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ON GENERALIZED WHITEHEAD PRODUCTS

BRAYTON GRAY

Abstract. We define a symmetric monodical pairing G ◦ H among simply
connected co-H spaces G and H with the property that S(G◦H) is equivalent
to the smash product G∧H as co-H spaces. We further generalize the White-
head product map to a map G ◦ H → G ∨ H whose mapping cone is the
cartesian product.

Whitehead products have played an important role in unstable homotopy. They
were originally introduced [Whi41] as a bilinear pairing of homotopy groups:

πm(X)⊗ πn(X) → πm+n−1(X), m, n > 1.

This was generalized ([Ark62], [Coh57], [Hil59]) by constructing a map

W: S(A ∧B) → SA ∨ SB.

Precomposition with W defines a function on based homotopy classes:

[SA,X]× [SB,X] → [S(A ∧B), X],

which is bilinear in case A and B are suspensions.
The case where A and B are Moore spaces was central to the work of Cohen,

Moore and Neisendorfer ([CMN79]). In [Ani93] and in particular [AG95], this work
was generalized. Much of this has since been simplified in [GT10], but further
understanding will require a generalization from suspensions to co-H spaces.

The purpose of this work is to carry out and study such a generalization. Let
CO be the category of simply connected co-H spaces and co-H maps. We define a
functor

CO × CO → CO,

(G,H) → G ◦H,

and a natural transformation

(1) W: G ◦H → G ∨H

generalizing the Whitehead product map. The existence of G◦H generalizes a result
of Theriault [The03] who showed that the smash product of two simply connected
co-associative co-H spaces is the suspension of a co-H space. We do not need the co-
H spaces to be co-associative and require only one of them to be simply connected.1

We call G ◦H the Theriault product of G and H.

Received by the editors November 28, 2009 and, in revised form, June 8, 2010.
2010 Mathematics Subject Classification. Primary 55P99, 55Q15, 55Q20, 55Q25.
1In fact we can define G ◦ H for any two co-H spaces but require at least one of them to be

either simply connected or a suspension in order to obtain the co-H space structure map on G◦H.
Recently Grbić, Theriault and Wu have shown that the smash product of any two co-H spaces is
the suspension of a co-H space, but their construction cannot satisfy Theorem 1(a) below [GTW].
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We summarize our results in the following theorems.

Theorem 1. There is a functor CO × CO → CO given by

(G,H) → G ◦H

and equivalences in CO:

(a) (SX) ◦H � X ∧H,
(b) S(G ◦H) � G ∧H,
(c) (G1 ∨G2) ◦H � G1 ◦H ∨G2 ◦H

and homotopy equivalences:

(d) G ◦H � H ◦G,
(e) (G ◦H) ◦K � G ◦ (H ◦K).

Theorem 2. There is a natural transformation

W: G ◦H → G ∨H

which is the Whitehead product map in case G and H are both suspensions. Fur-
thermore, there is a homotopy equivalence

G×H � G ∨H ∪W C(G ◦H).

The next theorem concerns the inclusion of the fiber in certain standard fibration
sequences [Gra71]:

G� ΩH
ι1−→ G ∨H

π2−→ H,

ΩG ∗ ΩH ι2−→ G ∨H −→ G×H.

Define adn(H)(G) inductively by ad 0(H)(G) = G and

adn(H)(G) = [ad n−1(H)(G)] ◦H

and by an iterated Whitehead product

ad n : ad n(H)(G) → G ∨H

as the composition

ad n(H)(G)
W−→ ad n−1(H)(G) ∨H

ad n−1∨1−−−−−−→ G ∨H ∨H → G ∨H.

Theorem 3. Suppose G and H are simply connected co-H spaces. Then there are
homotopy equivalences:

(a) G�ΩH �
∨
n�0

ad n(H)(G), where ι1 corresponds to ad n on the appropriate

factor,
(b) ΩG ∗ ΩH �

∨
i�0
j�1

ad j(H)(ad i(G)(G)), where ι2 corresponds to ad j(ad i) on

to the appropriate factor,
(c) SΩG �

∨
n�0

ad n(G)(G), where the composition SΩG → SΩG ∨ SΩG →

G ∨ G corresponds to the appropriate iterated Whitehead product on each
factor.
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It should be pointed out that equivalence (c) generalizes the result of Theriault
[The03, 1.1] where it is shown that a simply connected co-associative co-H space
decomposes

ΣΩG �
∨
n�1

Mn

for some spaces Mn, which are not further decomposed.

Theorem 4. Suppose X is finite dimensional and f: SX → G ∨ H. Then f is
the sum of the projections onto G and H and a finite sum of iterated Whitehead
products.

Throughout this work we will assume that all spaces are of the homotopy type
of a CW complex. All homology and cohomology will be with a field of coefficients.
We will often show that a map between simply connected CW complexes is a
homotopy equivalence by showing that it induces an isomorphism in homology
with an arbitrary field of coefficients, without further comment.

Section will be devoted to some general remarks about telescopes, and we will
construct the Theriault product in section . Theorem 1 will follow from Proposi-
tions 2.3, 2.5 and 2.7. The functor in Theorem 2 is defined after Corollary 3.2, and
the equivalence follows from Proposition 3.8. The proof of the first part of Theo-
rem 3 occurs just prior to Corollary 3.5 and the rest occurs following Corollary 3.5.
Theorem 4 follows from Corollary 3.7.

Section 1

In this section we will discuss some general properties of telescopes of a self map
e : G → G, where G is a co-H space. We do not assume that e is idempotent. We
will call e quasi-idempotent if the induced homomorphism in homology satisfies the
equation

(e∗)
2 = −e∗,

where u is a unit. We construct two telescopes:

T (e) : G
e−→ G

e−→ G −→ . . . ,

T (1 + e) : G
1+e−−→ G

1+e−−→ G −→ . . .

and a map:

Γ: G −→ G ∨G
Γ1∨Γ2−−−−→ T (e) ∨ T (1 + e).

Proposition 1.1. If G is simply connected and e is a quasi-idempotent, Γ is a

homotopy equivalence. Furthermore H∗(T (e)) = im e∗ and H̃∗(T (1 + e)) ∼= ker e∗.

Proof. Suppose Γ∗(ξ) = 0. Since (Γ1)∗(ξ) = 0 (e∗)
k(ξ) = 0 for some k, e∗(ξ) = 0.

Since (Γ2)∗(ξ) = 0, (1+e)∗
k(ξ) = 0. However, (1+e)2∗ = (1+e)∗, so ξ = −e∗(ξ) = 0.

Clearly Γ∗ is onto. Moreover, H∗(T (e)) ∼= im e∗ and H̃∗(T (1 + e)) ∼= im (1 + e∗) =
ker e∗.

Corollary 1.2. Suppose G is a simply connected co-H space and A ⊂ G is a retract
of G. Let e be the composition

G
r−→ A

i−→ G.
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Then T (e) � A, T (1− e) � G/A, and the identity map of T (e) can be factored:

T (e)
ξ−→ A

i−→ G
r−→ A

η−→ T (e),

where ξ and η are inverse homotopy equivalences.

Proof. The telescope T (e) and A are both simply connected, and there are maps
T (e) → A and A → T (e) making A a retract of T (ξ); these maps are homotopy
equivalences. By the Van Kampen theorem G/A � G ∪ CA is simply connected.
Since 1− e : G → G factors through the projection π : G → G/A, we can factor the
identity map up to homotopy,

G → G ∨G
r∨π−−→ A ∨G/A → G,

and hence G � A∨G/A. The factorization of the identity map of T (e) is obtained
by replacing each space by a telescope where the three in the center are constant.

Now consider two maps f1, f2: X → X.

Proposition 1.3. T (f1f2) � T (f2f1).

Proof. We define maps between the telescopes:

X

f2
��

f1f2 �� X

f2
��

f1f2 �� X

f2
��

�� · · ·

X

f1
��

f2f1 �� X

f1
��

f2f1 �� X

f1
��

�� · · ·

X
f1f2 �� X

f1f2 �� X �� · · · .
The composition is the shift map which is a homotopy equivalence.

Section 2

In this section we will consider a pair of co-H spaces in which at least one is
simply connected. Let G and H be two such co-H spaces with their structure
determined by maps ν1 : G → SΩG and ν2 : H → SΩH, each of which is a right
inverse to the respective evaluation maps (see [Gan70]), which we label as ε1, ε2.
We define self maps of S(ΩG ∧ ΩH) as follows:

e1 : S(ΩG ∧ ΩH)
ε1∧1−−−→ G ∧ ΩH

ν1∧1−−−→ S(ΩG ∧ ΩH),

e2 : S(ΩG ∧ ΩH)
1∧ε2−−−→ ΩG ∧H

1∧ν2−−−→ S(ΩG ∧ ΩH).

Here we freely move the suspension coordinate to wherever it is needed. Clearly
e1 and e2 are idempotents but e1e2 is not an idempotent; however it is a quasi-
idempotent. To see this we need to pay careful attention to the order of the sus-
pension coordinates. Let

T : S1 ∧ S1 ∧ ΩG ∧ ΩH → S1 ∧ S1 ∧ ΩG ∧ ΩH

be the map switching the suspension coordinates. What we will show is that the
composition

e = (Se2) ◦ T ◦ (Se1)
is an idempotent. Since T ∼ (−1) and (Se1) is a suspension,

e ∼ −(Se2) ◦ (Se1).
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Once we see that e is an idempotent it follows that (Se1) ◦ (Se2) is a quasi-
idempotent.

Now we factor e and note that it contains the composition

S(1 ∧ ε2) ◦ T ◦ S(ν1 ∧ 1).

However, this composition is equal (no homotopies) to the composition

SG ∧ ΩH
1∧ε2−−−→ G ∧H

ν1∧1−−−→ SΩG ∧H.

Consequently, e is equal to the composition

S1 ∧ S1 ∧ ΩGΩH�SΩG ∧ SΩH
ε1∧ε2−−−→ G ∧H

ν1∧ν2−−−−→ SΩG ∧ SΩH�S1 ∧ S1 ∧ ΩG ∧ ΩH,

and this map is clearly an idempotent.
Now assuming that one of G,H is simply connected, it follows that ΩG∧ΩH is

connected, so S(ΩG ∧ ΩH) is simply connected. Consequently,

Proposition 2.1. If one of G and H is simply connected, there is a homotopy
equivalence,

S(ΩG ∧ ΩH) � T (e1e2) ∨ T (1 + e1e2).

Let

θ : S(ΩG ∧ ΩH) → T (e1e2)

be the projection and

ψ : T (e1e2) → S(ΩG ∧ ΩH)

be the unique right inverse to θ which projects trivially onto T (1 + e1e2). These
maps determine a co-H space structure on T (e1e2).

Definition 2.2. G ◦H = T (e1e2).

Proposition 2.3. Given co-H maps f : G → G′ and g : H → H ′, there is an
induced co-H map

f ◦ g : G ◦H → G′ ◦H ′

making G◦H a functor of two variables. In addition there are equivalences of co-H
spaces:

(a) SX ◦H � X ∧H,
(b) S(G ◦H) � G ∧H,
(c) S1 ◦H � H,

and there is a homotopy equivalence G ◦H � H ◦G.

Proof. Since f and g are co-H maps, the squares

G
ν1 ��

f

��

SΩG

SΩf

��
G′ ν′

1 �� SΩG′

H
ν2 ��

g

��

SΩH

SΩg

��
H ′ ν′

2 �� SΩH ′

commute up to homotopy. It follows that f and g induce maps that commute with
e1 and e2 and hence with the equivalences of Proposition 2.1, θ and ψ. For part



6148 BRAYTON GRAY

(a), observe that the composition e2e1 factors

S(ΩSX ∧ ΩH)
ε1∧1 �� SX ∧ ΩH

Sι∧1 ��

1∧ε2 ����
���

���
���

� SΩSX ∧ ΩH
1∧ε2 �� ΩSX ∧H

1∧ν2 �� S(ΩSX ∧ ΩH)

X ∧H

ι∧1

��������������

where (1∧ε2)(ε1∧1) is a right universe to (1∧ν2)(ι∧1). Thus we can apply Corollary
1.2 to see that SX ◦ H � X ∧ H with co-H structure given by the composite
(1∧ ν2)(ι∧ 1). This is precisely the co-H structure induced by ν2. Part (b) follows
since S(G◦H) is the telescope of e with co-H structure given by ν1∧ν2. Part (c) is
a special case of part (a): The last statement follows directly from Proposition 1.3.

To complete the proof of Theorem 1 it remains to prove parts (c), (d), and (e)
by Proposition 2.3. Part (d) follows directly from Proposition 1.3. For the other
two parts, it will be convenient to describe an alternative definition of G ◦H. For
this we assume that G is a retract of a space SX and H is a retract of SY :

G
ν1−→ SX

ε1−→ G H
ν2−→ SY

ε2−→ H.

We can then replace the telescope in the definition by the telescope of the compo-
sition:

T : SX ∧ Y
1∧ε2−−−→ X ∧H

1∧ν2−−−→ SX ∧ Y
ε1∧1−−−→ G ∧ Y

ν1∧1−−−→ SX ∧ Y.

The co-H structures defined by these maps are equivalent to the structures defined
by

ν̃2 : G
ν1−→ SX

Sε̃1−−→ SΩG, ν̃1 : H
ν2−→ SY

SΩε̃2−−−→ SΩH,

and we have a homotopy commutative ladder:

SX ∧ Y
1∧ε2 ��

Sε̃1∧ε̃2

��

X ∧H
1∧ν2 ��

ε̂1∧1

��

SX ∧ Y
ε1∧1 ��

Sε̃1∧ε̃2

��

G ∧ Y
ν1∧1 ��

1∧ε̃2

��

SX ∧ Y

Sε̃1∧ε̃2

��
SΩG ∧ ΩH

1∧ε �� ΩG ∧H
1∧ν̃2 �� SΩG ∧ ΩH

ε∧1 �� G ∧ ΩH
ν̃1∧1 �� SΩG ∧ ΩH.

Hence we have a commutative diagram:

SX ∧ Y ��

Sε̃1∧ε̃2

��

T ∨ T

α∨β

��
SΩG ∧ ΩH �� G ◦H ∨ Tel(1 + e1e2)

where T is the telescope defined by 1 + (ν1 ∧ 1)(ε1 ∧ 1)(1 ∧ ν2)(1 ∧ ε2). The map
α : T → G◦H is compatible with the homotopy equivalence ST � G∧H � S(G◦H),
so is itself a homotopy equivalence. Now choose a right homotopy inverse for the
map SX∧Y → T which projects trivially to T . Its composite with Sε̃1∧ ε̃2 will then
project trivially to T (1+ e1e2). Hence we have a homotopy commutative diagram:

T ��

α

��

SX ∧ Y ��

Sε̃1∧ε̃2
��

T

α

��
G ◦H �� SΩG ∧ ΩH �� G ◦H

and consequently the co-H structure on T is compatible under α with the co-H
structure on G ◦H. We have proven the proposition.
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Proposition 2.4. Suppose G is represented as a retract of SX and H as a retract
of SY . Then G ◦H is homotopy equivalent to the telescope T of the composition

SX ∧ Y → G ∧ Y → SX ∧ Y → X ∧H → SX ∧ Y

as co-H spaces, where the co-H structure on T is given by the equivalence SX∧Y �
T ∨ T .

Proposition 2.5. (G1 ∨G2) ◦H � G1 ◦H ∨G2 ◦H as co-H spaces.

Proof. WriteGi as a retract of SXi, i = 1, 2. ThenG1∨G2 is a retract of S(X1∨X2).
Thus the telescope for (G1 ∨ G2) ◦H is at each point the wedge of the telescopes
for G1 ◦H and G2 ◦H.

At this point we will apply Proposition 2.4 to prove Theorem 1(e), the associa-
tivity formula. We will make repeated use of

Lemma 2.6. There is a homotopy commutative square

S(G ◦H)

�
��

Sψ �� S2X ∧ Y

Sθ

��
G ∧H �

��

ν1∧ν2

��������������
S(G ◦H).

Proof. G ∧H is a retract of S2X ∧ Y , so we may apply Corollary 1.2.

Proposition 2.7. There is a homotopy equivalence2

(G ◦H) ◦K � G ◦ (H ◦K).

Proof. We suppose that G, H, and K are presented by retractions

G
ψ1−−→ SX

θ1−→ G,

H
ψ2−−→ SY

θ2−→ H,

K
ψ3−−→ SZ

θ3−→ K,

and we then construct retractions for G ◦H and H ◦K:

G ◦H ψ3−−→ SX ∧ Y
θ3−→ G ◦H,

H ◦K ψ4−−→ SY ∧ Z
θ4−→ H ◦K.

Using these we construct retractions for G ◦ (H ◦K) and (G ◦H) ◦K:

(G ◦H) ◦K ψ−→ S(X ∧ Y ∧ Z)
θ−→ (G ◦H) ◦K,

G ◦ (H ◦K)
ψ′

−→ S(X ∧ Y ∧ Z)
θ′
−→ (G ◦ (H ◦K)).

2Note that we are not asserting a co-H equivalence here and in (c) of Theorem 1. However,
this holds if one of the spaces involved is co-associative. If, for example, H is co-associative, the
map

G ◦H → G ◦ SΩH � G ∧ ΩH

is a co-H map by Proposition 2.3. Since this map also has a left homotopy inverse, the co-H
structure is determined by that on G.
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We will show that θ′ψ : (G ◦H) ◦K → G ◦ (H ◦K) is a homotopy equivalence. By
Lemma 2.6, we have homotopy commutative diagrams:

(G◦H) ∧K

ψ4∧ψ3

����
��

��
��

�
G ∧ (H◦K)

ψ1∧ψ5

�����
��
��
�� �

		��
���

���
��

S((G◦K)◦K)

�


����������
Sψ �� S2X∧Y ∧Z Sθ′

�� S(G◦(H◦K)).

Suspending and applying Lemma 2.6 again, we obtain a homotopy commutative
diagram:

G ∧H ∧K

�

��				
			

			
			

	

ψ1∧ψ2∧ψ3

��

�

��





















S(G ◦H) ∧K

S(ψ4∧ψ3) ��
���

���
���

��
SG ∧ (H ◦K)

S(ψ1∧ψ5)������
���

���
���

S3(X ∧ Y ∧ Z).

From these diagrams it follows that S2(θ′ψ) is a homotopy equivalence and hence
θ′ψ is as well.

Section 3

In this section we generalize the clutching construction [Gra88, Proposition 1]
for fibrations over a suspension to fibrations over a co-H space. This allows for the
decomposition results in Theorems 2 and 3.

Proposition 3.1. Suppose F → E → G is a fibration where G is a co-H space.
Then E/F � G� F .

Proof. In the case G = SX, we have by [Gra88, Proposition 1]

E � F ∪θ (CX)× F.

So E/F � SX � F . It is easy to construct a map G � F → E/F in general.
Consider the sequence of pull backs:

F

��

F

��

F

��
E

��

�� E′ ��

��

E

��
G

ν �� SΩG
ε �� G.

Then we consider the composite

E/F → E′/F � SΩG� F → G� F,

where the middle equivalence follows since the base is a suspension. Showing that
the composite is a homotopy equivalence will take some work.

Since νε : SΩG → SΩG is an idempotent, we can decompose SΩG:

SΩG � G ∨G′.
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We now observe that we can construct a quasi-fibration model for a fibration over
a one point union. Suppose we have such a fibration

EA
��

��

Ẽ

��

EB
��

��
A �� A ∨B B��

with pull backs EA and EB and fiber F . Then we can construct

EA ∪F EB,

the union of EA and EB with the subspace F identified. Then

EA ∪F EB
φ ��

��

Ẽ

��
A ∨B A ∨B

φ is a homotopy equivalence. In our case SΩG � G∨G′ and EG = E, EG′ = G′×F ,
so

E′ � E ∪F G′ × F

��
G ∨G′

is a quasi-fibering by [DT58, 2.10]. On the other hand E′/F � SΩG � F �
G� F ∨G′

� F , while E ∪F G′
� F � E/F ∨G′ × F . Since the map between E′

and E ∪F G′
� F is a map over G ∨G′, we see that E/F � G× F .

Corollary 3.2. SΩG � G� ΩG.

Proof. Apply Proposition 3.1 to the path space fibration over G.

Proof of Theorem 2. Construction: We now describe our generalization of the
Whitehead product. Suppose G and H are co-H spaces and one of them is simply
connected. The Whitehead product

W: G ◦H → G ∨H

is then defined as the composition

G ◦H ψ−→ SΩG ∧ ΩH � ΩG ∗ ΩH ω−→ G ∨H,

where ω is the inclusion of the fiber in the fibration sequence

ΩG ∗ ΩH ω−→ G ∨H → G×H.

Clearly ψ and ω are natural transformations, so W is as well.
Before we prove the homotopy equivalence in Theorem 2, we need to establish

some results in Theorem 3. We begin by constructing maps

ad n : ad n(H)(G) → G ∨H
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inductively. For n = 0 this is just the inclusion of G in G∨H. For n > 0 we define
ad n as the composition

ad n(H)(G) =
(
ad n−1(H)(G)

)
◦H

→ (ad n−1(H)(G)) ∨H → (G ∨H) ∨H = G ∨H.

Next we calculate the effect of ad n in loop space homology:

Ω(ad n)∗ : H∗(Ω(ad
n(H)(G))) → H∗(Ω(G ∨H)).

To do this we need some notation. For each co-H space G, write

σ−1 : H̃r(G) → H̃r−1(ΩG)

for the composition

H̃r(G)
ν+−−→ H̃r(SΩG) � H̃r−1(ΩG).

Let {xi} be a basis for H̃∗(G). Then H∗(ΩG) is the tensor algebra on the classes

{σ−1(xi)}. Given two classes x ∈ H̃r(G), y ∈ Ĥs(H), we will write

x ◦ y ∈ H̃r+s−1(G ◦H)

for the class that corresponds to x ∧− y ∈ H̃r+s(G ∧H) under the isomorphism

H̃r−1(G ◦H) ∼= H̃r(S(G ◦H)) � H̃r(G ∧H).

Then the classes {xi ◦ yj} form a basis for H̃∗(G ◦H), where {xi} and {yi}, respec-
tively, are bases for H̃∗(G) and H̃∗(H).

Proposition 3.3. (ΩW )∗(σ
−1(x ◦ y)) = ±

[
σ−1x, σ−1y

]
, where

(ΩW )∗ : H∗(Ω(G ◦H)) → H∗(Ω(G ∨H)).

Proof. By Lemma 2.6

ψ∗(x ◦ y) = e ∧− σ−1(x) ∧− σ−1(y) ∈ H∗(SΩG ∧ ΩH),

so

(Ωψ)∗(σ
−1(x ◦ y)) = σ−1(x) ∧− σ−1(y) ∈ H∗(ΩG ∧ ΩH),

regarded as a submodule of H∗(SΩG ∧ ΩH). It now suffices to evaluate the com-
position

ΩG ∧ ΩH → Ω(SΩG ∧ ΩH)
Ωξ−−→ Ω(ΩG ∗ ΩH) → Ω(G ∨H),

where ξ is the standard homotopy equivalence SX ∧ Y � X ∗ Y .

Lemma 3.4. The composition

ΩG ∧ ΩH → ΩS(ΩG ∧ ΩH)
Ωξ−−→ Ω(ΩG ∗ ΩH) → Ω(G ∨H)

carries σ−1(x) ∧− σ−1(y) ∈ H∗(ΩG ∧ ΩH) to ±
[
σ−1(x), σ−1(y)

]
.

Proof. We first need to describe the homotopy equivalence

SX ∧ Y
ξ−→ X ∗ Y.
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Here we write points of the join as tx + (1 − t)y, 0 ≤ t ≤ 1. Therefore, X ∗ Y
is the quotient of X × I × Y given by the identifications (x, 0, y) ∼ (x′, 0, y) and
(x, 1, y) ∼ (x, 1, y′). Then ξ is given by the formula

ξ(t, x, y) =

⎧⎪⎨⎪⎩
(∗, 1− 3t, y), 0 ≤ 3t ≤ 1,

(x, 3t− 1, y), 1 ≤ 3t ≤ 2,

(x, 3− 3t, ∗), 2 ≤ 3t ≤ 3.

The map ΩX ∗ ΩY ω−→ X ∨ Y is given by

(ω1, t, ω2) →
{
ω1(2t), 0 ≤ 2t ≤ 1,

ω2(2− 2t), 1 ≤ 2t ≤ 2.

Combining these we get

SΩX ∗ ΩY ξ−→ ΩX ∗ ΩY ω−→ X ∨ Y

with a 6-part formula:

(t, ω1, ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∗, ω2(6t)), 0 ≤ 6t ≤ 1,

∗, 1 ≤ 6t ≤ 2,

(ω1(6t− 2), ∗), 2 ≤ 6t ≤ 3,

(∗, ω2(4− 6t)), 3 ≤ 6t ≤ 4,

∗, 4 ≤ 6t ≤ 5,

(ω1(6− 6t), ∗), 5 ≤ 6t ≤ 6,

so the adjoint takes the pair (ω1, ω2) to the product of loops ω−1
1 ω−1

2 ω1ω2. The
effect of this on a primitive element is the graded commutator.

Now the iterated circle product ad n(H)(G) has homology generated by classes
of the form

(· · · ((x ◦ y1) ◦ y2) · · · ◦ yn) ,
where x ∈ H̃∗(G) and yi ∈ Ĥ∗(H). By Proposition 3.3,

(ΩW )∗
(
σ−1 (· · · (x ◦ y1) ◦ y2) · · · ◦ yn

)
is ± the graded commutator[

· · ·
[[
σ−1(x), σ−1(y1)

]
, σ−1(y2)

]
· · ·σ−1(y∗)

]
,

where the classes x and yi are thought of as classes in H̃∗(G ∨H).

Proof of Theorem 3(a). Now let G∗=H̃∗(G) and H∗=H̃∗(H). Let L(G∗ ⊕H∗) be
the free Lie algebra generated by G∗ and H∗, and let L(H∗) be the free Lie algebra
generated by H∗. Then Neisendorfer has analyzed the kernel

L(G∗ ∨H∗) → L(H∗)

([Nei09, 8.7.4]). He has shown that this is the free Lie algebra

L

⎛⎝⊕
n�0

ad n(H∗)(G∗)

⎞⎠ .
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The universal enveloping algebra is thus the tensor algebra generated by the ele-
ments ad n(H∗)(G∗) for n � 0. Consequently the fiber of the projection Ω(G∨H) →
ΩH is

Ω

⎛⎝∨
n�0

ad n(H)(G)

⎞⎠ .

This is homotopy equivalent to Ω(G� ΩH), and the map∨
n�0

ad n(H)(G) → G ∨H

which factors through G�ΩH establishes the homotopy equivalence in Theorem 3.

Corollary 3.5. (a) If G is simply connected, SΩG �
∨
n�0

ad n(G)(G),

(b) if both G and H are simply connected,

ΩG ∗ ΩH �
∨
i�0
j�1

ad j(H)
(
ad i(G)(G)

)
.

Proof. For (a) apply Corollary 3.2 and Theorem 3(a). For (b), we expand

ΩG ∗ ΩH � (SΩG) ∧ ΩH

�

⎡⎣∨
i�0

(
ad i(G)(G)

)⎤⎦ ∧ ΩH

�
∨
i�0

[
ad i(G)(G) ∧ ΩH

]
�

∨
i�0
j�1

ad j(H)
(
ad i(G)(G)

)
using Proposition 2.5 and Theorem 3(a).

Given a Theriault product P = G1 ◦ · · · ◦Gs with some fixed association, let us
write �(P ) = s for the length of P .

Theorem 3.6. Suppose G and H are both simply connected co-H spaces and k � 1.
Then there is a locally finite collection of iterated Theriault products {Pα(k)} of
length �α and iterated Whitehead product maps

ωα(k) : Pα(k) → G ∨H

such that

Ω(G ∨H) � Ω

( ∨
�α>k

Pα(k)

)
× Ω

⎛⎝ ∏
�α�k

Pα(k)

⎞⎠ ,

and the factors of the right-hand side are mapped to the left-hand side by the ωα(k).

Proof. For k = 1 we use the decomposition

Ω(G ∨H) � Ω(ΩG ∗ ΩH)× Ω(G×H),
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where ΩG ∗ ΩH is a bouquet of iterated Theriault products of length at least 2
by Corollary 3.5(b). Now we proceed by induction on k. Among the finite list of
products Pα(k) of length k + 1, choose one which we label P . Then

Ω(
∨

�α>k

Pα) � Ω(P ∨
∨

�α>k
Pα �=P

Pα)

� ΩP × Ω(
∨

�α>k
Pα �=P

Pα � ΩP ).

The second factor has one less product of length k + 1. If we repeat this process
once for each Pα(k) of length k + 1, we obtain

Ω(
∨

�(Pα)>k

Pα) = ΩPj × · · · × ΩPm × Ω
( ∨

�(Pα)>k+1

Pα(k + 1)
)
.

Now add the P1 · · ·Pm to the list of Pα with �(Pα) ≤ k to obtain all Pα(k+1) with
length ≤ k + 1.

Corollary 3.7. Suppose X is a finite dimensional co-associative co-H space and
f: X → G∨H, where G and H are simply connected co-H spaces. Then f is a sum
of iterated Whitehead products.

Proof. Suppose dimX = k and f: X → G ∨H is given. Decompose Ω(G ∨H) as
in Theorem 3.6 and note that any product Pα of length k is at least k connected.
Consequently the restriction of Ωf ,

(ΩX)k−1 Ωf−−→ Ω(G ∨H),

factors through the product Ω(
∏

�α≤k

Pα(k)) and the adjoint,

S
[
(ΩX)k−1

]
→ G ∨H,

is a sum of iterated Whitehead products. However, f is the composition of this
map with the co-H space structure map

X → S
[
(ΩX)k−1

]
which is a co-H map, so f is such a sum as well.

Proposition 3.8. If G and H are simply connected, then there is a homotopy
equivalence

φ : (G ∨H) ∪W C(G ◦H) → G×H.

Proof. Since the composition

G ◦H → ΩG ∗ ΩH → G ∨H → G×H

is null homotopic, there is an extension

C = (G ∨H) ∪ C(G ◦H)
φ−→ G×H.

The problem is to show that this map is a homotopy equivalence. We begin by
observing that we can construct a right inverse ζ to Ωφ as the sum of the loops on
the inclusions of G and H into C:

ΩG× ΩH
ζ−→ ΩC

Ωφ−−→ ΩG× ΩH,
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so (Ωφ)∗ : H∗(ΩC) → H∗(ΩG × ΩH) is an epimorphism. We will complete the
proof by showing that the rank of Hk(ΩC) is less than or equal to the rank of
Hk(ΩG× ΩH). We will need several lemmas.

Lemma 3.9. Write ΩG ∗ ΩH � G ◦H ∨ SQ. Then the restriction

SQ → ΩG ∗ ΩH ω−→ G ∨H → C

is null homotopic

Proof. We first look at the homotopy commutative diagram

ΩG ∗ ΩH

��

ω �� G ∨H �� G×H

π2

��
G� ΩH �� G ∨H �� H.

Applying Theorem 3(a) we see that the composition

SQ → ΩG ∗ ΩH → G� ΩH → G ∨H

is a sum of maps γi factoring through ad i(H)(G) → G∨H for i � 2. By induction
on i we see that

ad i(H)(G) → G ∨H → C

is null homotopic for i � 1. This follows since ad i factors

ad i(H)(G) → ad i−1(H)(G) ∨H
ad i−1∨1−−−−−→ G ∨H ∨H → G ∨H → C.

It follows from Lemma 3.9 that the mapping cone of ω is homotopy equivalent
to C ∨ S2Q. Recall that Ganea proved [Gan70] that given a fibration sequence
F → E → B, one can construct a fibration sequence

F ∗ ΩB → E ∪ CF
π−→ B,

where π pinches the cone on F to a point. Apply this to the fibration sequence

ΩG ∗ ΩH ω−→ G ∨H → G×H

to obtain

ΩG ∗ ΩH ∗ Ω(G ∗H) → C ∨ S2Q
π−→ G×H.

It is possible that the map π|S2Q is nontrivial. However, π|S2Q is the sum of the
projections onto G and H, so it factors through C up to homotopy. Using such a
factorization we can construct a homotopy equivalence

Γ: C ∨ S2Q → C ∨ S2Q

such that πΓ|S2Q is null homotopic. Replacing π with πΓ does not alter the homo-
topy type of the fiber of π, so we can form the following diagram of fibrations:

S2Q� ΩC

��

�� S2Q� ΩC

��
ΩG ∗ ΩH ∗ Ω(G ∗H) ��

��

C ∨ S2Q ��

π1

��

G×H

K �� C
φ �� G×H.
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The left-hand verticle fibration has a cross section since π1 does, hence K is a co-H
space and we have a splitting:

Ω(ΩG ∗ ΩH ∗ Ω(G×H)) � Ω(S2Q� ΩC)× ΩK.

We now study the homology algebra with a field of coefficients. Each space here is
the loop space on a co-H space, so all the homology algebras are tensor algebras.
It follows that for each i � 0

rankHi(ΩG ∗ ΩH ∗ Ω(G×H)) � rankHi(S
2Q� ΩC).

Suppose now that we have two power series f(t) = Σant
n and g(t) = Σbnt

n with
ai, bi nonnegative integers. We will say that f � g iff ai � bi for each i. Write
X (X) for the Poincaré series of a space X. In these terms, we have shown that

X (ΩG ∗ ΩH ∗ Ω(G×H)) � X (S2Q� ΩC).

We now calculate the Poincaré series for each of these spaces. Suppose X (G) = 1+gt
and X (H) = 1 + ht, where g and h are polynomial in t with positive integral
coefficient. We then have the following consequences:

X (ΩG) = 1 +
g

1− g
,

X (ΩH) = 1 +
h

1− h
,

X (ΩG ∗ ΩH) = 1 +
ght

(1− g)(1− h)
,

X (G ◦H) = 1 + ght,

X (SQ) = 1 + ght
g + h− gh

(1− g)(1− h)
,

X (S2Q� ΩC) = 1 + ght2
g + h− gh

(1− g)(1− h)
· X (ΩC).

On the other hand,

X (ΩG× ΩH) = 1 +
g + h− gh

(1− g)(1− h)
.

Consequently,

X (ΩG ∗ ΩH ∗ (ΩG× ΩH)) = 1 +
ght2(g + h− gh)

(1− g)2(1− h)2
,

Observe that if h(t) = Σcnt
n �= 0 also has nonnegative coefficients, f(t) � g(t)

iff h(t)f(t) � h(t)g(t). It follows that X (ΩC) ≤ 1

(1− g)(1− h)
= X (ΩG × ΩH),

so rankHi(ΩC) ≤ rankHi(ΩG × ΩH) for all i. Thus (Ωφ)∗ is an isomorphism,
and hence φ∗ is as well. Since this is true for any field of coefficients, φ∗ induces
isomorphisms in integral homology, and hence φ is a homotopy equivalence.
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