2211 P211121 + P21121 + P212222 P2212

P2121 P2212 P2121 P212111 + P21212 + P212212

P2122 P2221 P21122 + P21221 P212112 + P212211 + P21222

P2211 P21211 P22111 + P221121 + P221222 P22111 + P22212

+P21222

P2212 P21212 P221122 + P22121 + P221221 P2112

+P21221

P2221 P2112 P2221 P22112 + P222111 + P222212

P2222 P2111 P2222 P222112 + P222211 + P22222
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Pα λA(Pα) λG(Pα) λJ (Pα)

P11111 P11122 P111111 + P1111122 + P1111221 P11111

P11112 P11121 P1111121 + P1111222 + P111221 P11112

P11121 P11112 P12221 P1112111 + P111212 + P1112212

P11122 P11111 P111121 + P111222 P1112112 + P1112211 + P111222

P11211 P112211 P112111 + P1121121 + P1121222 P112111 + P112212

+P112222

P11212 P112212 P1121122 + P112121 + P1121221 P11212

+P112221

P11221 P11212 P11121 P112112 + P1122111 + P1122212

P11222 P11211 P12222 P1122112 + P1122211 + P112222

P12111 P12222 P121111 + P1211122 + P1212221 P12111

P12112 P12211 P1211121 + P121121 + P1212222 P12212

P12121 P12212 P12121 P1212111 + P121212 + P1212212

P12122 P12221 P121122 + P121221 P1212112 + P1212211 + P121222

P12211 P121211 P122111 + P1221121 + P1221222 P122111 + P122212

+P121222

P12212 P121212 P1221122 + P122121 + P1221221 P12112

+P121221

P12221 P12112 P11221 P122112 + P1222111 + P1222212

P12222 P12111 P11222 P1222112 + P1222211 + P122222

P21111 P22222 P211111 + P2111122 + P2111221 P21111

P21112 P22221 P2111121 + P2111222 + P212221 P21112

P21121 P22112 P21121 P2212111 + P221212 + P2212212

P21122 P22111 P212222 + P211121 P2212112 + P2212211 + P221222

P21211 P221211 P212111 + P2121121 + P2121222 P212111 + P212212

+P221222

P21212 P221212 P2121122 + P212121 + P2121221 P21212

+P221221

P21221 P22212 P21221 P212112 + P2122111 + P2122212

P21222 P22211 P21122 P2122112 + P2122211 + P212222

P22111 P21222 P221111 + P2211122 + P2212221 P22111

P22112 P21211 P2211121 + P221121 + P2212222 P22212

P22121 P21212 P22121 P2112111 + P211212 + P2112212

P22122 P21221 P221122 + P221221 P2112112 + P2112211 + P211222

P22211 P211211 P222111 + P2221121 + P2221222 P222111 + P222212

+P211222

P22212 P211212 P2221122 + P222121 + P2221221 P22112

+P211221

P22221 P21112 P22221 P222112 + P2222111 + P2222212

P22222 P21111 P22222 P2222112 + P2222211 + P222222
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[26] W. Szymański, On localized automorphisms of the Cuntz algebras which preserve the diagonal
subalgebra, in ‘New Development of Operator Algebras’, R.I.M.S. Kôkyûroku 1587 (2008),
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