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ASYMPTOTIC BEHAVIOR FOR A SEMILINEAR

SECOND ORDER EVOLUTION EQUATION

CHUNYOU SUN, LU YANG, AND JINQIAO DUAN

Abstract. This paper is devoted to the qualitative analysis for a second order
evolution equation utt−Δu−Δut−εΔutt+f(u) = g(x) (ε ∈ [0, 1]) with critical
nonlinearity. Some uniformly (w.r.t. ε ∈ [0, 1]) asymptotic regularity about
the solutions has been established for both g(x) ∈ L2(Ω) and g(x) ∈ H−1,
which shows that the solutions are exponentially approaching a more regular
fixed subset uniformly (w.r.t. ε ∈ [0, 1]). As an application of this regularity
result, a family {Eε}ε∈[0,1] of finite dimensional exponential attractors has been
constructed. Moreover, to characterize the relation with a strongly damped
wave equation (ε = 0), the upper semicontinuity, at ε = 0, of the global
attractors has been proved.

1. Introduction

We study the long-time behavior of the following semilinear evolution equation
of second order in time:

(Eε)

⎧⎪⎨
⎪⎩
utt −Δu−Δut − εΔutt + f(u) = g(x) in Ω× [0,∞),

(u(x, 0), ut(x, 0)) = (u0(x), v0(x)),

u|∂Ω = 0,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, ε ∈ [0, 1],

and the external forcing g(x) is time-independent.
When ε = 0, (E0) is the usual strongly damped wave equation, and its asymp-

totic behavior has been studied extensively in terms of attractors; see [4, 5, 7, 13,
16, 23, 25, 32, 35, 36].

For each fixed ε0 > 0, equation (Eε0) is a special form of the so-called improved
Boussinesq equation (see [3, 19, 20, 31]) with damped term −Δut, which was used
to describe ion-sound waves in plasma by Makhankov [20, 21] and also known to
represent other sorts of ‘propagation problems’ of, for example, lengthways waves
in nonlinear elastic rods and ion-sonic waves of space transformations by a weak
nonlinear effect (see [3, 10]).

The main purpose of this paper is, based on the global well-posedness results
given in [6] and motivated by the dynamical results in [9, 13, 23, 25, 28, 30, 36, 37],
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to give some uniform (w.r.t. the parameter ε ∈ [0, 1]) qualitative analysis (or a priori
estimates) for the solutions of (Eε) and then provide some information about the
relation between the solutions of (E0) and those of (Eε).

This paper is organized as follows. In §2, we introduce basic notation and state
our main results. In §3, we recall some abstract results that we will use later. In
§4, we present several dissipative estimates about the solution of (Eε), which hold
uniformly with respect to ε ∈ [0, 1]. The main results are proved in §5 and §6
for g(x) ∈ L2(Ω) and g(x) ∈ H−1, respectively. Moreover, as an application, we
construct a finite dimensional exponential attractor and prove upper semicontinuity
of the global attractor in §5.5.

2. Main results

Before presenting our main results, we first state the basic mathematical assump-
tions for considering the long-time behaviors of second order evolution equations
and then introduce some notation that we will use throughout this paper:

• f ∈ C1(R) with f(0) = 0 and satisfies the following conditions:

(2.1) |f ′(s)| ≤ C(1 + |s|
N+2
N−2−1) for all s ∈ R,

and

(2.2) lim inf
|s|→∞

f(s)

s
> −λ1,

where λ1 is the first eigenvalue of −Δ on H1
0 (Ω).

• Let A = −Δ with domain D(A) = H2(Ω)∩H1
0 (Ω), and consider the family

of Hilbert spaces D(As/2), s ∈ R with the standard inner products and
norms, respectively, 〈·, ·〉D(As/2) = 〈As/2·, As/2·〉 and ‖·‖D(As/2) = ‖As/2 ·‖.
In particular, 〈·, ·〉 and ‖ · ‖ mean the L2(Ω) inner product and norm,
respectively. We denote

• Hs = D(A
1+s
2 )×D(A

1+s
2 ), s ∈ [0, 1] with the usual norm

‖(u, v)‖2Hs = ‖A 1+s
2 u‖2 + ‖A 1+s

2 v‖2.
In particular, we denote H = H0 = H1

0 (Ω)×H1
0 (Ω) and ‖·‖H = ‖·‖H0 .

• For each (u, v) ∈ H, we define ‖ · ‖Hs
ε
(ε, s ∈ [0, 1]) as

‖(u, v)‖2Hs
ε
= ‖A

1+s
2 u‖2 + ‖A s

2 v‖2 + ε‖A
1+s
2 v‖2,

and define Hs
ε as

Hs
ε = cl‖·‖Hs

ε

(
H1

)
.

Then (Hs
ε, ‖ · ‖Hs

ε
) is a Banach space for every ε, s ∈ [0, 1].

• ξu(t) = (u(t), ut(t)) for any t ≥ 0.

For clarity, we would like to separate our results into two parts according to the
external forcing g(x) ∈ L2(Ω) and g(x) ∈ H−1. For the well-posedness, there is no
essential difference between the cases g(x) ∈ L2(Ω) and g(x) ∈ H−1 if we work in
the weakly energy phase space H. However, for the asymptotic regularity (and so
the dynamics), there is a big difference: the stationary solutions of (Eε) will belong
to H2(Ω) ∩H1

0 (Ω) if g(x) ∈ L2(Ω), and so one can expect the global attractor Aε

will be bounded in H1 for this case, but the stationary solutions of (Eε) in general



ASYMPTOTIC BEHAVIOR FOR A SECOND ORDER EQUATION 6087

will only belong to H1
0 (Ω) if g(x) ∈ H−1; consequently the global attractor Aε now

will only be bounded in H1
0 (Ω)×H1

0 (Ω).
Part I: g(x) ∈ L2(Ω).
We make the following assumption:

Assumption I. Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary,

g ∈ L2(Ω) and f satisfies (2.1)-(2.2) with f(0) = 0.

The existence-uniqueness of solutions for (Eε0) has been proven in [27, 38] by
the Faedo-Galerkin method, and then the long-time behavior of the solution of
(Eε0) via proving the existence of a global attractor in H0

ε0 under Assumption
I has been discussed by Xie and Zhong in [33, 34]. Recently, Carvalho and
Cholewa [6] presented systematic results including the existence-uniqueness and
long-time behavior of (Eε0) by using the semigroup approach inH0

ε0 (note that (H0
ε0 ,

‖ · ‖H0
ε0
) ∼= (H, ‖ · ‖H) for each fixed ε0 > 0). They showed that for each ε > 0, the

solution of (Eε) generates a C0 semigroup {Sε(t)}t≥0 in H0
ε , and also obtain the as-

ymptotic regularity of attractors for the subcritical case, i.e., require the exponent
in (2.1) to be strictly less than N+2

N−2 − 1.
The main result of this part is the following asymptotic regularity.

Theorem 2.1. Under Assumption I, there exist a positive constant ν, a bounded
(in H1) subset B ⊂ H1 and a continuous increasing function Q(·) : [0,∞) → [0,∞)
such that, for any bounded (in H) subset B ⊂ H,

∀ ε ∈ [0, 1], distH(Sε(t)B, B) ≤ Q(‖B‖H)e−νt for all t ≥ 0,

where B, ν and Q(·) are all independent of ε, and {Sε(t)}t≥0 is the semigroup
generated by (Eε) in H0

ε.

This result says that asymptotically, for each (Eε), the solutions are exponen-
tially approaching a more regular fixed subset B uniformly (w.r.t. ε ∈ [0, 1]).
Moreover, it implies the following results:

(1) For each ε ∈ [0, 1], {Sε(t)}t≥0 has a global attractor Aε in H, and⋃
ε∈[0,1]

Aε ⊂ clH1(B).

(2) For the case g ∈ L∞ (e.g., g(x) ≡ f(0)) as considered in Carvalho and
Cholewa [6], Theorem 2.1 means that we have proved [6, Lemma 3.4] for
the critical nonlinear case. Then applying [6, Lemma 3.5 and Lemma 3.6]
(which hold certainly for the critical case), we indeed have shown that [6,
Theorem 1.3] holds for the critical case.

(3) Based on Theorem 2.1, applying the abstract result devised in [9, 14, 22], for
each ε ∈ [0, 1] we can prove the existence of a finite dimensional exponential
attractor Eε in H. Moreover, our attraction is uniform (w.r.t. ε ∈ [0, 1])
under the H-norm (not only with the H0

ε-norm); see Lemma 5.10.
(4) Since the global attractor Aε ⊂ Eε, it also implies that the fractal dimension

of the global attractor Aε is finite. Moreover, based on Theorem 2.1, we
show the upper semicontinuity of Aε at ε = 0; see Lemma 5.12.

For the proof of Theorem 2.1, the main difficulty comes from the critical non-
linearity and the uniformness w.r.t. ε ∈ [0, 1].
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Part II: g(x) ∈ H−1.
To prove some asymptotic regularity for this case is more than a dilemma. When

g(x) ∈ H−1, we know that in general the solution of the elliptic equation −Δu +
f(u) = g(x) ∈ H−1 with u|∂Ω = 0 only belongs to H1

0 (Ω) when f(·) satisfies (2.1)-
(2.2). So, in this case, we cannot expect any higher regularity of the attractor (if it
exists) than H1

0 (Ω)×H1
0 (Ω), and indeed we will get a result different from Theorem

2.1.
In this part, inspired by more recent results in [11, 12, 30], we show that if

we shift the solution (u(t), ut(t)) of (Eε) by a proper (fixed) point (φ(x), 0), then
(u(t), ut(t))−(φ(x), 0) will be bounded in some regular space for t sufficiently large.

For this, besides (2.1)-(2.2), we need to assume additionally that f(·) ∈ C2 and
satisfies

(2.3) |f ′′(s)| ≤
{
C(1 + |s|

N+2
N−2−2) N = 3, 4, 5,

C N ≥ 6,
for all s ∈ R,

and

(2.4) f ′(s) ≥ −l for all s ∈ R.

At the same time, from the estimates and calculations given in §§3 and 4, we
observe that we only need to estimate for some fixed ε0 ∈ (0, 1], and for the limit
case (ε = 0) we refer the reader to [30]. So, without loss of generality, we fix in this
part ε ≡ 1, and take the following notation:

Assumption II. Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary,

g(x) ∈ H−1 and f satisfies (2.1)-(2.2) with f(0) = 0 and (2.3)-(2.4); take ε ≡ 1,
and denote S(t) = Sε=1(t) for simplicity.

The main result of this part is the following theorem.

Theorem 2.2. Under Assumption II, for each 0 ≤ α < min{1, N
2 − 1}, there

exist a subset Bα, a positive constant μ and a monotone increasing function Qα(·) :
[0,∞) → [0,∞) such that, for any bounded set B ⊂ H,

distH(S(t)B, Bα) ≤ Qα(‖B‖H)e−μt for all t ≥ 0,

where Bα and Qα(·) may depend on α, but μ is independent of α, and where Bα

satisfies
Bα = {z ∈ H : ‖z − (φ(x), 0)‖Hα ≤ Λα < ∞}

for some positive constant Λα. φ(x) is the unique solution of the following elliptic
equation:

(2.5)

{
−Δφ+ f(φ) + η0φ = g(x), in Ω,

φ|∂Ω = 0,

where the constant η0 > 0 is large enough (will be given precisely in (6.1)-(6.2)).

As an immediate result of Theorem 2.2, we know that {S(t)}t≥0 is asymptoti-
cally smooth (see [18]) and then has a global attractor A′ in H. Moreover, A′ has
the decomposition A′ = (φ(x), 0) + A′′ with A′′ bounded in H1+α(Ω) ×H1+α(Ω)
for any α ∈ [0,min{1, N

2 − 1}). Furthermore, we can show that if the initial data
belongs to (φ(x), 0) +Hα, then the corresponding solution (u(t), ut(t)) will also lie
in (φ(x), 0) +Hα for all t ≥ 0 and ‖

(
u(t)− φ(x), ut(t)

)
‖Hα uniformly (w.r.t. time

t and initial data) bounded; see Lemma 6.6.
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Remark 2.3. Comparing with Assumption I, Assumption II relaxes the regularity
of the forcing term g(x) to H−1 (which is the weakest forcing term if we work in
the weak energy phase space H0

ε), but with the price that we require two additional
technical assumptions (2.3)-(2.4). Especially, (2.4) is a restriction and stronger
than (2.2) to some extent (although it is reasonable for the critical polynomial
nonlinearity case). How to remove such technical assumptions would be interesting.
At the same time, we also remark that assumptions (2.1)-(2.2) are sufficient for the
existence of a compact global attractor in H for the case g(x) ∈ H−1 (e.g., see
[25, 29, 36]).

Hereafter, we will also use the following notation (see, e.g., [13]): denote by J

the space of continuous increasing functions J : R+ → R
+, and by D the space

of continuous decreasing functions β : R+ → R
+ such that β(∞) < 1. Moreover,

C,Ci are the generic constants, and Q(·), Qi(·) ∈ J are generic functions, which are
all independent of ε; otherwise we will point out clearly. We also denote ‖A‖X =
supx∈X ‖x‖X for any A ⊂ (X, ‖ · ‖X).

3. Preliminaries

In this section, we recall some results used in the main part of the paper.
The first result comes from [13], which will be used to prove the asymptotic

regularity for the case g ∈ L2(Ω).

Lemma 3.1 ([13]). Let X,V be two Banach spaces and {T (t)}t≥0 be a C0-semi-
group on X with a bounded absorbing set B̄ ⊂ X. For every x ∈ B̄, assume
that there exist two solution operators Vx(t) on X and Ux(t) on V satisfying the
following properties:

i) For any two vectors y ∈ X and z ∈ V satisfying y + z = x,

T (t)x = Vx(t)y + Ux(t)z for any t ≥ 0.

ii) There exists α ∈ D such that

sup
x∈B̄

‖Vx(t)y‖X ≤ α(t)‖y‖X , ∀ y ∈ B̄.

iii) There are β ∈ D and J ∈ J such that

sup
x∈B̄

‖Ux(t)z‖V ≤ β(t)‖z‖V + J(t), ∀ z ∈ V.

Then, there exist positive constants ρ,K, ω such that

distX(T (t)B̄, BV (ρ)) ≤ Ke−ωt for all t ≥ 0,

where BV (ρ) = {z ∈ V : ‖z‖V ≤ ρ}.

Next we recall a criterion for the upper semicontinuity of attractors.

Lemma 3.2 ([18, 26]). Let {Tλ(t)}t≥0 (λ ∈ Λ) be a family of semigroups defined
on the Banach space X, and for each λ ∈ Λ, let {Tλ(t)}t≥0 have a global attractor
Aλ. Assume further that λ0 is a nonisolated point of Λ and that there exist s > 0,
t0 > 0 and a compact set K ⊂ X such that⋃

λ∈NΛ(λ0,s)

Aλ ⊂ K, and

if λn → λ0 and xn→x0 (xn∈Aλn
as n �=0), then Tλn

(t0)xn→Tλ0
(t0)x0.(3.1)
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Then the global attractors Aλ are upper semicontinuous on Λ at λ = λ0; that is,

lim
Λ�λ→λ0

distX(Aλ, Aλ0
) = 0.

We also recall a Gronwall-type inequality; for the proof, please see [17].

Lemma 3.3. Let Λ : R+ → R
+ be an absolutely continuous function satisfying

d

dt
Λ(t) + 2ηΛ(t) ≤ h(t)Λ(t) + k,

where η > 0, k ≥ 0 and
∫ t

s
h(τ )dτ < η(t−s)+m for all t ≥ s ≥ 0 and some m ≥ 0.

Then,

Λ(t) ≤ Λ(0)eme−ηt +
kem

η
, ∀ t ≥ 0.

4. Uniformly decaying estimates in H
In this section, we always assume that only (2.1)-(2.2) hold, and g(x) only

belongs to H−1 (so all results obtained in this section certainly hold for the case
g(x) ∈ L2(Ω)).

The main purpose of this section is to deduce some dissipative estimates about
the semigroups {Sε(t)}t≥0 (ε ∈ [0, 1]) in H.

The existence of a bounded absorbing set for {S0(t)}t≥0 in H1
0 (Ω)× L2(Ω) was

established in many references under the assumptions (2.1)-(2.2); e.g., see [2, 5,
23]. Recently, Pata and Zelik [25] showed further that indeed there is a bounded
absorbing set for {S0(t)}t≥0 in H, and the authors in [6, 33] obtained the existence
of a bounded absorbing set for each fixed ε ∈ (0, 1]. Here, using the method in
[23, 25] for a strongly damped wave equation, we will show that the radius of the
absorbing set of {Sε(t)}t≥0 in H can be chosen to be independent of ε ∈ [0, 1].

Lemma 4.1. There exists a positive constant M , which depends only on |Ω|,
‖g‖H−1 and the coefficients of (2.1)-(2.2), satisfying that for any ε ∈ [0, 1] and
any bounded (in H0

ε) subset B ⊂ H0
ε, there is a tB = t(‖B‖H0

ε
) > 0 (which depends

only on the bound of ‖B‖H0
ε
) such that

‖Sε(t)z‖2H ≤ M for all t ≥ tB and all z ∈ B,

where both tB and M are independent of ε ∈ [0, 1].

Proof. Throughout the proof, the generic constants C,Cj (j = 1, 2, · · · ) are inde-
pendent of ε, and Πi denotes the projector from X1 ×X2 to Xi, i = 1, 2.

For clarity, we separate the proof into three claims.

Claim 1. There exists an M1 (independent of B and ε) such that, ∀ ε ∈ [0, 1],

(4.1) ‖Sε(t)B‖2H0
ε
= ‖Sε(t)B‖2H1

0 (Ω)×L2(Ω)+ε‖Π2Sε(t)B‖2H1
0 (Ω) ≤ M1 as t ≥ T1B ,

where T1B = T1(‖B‖H0
ε
) depends on ‖B‖H0

ε
but not on ε.

Multiplying (Eε) by ut + θu (here and after, note that the multiplication holds
in a Faedo-Galerkin scheme; however, due to the global well-posed result given in
[6], the estimates hold in the limit) with θ � 1, which will be determined later, we
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obtain that

(4.2)
d

dt
E1u(t) + 2G1u(t) ≤ 2‖∇ut‖‖g‖H−1 + 2θ‖∇u‖‖g‖H−1 ,

where

E1u(t) = ‖ut(t) + θu(t)‖2 + ε‖∇(ut(t) + θu(t))‖2 + (1 + θ − εθ2)‖∇u(t)‖2

− θ2‖u(t)‖2 + 2

∫
Ω

F (u(t))dx,

G1u(t) = (1− εθ)‖∇ut(t)‖2 − θ‖ut(t)‖2 + θ‖∇u(t)‖2 + θ

∫
Ω

f(u(t))u(t)dx

and

F (u) =

∫ u(x,t)

0

f(s)ds.

Then, from assumptions (2.1)-(2.2) and using Poincaré’s inequality, we have

(4.3) E1u(t) ≤ C1

(
‖ut‖2 + ε‖∇ut‖2

)
+ C2

(
1 + ‖∇u‖ 2N

N−2
)

and

(4.4) F (s) ≥ −λ

2
s2 − c1 for all s ∈ R with some λ ∈ (0, λ1).

Noting that ‖x+ y‖2 ≥ 1
2‖x‖2 − ‖y‖2 holds for any x, y ∈ L2(Ω), we have

(4.5) E1u(t) ≥
1

2
(‖ut‖2 + ε‖∇ut‖2)+ (1+ θ− θ2 − εθ2 − 2θ2 + λ

λ1
)‖∇u‖2 − 2c1|Ω|,

where the positive constant c1 depends only on f(·) (from (4.4)).
For G1u(t), we have

(4.6) G1u(t) ≥ (1− θ − θ

λ1
)‖∇ut‖2 + θ(1− λ

λ1
)‖∇u‖2 − θc2|Ω|,

where λ ∈ (0, λ1) comes from (2.2) and the constant c2 depends only on f(·).
At the same time, by the Cauchy-Schwarz inequality, we have

(4.7)

2‖∇ut‖‖g‖H−1+2θ‖∇u‖‖g‖H−1 ≤ (1−θ− θ

λ1
)‖∇ut‖2+θ(1− λ

λ1
)‖∇u‖2+Cθ‖g‖2H−1 .

Substituting (4.6) and (4.7) into (4.2), we obtain

(4.8)
d

dt
E1u(t) + (1− θ − θ

λ1
)‖∇ut‖2 + θ(1− λ

λ1
)‖∇u‖2 ≤ Cθ‖g‖2H−1 + 2θc2|Ω|.

Hence, we first take θ small enough such that

(4.9) 1 + θ − 2θ2 − 2θ2 + λ

λ1
> 0 and 1− θ − θ

λ1
> 0,

and then applying the Gronwall-type inequality, [23, Lemma 1], to (4.8), and com-
bining with (4.3) and (4.5), we have
(4.10)

E1u(t) ≤ sup
ε∈[0,1]

sup
z∈H0

ε

{
Eε(z) : δ‖z‖2H0

ε
≤ 2Cθ‖g‖2H−1 + 4c2|Ω|

}
for all (u0, v0) ∈ B
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provided that

t ≥ T1B =
2c1|Ω|+ C1‖B‖H0

ε
+ C2(1 + ‖B‖

2N
N−2

H0
ε

)

Cθ‖g‖2H−1 + 2c2|Ω|
,

where δ = min{(1− θ − θ
λ1
), θ(1− λ

λ1
)} and (from (4.3))

Eε(z) := C1‖z‖2H0
ε
+ C2(1 + ‖z‖2H0

ε
)

N
N−2

for any z ∈ H0
ε .

Then, noticing (4.5) and (4.9), Claim 1 follows from (4.10) immediately.

Claim 2. There exists an M2 (independent of B and ε) such that

(4.11) ∀ ε ∈ [0, 1],

∫ ∞

T1B

‖Π2Sε(s)B‖2H1
0 (Ω)ds ≤ M2,

where T1B is given in Claim 1.

Multiplying (Eε) by ut, we have
(4.12)
1

2

d

dt

(
‖ut‖2+ ‖∇u‖2+ ε‖∇ut‖2+2

∫
Ω

F (u)dx− 2〈g(x), u〉H1
0(Ω),H−1

)
+ ‖∇ut‖2 ≤ 0.

Then, for any t ≥ T1B , integrating (4.12) over [T1B, t] and using Claim 1, we
have ∫ t

T1B

‖Π2Sε(s)B‖2H1
0(Ω)ds ≤ 2M1 + 2‖g‖2H−1 + 2C ′(|Ω|+M

N
N−2

1 ),

where the constant C ′ depends only on the constant C in (2.1).

Claim 3. There exists an M3 (independent of B and ε) such that

(4.13) ∀ ε ∈ [0, 1], ‖Π2Sε(t)B‖2H1
0 (Ω) ≤ M3 as t ≥ T1B + 1.

Similar to the proof of [25, Lemma 3.5], multiplying (Eε) by utt, we have

(4.14)
d

dt
E2u(t) + 2‖utt‖2 + 2ε‖∇utt‖2 = 2‖∇ut‖2 + 2〈f ′(u)ut, ut〉,

where 〈·, ·〉 is the L2-inner product and

E2u(t) = ‖∇ut(t)‖2 + 2〈∇u,∇ut〉+ 2〈f(u), ut〉 − 2〈g(x), ut〉H1
0 (Ω),H−1 .

Then, as t ≥ T1B , using Claim 1 and (2.1), we have

(4.15)
d

dt
E2u(t) + 2‖utt‖2 + 2ε‖∇utt‖2 ≤ C(1 +M

N
N−2

1 )‖∇ut‖2

and
(4.16)
1

2
‖∇ut‖2−C1(1+M

N
N−2

1 +‖g‖2H−1) ≤ E2u(t) ≤ 2‖∇ut‖2+C2(1+M
N

N−2

1 +‖g‖2H−1).

On the other hand, from Claim 2 we know that for each (u0, v0) ∈ B, there is a
time t0 ∈ [T1B, T1B + 1] such that

(4.17) ‖Π2Sε(t0)(u0, v0)‖2H1
0 (Ω) ≤ M2,

where t0 depends on (u0, v0).
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Therefore, as t ≥ T1B + 1, for each (u0, v0) ∈ B, integrating (4.15) over [t0, t]
and applying (4.16)-(4.17), we obtain that

1

2
‖∇ut(t)‖2 + 2

∫ t

T1B+1

(‖utt(s)‖2 + ε‖∇utt(s)‖2)ds

≤ 2M2 + (C1 + C2)(1 +M
N

N−2

1 + ‖g‖2H−1) + C(1 +M
N

N−2

1 )M2;

this show that Claim 3 holds.
Now, we can complete our proof by taking

M = M1 +M3 and tB = T1B + 1.

�

Remark 4.2. Observe that from (4.1), (4.8), (4.3) and (4.5) we can also deduce
that, for any ε ∈ [0, 1] and any B ⊂ H0

ε,

(4.18) ‖Sε(t)B‖2H0
ε
≤ Q(‖B‖H0

ε
) for all t ≥ 0,

where Q(·) ∈ J is independent of B and ε.
Moreover, if B is bounded in H, then we can obtain

(4.19) ∀ ε ∈ [0, 1], t ≥ 0, ‖Sε(t)B‖2H ≤ C‖B‖H

for some constant C‖B‖H which depends only on ‖B‖H. Indeed, from the fact that
there is a constant c1 such that c1‖ · ‖H ≥ ‖ · ‖H0

ε
for any ε ∈ [0, 1], (4.19) can

be obtained just by repeating the proof of Lemma 4.1 and taking t0 = 0 in (4.17)
since B is bounded in H.

On the other hand, from the proof of Claim 3 above, we can get further estimates
about utt:

(4.20) ∀ ε ∈ [0, 1],

∫ ∞

T1B+1

(‖utt(s)‖2+ ε‖∇utt(s)‖2)ds ≤ M3 for all (u0, v0) ∈ B.

Then, similar to [25, Lemma 3.6], we indeed can deduce the following estimates:

Lemma 4.3. There exists an M4 such that for any ε ∈ [0, 1] and any bounded (in
H0

ε) subset B ⊂ H0
ε,

‖utt(t)‖2 + ε‖∇utt(t)‖2 +
∫ t

T1B+2

‖∇utt(s)‖2ds ≤ M4 for all t ≥ T1B + 2,

where (u(t), ut(t)) = Sε(t)(u0, v0) ((u0, v0) ∈ B), T1B is the time given in Claim 1,
and M4 is independent of B and ε.

For later applications, we present some Hölder continuity of {Sε(t)}t≥0 in H0
ε ,

which has been obtained in [6] for each fixed ε ∈ (0, 1] and [23] for ε = 0.

Lemma 4.4. For any ε ∈ [0, 1] and any bounded (in H0
ε) subset B ⊂ H0

ε, there is
a constant C‖B‖H0

ε
which depends only on ‖B‖H0

ε
such that

(4.21) ‖Sε(t)z1 − Sε(t)z2‖H0
ε
≤ e

C‖B‖H0
ε

t
‖z1 − z2‖H0

ε
, ∀ t ≥ 0, zi ∈ B

and

(4.22) ‖Sε(t)z1 − Sε(t)z2‖H ≤ e
C‖B‖H0

ε

t
‖z1 − z2‖

1
2

H0
ε
, ∀ t ≥ T1B + 2, zi ∈ B.
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Proof. Let (ui(t), ui
t(t)) be the solution of (Eε) corresponding to the initial data

zi ∈ B. Then the difference ū = u1 − u2 satisfies

(4.23) ūtt −Δūt −Δū− εΔūtt + f(u1)− f(u2) = 0

with initial data (ū(0), ūt(0)) = z1 − z2.
Then, as that in [23], we can obtain (4.21) through multiplying (4.23) by ūt

(where we need to use (4.18)).
For (4.22), when t ≥ T1B + 2, we have

‖∇ūt(t)‖2 ≤ ‖ūtt‖‖ūt‖+ ‖∇ū‖‖∇ūt‖+ ε‖∇ūtt‖‖∇ūt‖+ CM‖∇ū‖‖∇ūt‖,
and then, combining with Lemma 4.3 and (4.21), we have

1

4
‖∇ūt(t)‖2 ≤

√
M4(‖ūt‖+

√
ε‖∇ūt‖) + CM‖∇ū‖2

≤
√
M4e

C‖B‖H0
ε

t
‖z1 − z2‖H0

ε
+ CMe

2C‖B‖H0
ε

t
‖z1 − z2‖2H0

ε

≤ CM,M4
eCM t‖z1 − z2‖H0

ε
as t ≥ T1B + 2,

which, combining with (4.21) again, implies (4.22) immediately. �

Hereafter, we denote the uniformly (w.r.t. ε ∈ [0, 1]) bounded absorbing set
obtained in Lemma 4.1 as B0, i.e.,

(4.24) B0 = {z ∈ H : ‖z‖2H ≤ M},
and denote by Λ0 the time such that Lemma 4.1 and Lemma 4.3 hold for B0; i.e.,

(4.25) ‖Sε(t)B0‖2H+‖utt(t)‖2+ε‖∇utt(t)‖2+
∫ t

T1B+2

‖∇utt(s)‖2ds ≤ M̄ = M+M4

holds for any ε ∈ [0, 1] and all t ≥ Λ0. Moreover, similar to Remark 4.2, noting
now that B0 is bounded in H, we have

(4.26) ∀ ε ∈ [0, 1], ‖Sε(t)B0‖2H ≤ CM for all t ≥ 0.

5. Part I: g(x) ∈ L2(Ω)

Throughout this section, we always (only) assume that Assumption I
holds.

5.1. Decomposition of the equation. For the nonlinear function f satisfying
(2.1)-(2.2), from [1] (see also [13, 23, 28, 35] for our situation) we know that f
allows the following decomposition f = f0 + f1, where f0, f1 ∈ C1(R) and satisfy

|f0(u)| ≤ C|u|
N+2
N−2 for all u ∈ R,(5.1)

f0(u)u ≥ 0 for all u ∈ R,(5.2)

|f1(u)| ≤ C(1 + |u|) for all u ∈ R,(5.3)

lim inf
|u|→∞

f1(u)

u
> −λ1.(5.4)

For example, from (2.2) we know that there are s1 ≥ 0 and λ < λ1 such that

f(u)u ≥ −λu2 as |u| ≥ s1,

and from (2.1) we know that there is a constant C1 > 0 such that

|f(u)| ≤ C1(1 + |u|
N+2
N−2 ) ≤ 2C1|u|

N+2
N−2 as |u| ≥ 1.
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Take the cutoff function ϕ(·) : [0,∞) → [0, 1] as follows:

ϕ(s) =

{
1 as s ≥ s1 + 2;

0 as s ≤ s1 + 1.

Then, we can take f0(s) = ϕ(|s|)
(
f(s) + λs

)
and f1(s) = f(s)− f0(s), ∀ s ∈ R.

We will follow the idea (method) in [23, 28, 35, 37] to deduce the asymptotic
regularity. Decomposing the solution Sε(t)(u0, v0) = (u(t), ut(t)) into the sum

(5.5) Sε(t)(u0, v0) = Dε(t)(u0, v0) +Kε(t)(u0, v0)

for any t ≥ 0 and any (u0, v0) ∈ H, where Dε(t)(u0, v0) = (v(t), vt(t)) and
Kε(t)(u0, v0) = (w(t), wt(t)) are the solution of the following equations:

(5.6)

{
vtt −Δvt −Δv − εΔvtt + f0(v) = 0 in Ω× [0,∞),

(v(0), vt(0)) = (u0, v0), v|∂Ω = 0,

and

(5.7)

{
wtt −Δwt −Δw − εΔwtt + f(u)− f0(v) = g(x) in Ω× [0,∞),

(w(0), wt(0)) = (0, 0), w|∂Ω = 0.

Applying the general results in [6], we know that both (5.6) and (5.7) are global
well-posed in H, and {Dε(t)}t≥0 also forms a semigroup.

Moreover, as in §3, we can deduce a similar estimate for {Dε(t)}t≥0 in H, and
so {Kε(t)}t≥0 (from (5.5)): There exist constants CM and Λ1 such that for any
ε ∈ [0, 1] and any (u0, v0) ∈ B0,

(5.8) ‖Dε(t)B0‖2H+ ‖vtt(t)‖2+ ε‖∇vtt(t)‖2+
∫ t

T1B+2

‖∇vtt(s)‖2ds ≤ M̄ as t ≥ Λ1

and

(5.9) ∀ ε ∈ [0, 1], ‖Dε(t)B0‖2H + ‖Kε(t)B0‖2H ≤ CM for all t ≥ 0.

5.2. The first a priori estimate. We begin with the decay estimate for the
solution of (5.6).

Lemma 5.1. There exist a constant k > 0 and Q(·) ∈ J such that

‖Dε(t)B0‖2H ≤ Q(‖B0‖H)e−kt for all t ≥ 0 and any ε ∈ [0, 1],

where both k and Q(·) are independent of ε ∈ [0, 1].

Proof. Multiplying (5.6) by vt + θv, we have

d

dt
E3v(t) + 2

(
θ‖∇v‖2 + ‖∇vt‖2 + θ

∫
Ω

vf0(v)dx
)
= 2〈vt + θv, θvt − εθΔvt〉,

(5.10)

where E3v(t) = ‖vt + θv‖2 + (1 + θ)‖∇v‖2 + ε‖∇(vt + θv)‖2 + 2
∫
Ω
F0(v)dx and

F0(v) =
∫ v

0
f0(s)ds.

Then, using (5.2), we have

1

2
‖vt‖2+(1 + θ − θ2 − θ2

λ1
)‖∇v‖2 + ε‖∇vt‖2

≤ E3v(t) ≤ 2‖vt‖2 + 2ε‖∇vt‖2 + Cθ,λ1
‖∇v‖2 + 2

∫
Ω

F0(v)dx(5.11)
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and

|2〈vt + θv, θvt − εθΔvt〉| ≤ 2θ
(
‖vt‖2 + ‖∇vt‖2 + θ‖v‖‖vt‖+ θ‖∇vt‖‖∇vt‖

)
.

(5.12)

Note that, from (5.1) and (5.9), we have

(5.13) 0 ≤
∫
Ω

F0(v)dx ≤ C(‖v‖2 + ‖v‖ 2N
N−2 ) ≤ CM‖∇v‖2.

Hence, by taking θ small enough, we can deduce from (5.10) that

d

dt
E3v(t) + CM,λ1,θE3v(t) ≤ 0,

where the constant CM,λ1,θ depends on M,λ1 and θ, but not on ε, which, combining
with (5.11) and (5.13), implies that

1

2
‖vt(t)‖2+(1 + θ − θ2 − θ2

λ1
)‖∇v(t)‖2 + ε‖∇vt(t)‖2

≤ e−CM,λ1,θt
( 4

λ1
‖∇vt(0)‖2 + (1 + θ + 2θ2 + 2CM )‖∇v(0)‖2

)
.(5.14)

Now, to complete our proof, we multiply (5.6) by vt and obtain

‖∇vt‖2 ≤ −〈vtt, vt〉+ 〈Δv, vt〉+ ε〈Δvtt, vt〉 − 〈f0(v), vt〉

≤‖vtt‖‖vt‖+‖∇v‖‖∇vt‖+ε‖∇vtt‖‖∇vt‖+C‖v‖‖vt‖+C‖∇v‖
N+2
N−2 ‖∇vt‖,

which, combining with (5.8)-(5.9), implies that

‖∇vt‖2 ≤ 2
√
M̄(‖vt‖+

√
ε‖∇vt‖) + Cλ1,M‖∇v‖2 as t ≥ Λ1.

Therefore, combining with the estimates (5.14), we can finally deduce that

‖∇vt‖2 ≤ CM̄,M,λ1,θe
−

CM,λ1,θ
2 t + Cλ1,M‖∇v‖2 as t ≥ Λ1,

which, combining with (5.14) again for the estimate of ‖∇v(t)‖2 and using Lemma

5.2 below with (5.9), allows us to complete our proof by taking k =
CM,λ1,θ

2 and
some increasing function Q(·). �

Lemma 5.2. Let {S(t)}t≥0 be a continuous semigroup on the Banach space X,
satisfying

‖S(t)B‖X ≤ Q1(‖B‖X)e−μt as t ≥ t0, and ‖{S(t)B : t ≥ 0}‖X ≤ Q2(‖B‖X).

Then

‖S(t)B‖X ≤ Q3(‖B‖X , t0)e
−μt for all t ≥ 0.

Its proof is obvious and we omit it here.
The next estimate is about the solution of (5.7):

Lemma 5.3. There exist k1 > 0 and Q(·) ∈ J such that for any t ≥ 0 and any
ε ∈ [0, 1],

‖Kε(t)B0‖2Hσ
ε
≤ Q(‖B0‖H)ek1t,

where both k1 and Q(·) are independent of ε ∈ [0, 1], and σ = 1
2 min{1, N

2 − 1}.

Proof. Multiplying (5.7) by Aσwt(t) (recall that A = −Δ), then the proof is the
same as that in [28, Lemma 4.2]. �
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Based on Lemma 5.1 and Lemma 5.3, following the idea in Zelik [37], we can
now decompose u(t) as follows (the proof is completely similar to that in [28, 35, 37]
since the estimates in Lemmas 5.1 and 5.3 hold uniformly w.r.t. ε ∈ [0, 1]):

Lemma 5.4. Let (u(t), ut(t)) be the solution of (Eε) corresponding to the ini-
tial data (u0, v0) ∈ B0. Then, for any η > 0, we can decompose (u(t), ut(t)) =
Sε(t)(u0, v0) as

u(t) = v1(t) + w1(t), for all t ≥ 0,

where v1(t) and w1(t) satisfy the following estimates:∫ t

s

‖∇v1(τ )‖2dτ ≤ η(t− s) + Cη for all t ≥ s ≥ 0,

and
‖A

1+σ
2 w1(t)‖2 ≤ Kη for all t ≥ 0

with the constants Cη and Kη depending on η, ‖B0‖H and ‖g‖, but both are inde-
pendent of ε ∈ [0, 1].

5.3. The second a priori estimate. The main purpose of this subsection is to
deduce some uniformly asymptotic (w.r.t. ε ∈ [0, 1] and time t) a priori estimates
about the solution of (Eε).

Lemma 5.5. There exist positive constants ν̄, R̄ > 0 and Q1(·) ∈ J such that for
each ε ∈ [0, 1], there is a subset B̄ε ⊂ H1

ε satisfying

(5.15) ‖B̄ε‖2H1
ε
= sup

(u,v)∈B̄ε

{‖Δu‖2 + ‖∇v‖2 + ε‖Δv‖2} ≤ R̄

and the exponential attraction

(5.16) distH0
ε
(Sε(t)B0, B̄ε) ≤ Q1(‖B0‖H)e−ν̄t for all t ≥ 0.

Here, all ν̄, R̄ and Q1(·) are independent of ε ∈ [0, 1], and distH0
ε
(·, ·) denotes the

Hausdorff semidistance with respect to the H0
ε-norm.

This lemma shows some asymptotic regularity of {Sε(t)}t≥0 for each fixed ε ∈
[0, 1]. Combining with the attraction transitivity lemma established in [15, Theorem
5.1], there are at least two ways to prove this lemma: one is as that in [28, 35]
to apply the idea introduced in Zelik [37]; another one is the method introduced
recently in Conti and Pata [13]. Here we will use the method in [13].

Proof of Lemma 5.5. It is convenient to separate our proof into three steps. We
emphasize especially that all the generic constants in the proof are independent of
ε.

Step 1. We first claim that (recall σ = 1
2 min{1, N2 − 1})

∃ νσ, Rσ > 0 and Qσ(·) ∈ J such that for each ε ∈ [0, 1], there is a subset
B̄σ,ε ⊂ Hσ

ε satisfying

‖B̄σ,ε‖2Hσ
ε
= sup

(u,v)∈B̄σ,ε

{‖A
1+σ
2 u‖2 + ‖A σ

2 v‖2 + ε‖A
1+σ
2 v‖2} ≤ Rσ

and the exponential attraction

distH0
ε
(Sε(t)B0, B̄σ,ε) ≤ Qσ(‖B0‖H)e−νσt for all t ≥ 0.

We will apply Lemma 3.1 with X = H0
ε and V = Hσ

ε (note that B0 ⊂ H0
ε for any

ε ∈ [0, 1]).
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Based on Lemmas 5.1 and 5.3, the proof of the above claim is completely similar
to that in [13] for a strongly damped wave equation. From (5.1) we can write

(5.17) f0(s) = sϕ(s) with |ϕ(s)| ≤ C|s| 4
N−2 .

For any x ∈ B0 and y ∈ H0
ε , z ∈ Hσ

ε satisfying x = y + z, we decompose the
solution of (Eε) as Sε(t)x = V ε

x (t)y + Uε
x(t)z, where

V ε
x (t)y = (v̄(t), v̄t(t)) and Uε

x(t)z = (w̄(t), w̄t(t)),

which uniquely solve the following equations, respectively:

(5.18)

{
v̄tt −Δv̄t −Δv̄ − εΔv̄tt = h1,

v̄|∂Ω = 0, (v̄(0), v̄t(0)) = y,

and

(5.19)

{
w̄tt −Δw̄t −Δw̄ − εΔw̄tt = h2,

w̄|∂Ω = 0, (w̄(0), w̄t(0)) = z,

with

(5.20) h1 = −v̄ϕ(v) and h2 = g(x)− f(u) + v̄ϕ(v),

and v(t) is the solution of (5.6) corresponding to the initial data x.
From (5.1), (5.3), (5.17) and Lemmas 5.1, 5.3, we can directly calculate that

(5.21) ‖h1‖
L

2N
N+2

≤ C‖∇v̄‖‖∇v‖ 4
N−2 ≤ CMe−k′t‖∇v̄‖

and similarly

(5.22) ‖h2‖
L

2N
N+2(1−σ)

≤ CMe−k′t‖A
1+σ
2 w̄‖+ CMek

′
1t,

where we only have used the embedding H1
0 (Ω) ↪→ L

2N
N−2 (Ω), D(A

1+σ
2 ) ↪→

L
2N

N−2(1+σ) (Ω) and D(A
1−σ
2 ) ↪→ L

2N
N−2(1−σ) (Ω) (which are independent of ε).

Hence, multiplying (5.18) and (5.19) respectively by v̄t + θv̄ and Aσ(w̄t + θw̄),
through some similar calculations as that in the proof of Lemma 4.1 (see also the
proof of [13, Theorem 4.3]), we can verify that all the conditions of Lemma 3.1 are
satisfied for the case X = H0

ε , V = Hσ
ε and T (t) = Sε(t). Moreover, since there is

a c1 > 0 (independent of ε) such that c1‖B0‖H ≥ ‖B0‖H0
ε
for any ε ∈ [0, 1] and the

constants in our estimates are all independent of ε, consequently, νσ, Rσ and Qσ(·)
are all independent of ε ∈ [0, 1], we can then deduce our claim.

Step 2. We claim that
there exists a positive constant R̄σ which depends only on Rσ such that

∀ ε ∈ [0, 1], ‖Sε(t)B̄σ,ε‖2Hσ
ε
≤ R̄σ for all t ≥ 0.

This claim can be proved completely similar to that in [28, Lemma 4.5] via mul-
tiplying (Eε) by Aσ(ut + θu), and applying Lemma 5.4 to overcome the critical
nonlinearity.

Step 3. Based on Steps 1 and 2, applying the attraction transitivity lemma given
in [15, Theorem 5.1] and noticing the Hölder continuity Lemma 4.4, we can prove
our lemma by performing a bootstrap argument, whose proof is now simple since
Step 1 makes the nonlinear term become subcritical to some extent (e.g., see [29]
for some similar calculations). �
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5.4. Proof of Theorem 2.1. Lemma 5.5 has shown some asymptotic regularity;
however, the radius of ‖B̄ε‖H1 depends on ε and the distance only under the H0

ε-
norm.

To prove Theorem 2.1, we first give two lemmas as preliminary.

Lemma 5.6. There exists R1 > 0 such that for any bounded (in H1
ε) subset B ⊂

H1
ε, there is a T1 = T1(‖B‖H1

ε
) such that

∀ ε ∈ [0, 1], ‖Sε(t)B‖2H1
ε
≤ R1 for all t ≥ T1.

Proof. Multiplying (Eε) by −Δ(ut + θu) and taking θ small enough, we have

d

dt

(
‖∇(ut + θu)‖2 + (1 + θ)‖Δu‖2 + ε‖Δ(ut + θu)‖2

)
+ Cθ(‖Δut‖2 + ‖Δu‖2)

≤ Cθ‖g‖2 + C

∫
Ω

(1 + |u| 4
N−2 )|∇u|(|∇ut|+ |∇u|).(5.23)

Then, as that in [29, Lemma 5.5], applying Lemma 5.4 we can deal with the
nonlinear term and finally complete the proof as an application of the Gronwall
inequality. �

Lemma 5.7. There exists R2 > 0 such that for any bounded (in H1
ε) subset B ⊂

H1
ε, there is a T2 = T2(‖B‖H1

ε
) such that

∀ ε ∈ [0, 1], ‖Sε(t)B‖2H1 ≤ R2 for all t ≥ T2.

Proof. From Lemma 5.6 above, we only need to estimate that the bound of ‖Δut‖2
is independent of ε ∈ [0, 1].

Multiplying (Eε) by −Δutt, we have

1

2

d

dt
E4u(t) + ‖∇utt‖2 + ε‖Δutt‖2 − ‖Δut‖2 = −〈f ′(u)ut,Δut〉,(5.24)

where E4u(t) = ‖Δut‖2 + 2〈Δu,Δut〉+ 2〈Δut, g〉 − 2〈f(u),Δut〉.
Note that, as t ≥ T1(‖B‖H1

ε
) (given in Lemma 5.6), we have

|〈f ′(u)ut,Δut〉| ≤ C

∫
Ω

(1 + |u| 4
N−2 )|ut||Δut|dx

≤ C(‖ut‖+ ‖∇u‖‖Δut‖)‖Δut‖ ≤ Cλ1,R1
‖Δut‖2

and

1

4
‖Δut(t)‖2 − 4(‖Δu‖2 + ‖g‖2 + ‖f(u)‖2) ≤ E4u(t)

≤ 4‖Δut(t)‖2+‖Δu‖2+‖g‖2+‖f(u)‖2.

At the same time, applying Lemma 5.6 again and integrating (5.23) on [t, t+1]
yield ∫ t+1

t

‖Δut(s)‖2ds ≤ CR1
for all t ≥ T1(‖B‖H1

ε
).

Hence, we can complete our proof by applying the uniform Gronwall lemma to
(5.24). �

Now, we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. Set

(5.25) B = {z ∈ H1 : ‖z‖2H1 ≤ R2},
where the constant R2 comes from Lemma 5.7 above.

From Lemmas 5.7 and 5.5, we know that there is a t0 such that Sε(t)B̄ε ⊂ B

(recall that B̄ε is given in (5.15)) for all t ≥ t0 and any ε ∈ [0, 1].
On the other hand, note that

(5.26) c1‖ · ‖H0
ε
≤ ‖ · ‖H ≤ c2‖ · ‖H1

ε
for all ε ∈ [0, 1],

where c1, c2 > 0 are independent of ε. Then, from Lemma 4.4, there exists t1 which
depends only on ‖B0‖H and ‖B̄ε‖H1

ε
(so only on M, R̄) such that

(5.27)

∀ ε ∈ [0, 1], ‖Sε(t)z1 − Sε(t)z2‖H ≤ eCR̄t‖z1 − z2‖
1
2

H0
ε
, ∀ t ≥ t1, z1 ∈ B0, z2 ∈ B̄ε

and

∀ ε ∈ [0, 1], Sε(t)B0 ⊂ B0 for all t ≥ t1.

Therefore, from Lemma 5.5, we have

distH(Sε(t+ t0 + t1)B0, B) ≤ distH(Sε(t+ t0 + t1)B0, Sε(t0 + t1)B̄ε)

≤ CM,R̄,t0+t1 dist
1
2

H0
ε
(Sε(t)B0, B̄ε) (by (5.27))

≤ CM,R̄,t0+t1

√
Q1(‖B0‖H)e−

ν̄
2 t, ∀ t ≥ 0.

Hence, noting that t0, t1 and R̄ are all fixed, we can complete the proof by taking
ν = ν̄

2 and applying Lemma 5.2. �

5.5. Applications of Theorem 2.1. As the application of Theorem 2.1, in this
subsection, we consider the existence of finite dimensional exponential attractors
and the upper semicontinuity of global attractors.

5.5.1. A priori estimates. For the subset B defined in (5.25), from Lemma 4.1 and
Lemma 4.3 we know that there is a tB such that
(5.28)
∀ ε ∈ [0, 1], ‖∇ut(t)‖2+‖utt‖2+ ε‖∇utt(t)‖2 ≤ M +M4 for all t ≥ tB, (u0, v0) ∈ B,

where (u(t), ut(t)) = Sε(t)(u0, v0).

Now, for each ε ∈ [0, 1], define B̂ε as follows:

(5.29) B̂ε =
⋃

t≥tB+T2

Sε(t)B,

where T2 is the time given in Lemma 5.7 corresponding to B. Then, for each
ε ∈ [0, 1] we have that B̂ε is positive invariant under Sε(t) (i.e., Sε(t)B̂ε = B̂ε,
∀ t ≥ 0) and (from Lemma 5.7)

(5.30) ∀ ε ∈ [0, 1], ‖B̂ε‖2H1 ≤ R2.

Moreover, we have the following results:

Lemma 5.8. There exists a T > 0 such that for every ε ∈ [0, 1], the semigroup
Sε(t) satisfies the following properties: Sε(T ) admits a decomposition of the form

Sε(T ) = Lε +Nε, Lε : B̂ε → H0
ε, Nε : B̂ε → Hγ

ε ,
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where Lε and Nε satisfy the estimates

(5.31) ‖Lε(z1)− Lε(z2)‖H0
ε
≤ 1

4
‖z1 − z2‖H0

ε
, ∀ z1, z2 ∈ B̂ε

and

(5.32) ‖Nε(z1)−Nε(z2)‖Hγ
ε
≤ CR2,T ‖z1 − z2‖H0

ε
, ∀ z1, z2 ∈ B̂ε,

with the constant CR2,T which is independent of ε and

(5.33) γ =

{
1, N = 3, 4, 5, 6,

4
N−2 , N > 6.

Proof. For any two initial data zi ∈ B̂ε with solution Sε(t)zi = (ui(t), ui
t(t)) (i =

1, 2), we decompose the difference Sε(t)z1 − Sε(t)z2 as follows:

Sε(t)z1 − Sε(t)z2 = Lε(t)(z1 − z2) +Nε(t)(z1 − z2),

where Lε(t)(z1 − z2) = (ṽ(t), ṽt(t)) solves

(5.34)

{
ṽtt −Δṽt −Δṽ − εΔṽtt = 0,

(ṽ(0), ṽt(0)) = z1 − z2, ṽ|∂Ω = 0,

and Nε(t)(z1 − z2) = (w̃(t), w̃t(t)) solves

(5.35)

{
w̃tt −Δw̃t −Δw̃ − εΔw̃tt + f(u1)− f(u2) = 0,

(w̃(0), w̃t(0)) = (0, 0), w̃|∂Ω = 0.

In the following, for clarity, we decompose the remainder proof into two steps.

Step 1. Similar to the proof of Lemma 4.4, for (5.34) we can deduce that

‖Lε(t)z1 − Lε(t)z2‖2H0
ε
= ‖(ṽ(t), ṽt(t))‖2H0

ε
≤ Q(‖B̂ε‖H)‖z1 − z2‖2H0

ε
e−μ1t,

where the constant μ1 only depends on the first eigenvalue λ1. Hence, by taking
T ′ > 0 large enough, we have

(5.36) ‖Lε(t+ T ′)z1 − Lε(t+ T ′)z2‖H0
ε
≤ 1

4
‖z1 − z2‖H0

ε
for all t ≥ 0.

Step 2. For w̃(t), multiplying (5.35) by Aγw̃t(t) (where γ is given in (5.33)) we
obtain that

1

2

d

dt
(‖A

γ
2 w̃t‖2 + ‖A

1+γ
2 w̃‖2 + ε‖A

1+γ
2 w̃t‖2

)
+ ‖A

1+γ
2 w̃t‖2

+ 〈f(u1)− f(u2), Aγw̃t〉 = 0.

Case 1. N = 3, 4. Then using the embedding D(A) ↪→ Lp(Ω) for any p ≥ 1, we
have

|〈f(u1)− f(u2), Aw̃t〉| ≤ C(1 + ‖u1‖
4

N−2

H2 + ‖u2‖
4

N−2

H2 )‖∇(u1 − u2)‖‖Aw̃t‖
≤ CR2

‖∇(u1 − u2)‖‖Aw̃t‖
≤ CR2

eCR2
t‖z1 − z2‖H0

ε
‖Aw̃t‖

≤ CR2,t‖z1 − z2‖2H0
ε
+

1

2
‖Aw̃t‖2,

where we have used (5.30) and (4.21).
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Case 2. N = 5, 6. Since 4N
N−2 ≤ 2N

N−4 and embedding D(A) ↪→ L
2N

N−4 (Ω), we also
have

|〈f(u1)− f(u2), Aw̃t〉| ≤ C(1 + ‖u1‖
4

N−2

H2 + ‖u2‖
4

N−2

H2 )‖∇(u1 − u2)‖‖Aw̃t‖

≤ CR2,t‖z1 − z2‖2H0
ε
+

1

2
‖Aw̃t‖2.

Case 3. N > 6. Noting that 1 = N−2
2N + N−2(1−γ)

2N + 4−2γ
2N and 4

N−2 · 2N
4−2γ = 2N

N−4 ,

we have

|〈f(u1)− f(u2), Aγw̃t〉| ≤ C(1 + ‖u1‖
4

N−2

H2 + ‖u2‖
4

N−2

H2 )‖∇(u1 − u2)‖‖A
1+γ
2 w̃t‖

≤ CR2,t‖z1 − z2‖2H0
ε
+

1

2
‖A

1+γ
2 w̃t‖2.

Therefore, for any N ≥ 3, we have

d

dt
(‖A

γ
2 w̃t‖2 + ‖A

1+γ
2 w̃‖2 + ε‖A

1+γ
2 w̃t‖2

)
+ ‖A

1+γ
2 w̃t‖2

≤ 2CR2,t‖z1 − z2‖2H0
ε

for all t ≥ 0,

which, noting that (w̃(0), w̃t(0)) = (0, 0), implies that

‖w̃(t), w̃t(t)‖2Hγ
ε
= ‖A

γ
2 w̃t(t)‖2 + ‖A

1+γ
2 w̃(t)‖2 + ε‖A

1+γ
2 w̃t(t)‖2

≤ CR2,t‖z1 − z2‖2H0
ε

for all t ≥ 0.(5.37)

Hence, taking

T = T ′ and Lε = Lε(T ), Nε = Nε(T ),

then, from (5.36) and (5.37), we can see that T , Lε and Nε satisfy (5.31)-(5.32),
respectively. �

Lemma 5.9. For an arbitrary fixed time T > 0 and any ε ∈ [0, 1], the semigroup

Sε(t) is Lipschitz continuous on [0, T ] × B̂ε in the following sense: there exists a

positive constant C̄T,R2
such that for any zi ∈ B̂ε, ti ∈ [0, T ], i = 1, 2,

(5.38) ‖Sε(t1)z1 − Sε(t2)z2‖H0
ε
≤ C̄T,R2

(
|t1 − t2|+ ‖z1 − z2‖H0

ε

)
.

Proof. Obviously, we have

‖Sε(t1)z1 − Sε(t2)z2‖H0
ε
≤ ‖Sε(t1)z1 − Sε(t2)z1‖H0

ε
+ ‖Sε(t2)z1 − Sε(t2)z2‖H0

ε
.

Note that

‖Sε(t1)z1 − Sε(t2)z1‖H0
ε
=

∥∥∥∥
∫ t2

t1

d

dt
Sε(t)z1ds

∥∥∥∥
H0

ε

≤
∣∣∣∣
∫ t2

t1

‖ d

dt
Sε(t)z1‖H0

ε
ds

∣∣∣∣ .
Then from (5.28) and (5.29) we can deduce

‖Sε(t1)z1 − Sε(t2)z1‖H0
ε
≤

√
M +M4|t1 − t2|,

which, combining with (4.21), implies (5.38) immediately. �
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5.5.2. Exponential attractors. Based on the preliminary lemmas given in §5.5.1,
we are now ready to prove the following result about the existence of exponential
attractors.

Lemma 5.10. Under Assumption I, for every ε ∈ [0, 1], there exists a compact
subset Eε ⊂ H1, uniformly bounded in H1, which satisfies the following conditions:

(i) Eε is semi-invariant with respect to the semigroup {Sε(t)}t≥0, that is,

Sε(t)Eε ⊂ Eε for all t ≥ 0;

(ii) the fractal dimension of Eε is finite, that is,

dimF (Eε, H) ≤ Λε < ∞, ∀ ε ∈ [0, 1];

(iii) for each ε ∈ [0, 1], Eε enjoys a uniform exponential attraction property of
the form: for any bounded (in H) subset B ⊂ H,

distH(Sε(t)B, Eε) ≤ Qε(‖B‖H)e−ν′t, ∀ t ≥ 0.

Here, Λε and Qε(·) may depend on ε, but ν′ is independent of ε.

Proof. For each ε ∈ [0, 1], we know that B̂ε is invariant and compact in H0
ε. Hence,

applying the abstract results established in [9, 14, 22] (or see [23, Lemma 9]), from

Lemmas 5.8 and 5.9 we can first construct an exponential attractor on B̂ε with
respect to the H0

ε-norm. Then, we can complete the proof, by using the attraction
transitivity lemma given in [15, Theorem 5.1] from Lemma 5.5 and the Hölder
continuity (4.22). �
Remark 5.11. Indeed, as shown in [9, Proposition 2.7, Corollary 2.8] the upper
bounds of the fractal dimension of Eε can be specified explicitly only by

N
H0

ε
1

5CR2,T

(
BHγ

ε (0, 1)
)
and the constant CR2,T given in (5.32). Here NV

r (C) denotes

the smallest number of r-balls in V needed to cover C, BHγ
ε (0, 1) is the unit ball

in Hγ
ε and γ is given in (5.33).

5.5.3. Upper semicontinuity of global attractors. Since Aε ⊂ Eε, (ii) of Lemma 5.10
implies that the fractal dimension of the global attractor Aε is finite too. Moreover,
we have the following upper semicontinuity result of Aε at ε = 0:

Lemma 5.12. Under Assumption I, the global attractors {Aε}ε∈[0,1] are upper
semicontinuous at ε = 0:

distH(Aε, A0) → 0 as ε → 0+.

Since the global attractor Aε is strictly invariant, i.e., Sε(t) = Aε for all t ≥ 0,
it is obvious to see that

(5.39)
⋃

ε∈[0,1]

Aε ⊂ B and compact in H.

Therefore, to apply Lemma 3.2, we can take K = clH1(B) and we only need to
verify condition (3.1).

Let ε ∈ (0, 1] and (û(t), ût(t)) = Sε(t)zε with zε ∈ Aε; also let (v̂(t), v̂t(t)) =
S0(t)z0 with z0 ∈ B. Denote ŵ(t) = û(t) − v̂(t). Then ŵ solves the following
equation:

(5.40)

{
ŵtt −Δŵ −Δŵt + f(û)− f(v̂) = εΔûtt,

(ŵ(x, 0), ŵt(x, 0)) = zε − z0, ŵ|∂Ω = 0.
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Multiplying (5.40) by ŵt, we obtain that

1

2

d

dt
(‖ŵt‖2 + ‖∇ŵ‖2

)
+ ‖∇ŵt‖2 + 〈f(û)− f(v̂), ŵt〉 = −ε

∫
Ω

∇ûtt · ∇ŵt.

Therefore,

(5.41)
d

dt
(‖ŵt‖2 + ‖∇ŵ‖2

)
+ ‖∇ŵt‖2 ≤ C‖B‖H‖∇ŵ‖2 + ε2‖∇ûtt‖2.

Since zε ∈ Aε, from (5.28) we have

ε‖∇ûtt(t)‖2 ≤ M +M4 for all t ≥ 0.

Hence, integrating (5.41) over [0, t], we have

(5.42) ‖ŵt(t)‖2 + ‖∇ŵ(t)‖2 ≤ C‖B‖H,t

(
‖zε − z0‖2H1

0 (Ω)×L2(Ω) + ε
)

for all t ≥ 0.

Moreover, we also have

‖∇ŵt(t)‖2 ≤ ‖ŵtt‖‖ŵt‖+ ‖∇ŵ‖‖∇ŵt‖+ ε‖∇ûtt‖‖∇ŵt‖+ C‖B‖H‖∇ŵ‖‖∇ŵt‖.

Then, from Lemma 4.3 and using (5.42), we know that there is a t1 = t1(‖B‖H)
(which is independent of ε) such that

‖∇ŵt(t1 + 1)‖2 ≤ C‖B‖H,t1

(
‖zε − z0‖H1

0 (Ω)×L2(Ω) + ε
)
,

which, combining with (5.42) again, implies

(5.43) if εn → 0+ and Aεn � zn → z0, then Sεn(t1 + 1)zn → S0(t1 + 1)z0.

Proof of Lemma 5.12. From (5.39) and (5.43), the proof is a direct application of
Lemma 3.2. �

6. Part II: g(x) ∈ H−1

Throughout this section, we always assume that Assumption II holds.
We first recall a simple result (its proof can be found in [30]) about an elliptic

equation:

Lemma 6.1. Let f(·) satisfy (2.1) and let (2.4), and let uθ be the solution of the
following elliptic equation:{

−Δu+ f(u) + θu = g(x) ∈ H−1 in Ω,

u|∂Ω = 0,

where θ > l. Then

‖∇uθ‖ → 0 as θ → ∞.

Then, as in [30], combining with Lemma 6.1, we can take η0 (in (2.5)) large
enough such that (recall that φ(x) is the unique solution of (2.5))

(6.1)
1

2
‖∇ϕ‖2 + 2〈h(ϕ+ φ)− h(φ), v〉 − 〈h′(φ)ϕ, ϕ〉 ≥ 0 for any ϕ ∈ H1

0 (Ω),

and define

(6.2) h(s) = f(s) + η0s for all s ∈ R.
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6.1. Decomposition of the equation. We first decompose the solution
S(t)(u0, v0) = (u(t), ut(t)) into the sum

S(t)ξu(0) = K(t)ξu(0) +D(t)ξu(0),

where K(t)ξu(0) = (w(t), wt(t)) and D(t)ξu(0) = (z(t), zt(t)) solve the following
equations, respectively:

(6.3)

{
wtt −Δwt −Δw −Δwtt + f(u)− f(z) = η0z in Ω× R

+,

w|∂Ω = 0, (w(x, 0), wt(x, 0)) = (0, 0),

and

(6.4)

{
ztt −Δzt −Δz −Δztt + h(z) = g(x) in Ω× R

+,

z|∂Ω = 0, (z(x, 0), zt(x, 0)) = ξu(0).

Then, we further decompose the solution z(x, t) of (6.4) as z(x, t) = v(x, t)+φ(x),
where φ(x) is the unique solution of (2.5) and v(x, t) solves the following equation:

(6.5)

{
vtt −Δvt −Δv −Δvtt + h(z)− h(φ) = 0 in Ω× R

+,

v|∂Ω = 0, (v(x, 0), vt(x, 0)) = ξu(0)− (φ(x), 0).

6.2. A priori estimates. At first, for the solution of (6.4), from Remark 4.2, we
have the following estimate:

Lemma 6.2. There exists Q3(·) ∈ J such that for any bounded set B ⊂ H, the
following estimate holds: for any t ≥ 0,

‖∇z(t)‖2 +
∫ t

0

‖∇zt(s)‖2ds ≤ Q3(‖B‖H + ‖g‖H−1), ∀ (z(x, 0), zt(x, 0)) ∈ B.

Second, for the solution of (6.5) we have the following results:

Lemma 6.3. There exist a positive constant k1 and Q4(·) ∈ J such that for any
bounded set B ⊂ H, the following estimate holds:

‖(v(x, t), vt(x, t))‖H ≤ Q4(‖B‖H)e−k1t, ∀ t ≥ 0, (v(x, 0), vt(x, 0)) ∈ B.

Consequently, for the solution of (6.4) the following estimate holds:

‖(z(x, t), zt(x, t))− (φ(x), 0)‖H ≤ Q4(‖B‖H)e−k1t, ∀ t ≥ 0, ξ0 ∈ B.

Proof. Multiplying (6.5) by vt + εv, we have

(6.6)
d

dt
E5v(t) + εE5v(t) +G5v(t) +

ε

2
‖∇v(t)‖2 = 2〈

(
h′(z)− h′(φ)

)
zt, v〉,

where

E5v(t) = ‖vt(t)‖2+(1 + ε)‖∇v(t)‖2 + ‖∇vt(t)‖2 + 2ε〈vt(t), v(t)〉
+ 2ε〈∇vt(t),∇v(t)〉+ 2〈h(z)− h(φ), v(t)〉 − 〈h′(φ)v, v〉(6.7)

and

G5v(t) = 2‖∇vt(t)‖2 +
ε

2
‖∇v(t)‖2 − 3ε‖vt‖2 − 3ε‖∇vt‖2 − 2ε2〈vt, v〉

− 2ε2〈∇vt,∇v〉 − ε2‖∇v‖2 + ε〈h′(φ)v, v〉.(6.8)

Noticing (6.1), by further taking ε small enough, we have

(6.9) E5v(t) ≥
1

4
‖(v(t), vt(t))‖2H for all t ≥ 0
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and

(6.10) G5v(t) ≥ 0 for all t ≥ 0.

Moreover, from (2.3) and using the Hölder inequality, we have

2〈
(
h′(z)− h′(φ)

)
zt, v〉 = 2〈h′′(rz + (1− r)φ

)
zt, v

2〉

≤
{
C
∫
Ω

(
1 + |z|

6−N
N−2 + |φ|

6−N
N−2

)
|zt||v|2dx N = 3, 4, 5,

C
∫
Ω
|zt||v|2dx N ≥ 6

≤ c3‖∇zt‖‖∇v‖2 ≤ ε

2
‖∇v‖2 + c3

ε
‖∇zt‖2E5v(t),

where r ∈ (0, 1) and the constant c3 depends only on ‖B‖H + ‖∇φ‖.
Therefore, from Lemma 6.2 and noticing E5v(0) ≤ Q(‖B‖H + ‖∇φ‖), applying

Lemma 3.3 we can complete our proof immediately. �

For the solution of (6.3), the same as Lemma 5.3, for each α ∈ [0,min{1, N2 −1}),
by multiplying (6.3) by Aαwt, we have

Lemma 6.4. For any α ∈ [0,min{1, N
2 − 1}), there exist kα > 0 and Qα(·) ∈ J

such that for any t ≥ 0,

‖K(t)ξu(0)‖2Hα ≤ Qα(‖ξu(0)‖H)ekαt,

where kα also depends on ‖ξu(0)‖H.

Now, similar to Lemma 5.4, based on Lemma 6.2 and Lemma 6.3 we can
decompose u(t) as follows:

Lemma 6.5. Let (u(t), ut(t)) be the solution of (E1) corresponding to the initial
data ξu(0) = (u0, v0). Then, for any η > 0, we can decompose u(t) as

u(t) = v1(t) + w1(t), for all t ≥ 0,

where v1(t) and w1(t) satisfy the following estimates:

(6.11)

∫ t

s

‖∇v1(τ )‖2dτ ≤ η(t− s) + Cη for all t ≥ s ≥ 0

and

(6.12) ‖A
1+α
2 w1(t)‖2 ≤ Kη for all t ≥ 0,

with the constants Cη and Kη depending on η, ‖ξu(0)‖H and ‖g‖H−1 .
Moreover, v1(·, t) and w1(·, t) satisfy the following estimates respectively:

(6.13) ‖∇v1(t)‖ ≤ Q5(‖B‖H) for all t ≥ 0

and

(6.14) ‖∇w1(t)‖ = ‖∇(u(t)− v1(t))‖ ≤ Q6(‖B‖H) for all t ≥ 0.

Proof. The proof is the same as that in [30, Lemma 4.5]. �
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6.3. Proof of Theorem 2.2. We will follow the idea from [37], and the details
similar to [28].

Proof of Theorem 2.2. We decompose our proof into two steps for clarity.

Step 1. We first claim that
For each α ∈ [0,min{1, N

2 −1}), there exists a constant JB,α, which depends only
on the H-bounds of B(⊂ H) and α, such that

(6.15) ‖K(t)ξu(0)‖2Hα = ‖(w(t), wt(t))‖2Hα ≤ JB,α for all t ≥ 0 and ξu(0) ∈ B.

Multiplying (6.3) by Aα(wt(t) + εw(t)), we obtain that

1

2

d

dt

(
‖Aα

2 (wt + εw)‖2 + μ‖A
1+α
2 (wt + εw)‖2

)
− 〈εwt, A

α(wt + εw)〉

− 〈εwt, A
1+α(wt + εw)〉 − 〈Δwt, A

α(wt + εw)〉 − 〈Δw,Aα(wt + εw)〉
= −〈f(u)− f(z), Aα(wt + εw)〉+ 〈η0z, Aα(wt + εw)〉,

where ε (> 0) is small enough and will be determined later.
Then, as in [28, Lemma 4.4], we can obtain the claim above by applying Lemma

6.5 to overcome the difficulty from the critical nonlinearity.

Step 2. Applying Lemma 6.3 and Step 1 to B0 (recall B0 ⊂ H is the bounded
absorbing set given in §3), also using the attraction transitivity lemma devised in
[15], we can finish our proof by setting: for each α ∈ [0,min{1, N

2 − 1}),

Bα = {z ∈ H : ‖z − (φ(x), 0)‖2Hα ≤ JB0,α},

where JB0,α is the constant given in (6.15) corresponding to B0. �

In the following we state a decomposition result about u(t), which can be used
to construct a finite dimensional exponential attractor (e.g., see [14, 23, 30]); its
proof is the same as that in [30, Lemma 4.9].

Lemma 6.6. Under the assumption of Theorem 2.1, for any bounded (in Hα,
α ∈ [0,min{N

2 − 1})) subset B1 ⊂ Hα, if the initial data ξu(0) ∈ φ(x) + B1, then
the solution u(t) of (E1) also satisfies a similar estimate; more precisely, we have

‖S(t)ξu(0)− (φ(x), 0)‖2Hα = ‖(u(t), ut(t))− (φ(x), 0)‖2Hα ≤ KB1

for any t ≥ 0 and any ξu(0) ∈ φ(x) +B1; where the constant KB1
depends only on

α and the Hα-bound of B1.

Remark 6.7. Based on Theorem 2.2 and Lemma 6.6, we can construct a finite
dimensional exponential attractor E for {S(t)}t≥0 under Assumption II. Moreover,
we can decompose E as E = (φ(x), 0) + E ′, where E ′ is bounded in Hα for any
α ∈ [0,min{1, N2 − 1}).
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