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HIGHER BIVARIANT CHOW GROUPS

AND MOTIVIC FILTRATIONS

ABHISHEK BANERJEE

Abstract. The purpose of this paper is twofold: first, we extend Saito’s filtra-
tion on Chow groups, which is a candidate for the conjectural Bloch Beilinson
filtration on the Chow groups of a smooth projective variety, from Chow groups
to the bivariant Chow groups. In order to do this, we construct cycle class
maps from the bivariant Chow groups to bivariant cohomology groups. Sec-
ondly, we use our methods to define a bivariant version of Bloch’s higher Chow
groups.

1. Introduction

Bivariant Chow groups appear for the first time in the work of Fulton and
MacPherson [7]. These groups unify the concept of Chow homology groups CH∗(X)
and Chow cohomology groups CH∗(X) of a scheme X. For instance, if i : X −→ Y
is a regular imbedding of codimension d, we have a family of homomorphisms

(1.1) i! : CHk(Y ′) −→ CHk−r′+d(X ′)

for each Y ′ −→ Y , X ′ = X ×Y Y ′ and each k ∈ Z, where r′ = dim(Y ′)− dim(X ′).
The morphisms i! are referred to as refined Gysin morphisms. Such a family of
morphisms is said to induce a class in the bivariant Chow group CH∗(i : X −→ Y ).
In general, bivariant Chow groups are defined as a natural extension of this concept
to more general morphisms, in particular to locally complete intersection (l.c.i.)
morphisms f : X −→ Y (see Section 2.). For each l.c.i. morphism f : X −→ Y ,
the bivariant Chow groups are denoted by CHp(f : X −→ Y ) for each p ∈ Z.

For a smooth scheme X over a field K of characteristic zero, it is well known
that the Chow homology group CHp(X) ∼= CH−p(X −→ Spec(K)) and the Chow
cohomology group CHp(X) ∼= CHp(1 : X −→ X) can be recovered from the
bivariant Chow groups, K being the ground field. It can be shown (see [7] or [6, §17])
that several standard constructions on Chow groups, such as pullback and refined
Gysin morphisms, or the Chern classes of a vector bundle may be understood as
classes in a bivariant Chow group. By replacing the Chow groups with cohomology
groups, we can similarly define (see Definition 2.2) bivariant cohomology groups
Hp(f : X −→ Y ).

Our objective in this paper is twofold: For our purposes, we will construct a
cycle class map

(1.2) clpf : CHp(f : X −→ Y ) −→ H2p(f : X −→ Y )
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for each morphism of schemes X and Y with nice properties (as described in Section
2). The problem of cycle class maps has been considered more deeply and in greater
generality by several authors, in particular, by Brasselet-Schürmann-Yokura [4, 5],
Ginzburg [8, 9] and Yokura [12, 13]. However, we shall not concern ourselves with
those intricacies, since our construction in Section 3 is geared towards the following
two main objectives of this paper:

(1) Saito [11] has defined a decreasing filtration on the Chow groups of a smooth
projective variety X which is a candidate for the conjectural Bloch Beilinson fil-
tration on Chow groups. In Section 4, our purpose is to define a natural extension
of this filtration to bivariant Chow groups. We shall define two natural candidates
for this extended filtration and check that they are equal.

(2) Our second major aim is to define a “higher bivariant Chow group”, which
is a bivariant version of the higher Chow groups of Bloch [3]. In this, we shall use
the understanding from Section 3 (though not explicitly the cycle class map (1.2))
to define “higher refined Gysin homomorphisms”, which will form the basis for our
construction of “higher bivariant Chow groups” in Section 5.

Throughout this paper, the word “scheme” shall be taken to mean schemes that
are smooth, projective, equidimensional and of finite type over an algebraically
closed field K of characteristic zero.

2. Bivariant Chow groups and their basic properties

We shall now briefly recall the basic definitions and properties of bivariant Chow
groups. The definition for bivariant Chow groups that we shall use is a slightly
“restricted” version of the original definition and further, we shall be using coho-
mological indexing for Chow groups instead of the original homological indexing of
[7]. The standard reference for the following material is [6, §17]. Since X is always
equidimensional, we keep in mind that we have isomorphisms:

(2.1) CHp(X) ∼= CHdim(X)−p(X) ∀ p ∈ Z.

We will let Sm/K denote the category of schemes that are smooth, projective,
equidimensional and of finite type over the algebraically closed ground field K
of characteristic 0. We will sometimes abuse notation and write X ∈ Sm/K to
denote that X is an object of Sm/K. Unless otherwise mentioned, all schemes will
be assumed to lie in Sm/K. Given a fibre square in Sm/K:

(2.2)

X ′ f ′

−−−−→ Y ′

g′
⏐⏐�

⏐⏐�g

X
f−−−−→ Y

we will say that “f ′ : X ′ −→ Y ′ is fibred over f : X −→ Y via the morphism g”.
Recall that a morphism f : X −→ Y is said to be a locally complete intersection
(l.c.i.) morphism if f can be factored as f = pi:

(2.3) f : X
i−→ P

p−→ Y,

where i is a regular imbedding of relative dimension dim(P )−dim(X) = d and p is
a smooth morphism of relative dimension dim(Y ) − dim(P ) = −e. We now come
to our definition of a bivariant Chow group (compare [6, §17.1]).
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Definition 2.1. Let f : X −→ Y be a morphism of schemes in Sm/K. Consider
any morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f : X −→ Y via a morphism
g : Y ′ −→ Y :

(2.4)

X ′ f ′

−−−−→ Y ′

g′
⏐⏐�

⏐⏐�g

X
f−−−−→ Y.

For each such fibre square, a class c in the bivariant Chow group CHp(X
f−→ Y )

gives a family of morphisms:

(2.5) ckg : CHk(Y ′) −→ CHk−r′+p(X ′), k ∈ Z,

where r′ = dim(Y ′) − dim(X ′). The morphisms ckg are compatible with flat pull-
backs, proper pushforwards and intersection products in the following sense:

(1) If f ′′ : X ′′ −→ Y ′′ is a morphism in Sm/K fibred over the morphism f ′ :
X ′ −→ Y ′ in Sm/K via a proper morphism h : Y ′′ −→ Y ′, and f ′ : X ′ −→ Y ′ is,
in turn, fibred over f : X −→ Y in Sm/K via a morphism g : Y ′ −→ Y and we
have the following fibre diagram

(2.6)

X ′′ f ′′

−−−−→ Y ′′

h′
⏐⏐� h

⏐⏐�

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,

then, given α ∈ CHk(Y
′′), we have

(2.7) ck
′

g (h∗α) = h′
∗c

k
gh(α), where k′ = k + dim(Y ′)− dim(Y ′′).

(2) In the situation in (2.6) of condition (1), suppose that h : Y ′′ −→ Y ′ is flat
of relative dimension dim(Y ′)− dim(Y ′′) = −n instead of being proper. Then, for
any α ∈ CHk(Y

′),

(2.8) ckgh(h
∗α) = h∗ckg(α).

(3) If g : Y ′ −→ Y and h : Y ′ −→ Z ′ are morphisms of schemes, i : Z ′′ −→ Z ′

is a regular imbedding in Sm/K of codimension e, f , f ′ and f ′′ are morphisms in
Sm/K and we have the fibre diagram

(2.9)

X ′′ f ′′

−−−−→ Y ′′ h′
−−−−→ Z ′′

i′′
⏐⏐� i′

⏐⏐� i

⏐⏐�

X ′ f ′

−−−−→ Y ′ h−−−−→ Z ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,
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then, for any α ∈ CHk(Y ′),
(2.10)

i!ckg(α) = c
k+e−(dY ′−dY ′′ )
gi′ (i!α) (where dY ′ = dim(Y ′) and dY ′′ = dim(Y ′′)).

We will now define bivariant cohomology groups in an analogous manner. For
that, we will need to recall the following fact: if i : X −→ Y is a regular imbedding
of codimension d, then, given the fibre square

(2.11)

W
i′−−−−→ V

f ′
⏐⏐� f

⏐⏐�

X
i−−−−→ Y,

there are the refined Gysin morphisms i! : CHp(V ) −→ CHp(W ) (see [6, §6.2]
for construction). Recall that the regular imbedding i determines an “orientation
class” uX,Y ∈ H2d(Y, Y −X) in relative cohomology such that, if [T ] is a class in
CHk(V ), then (see [6, Theorem 19.2]):

(2.12) clkW (i![T ]) = f∗(uX,Y ) · clkV ([T ]).

Here clkV : CHk(V ) −→ H2k(V ) and clkW : CHk(W ) −→ H2k(W ) are the ordinary
cycle class maps. The reader may see, for instance, [6, § 19] for the construction of
the class uX,Y . Also, uX,Y has the property that for any y ∈ H∗(Y ), i∗(y) = uX,Y ·y.
Further, given a fibre square

(2.13)

X ′ i′−−−−→ Y ′

g

⏐⏐� f

⏐⏐�

X
i−−−−→ Y

with i (resp. i′) a regular imbedding of codimension d (resp. d′), we have (see [6,
§19.2.2]):

(2.14) f∗(uX,Y ) = clX′(cd−d′(E)) · uX′,Y ′ ,

where uX,Y (resp. uX′,Y ′) is the class in H2d(Y, Y −X) (resp. H2d′
(Y ′, Y ′ −X ′))

determined by the regular imbeddding i (resp. i′) and E denotes the excess normal
bundle in (2.13).

Definition 2.2. Let f : X −→ Y be a morphism of schemes in Sm/K. A class

d in the bivariant cohomology group Hq(X
f−→ Y ) is an object that associates to

each morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f : X −→ Y via a morphism
g : Y ′ −→ Y , a family of morphisms

(2.15) dkg : Hk(Y ′) −→ Hk−2r′+q(X ′), k ∈ Z,

satisfying the following properties:
(1)′ If f ′′ : X ′′ −→ Y ′′ is a morphism in Sm/K fibred over the morphism

f ′ : X ′ −→ Y ′ in Sm/K via a proper morphism h : Y ′′ −→ Y ′, and f ′ : X ′ −→ Y ′

is, in turn, fibred over f : X −→ Y in Sm/K via a morphism g : Y ′ −→ Y and we
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have the following fibre diagram;

(2.16)

X ′′ f ′′

−−−−→ Y ′′

h′
⏐⏐� h

⏐⏐�

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,

then, given x ∈ Hk(Y ′′), we have

(2.17) dk
′

g (h∗(x)) = h′
∗d

k
gh(x), where k′ = k + dim(Y ′)− dim(Y ′′).

(2)′ In the situation in (2.16) of condition (1), suppose that h : Y ′′ −→ Y ′ is flat
of relative dimension dim(Y ′)− dim(Y ′′) = −n instead of being proper. Then, for
any x ∈ Hk(Y ′),

(2.18) dkgh(h
∗(x)) = h∗dkg(x).

(3)′ In the setting of the diagram (2.9) and the notation of Definition 2.1, let
u = uZ′,Z′′ be the orientation class corresponding to the regular imbedding i :
Z ′′ −→ Z ′. Then, the morphisms dkg of (2.15) satisfy

(2.19) (hf ′)∗(u) · dkg(x) = dk+2e−2e′

gi′ (h∗(u) · x) ∀ x ∈ Hk(Y ′),

where e′ = dim(Y ′) = dim(Y ′′).

Remark 2.3. From (2.12), it follows that condition (3)′ in Definition 2.2 is a natural
adaptation of condition (3) of Definition 2.1 to cohomology.

The usual operations on Chow groups such as products, proper pushforwards,
pullbacks and results such as the “projection formula” can all be defined on bivari-
ant Chow groups. For a detailed description of these constructions, the reader may
see [6, §17]. These operations can also be easily defined on the bivariant cohomlogy
groups of Definition 2.2.

We now recall the following well-known facts about bivariant Chow groups (see
[6, §17.4]) that will be used repeatedly throughout this paper. In the sections to
follow, we will sometimes use these properties directly without referring to them.

1. If f : X −→ Y is a flat morphism in Sm/K of relative dimension dim(Y ) −
dim(X) = −n, then f defines a class [f ] in CH−n(f : X −→ Y ) determined by the
pullback.

2. If i : X −→ Y is a regular imbedding in Sm/K of codimension d, then
i determines a class [i] ∈ CHd(i : X −→ Y ) determined by the refined Gysin
morphisms i!.

3. A morphism f : X −→ Y of schemes that factor as X
i−→ W

p−→ Y with i a
regular imbedding of codimension e, p a smooth morphism of relative dimension −n
and d = e−n is referred to as a locally complete intersection (or l.c.i.) morphism of
codimension d. If f : X −→ Y is an l.c.i. morphism in Sm/K factoring as f = pi
as above and such that p : P −→ Y is projective, then the product of the classes

(2.20) [f ] = [i] · [p] ∈ CHd(f : X −→ Y )
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can be shown to be independent of the factorization of f (note that P ∈ Sm/K
because p : P −→ Y is smooth and projective and Y ∈ Sm/K). We refer to
[f ] ∈ CHd(f : X −→ Y ) as the orientation class of the morphism f .

4. Let g : Y −→ Z be a smooth and projective morphism in Sm/K of relative
dimension −n and let [g] ∈ CH−n(g : Y −→ Z) be its orientation class. Then, for
any f : X −→ Y in Sm/K, the product with the orientation class determines an
isomorphism

(2.21) CHp(f : X −→ Y )
∼=−→ CHp−n(g ◦ f : X −→ Z).

5. (Excess intersection formula) Consider the following fibre square:

(2.22)

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,

where f and f ′ are l.c.i. morphisms in Sm/K of codimensions d and d′, respectively.
Then, we have

(2.23) g∗[f ] = ce(E) · [f ′],

where e = d− d′, E is the excess normal bundle and ce(E) is its e-th Chern class.

Remark 2.4. We have mentioned before that Definition 2.1 is a “restricted” version
of the original definition of bivariant Chow groups in the sense that it allows only
morphisms in Sm/K fibred over morphisms of schemes in Sm/K. However, the
properties 1–5 above continue to hold for this restricted version because the proofs
of these properties for the usual bivariant Chow groups can be repeated verbatim
in this situation.

As mentioned before, the usual Chow homology groups of X can be recovered
from the bivariant Chow groups of Fulton and MacPherson (see [6, §17.3]). The
following proposition shows that these groups can also be recovered from our “re-
stricted” definition of bivariant Chow groups in Definition 2.1. This follows from
the fact that the ground field K, of characteristic zero, admits a resolution of sin-
gularities.

Proposition 2.5. Let X be a scheme in Sm/K and let pX : X −→ Spec(K)
denote the structure map of X. Then, there exist isomorphisms:

(2.24) ϕ : CH−p(pX : X −→ Spec(K)) ∼= CHp(X),

CHq(X) ∼= CHq(1 : X −→ X) ∀p, q ∈ Z.

Proof. Choose any p ∈ Z and set S = Spec(K). Let d = dim(X). Given any bi-
variant class c ∈ CH−p(pX : X −→ S), we define a class ϕ(c) = c[S] ∈ CHd−p(X).
Conversely, given a ∈ CHd−p(X), we have a class ψ(a) ∈ CH−p(pX : X −→ S),
defined as follows: given any morphism pY −→ S for some scheme Y ∈ Sm/K and
some α ∈ CHk(Y ), ψ(a) is given by the morphisms:

(2.25) ψ(a)(α) = a× α ∈ CHd−p+k(X × Y ).

Since ψ(a)([S]) = a, it follows that ϕ◦ψ is the identity. Choose some c ∈ CH−p(pX :
X −→ S). Let Y ∈ Sm/K and let α ∈ CHk(X) for some k. We may assume that
α = [V ] for some irreducible, closed subscheme V of codimension k in Y . Since
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the ground field K has characteristic zero, it admits a resolution of singularities,
and hence we have a projective birational morphism p̃ : Ṽ −→ V such that Ṽ is
smooth. Since V is projective, it also follows that Ṽ is also projective and hence
Ṽ ∈ Sm/K. Let i : V −→ Y denote the closed immersion of V into Y . Then,

α = [V ] = (ip̃)∗([Ṽ ]). Finally, let pṼ denote the structure morphism pṼ : Ṽ −→ S.
Then, we have
(2.26)

ψ(c[S])(α) = ψ(c[S])((ip̃)∗([Ṽ ])) = (ip̃)∗ψ(c[S])([Ṽ ]) (since ip̃ is proper)
= (ip̃)∗ψ(c[S])(p

∗
Ṽ
[S]) = (ip̃)∗p

∗
Ṽ
ψ(c[S])([S])

= (ip̃)∗p
∗
Ṽ
(c[S]) = (ip̃)∗c(p

∗
Ṽ
[S]) = (ip̃)∗c([Ṽ ])

= c((ip̃)∗[Ṽ ]) = c(α).

It follows that ψ ◦ ϕ is the identity. This shows that we have isomorphisms:

(2.27) CH−p(pX : X −→ Spec(K)) ∼= CHd−p ∼= CHp(X).

Finally, the morphism pX : X −→ S being smooth, we have isomorphisms (using
(2.21))

(2.28) CHq(1 : X −→ X) ∼= CHq−d(pX : X −→ S) ∼= CHd−q(X) ∼= CHq(X).

�

3. Cycle class maps for bivariant Chow groups

For any morphism f : X −→ Y in Sm/K, we intend to construct cycle class
maps

(3.1) clp(f) : CHp(f : X −→ Y ) −→ H2p(f : X −→ Y ) ∀ p ∈ Z.

Given a morphism f : X −→ Y in Sm/K, we can factor f as f = pY ◦ if , where
(3.2) X −→ X × Y x �→ (1, f) and pY : X × Y −→ Y,

pY : X × Y −→ Y being the natural projection onto Y . The morphism if : X −→
X×Y is a closed imbedding and since X and X×Y are both smooth, it follows (see
[6, Appendix B.7.2]) that if : X −→ X × Y is a regular imbedding of codimension
dim(Y ). It is also clear that the natural projection pY : X × Y −→ Y is a smooth
morphism. Hence f = pY ◦ if is an l.c.i. morphism in the sense of Section 2. We
also note that X being projective, pY : X×Y −→ Y is also a projective morphism.

Given a scheme X, we will always use dim(X) or dX to denote its dimension. For
any morphism f : X −→ Y of schemes, we will use rel.dim(f) to denote its relative
dimension dim(Y )− dim(X). Additionally, for a flat morphism f , we will assume
throughout this paper that the relative dimension is stable under base change (see
[6, Appendix B.2.5] for details). We will also use Γf to denote the graph of f , i.e.
the image of if : X −→ X × Y in (3.2) above. We start with the following lemma:

Lemma 3.1. Let X, Y ∈ Sm/K and let i : X −→ Y be a regular imbedding of
codimension d and let [i] ∈ CHd(i : X −→ Y ) be the orientation class of i. Then,
for any c ∈ CHp(i : X −→ Y ), there exists a unique class t in CHp−d(X) =
CHp−d(1 : X −→ X) such that c = t · [i]. In other words, the product with [i]
induces an isomorphism

(3.3) CHp−d(1 : X −→ X)
·[i]−→∼= CHp(i : X −→ Y ).
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Proof. Let dim(Y ) = dY and dim(X) = dX . Then dY − dX = d. We know that
X and Y are smooth and we use [pX ] ∈ CH−dX (pX : X −→ Spec(K)) and [pY ] ∈
CH−dY (pY : Y −→ Spec(K)) to denote the orientation classes of the structure
maps pX : X −→ Spec(K) and pY : Y −→ Spec(K). Consider the product
c · [pY ] ∈ CHp−dY (pY ◦ i : X −→ Spec(K)) = CHp−dY (pX : X −→ Spec(K)).
Using (2.21), we know that there exists an isomorphism

(3.4) CHp−d(X) ∼= CHp−d(1 : X −→ X)
·[pX ]−→∼= CHp−dY (pX : X −→ Spec(K)),

t �→ t · [pX ].

Hence, there exists a class t ∈ CHp−d(X) such that t · [pX ] = c · [pY ]. However,
since pX = pY ◦ i, we get [pX ] = [i] · [pY ] and hence t · [i] · [pY ] = c · [pY ]. Since the
product with [pY ] induces an isomorphism (again using (2.21))

(3.5) CHp(i : X −→ Y ) −→ CHp−dY (pX : X −→ Spec(K))

we get t · [i] = c. Finally, if there exist t, t′ ∈ CHp−d(X) such that c = t · [i] = t′ · [i],
then c·[pY ] = t·[pX ] = t′·[pX ]. Again, the product with [pX ] induces an isomorphism
from CHp−d(1 : X −→ X) to CHp−dY (i : X −→ Y ) and hence t = t′. �

The next lemma extends the result of Lemma 3.1 from regular imbeddings to all
morphisms in Sm/K.

Lemma 3.2. Let f : X −→ Y be a morphism in Sm/K and suppose that d =
dim(Y ) − dim(X). Given a class c ∈ CHp(f : X −→ Y ), there exists a unique
t ∈ CHp−d(X) such that c = t · [f ].

Proof. From the discussion at the beginning of this section and following (3.2), we
know that any morphism f : X −→ Y in Sm/K can be represented as an l.c.i.
morphism

(3.6) X
1×f−→ X × Y

p−→ Y.

Let dim(Y ) = dY and dim(X) = dX . Then dY − dX = d. Using (2.21), we have an
isomorphism

CHp+dX (1× f : X −→ X × Y )
∼=−→ CHp(f : X −→ Y ), ω �→ ω · [p].

Hence, given c ∈ CHp(f : X −→ Y ), there exists a unique c′ ∈ CHp+dX (1 × f :
X −→ X×Y ) such that c = c′ · [p]. Again, since c′ ∈ CHp+dX (1×f : X −→ X×Y )
and 1 × f : X −→ X × Y is a regular imbedding of codimension dY , it follows
from Lemma 3.1 that there exists a unique t ∈ CHp−d(1 : X −→ X) such that
c′ = t · [1 × f ]. Then c = t · [1 × f ] · [p] = t · [f ]. The uniqueness of t follows from
the uniqueness of c′ and the uniqueness statement in Lemma 3.1. �

Remark 3.3. Lemma 3.2 above shows that the bivariant Chow group CHp(f :
X −→ Y ) is actually isomorphic to the Chow group CHp−d(X), where d =
dim(Y ) − dim(X), provided X and Y are both in Sm/K. However, this isomor-
phism is clearly not natural; i.e., this isomorphism is unrelated to the products on
Chow groups of X. For the l.c.i. morphism f : X −→ Y we will construct a class
in the bivariant cohomology group H2d(f : X −→ Y ). The cycle class map clpf will

therefore be the product of the ordinary cycle class of CHp−d(X) in H2p−2d(X)
with the class in bivariant cohomology of the l.c.i. morphism f .
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The cycle class maps clpf : CHp(f : X −→ Y ) −→ H2p(f : X −→ Y ) shall
be constructed in the following proposition using a specific factorization of the
morphism f ; the fact that this cycle class is independent of the choice of the fac-
torization will be shown later in Proposition 3.6. Given a scheme X, we shall use
cl∗X to denote the ordinary cycle class maps cl∗X : CH∗(X) −→ H2∗(X).

Proposition 3.4. Let f : X −→ Y be a morphism in Sm/K. There exist cycle
class maps

clpf : CHp(f : X −→ Y ) −→ H2p(f : X −→ Y ).

Proof. Let dim(Y ) = dY and dim(X) = dX . We represent f as an l.c.i. morphism:

(3.7) X
if=1×f−→ X × Y

pY−→ Y

and let [if ] and [pY ] denote the orientation classes of the regular imbedding if
and the coordinate projection pY , respectively. From Lemma 3.2 we know that a
class c ∈ CHp(f : X −→ Y ) can be uniquely factored as c = t · [if ] · [pY ], where
t ∈ CHp−dY +dX (X).

From the discussion above we know that [if ] is represented on the Chow groups
by the refined Gysin morphism and that the smooth morphism pY is represented by
the pullback. Let uX,X×Y denote the class in H2dY (X×Y,X×Y −Γf ) correspond-
ing to the regular imbedding if (here Γf denotes the graph of f). Finally suppose
that the morphism f ′ : X ′ −→ Y ′ in Sm/K is fibred over f via the morphism
g : Y ′ −→ Y such that we have the fibre squares:

X ′ 1−−−−→ X ′ i′−−−−→ X × Y ′ pY ′−−−−→ Y ′

g′
⏐⏐� g′

⏐⏐� 1×g

⏐⏐� g

⏐⏐�

X
1−−−−→ X

if−−−−→ X × Y
pY−−−−→ Y.

Let r = dim(Y ) − dim(X) and r′ = dim(Y ′) − dim(X ′). Consider a class y′ ∈
Hk(Y ′). Then, we define the family of maps:
(3.8)

clpf (c)
k
g : Hk(Y ′) −→ Hk−2r′+2p(X ′), y′ �→ g′∗clp−r

X (t) ·((1×g)∗(uX,X×Y ) ·p∗Y ′(y′)).

From the construction, it is clear that the maps in the family clpf (c)
k
g satisfy the

compatibility conditions in Definition 2.2 and hence induce a class inH2p(f : X −→
Y ), which we denote by clpf (c). �

We will now show that the cycle class map constructed in Proposition 3.4 is
actually independent of the factorization of the morphism f : X −→ Y in Sm/K
into a regular imbedding followed by a smooth and projective morphism. For that,
we will need the following lemma.

Lemma 3.5. Let X, Y ∈ Sm/K and let j : X −→ Y be a regular imbedding such
that j can be factored as j = pi where i : X −→ P is a regular imbedding and
p : P −→ Y is a smooth and projective morphism. Let j′ : X ′ −→ Y ′ be a regular
imbedding in Sm/K fibred over j : X −→ Y via a morphism g : Y ′ −→ Y , forming
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the fibre diagram (with j = pi, j′ = p′i′):

(3.9)

X ′ i′−−−−→ P ′ p′

−−−−→ Y ′

h′
⏐⏐� h

⏐⏐� g

⏐⏐�

X
i−−−−→ P

p−−−−→ Y.

Then, if uj ∈ H2(dim(Y )−dim(X))(Y, Y −X) and ui ∈ H2(dim(P )−dim(X))(P, P −X)
are the orientation classes induced respectively by the regular imbeddings j and i,
we have:

(3.10) h∗(ui) ∩ p′∗(y′) = g∗(uj) ∩ y′ ∀ y′ ∈ H∗(Y ′).

Proof. Since p′ is obtained by a base change from p, it follows that p′ is smooth and
projective. Since Y ′ ∈ Sm/K and p′ is smooth and projective, we have P ′ ∈ Sm/K.
Since i′ is a closed immersion of schemes in Sm/K, it follows that i′ is a regular
imbedding. Further, since p and p′ are both smooth morphisms of the same relative
dimension, we have:

(3.11) rel.dim(i)− rel.dim(i′) = rel.dim(j)− rel.dim(j′) = e(say).

Choose y′ ∈ H∗(Y ′). Let Ej (resp. Ei) denote the excess normal bundle for the fibre
square created by the morphism j′ : X ′ −→ Y ′ fibred over j : X −→ Y (resp. i′ :

X ′ −→ P ′ fibred over i : X −→ P ). Let uj′ ∈ H2(dim(Y ′)−dim(X′))(Y ′, Y ′−X ′) and

ui′ ∈ H2(dim(P ′)−dim(X′))(P ′, P ′−X ′) be the orientation classes induced respectively
by the regular imbeddings j′ and i′.

From (2.14), it follows that

g∗(uj) ∩ y′ = clX′(ce(Ej)) · uj′ ∩ y′ = clX′(ce(Ej)) · j′∗(y′)q
= clX′(ce(Ej)) · i′∗p′∗(y′),(3.12)

h∗(ui) ∩ p′∗(y′) = clX′(ce(Ei)) · ui′ ∩ p′∗(y′) = clX′(ce(Ei)) · i′∗p′∗(y′),
where clX′ denotes the ordinary cycle class map from the Chow groups to the
cohomology of X ′. Hence, to prove (3.10), it suffices to show that ce(Ej) = ce(Ei).
For this, we write
(3.13)
g∗[j] = ce(Ej)·[j′] and g∗[j] = g∗([i][p]) = h∗[i]g∗[p] = ce(Ei)[i

′][p′] = ce(Ei)[j
′].

The result now follows from the uniqueness statement in Lemma 3.2, i.e. from the
fact that there exists a unique t such that g∗[j] = t · [j′]. �

Indeed, suppose that we are given a morphism f : X −→ Y in Sm/K, a class
c ∈ CHp(f : X −→ Y ) and a factorization f = pi of f into a regular imbedding
i : X −→ P followed by a smooth and projective morphism p : P −→ Y . Then, for
any morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f via a morphism g : Y ′ −→ Y ,
we form the fibre squares:

(3.14)

X ′ j−−−−→ Q
q−−−−→ Y ′

h′
⏐⏐� h

⏐⏐� g

⏐⏐�

X
i−−−−→ P

p−−−−→ Y

f = pi, f ′ = qj.

In (3.14), q : Q −→ Y ′ is obtained by a base change from p and hence q is smooth
and projective. Since Y ′ ∈ Sm/K, this implies that Q ∈ Sm/K. Again, j being a
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closed immersion of smooth schemes, it follows that j is a regular imbedding. Now,
using Lemma 3.2, we factor c ∈ CHp(f : X −→ Y ) as c = t·[f ] with t ∈ CHp−r(X),
for r = dim(Y )−dim(X). Let uX,P denote the class in H2(dim(P )−dim(X))(P, P−X)
induced by the regular imbedding i : X −→ P . Then, we can alternatively define
the cycle class clpf (c) ∈ H2p(f : X −→ Y ) as follows: for y′ ∈ Hk(Y ′), we can
define a family of maps:
(3.15)

clpf (c)
k
g : Hk(Y ′) −→ Hk−2r′+2p(X ′), y′ �→ h′∗clp−r

X (t) · (h∗(uX,P ) · q∗(y′)),

which also satisfies all the conditions of Definition 2.2 for being a class in the
bivariant cohomology group H2p(f : X −→ Y ).

In order to show that the expression for the cycle class defined in (3.15) agrees
with the expression for the cycle class due to (3.8), it is enough to show that for
a given morphism f : X −→ Y in Sm/K of relative dimension r, the cycle class
clrf ([f ]) of the orientation class of f defined in Proposition 3.4 is independent of
the chosen factorization f = pi of the l.c.i. morphism into a regular imbedding i
followed by a smooth and projective morphism p. This will follow from Proposition
3.6.

Proposition 3.6. Given a morphism f : X −→ Y of relative dimension r, the cycle
class clrf ([f ]) of [f ] defined by (3.15) is independent of the choice of the factorization
of f into f = pi, where i is a regular imbedding and p is a smooth and projective
morphism.

Proof. Suppose that f = pi and f = p1i1 for regular imbeddings i : X −→ P ,
i1 : X −→ P1 and smooth, projective morphisms p : P −→ Y , p1 : P1 −→ Y .
Then, we can compare each of the factorizations to:

(3.16)

P1

↗ p′ ↘ p1

X
(i1,i)−→ P1 ×Y P Y.

↘ p′1 ↗ p
P

The morphisms p′ and p′1 being smooth and projective, it is clear that P1 ×Y P ∈
Sm/K. Again, (i1, i) : X −→ P1×Y P is a closed immersion in Sm/K and hence a
regular imbedding. We let uX→P1×Y P be the class in H2(dim(P1×Y P )−dim(X))(P1×Y

P, P1 ×Y P −X) induced by (i1, i). Let up′◦(i1,i) and up′
1◦(i1,i) denote respectively

the classes induced by the regular imbeddings i1 = p′ ◦ (i1, i) and i = p′1 ◦ (i1, i).
Now suppose that we are given a morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over

f : X −→ Y via a morphism g : Y ′ −→ Y . Then, we can factor f ′ in two ways:
(1) as f ′ = q1j1 with q1 : Q1 −→ Y ′ fibred over p1 : P1 −→ Y and j1 : X ′ −→ Q1

fibred over i1 : X −→ P1 as in (3.14);
(2) as f ′ = qj with q : Q −→ Y ′ fibred over p : P −→ Y and j : X ′ −→ Q fibred

over i : X −→ P as in (3.14).
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It follows that we have the following diagram, which is fibred over (3.16):

(3.17)

Q1

↗ q′ ↘ q1

X ′ (j1,j)−→ Q1 ×Y ′ Q Y ′.
↘ q′1 ↗ q

Q

As before, it follows that Q1 ×Y ′ Q ∈ Sm/K and j1, j and (j1, j) are all regular
imbeddings. Suppose that h′ : X ′ −→ X, h1 : Q1 −→ P1, h : Q −→ P and
(h1, h) : Q1 ×Y ′ Q −→ P1 ×Y P are the maps connecting the diagram (3.17) to
(3.16). Then, we use the following fact (which follows from Lemma 3.5):

(3.18)
(h1, h)

∗(uX→P1×Y P ) ∩ q′∗(x1) = h∗
1(up′◦(i1,i)) ∩ x1, x1 ∈ H∗(Q1),

(h1, h)
∗(uX→P1×Y P ) ∩ p′∗1 (x) = h∗(up′

1◦(i1,i)) ∩ x, x ∈ H∗(Q).

Then, for some y ∈ CH∗(Y ′), we can apply (3.18) with x1 = q∗1(y) and x = q∗(y).
This shows that the two expressions for the cycle class of [f ] induced by the two
factorizations f = p1i1 and f = pi are equal on each element of H∗(Y ′). �

The following proposition now shows that the cycle class maps constructed in
Proposition 3.4 (or in (3.15)) commute with pullbacks on bivariant Chow groups.
For the sake of convenience, given a class c ∈ CHp(f : X −→ Y ), we shall simply
write cl(c) for clpf (c) when there is no danger of confusion.

Proposition 3.7. Let f : X −→ Y be a morphism in Sm/K and let f ′ : X ′ −→ Y ′

be another morphism in Sm/K fibred over f via g : Y ′ −→ Y . Let c be a class in
CHp(f : X −→ Y ). Then the cycle class maps commute with the pullback, i.e.

clpf ′(g
∗(c)) = g∗(clpf (c)) ∈ H2p(f ′ : X ′ −→ Y ′).

Proof. Let f ′′ : X ′′ −→ Y ′′ be a morphism in Sm/K fibred over f ′ via h :
Y ′′ −→ Y ′. Let dim(X) = dX , dim(X ′) = dX′ , dim(X ′′) = dX′′ , dim(Y ) = dY ,
dim(Y ′) = dY ′ and dim(Y ′′) = dY ′′ . Further, let r, r′ and r′′ denote the rela-
tive dimensions dim(Y ) − dim(X), dim(Y ′) − dim(X ′) and dim(Y ′′) − dim(X ′′)
respectively. Consider the following diagram, in which all squares are fibre squares:

X ′′ 1−−−−→ X ′′ i′′−−−−→ X × Y ′′ pY ′′−−−−→ Y ′′

h′
⏐⏐� h′

⏐⏐� 1×h

⏐⏐� h

⏐⏐�

X ′ 1−−−−→ X ′ i′−−−−→ X × Y ′ pY ′−−−−→ Y ′

g′
⏐⏐� g′

⏐⏐� 1×g

⏐⏐� g

⏐⏐�

X
1−−−−→ X

if−−−−→ X × Y
pY−−−−→ Y.

Again, we factor f = pY ◦ if as in (3.2). The maps i′ : X ′ −→ X × Y ′, i′′ : X ′′ −→
X × Y ′′ are both obtained by a base change on the closed immersion if and since
X ′, X ′′, X × Y ′ and X × Y ′′ are all smooth, it follows that i′ and i′′ are actually
regular imbeddings. Also, pY ′ and pY ′′ , both obtained by a base change on pY , are
smooth and projective.

Choose c ∈ CHp(f : X −→ Y ). By definition, both the classes g∗(cl(c)) and
cl(g∗(c)) induce maps

(3.19) Hk(Y ′′) −→ Hk−2r′′+2p(X ′′) ∀ k ∈ Z.
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Let u = uX,X×Y be the class in H2dY (X × Y,X × Y − Γf ) corresponding to the

refined Gysin morphisms given by the regular imbedding X
if
↪→ X ×Y as explained

before and let u′ = uX′,X×Y ′ denote the class in H2dY ′+2dX−2dX′ (X × Y ′, X ×
Y ′ − i′(X ′)) corresponding to the refined Gysin morphisms given by the regular

imbedding X ′ i′

↪→ X × Y ′ Let c = t · [f ], where t ∈ CHp−r(X). For a class
y′′ ∈ Hk(Y ′′), we have

cl(c)kg◦h(y
′′) = clX′′((g′ ◦ h′)∗(t)) · ((1× gh)∗(u) ∩ p∗Y ′′(y′′))

= clX′′(h′∗(g′∗(t))) · ((1× gh)∗(u) ∩ p∗Y ′′(y′′)).
(3.20)

Now let g∗(c) ∈ CHp(f ′ : X ′ −→ Y ′) factor as g∗(c) = t′·[f ′] with t′ ∈ CHp−r′(X ′).
From (3.15), we know that we can use the factorization f ′ = pY ′ ◦ i′ to define the
cycle class of [f ′]. Then, for y′′ ∈ Hk(Y ′′), we get

(3.21) cl(g∗(c))kh(y
′′) = clX′′(h′∗(t′)) · ((1× h)∗(u′) ∩ p∗Y ′′(y′′)).

Alternatively,

(3.22) g∗(c) = g∗(t · [f ]) = g′∗(t) · g∗[f ] = g′∗(t) · ce(E1) · [f ′],

where e = r − r′ and E1 is the excess normal bundle of the fibre square consisting
of the morphism f ′ fibred over f . Since g′∗(t) · ce(E1) ∈ CHp−r′(X ′) and g′∗(t) ·
ce(E1) · [f ′] = t′ · [f ′], it follows from the uniqueness statement in Lemma 3.2 that
g′∗(t) · ce(E1) = t′.

Let E2 be the excess normal bundle of the fibre square consisting of the morphism
i′ fibred over if . Using (2.14) we get (1 × g)∗(u) = clX′(ce(E2)) · u′ and hence we
can replace (1× gh)∗(u) in (3.20) by

(3.23) (1× gh)∗(u) = (1× h)∗((1× g)∗(u)) = clX′′(h′∗(ce(E2))) · (1× h)∗(u′),

and hence in order to show that the expressions in (3.20) and (3.21) are equal, it
remains to check that ce(E1) = ce(E2). For this, we write

(3.24) g∗[f ] = ce(E1)[f
′]

and

g∗[f ] = g∗([if ] · [pY ]) = (1× g)∗[if ] · g∗[pY ] = ce(E2)[i
′] · [pY ′′ ] = ce(E2)[f

′].

Hence applying the uniqueness statement of Lemma 3.2 to g∗[f ] ∈ CHr(f ′ : X ′ −→
Y ′), it follows that ce(E1) = ce(E2). �

4. Filtrations on bivariant Chow groups

In this section, our objective is to extend to bivariant Chow groups the “motivic”
filtration defined by Saito [11]. In [11], Saito defines a decreasing filtration

(4.1) CHr(X) = F 0CHr(X) ⊇ F 1CHr(X) ⊇ F 2CHr(X) ⊇ . . .

on the Chow groups of a smooth projective variety X. This filtration is a candidate
for the conjectural Bloch-Beilinson motivic filtration on Chow groups. Recall that
Beilinson has made the following important conjecture; i.e., there exists a filtration

(4.2) CHr(X) = F 0
MCHr(X) ⊇ F 1

MCHr(X) ⊇ F 2
MCHr(X) ⊇ . . .
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on the Chow groups of any smooth projective variety X such that the graded pieces
of the filtration, tensored with Q, satisfy:

(4.3) GrlFMCHr(X)⊗Q ∼= ExtlMMK
(1, h2r−l(X)(r)),

where MMK is the conjectural theory of mixed motives over the field K and 1
is the trivial motive. Beilinson [1] has offered several other conjectures on the
properties of this filtration. For a more detailed discussion of this filtration and its
connections to the theory of mixed motives, see Beilinson [1] or Saito [10].

In [10], Saito defines a filtration to be of Bloch-Beilinson (BB) type if it satisfies
the following main properties:

(a) The filtration is respected by the action of every algebraic correspondence Γ.
(b) The induced action of Γ on each graded piece of Chow groups depends only

on a certain Künneth component of the cohomology class of Γ.
(c) There exists an integer N > 0 (depending on X) such that FN

MCHr(X) = 0.
We mention here that Saito goes on to prove that the filtration (4.1) satisfies

conditions (a) and (b). Thereafter, Saito shows that F rCHk(X) = F k+1CHk(X)
for r ≥ k + 1 and introduces the group

(4.4) Dk(X) :=
⋂

l≥0

F lCHk(X).

The quotients CHk
F (X) := CHk(X)/Dk(X) are much more tractable, and a num-

ber of important conjectures for Chow groups are shown to be true modulo the
groups Dk(X). Further, Saito demonstrates that, assuming that the standard con-
jectures, as well as the fact that the filtration FM comes from the conjectural theory
of mixed motives, the filtration (4.1) agrees with the required motivic filtration (4.2)
for every smooth projective variety X up to a tensoring with Q.

Our objective in this section will be to extend this filtration to bivariant Chow
groups. We will see that there are two natural ways of doing this: one by extending
Saito’s original method in detail to the bivariant case and the other by simply
using the factorization of bivariant classes from Lemma 3.2. Finally, we will show
in Proposition 4.4 that the two possible filtrations actually agree with each other.

We start with the following proposition, which allows us to construct a more
general pushforward for classes in bivariant Chow groups.

Proposition 4.1. Let f : X −→ Y be a morphism in Sm/K and let V ∈ Sm/K
be any variety of dimension dV . Then, there exist morphisms

(4.5)
pkV : CHk(1× f : V ×X−→V × Y ) −→ CHk−dV (f : X−→Y ),
qkV : Hk(1× f : V ×X−→V × Y ) −→ Hk−2dV (f : X−→Y )

for all k ∈ Z. When X = Y and f = id, the pkV and qkV are the respective pushfor-
wards from CHk(V ×X) (resp. Hk(V ×X)) to CHk−dV (X) (resp. Hk−2dV (X)).

Proof. Consider a morphism g : Y ′ −→ Y and let f ′ : X ′ −→ Y ′ be a morphism in
Sm/K fibred over f : X −→ Y via g. Let πY ′ : V ×Y ′ −→ Y ′ and πX′ : V ×X ′ −→
X ′ be the coordinate projections. Let d ∈ CHk(1× f : V ×X−→V ×Y ) and let r′

denote the relative dimension dim(V × Y ′) − dim(V ×X ′) = dim(Y ′) − dim(X ′).
Since 1× f ′ : V ×X ′ −→ V × Y ′ is fibred over 1× f : V ×X −→ V × Y , we have
the maps

(4.6) dt(1×g) : CHt(V × Y ′) −→ CHt−r′+k(V ×X ′) ∀ t ∈ Z.
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Then, we define the class pkV (d) ∈ CHk−dV (X
f−→ Y ) by the morphisms (for each

t ∈ Z)

(4.7) pkV (d)
t
g : CHt(Y ′) −→ CHt−r′+k−dV (X ′), α �→ πX′∗ ◦ dt(1×g)(π

∗
Y ′(α)).

The map qkV on bivariant cohomologies is defined analogously.
When X = Y and f = id, let d be a class in CHk(1 : V ×X−→V ×X). Then d

is represented by a class, say D, in CHk(V ×X) and let πX : V ×X −→ X denote
the coordinate projection. From the above discussion, we have a map

(4.8) pkV : CHk(1 : V ×X−→V ×X) −→ CHk−dV (1 : X−→X)

and we have to check that pkV (d) ∈ CHk−dV (1 : X−→X) is represented by πX∗(D)
∈ CHk−dV (X).

Let Z ∈ Sm/K and consider a morphism g : Z −→ X. Choose z ∈ CH l(Z).
Let πZ : V ×Z −→ Z denote the coordinate projection and consider the morphism

1×g : V ×Z −→ V ×X. Then, pkV (d) ∈ CHk−dV (X
id−→ X) determines a morphism

(4.9)

pkV (d)
l
g : CH l(Z) −→ CH l+k−dV , z �→ πZ∗((1× g)∗(D) · π∗

Z(z)) ∈ CH l+k−dV (Z).

From the projection formula,

(4.10) πZ∗((1× g)∗(D) · π∗
Z(z)) = πZ∗(1× g)∗(D) · z.

From the fibre square

(4.11)

V × Z
πZ−−−−→ Z

1×g

⏐⏐�
⏐⏐�g

V ×X
πX−−−−→ X

we get πZ∗(1×g)∗(D) = g∗πX∗(D). Hence the map from CH l(Z) to CH l+k−dV (Z)
is induced by πX∗(D). This proves the result. �

Let f : X −→ Y be a morphism in Sm/K and suppose that V ∈ Sm/K is
a variety of dimension dV . Let p : V × X −→ X be the coordinate projection.

Suppose that Γ ∈ CHq(V × X
1×f−→ V × Y ), where k ≤ q ≤ k + dV . Define a

morphism

(4.12) T k
Γ : CHk+dV −q(V ) −→ CHk(f : X−→Y ), Γ �→ pk+dV

V (p∗(x) · Γ),

where the morphism pk+dV

V : CHk+dV (1 × f : V × X −→ V × Y ) −→ CHk(f :
X −→ Y ) is as defined in Proposition 4.1.

For any X ∈ Sm/K, recall that the coniveau filtation on the cohomology groups
of X is defined as

(4.13) NpHi(X) =
∑

Y ↪→X,codimX (Y )≥p

Im(Hi
Y (X) −→ Hi(X)),

where the sum is taken over all closed subschemes Y in X of codimension ≥ p. Now,
the original definition of Saito [11] of a filtration on the Chow groups CHk(X) for
any variety X over C is as follows.
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Definition 4.2. For any variety X ∈ Sm/C, set F 0CHk(X) = CHk(X) for all
k ∈ Z. For some ν ≥ 0, suppose that we have already defined F νCHk(V ) for all
varieties V . Then define

(4.14) F ν+1CHk(X) =
∑

V,q,Γ

Im(Γ∗ : F νCHk+dV −q(V ) −→ CHk(X)),

where V , q and Γ vary over the following data:
(1) V is smooth, projective of dimension dV over C.
(2) q is an integer such that k ≤ q ≤ k + dV .
(3) Γ ∈ CHq(V ×X) satisfies the condition

(4.15) γ2k−ν ∈ H2q−2k+ν(V )⊗Nk−ν+1H2k−ν(X),

γ2k−ν being the Künneth component of the cohomology class γ of clq(Γ) in
H2q−2k+ν(V ) ⊗ H2k−ν(X). The set of all Γ ∈ CHq(V × X) whose (2k − ν)-th
Künneth component satisfies the condition above is denoted by Lk,νCHq(V ×X).

Given a morphism f : X −→ Y , we will now give an analogous definition for
Lk,νCHq(1× f : V ×X −→ V × Y ). Given a Γ ∈ CHq(1× f : V ×X −→ V × Y ),
we can factor Γ uniquely as Γ = tγ · [1 × f ], where tγ ∈ CHq−r(V × X), where
r = dim(Y )−dim(X) and [1× f ] is the orientation class of 1× f . Denote the cycle
class cl(tγ) of tγ in H2q−2r(V ×X) by γ. We will say that

(4.16) Γ ∈ Lk,νCHq(1× f : V ×X −→ V × Y )

⇔ γ2k−2r−ν ∈ H2q−2k+ν(V )⊗Nk−r−ν+1H2k−2r−ν(X),

γ2k−2r−ν being the Künneth component of γ lying in H2q−2k+ν(V )⊗H2k−2r−ν(X).
This obviously agrees with the definition of Lk,ν(V × X) in the case X = Y and
f = id.

We will now extend this filtration to bivariant Chow groups by replacing the
maps Γ∗ in (4.14) with the maps T k

Γ defined in (4.12).

Definition 4.3. Let f : X −→ Y be a morphism in Sm/C. Set G0CHk(f :
X−→Y ) = CHk(f : X−→Y ) for every k ∈ Z. Let r = dim(Y )− dim(X).

Let ν ≥ 0 be an integer. Assume that we have already defined GνCHs(g :
V−→W ) for every morphism g : V −→ W of smooth projective schemes V , W .
Now define
(4.17)

Gν+1CHk(f : X−→Y ) =
∑

V,q,Γ

Im(T k
Γ : GνCHk+dV −q(V ) −→ CHk(f : X−→Y )).

Here V , q and Γ range over the following data:
(1) V is a smooth projective variety of dimension dV over C.
(2) q is an integer such that k ≤ q ≤ k + dV .
(3) Γ is a class in CHq(1× f : V ×X−→V × Y ) such that Γ ∈ Lk,νCHq(1× f :

V ×X −→ V × Y ).

When X = Y and f = id, this recovers the original definition due to Saito. It is
not immediately clear that this is, in fact, a filtration. Note that we could define a
filtration Gν

1 , ν ≥ 0 on CHk(f : X −→ Y ) simply by requiring that

(4.18) c ∈ Gν
1CHk(f : X −→ Y ) ⇔ c = t · [f ] for some t ∈ F νCHk−r(X),
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where F ν is the original filtration of Saito. We will now show that GνCHk(f :
X −→ Y ) = Gν

1(f : X −→ Y ). This will also establish that Gν , ν ≥ 0 defines a
filtration.

Proposition 4.4. Let f : X −→ Y be a morphism in Sm/C. Then, the filtrations
Gν and Gν

1 on the bivariant Chow group CHk(f : X −→ Y ) coincide.

Proof. By definition, G0CHk(f : X −→ Y ) = G0
1CHk(f : X −→ Y ) and hence

the result holds for ν = 0. Suppose that it is true up to ν = ν0. Let r = dim(Y )−
dim(X). Then, any Γ ∈ Lk,νCHq(1×f : V ×X −→ V ×Y ) factor as Γ = tγ · [1×f ],
where tγ ∈ CHq−r(V ×X). We see directly from (4.16) that

(4.19) Γ ∈ Lk,νCHq(1× f : V ×X −→ V × Y ) ⇔ tγ ∈ Lk−r,νCHq−r(X).

Therefore, in order to prove the result, it suffices to show that, for any class α ∈
CHk+dV −q(V ),

T k
Γ (α) = (tγ)∗(α) · [f ].

Suppose that f ′ : X ′ −→ Y ′ is fibred over f via g : Y ′ −→ Y . Then we have the
fibre squares:

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,

V ×X ′ pX′−−−−→ X ′

1×g′
⏐⏐� g′

⏐⏐�

V ×X
pX−−−−→ X,

V × Y ′ pY ′−−−−→ Y ′

1×g

⏐⏐� g

⏐⏐�

V × Y
pY−−−−→ Y.

Further, let pV : V ×X −→ V be the projection. Choose a class y′ ∈ CH l(Y ′). By
definition, the bivariant class T k

Γ (α) ∈ CHk(f : X −→ Y ) takes y′ ∈ CH l(Y ′) to

(T k
Γ (α))

l
g(y

′) = pX′∗((1× g′)∗(p∗V (α) · tγ) · [1× f ]l1×g(p
∗
Y ′(y′))),

where pV is the coordinate projection pV : V ×X −→ V . Moreover, we have
(4.20)

[1× f ]l1×g(p
∗
Y ′(y′)) = [1× f ]l1×g ◦ [pY ]lg(y′) = [pX ]l−r′+r

g′ [f ]lg(y
′) = p∗X′([f ]lg(y

′)),

where the latter equality follows from the fact that (1 × f) ◦ pY = pX ◦ f . It now
follows that

(T k
Γ (α))

l
g(y

′) = pX′∗((1× g′)∗((p∗V (α) · tγ) · p∗X′([f ]lg(y
′)))

= (pX′∗ ◦ (1× g′)∗)((p∗V (α) · tγ)) · [f ]lg(y′)
(by the projection formula).

Finally, pX′∗ ◦ (1× g′)∗ = g′∗ ◦ pX∗ and hence

�(4.21) (T k
Γ (α))

l
g(y

′) = g′∗pX∗(p
∗
V (α) · tγ) · [f ]lg(y′) = ((tγ)∗(α) · [f ])lg(y′).

5. Higher bivariant Chow groups

For an algebraic scheme X, the Riemann-Roch theorem of Baum, Fulton and
MacPherson applies and we have an isomorphism

(5.1) G0(X)⊗Q
∼=−→

⊕

p∈Z

CHp(X)⊗Q,
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where G0(X) denotes the Grothendieck group of the category of coherent sheaves
on X. In [3], Bloch introduced the theory of higher Chow groups CHp(X,m),
p,m ≥ 0 and proved that they satisfy the following higher analogue of (5.1):

(5.2) Gm(X)⊗Q
∼=−→

⊕

p∈Z

CHp(X,m)⊗Q ∀m ≥ 0,

where Gm(X) denotes the m-th higher K-theory group of the category of coherent
sheaves on X. For an equidimensional and quasi-projective scheme X and any
m ≥ 0, the higher Chow groups CHp(X,m) are defined as follows: let Δn be the
usual n-simplex, given by

(5.3) Δn = Spec(K[t0, t1, ..., tn])/(
∑n

i=0ti − 1) ∼= An
K n ≥ 0.

For any p,m ≥ 0, let Zq(X,m) denote the free abelian group generated by cycles
of codimension p in X × Δn meeting all the faces X × Δm for m ≤ n properly.
The degeneracy maps si : Δn −→ Δn+1, i = 0, 1, ..., n for each n, induce maps
sXi : X ×Δn −→ X ×Δn+1, i = 0, 1, ..., n and setting

(5.4) ∂ =
∑

(−1)is∗Xi, s∗Xi : Zp(X,n+ 1) −→ Zp(X,n),

we have a complex (Zp(X, ∗), ∂). Then, the higher Chow groups CHp(X,m) of X
are defined by

(5.5) CHp(X,m) = Hm(Zp(X, ∗), ∂).

Bloch [3] shows that CHp(X, 0) = CHp(X) for every p ≥ 0. If f : X −→ Y
is a flat morphism of schemes, then there exist pullbacks f∗ : CHp(Y,m) −→
CHp(X,m). If Y is smooth and either affine or projective (see [2, Proposition
2.5.1]), the pullback maps f∗ : CHp(Y,m) −→ CHp(X,m) always exist, regardless
of whether f is flat. If f : X −→ Y is proper, there exist pushforward maps
f∗ : CHp(X,m) −→ CHp+dim(Y )−dim(X)(Y,m). For smooth schemes X, the higher
Chow groups also carry a product

(5.6) CHp(X,m)⊗ CHq(Y, n) −→ CHp+q(X × Y,m+ n)

and hence, pulling back by the diagonal X
Δ−→ X ×X, we obtain a product

(5.7) CHp(X,m)⊗ CHq(X,n) −→ CHp+q(X,m+ n).

For details on the construction and properties of higher Chow groups, see Bloch
[3].

In this final section, we intend to introduce higher bivariant Chow groups CHp(f :
X −→ Y,m), m ≥ 0 for a morphism f : X −→ Y in Sm/K. The formal definition
will be given in Definition 5.3. First, we consider the properties that a definition
higher bivariant Chow group should satisfy.

If f : X −→ Y is a morphism in Sm/K, we understand that a class c in the
higher bivariant Chow group CHp(f : X −→ Y,m) should be such that, given
f ′ : X ′ −→ Y ′ in Sm/K fibred over f via g : Y ′ −→ Y , for each n ≥ 0, we obtain
morphisms

(5.8) ckg(n) : CHk(Y ′, n) −→ CHk−r′+p(X ′,m+ n) ∀ n, k ∈ Z

(once again, r′ = dim(Y ′)− dim(X ′)) satisfying certain natural compatibility con-
ditions. For instance, consider a class t ∈ CHp(X,m) for some fixed m. Then,
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given any g : X ′ −→ X, we have a collection of morphisms (n, p ∈ Z)
(5.9)
tqg(n) : CHq(X ′, n) −→ CHq+p(X ′,m+ n), x′ �→ g∗(t) · x′ ∀ x′ ∈ CHq(X ′, n),

which we see as a class in CHp(1 : X −→ X,m) corresponding to t. The ex-
pression (5.9) suggests that in the family (5.8) of morphisms defining a class
c ∈ CHp(f : X −→ Y,m), the maps ckg(n) must not only be compatible with
proper pushforwards, flat pullbacks and refined Gysin morphisms, but, for different
values of n, the maps ckg(n) must also be related to each other.

Therefore, we will define a class c in the higher bivariant Chow group CHp(f :
X −→ Y,m) to be a collection of maps that “raise the order of the Chow group
from 0 to m”:

(5.10) ckg : CHk(Y ′) = CHk(Y ′, 0) −→ CHk−r′+p(X ′,m)

for each morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f : X −→ Y . We will then
show that these classes can be used to define, in general, maps that “raise the order
of the Chow group from n to m+ n” for any n ≥ 0; i.e., the maps in (5.10) can be
used to define more general maps:

(5.11) ckg(n) : CHk(Y ′, n) −→ CHk−r′+p(X ′,m+ n).

Let f : X −→ Y be a morphism in Sm/K. Let f ′ : X ′ −→ Y ′ be a morphism in
Sm/K fibred over f : X −→ Y via g : Y ′ −→ Y . As in (3.2), the morphisms f and
f ′ in Sm/K are also l.c.i. Let d = dim(Y )− dim(X) and d′ = dim(Y ′)− dim(X ′)
and let [f ] and [f ′] denote the orientation classes of f and f ′ respectively. Then,
we recall from (2.23) that

(5.12) g∗[f ] = ce(E) · [f ′] ∈ CHd(f : X −→ Y ),

where e = d− d′ and E is the excess normal bundle. Here ce(E) denotes the e-th

Chern class of the bundle E. We know that ce(E) ∈ CHd−d′
(X ′) = CHe(X ′). In

the following lemma, we construct “higher refined Gysin morphisms”, which are
key to our construction of higher bivariant Chow groups.

Lemma 5.1 (Higher refined Gysin morphisms). Let i : X −→ Y be a regular
imbedding in Sm/K of codimension d. Let i′ : X ′ −→ Y ′ be a morphism in Sm/K
fibred over i : X −→ Y via a morphism g : Y ′ −→ Y :

(5.13)

X ′ i′−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
i−−−−→ Y.

Then, for any m ≥ 0, there are higher refined Gysin morphisms

(5.14) i!m : CHk(Y ′,m) −→ CHk+d−d′
(X ′,m),

where d′ = dim(Y ′) − dim(X ′). For m = 0, these coincide with the usual refined
Gysin morphisms.

Proof. It is clear that the closed immersion i′ in Sm/K is a regular imbedding
of codimension d′. Suppose that E denotes the excess normal bundle of the fibre
square in (5.13) and e = d− d′. Then, from (5.12), we know that

(5.15) g∗[i] = ce(E) · [i′],
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where the Chern class ce(E) ∈ CHe(X ′). We define the higher refined Gysin
morphism by

(5.16)
i!m : CHk(Y ′,m) −→ CHk+d−d′

(X ′,m),
y′ �→ ce(E) · i′∗(y′).

From the expression g∗[i] = ce(E) · [i′], it follows that the maps i!0 are identical to
the refined Gysin maps i!. �

The following proposition shows that a class in the bivariant Chow group CHp(f :
X −→ Y ) can be used to induce morphisms between Chow groups of any order
n ≥ 0. This is the statement of (5.11) for m = 0, since we will define the higher
bivariant Chow groups in such a manner that CHp(f : X −→ Y, 0) = CHp(f :
X −→ Y ).

Proposition 5.2. Let f : X −→ Y be a morphism in Sm/K. Let f ′ : X ′ −→ Y ′

be a morphism in Sm/K fibred over f : X −→ Y via the morphism g : Y ′ −→ Y ,
with r′ = dim(Y ′)−dim(X ′). Let c be a class in the bivariant Chow group CHp(f :
X −→ Y ). Then, for any m ≥ 0, there exist morphisms

(5.17) ckg(m) : CHk(Y ′,m) −→ CHk−r′+p(X ′,m).

For m = 0, these are the usual maps CHk(Y ′) −→ CHk−r′+p(X ′) that follow from
the definition of c as a class in the bivariant Chow group CHp(f : X −→ Y ).

Proof. As usual, we factor f as X
if−→ X × Y

pY−→ Y and consider the fibre squares

(5.18)

X ′ 1−−−−→ X ′ i′−−−−→ X × Y ′ pY ′−−−−→ Y ′

g′
⏐⏐� g′

⏐⏐� 1×g

⏐⏐� f

⏐⏐�

X
1−−−−→ X

if−−−−→ X × Y
pY−−−−→ Y.

Let r = dim(Y )− dim(X). Given c ∈ CHp(f : X −→ Y ), factor c as c = t · [f ] =
t · [if ][pY ], for some t ∈ CHp−r(X). Then the map ckg(m) : CHk(Y ′,m) −→
CHk−r′+p(X ′,m) is defined by composing the following maps:

p∗Y ′ : CHk(Y ′,m) −→ CHk(X × Y ′,m) (pullback),

(if )
!
mCHk(X × Y ′,m) −→ CHk+r−r′(X ′,m) (by Lemma 5.1),

g′∗(t) · : CHk+r−r′(X ′,m) −→ CHk−r′+p(X ′,m) (by multiplication). �

It follows from Proposition 5.2 that the orientation class [f ] ∈ CHr(f : X −→
Y ), where r = dim(Y )− dim(X), of a morphism f : X −→ Y also induces maps

(5.19) [f ]kg(m) : CHk(Y ′,m) −→ CHk−r′+p(X ′,m)

for each morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f via g : Y ′ −→ Y .
Finally, we come to the formal definition of higher bivariant Chow groups.

Definition 5.3. Let f : X −→ Y be a morphism in Sm/K. Consider each
morphism f ′ : X ′ −→ Y ′ in Sm/K fibred over f : X −→ Y via a morphism
g : Y ′ −→ Y . For each such fibre square, a class c in the bivariant Chow group
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CHp(X
f−→ Y, n) gives a family of morphisms:

(5.20) ckg : CHk(Y ′, 0) −→ CHk−r′+p(X ′, n),

where r′ = dim(Y ′)− dim(X ′), satisfying the following conditions:
(1) If h : Y ′′ −→ Y ′ is proper and g : Y ′ −→ Y is arbitrary, then, for the

following diagram of fibre squares in Sm/K:

(5.21)

X ′′ f ′′

−−−−→ Y ′′

h′
⏐⏐� h

⏐⏐�

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y.

Given α ∈ CHk(Y ′′), we have

(5.22) ck
′

g (h∗α) = h′
∗c

k
gh(α), where k′ = k + dim(Y ′)− dim(Y ′′).

(2) In the same diagram (5.21), if h : Y ′′ −→ Y ′ is a flat morphism (instead of
being proper as in condition (1)) and g : Y ′ −→ Y is arbitrary, and we form the
same diagram, then, for any α ∈ CHk(Y ′),

(5.23) ckgh(h
∗α) = h∗ckg(α).

(3) If g : Y ′ −→ Y and h : Y ′ −→ Z ′ are morphisms, i : Z ′′ −→ Z ′ is a regular
imbedding in Sm/K of codimension e and we have the fibre diagram in Sm/K:

(5.24)

X ′′ f ′′

−−−−→ Y ′′ h′
−−−−→ Z ′′

i′′
⏐⏐� i′

⏐⏐� i

⏐⏐�

X ′ f ′

−−−−→ Y ′ h−−−−→ Z ′

g′
⏐⏐� g

⏐⏐�

X
f−−−−→ Y,

then, for any α ∈ CHk(Y ′) and k ∈ Z,

(5.25) i!nc
k
g(α) = c

k+e−(y′−y′′)
gi′ (i!α) (where dim(Y ′) = y′ and dim(Y ′′) = y′′).

If we set n = 0 in Definition 5.3 above, we recover Definition 2.1 and hence it
follows that for any morphism f : X −→ Y , we have

(5.26) CHp(f : X −→ Y, 0)
≈−→ CHp(f : X −→ Y ).

For instance, given a line bundle M on S1, for any vector bundle E of rank
e+ 1 on a scheme X in Sm/K, we can construct higher bivariant classes sMi (E) ∈
CHi(1 : X −→ X, e + i), i ∈ Z, by modifying the definition of the usual Segre
classes si(E). Here S1 is defined as follows: let Δ1 denote the 1-simplex as in (5.3)

and let ∂Δ =
⋃1

i=0 Δ
0. Then, following Bloch [3], we set S1 = Δ1

⋃
∂Δ Δ1. Then,

we choose and fix a line bundle M over S1. We mention here that the Picard
group Pic(S1) ∼= CH1(Spec(K), 1) ∼= K∗ (see [3]) is not trivial, K∗ being the
multiplicative group of units in the field K.
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Let E be a vector bundle of rank e+ 1 on a scheme X and let pE : P(E) −→ X
be the projectivized bundle of E. Consider the line bundle O(1) on P(E). Then,
we denote by ME the line bundle ME = p∗1(O(1)) ⊗ p∗2(M) on P(E) × S1, p1 :
P(E)×S1 −→ P(E) and p2 : P(E)×S1 −→ S1 being the two coordinate projections.
Then, ME induces a class in Pic(P(E)×S1)/P ic(P(E)), which we denote by [ME ].
From [3, §6], it follows that we have isomorphisms

(5.27) Pic(P(E)× S1)/P ic(P(E)) ∼= CH1(P(E), 1).

Let cE ∈ CH1(P(E), 1) denote the class corresponding to [ME ] ∈ Pic(P(E) ×
S1)/P ic(P(E)) by (5.27). Now suppose that we have a morphism g : Y −→ X in
Sm/K and we form the fibre square

(5.28)

P(E)×X Y
p′
E−−−−→ Y

g′
⏐⏐� g

⏐⏐�

P(E)
pE−−−−→ X.

Then, for any i, we can define the higher bivariant class sMi (E) ∈ CHi(1 : X −→
X, e+ i) by the family of morphisms:

(5.29) sMi (E)kg : CHk(Y, 0) −→ CHk+i(Y, e+ i), α �→ p′E∗(g
′∗(ce+i

E ) · p′∗E(α)),

where ce+i
E denotes the class in CHe+i(P(E), e + i) obtained by multiplying cE ∈

CH1(P(E), 1) (e+ i)-times.
In general, given a morphism f : X −→ Y in Sm/K, it is clear that if we have

c ∈ CHp(f : X −→ Y, n), d1 ∈ CHq1(g1 : X1 −→ X) and d2 ∈ CHq2(g2 : Y −→
Y2) and the fibre diagram

(5.30)

X ′
1

g′
1−−−−→ X ′ f ′

−−−−→ Y ′ g′
2−−−−→ Y ′

2

h′′′
⏐⏐� h′′

⏐⏐� h′
⏐⏐� h

⏐⏐�

X1
g1−−−−→ X

f−−−−→ Y
g2−−−−→ Y2

we can form products c · d2 and d1 · c by the morphisms:

c · d2 ∈ CHp+q2(g2 ◦ f : X −→ Y2, n),

(c · d2)kh(y′2) := c
k−dim(Y ′

2 )+dim(Y )+q2
h′ ((d2)

k
h(y

′
2)) ∀y′2 ∈ CHk(Y ′

2),

d1 · c ∈ CHq1+p(f ◦ g1 : X1 −→ Y, n),

(d1 · c)kh′ := (d1)
k−dim(Y ′)+dim(X′)+p
h′′ (n)(ckh′(y′)) ∀y′ ∈ CHk(Y ′)

(5.31)

for each k ∈ Z and check that

(5.32) d1 · c · d2 = (d1 · c) · d2 = d1 · (c · d2) ∈ CHq1+p+q2(g2 ◦ f ◦ g1 : X1 −→ Y2, n).

Also, if we have fibre squares

(5.33)

X ′ f ′
1−−−−→ Y ′ f ′

2−−−−→ Z ′

g′′
⏐⏐� g′

⏐⏐� g

⏐⏐�

X
f1−−−−→ Y

f2−−−−→ Z,
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then, given c ∈ CHp(f1 : X −→ Y, n) and d ∈ CHq(f2 : Y −→ Z), the pullback
g∗(c · d) ∈ CHp+q(f2 ◦ f1 : X ′ −→ Z ′, n) is defined in the obvious manner and,
furthermore,

(5.34) g∗(c · d) = g′∗(c) · g∗(d).

However, in order to define a more general product
(5.35)
CHp(f : X −→ Y,m)⊗ CHq(g : Y −→ Z, n) −→ CHp+q(gf : X −→ Z,m+ n),

we must show that any element of CHp(f : X −→ Y,m) induces maps from

CHk(Y ′, n) to CHk−r′+p(X ′, n +m) for any integers n and k and any morphism
f ′ : X ′ −→ Y ′ in Sm/K fibred over f : X −→ Y with r′ = dim(Y ′) − dim(X ′).
When m = 0, this is already Proposition 5.2. To prove this for any m ≥ 0,
we have to start with a factorization of a class in CHp(f : X −→ Y, n) as a
product of a class in CHp−dim(Y )+dim(X)(1 : X −→ X,n) and the orientation class
[f ] ∈ CHdim(Y )−dim(X)(f : X −→ Y, 0) of f as in Lemma 3.2 . We now proceed to
prove the following, which is analogous to [6, Proposition 17.4.2]:

Proposition 5.4. Let g : Y −→ Z be a smooth and projective morphism in Sm/K
of relative dimension dim(Z) − dim(Y ) = −d and let [g] ∈ CH−d(g : Y −→ Z)
denote its orientation class. Then, for any morphism f : X −→ Y in Sm/K, any
integer p and any n ≥ 0, we have an isomorphism

(5.36) CHp(f : X −→ Y, n)
·[g]−→∼= CHp−d(g ◦ f : X −→ Z, n).

Proof. Consider the fibre diagram:

(5.37)

X
f−−−−→ Y

γ

⏐⏐� δ

⏐⏐�

X ×Z Y
f ′

−−−−→ Y ×Z Y
q−−−−→ Y

p′
⏐⏐� p

⏐⏐� g

⏐⏐�

X
f−−−−→ Y

g−−−−→ Z.

In the diagram above, δ is the diagonal imbedding and p and q are the projections
on the first and second coordinates respectively. We note that δ and γ are both
regular imbeddings of the same codimension d. Since g is smooth and projective,
it is clear that all schemes in the diagram above lie in Sm/K. Further, since g is
flat, it also follows, from (2.23), that g∗[g] = [q]. Define the inverse homomorphism

(5.38) L : CHp−d(gf : X −→ Z, n) −→ CHp(f : X −→ Y, n)

by L(c′) = [γ] · g∗(c′) for c′ ∈ CHp−d(gf : X −→ Z, n). For any c′ ∈ CHp−d(gf :
X −→ Z, n), we check that

L(c′) · [g] = [γ] · g∗(c′) · [g]
= [γ] · (g∗(c′) · [g])
= [γ] · ([p′] · c′) (using (5.23))
= [p′ ◦ γ] · c′
= [id] · c′ = c′.
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For any c ∈ CHp(f : X −→ Y, n), we check that

L(c · [g]) = [γ] · g∗(c · [g])
= [γ] · p∗(c) · g∗[g] (using (5.34))
= (p ◦ δ)∗(c) · [δ] · [q] (using (5.25))
= c · [q ◦ δ] = c.

�

Proposition 5.5. (1) Let i : X −→ Y be a regular imbedding in Sm/K of codimen-
sion d and let c be a class in the bivariant higher Chow group CHp(i : X −→ Y, n)
for some integer n ≥ 0. Then, there exists a class t ∈ CHp−d(1 : X −→ X,n) such
that c = t · [i], where [i] ∈ CHd(i : X −→ Y, 0) is the orientation class of i.

(2) Let f : X −→ Y be a morphism in Sm/K and suppose that c is a class in
CHp(f : X −→ Y, n) for some integer n ≥ 0. Then, if r = dim(Y ) − dim(X),
there exists a class c′ ∈ CHp−r(1 : X −→ X,n) such that c = c′ · [f ], where
[f ] ∈ CHp−r(f : X −→ Y, 0) is the orientation class of f .

Proof. (1) We proceed as in the proof of Lemma 3.1. We have the regular imbedding
i : X −→ Y of codimension d = dim(Y ) − dim(X) and the class c ∈ CHp(i :
X −→ Y, n). Let [pY ] ∈ CH−dim(Y )(pY : Y −→ Spec(K), 0) be the orientation
class of the structure morphism pY : Y −→ Spec(K) and consider the product
c · [pY ] ∈ CHp−dim(Y )(pX : X −→ Spec(K), n). From Proposition 5.4 above, it
follows that multiplication by [pX ] induces an isomorphism

(5.39) CHp−d(1 : X −→ X,n)
·[pX ]−→∼= CHp−dim(Y )(pX : X −→ Spec(K), n).

Hence, there exists t ∈ CHp−d(1 : X −→ X,n) such that c · [pY ] = t · [pX ]. But
[pX ] = [i] · [pY ] and again we know from Proposition 5.4 that multiplication by [pY ]
induces an isomorphism

(5.40) CHp(i : X −→ Y, n)
·[pY ]−→∼= CHp−dim(Y )(pX : X −→ Spec(K), n).

Since c · [pY ] = t · [i] · [pY ], we have c = t · [i].
(2) Again, the proof of (2) is the same as the proof of Lemma 3.2. �

Given a scheme X and some n ≥ 0, any class t ∈ CHp(X,n) induces a class
in CHp(1 : X −→ X,n) as mentioned in (5.9). We will now check that for each
scheme X ∈ Sm/K, there are natural isomorphisms

(5.41) CHp(X,n)
∼=−→ CHp(1 : X −→ X,n) ∀ p ∈ Z, n ≥ 0.

Proposition 5.6. Let X ∈ Sm/K. Then, there exist natural isomorphisms

(5.42) CHp(X,n)
∼=−→ CHp(1 : X −→ X,n) ∀ p ∈ Z, n ≥ 0.

Proof. A given class c ∈ CHp(1 : X −→ X,n) induces a map

(5.43) c01 : CH0(X, 0) −→ CHp(X,n).

Hence, we can define a morphism

(5.44) F : CHp(1 : X −→ X,n) −→ CHp(X,n), c �→ c01([X]),
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where [X] ∈ CH0(X, 0) is the class of X. Conversely, given a class t ∈ CHp(X,n),
we can multiply by pullbacks of this class to give maps (as already explained in
(5.9))

(5.45) CHk(X ′, 0) −→ CHk+p(X ′, n), x′ �→ x′ · g∗(t) ∀x′ ∈ CHk(X ′, 0)

for any g : X ′ −→ X in Sm/K, thus defining a class in CHp(1 : X −→ X,n). Let
us denote this class by G(t). This gives us a map

(5.46) G : CHp(X,n) −→ CHp(1 : X −→ X,n).

It is clear that (F ◦G)(t) = t for any t ∈ CHp(X,n). On the other hand, consider
F (c) ∈ CHp(X,n) for some c ∈ CHp(1 : X −→ X,n) and choose some morphism
g : X ′ −→ X in Sm/K. Then, we have morphisms

(5.47) ckg : CHk(X ′, 0) −→ CHk+p(X ′, n)

for each k ∈ Z. The group CHk(X ′, 0) is generated by classes [Y ′], where Y ′ is a
subscheme of codimension k in X ′. We choose a subscheme Y ′ of codimension k
in X ′ and let i′ : Y ′ −→ X ′ be the inclusion. Since resolution of singularities holds
over the ground field K, there exists a smooth variety Y ′′ and projective birational
morphism p′′ : Y ′′ −→ Y ′. Since X, X ′ and Y ′′ are all smooth, it follows that i′p′′

and g are both l.c.i. morphisms as mentioned in (3.2). In what follows, we shall,
by abuse of notation, use (i′p′′)!, g! and (gi′p′′)! to denote the morphisms induced
by the orientation classes of the l.c.i. morphisms i′p′′, g and gi′p′′ respectively.
Since the higher bivariant classes are compatible with flat pullbacks and higher
refined Gysin morphisms induced by regular imbeddings, it follows that they are
compatible with (i′p′′)!, g! and (gi′p′′)!. Then, we have:

(5.48)

ckg([Y
′]) = ckg((i

′p′′)∗(gi
′p′′)!([X]))

= (i′p′′)∗c
0
gi′p′′((gi′p′′)!([X]))

= (i′p′′)∗(gi
′p′′)!c01([X]) = (i′p′′)∗(gi

′p′′)!(F (c))
= (i′p′′)∗(gi

′p′′)!([X] · F (c))
= (i′p′′)∗((gi

′p′′)!([X]) · (gi′p′′)∗(F (c)))
= (i′p′′)∗([Y

′′] · (i′p′′)∗(g∗(F (c)))) = [Y ′] · g∗(F (c)).

Hence, the bivariant higher Chow class given by multiplication with pullbacks of
F (c) is identical to the original class c. Hence, (G ◦ F )(c) = c. This completes the
proof. �

Proposition 5.7. Let f : X −→ Y be a morphism in Sm/K and suppose that c is
a class in CHp(f : X −→ Y, n) for some integer n ≥ 0. Suppose that f ′ : X ′ −→ Y ′

is a morphism in Sm/K fibred over f : X −→ Y via a morphism g : Y ′ −→ Y . Let
r′ = dim(Y ′)− dim(X ′). Then, for any m ≥ 0, there exist maps

(5.49) ckg(m) : CHk(Y ′,m) −→ CHk−r′+p(X ′,m+ n).

Proof. From Proposition 5.5(2), we know that there exists a class c′ ∈ CHp−r(1 :
X −→ X,n) such that c = c′ · [f ], where [f ] ∈ CHp−r(f : X −→ Y, 0) is the
orientation class of f . From Proposition 5.6, we know that c′ ∈ CHp−r(1 : X −→
X,n) corresponds to a class t in CHp−r(X,n). Again, we factor f as X

if−→
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X × Y
pY−→ Y and consider the fibre squares

(5.50)

X ′ 1−−−−→ X ′ i′−−−−→ X × Y ′ pY ′−−−−→ Y ′

g′
⏐⏐� g′

⏐⏐� 1×g

⏐⏐� f

⏐⏐�

X
1−−−−→ X

if−−−−→ X × Y
pY−−−−→ Y.

Then the map ckg(m) : CHk(Y ′,m) −→ CHk−r′+p(X ′,m + n) is defined by com-
posing the following maps:

p∗Y ′ : CHk(Y ′,m) −→ CHk(X × Y ′,m) (pullback),

(if )
!
m : CHk(X × Y ′,m) −→ CHk+r−r′(X ′,m) (by Lemma 5.1),

g′∗(t) · : CHk+r−r′(X ′,m) −→ CHk−r′+p(X ′,m+ n) (by multiplication).

�
Finally, we can construct the product of higher bivariant Chow groups.

Corollary 5.8. Let f and g be composable morphisms of schemes X
f−→ Y

g−→ Z
in Sm/K. Then, for any integers m,n, p, q ≥ 0, there exists a product
(5.51)
CHp(f : X −→ Y,m)⊗ CHq(g : Y −→ Z, n) −→ CHp+q(g ◦ f : X −→ Z,m+ n).

Proof. Let c ∈ CHp(f : X −→ Y,m) and d ∈ CHq(g : Y −→ Z, n) and let the
squares in the following diagram be Cartesian:

(5.52)

X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z ′

h′′
⏐⏐� h′

⏐⏐� h

⏐⏐�

X
f−−−−→ Y

g−−−−→ Z.

Then the class (c · d) ∈ CHp+q(g ◦ f : X −→ Z,m+n) is defined by composing the
following series of maps:

dkh : CHk(Z ′, 0) −→ CHk−dim(Y ′)+dim(Z′)+q(Y ′, n),

c
k−dim(Y ′)+dim(Z′)+q
h′ (n) : CHk−dim(Y ′)+dim(Z′)+q(Y ′, n)

−→ CHk−dim(X′)+dim(Z′)+q+p(X ′,m+ n).

�

Remark 5.9. We note that our definition of “higher bivariant Chow groups” CHp(f :
X −→ Y, n) only incorporates the situation in which n ≥ 0. The case n < 0 has
not been treated; this is because it is not clear whether such a group would be
nonempty.
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