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A LOGARITHMIC DERIVATIVE LEMMA

IN SEVERAL COMPLEX VARIABLES

AND ITS APPLICATIONS

BAO QIN LI

Abstract. We give a logarithmic derivative lemma in several complex vari-
ables and its applications to meromorphic solutions of partial differential equa-
tions.

1. Introduction

The logarithmic derivative lemma of Nevanlinna is an important tool in the value
distribution theory of meromorphic functions and its applications. It has two main
forms (see [13, 1.3.3 and 4.2.1], [9, p. 115], [4, p. 36], etc.): Estimate (1) and its
consequence, Estimate (2) below.

Theorem A. Let f be a non-zero meromorphic function in |z| < R ≤ +∞ in the
complex plane with f(0) �= 0,∞. Then for 0 < r < ρ < R,

1

2π

∫ 2π

0

log+ |f
(k)(reiθ)

f(reiθ)
|dθ

≤ c{log+ T (ρ, f) + log+ log+
1

|f(0)| + log+ ρ+ log+
1

ρ− r
+ log+

1

r
+ 1},

(1)

where k is a positive integer and c is a positive constant depending only on k.

Estimate (1) with k = 1 was originally due to Nevanlinna, which easily implies
the following version of the lemma with exceptional intervals of r for meromorphic
functions in the plane:

1

2π

∫ 2π

0

log+ |f
′(reiθ)

f(reiθ)
|dθ = O{log(rT (r, f))},(2)

for all r outside a countable union of intervals of finite Lebesgue measure, by using
the Borel lemma in a standard way (see e.g. [4], [9], [13]).

Estimate (1) with k > 1 was due to Hiong (see [5], [9, p. 115], [13, 4.2.1], etc.),
which plays the same roles as Estimate (1) with k = 1 when higher order derivatives
are involved. It is simple to obtain Estimate (2) with f ′ replaced by f (k) by applying

the result with k = 1 to each factor in the product f(k)

f = f(k)

f(k−1)

f(k−1)

f(k−2) · · · f
′

f .

However, it should be noted that Estimate (1) with k > 1 (Hiong’s result) can
not be obtained from Estimate (1) with k = 1 (Nevanlinna’s original lemma) by
applying Estimate (1) with k = 1 to each factor of the above product, as one might
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be tempted to do, since it would give rise to extra terms involving log+ log+ 1
|f(j)(0)|

(1 ≤ j ≤ k − 1).
While one often sees the uses of Estimate (2) in questions where exceptional

intervals of r are allowed and only large values of r are concerned, the more precise
Estimate (1) is needed when more precise local information of functions is required.
Some questions on normal families inCn and related problems led us to ask whether
the same estimate in Theorem A holds for meromorphic functions in Cn. Note that
the Cn-version of Estimate (2) was proved by Vitter in [12] and another proof was
given in [2]; see also [14] for a related estimate. However, none of these estimates
can yield the estimate in Theorem A. We emphasize that the estimate in Theorem
A holds without exceptional intervals and involves only two terms log+ log+ 1

|f(0)|
and log+ T (ρ, f) that depend on the given function f , which may make a significant
difference from other estimates, since any other terms may require further delicate
estimates or may be impossible to estimate in practice. (This point is made clear
in the proofs of Theorem 2 and Corollary 3 in §3.)

In this paper, we will show that exactly the same Estimate (1) in Theorem A
also holds in Cn (Theorem 1 below). The proof is short and works for the cases
k = 1 and k > 1 at the same time. The result easily implies the Cn-version of
Estimate (2) in a standard way.

While generalizing Theorem A to several variables is a natural goal, it is hoped
that Theorem 1 would become a useful tool in several complex variables beyond
Nevanlinna theory, as Theorem A in one complex variable. An application of The-
orem 1 to meromorphic solutions of partial differential equations is given in the last
section of the paper.

2. The logarithmic derivative lemma

We will assume familiarity with the basics of Nevanlinna theory such as the
counting function N(r, f) and the Nevanlinna characteristic T (r, f) := m(r, f) +
N(r, f), where m(r, f) =

∫
Sn(r)

log+ |f |ηn for a meromorphic function f in |z| <
R ≤ ∞ in Cn, ηn = dc log |z|2 ∧ (ddc log |z|2)n−1, a positive measure on the sphere
Sn(r) := {z ∈ Cn : |z| = r} with total measure 1. We will also use σn = (ddc|z|2)n,
the Lebesque measure on the ball Bn(r) = {z ∈ Cn : |z| ≤ r} normalized such that
the total volume of Bn(r) is r2n. (We omit the explicit definition of the counting
function, which is not needed in the paper.) For convenience we will also use the
slightly different characteristic (cf. [10, pp. 17-18])

(3) Tf (r) :=

∫
Sn(r)

log
√
|g|2 + |h|2ηn − log

√
|g(0)|2 + |h(0)|2,

where g and h are two coprime holomorphic functions such that f = g
h if f(0) is

finite. In the one-variable case, Tf (r) is the Ahlfors-Shimizu characteristic. If f(0)
is finite, by the Jensen formula, (3) can also be written as

Tf (r) :=

∫
Sn(r)

log
√
1 + |f |2ηn +N(r, f)− log

√
1 + |f(0)|2.

It is clear that

T (r, f) ≤ Tf (r) + log
√
1 + |f(0)|2,

Tf (r) ≤ T (r, f)− log
√
1 + |f(0)|2 + 1

2
log 2.

(4)
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Also note the basic properties of log+ x: for aj ≥ 0 and integrable h ≥ 0 on Sn(r)
or Bn(r),

log+
m∏
j=1

aj ≤
m∑
j=1

log+ aj , log+
m∑
j=1

aj ≤
m∑
j=1

log+ aj + logm,

and by the concavity of log x,∫
Sn(r)

log+ hηn ≤
∫
Sn(r)

log(h+ 1)ηn

≤ log

∫
Sn(r)

(h+ 1)ηn ≤ log+
∫
Sn(r)

hηn + log 2;

similarly, ∫
Bn(r)

(log+ h)
σn

r2n
≤ log+

∫
Bn(r)

h
σn

r2n
+ log 2.

We will use the following.

Lemma B ([10, p. 19]). Suppose that f is meromorphic in |z| < R ≤ +∞ in Cn

and H is a linear subspace of Cn. Then for 0 < r < ρ < R,

Tf |H(r) ≤ 1 + θ

(1− θ)2n−1
Tf (

r

θ
)

if 0 < θ < 1 with r
θ < R and f is holomorphic at 0, where f |H is the restriction of

f to H. In particular, taking θ = r
ρ , then

(5) Tf |H(r) ≤ 2ρ2n−1

(ρ− r)2n−1
Tf (ρ).

We will also use the following elementary result about integration on Sn(r),
which reduces integration on the sphere to one-variable integration ([2, p. 35]; also
see [11]): If h is a function such that hηn is integrable on Sn(r), then

(6)

∫
Sn(r)

hηn = r2−2n

∫
Bn−1(r)

(∫
S1(

√
r2−|w|2)

hw(zn)η1(zn)
)
σn−1(w),

where w = (z1, z2, · · · , zn−1) ∈ Cn−1 and hw(zn) = h(w, zn) is the restriction of h
to the variable zn.

We give our generalization of Theorem A.

Theorem 1. Let f be a non-zero meromorphic function in |z| < R ≤ +∞ in
Cn with f(0) being a non-zero complex number and k a positive integer. Then for
0 < r < ρ < R and 1 ≤ j ≤ n,

∫
Sn(r)

log+ |
∂kf
∂zk

j

f
|ηn

≤ c{log+ T (ρ, f) + log+ log+
1

|f(0)| + log+ ρ+ log+
1

ρ− r
+ log+

1

r
+ 1},

where c is a positive constant depending only on k and n.

The estimate in Theorem 1 easily implies the Cn-version of Estimate (2) in [12]
by the Borel Lemma.
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Proof of Theorem 1. Without loss of generality, take j = n. Let

F (z) := f(z1, · · · , zn−1, 0) = f(w, 0), fw(zn) := f(w, zn),

where w = (z1, · · · , zn−1) ∈ Cn−1, zn ∈ C. Then F (0) = f(0). Since f(0) is a
non-zero complex number, f(w, 0) �≡ 0,∞ for w ∈ Cn−1, which implies that the
set of w where f(w, 0) = 0 or ∞ is a thin set in Cn−1. Thus, fw is a meromorphic
function of zn with fw(0) = f(w, 0) �= 0,∞ for all w ∈ Bn−1(r) ⊂ Cn−1 except a
thin set, which is of Lebesgue measure zero in Bn−1(r). Write f = g

h , where g and

h are two coprime holomorphic functions in |z| < R. Denote ||f || =
√
|g|2 + |h|2,

and denote ||fw|| and ||F || in the same way. By formula (6) and Theorem A, we
have that for 0 < r < ρ < R,∫

Sn(r)

log+ |∂
kf

∂zkn
/f |ηn

= r2−2n

∫
Bn−1(r)

(∫
S1(

√
r2−|w|2)

log+ |f
(k)
w (zn)

f
|η1(zn)

)
σn−1(w)

≤ c0r
2−2n

∫
Bn−1(r)

{log+ T (
√
ρ2 − |w|2, fw) + log+ log+

1

|fw(0)|
+ log+ ρ

+ log+
1√

ρ2 − |w|2 −
√
r2 − |w|2

+ log+
1√

r2 − |w|2
+ 1}σn−1(w),

(7)

where c0 is a constant depending only on k.
We now estimate each of the terms on the right-hand side of (7). By (6), (4),

and the concavity of log x (see §2), we have that

r2−2n

∫
Bn−1(r)

log+ log+
1

|fw(0)|
σn−1 =

∫
Sn(r)

log+ log+
1

|F |ηn

≤ log+
∫
Sn(r)

log+
1

|F |ηn + log 2 ≤ log+ T (r,
1

F
) + log 2

≤ log+{TF (r) + log

√
1 +

1

|F (0)|2 }+ log 2

≤ log+{TF (r) + log+
1

|f(0)| +
1

2
log 2}+ log 2

≤ log+ TF (r) + log+ log+
1

|f(0)| + log 6

≤ log+{ 2ρ2n−1

(ρ− r)2n−1
Tf (ρ)}+ log+ log+

1

|f(0)| + log 6

≤ log+{ 2ρ2n−1

(ρ− r)2n−1
(T (ρ, f) +

1

2
log 2)}+ log+ log+

1

|f(0)| + log 6,

using (5) with f |H = F in Lemma B.
By (4) and (3), we have that

T (
√
ρ2 − |w|2, fw) ≤ Tfw(

√
ρ2 − |w|2) + log

√
1 + |fw(0)|2

=

∫
S1(

√
ρ2−|w|2)

log ||fw||η1 − log ||fw(0)||+ log
√
1 + |fw(0)|2.
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Using this inequality, the concavity of log x (see §2), and (6), we deduce that

r2−2n

∫
Bn−1(r)

log+ T (
√
ρ2 − |w|2, fw)σn−1(w)

≤ r2−2n

∫
Bn−1(ρ)

log+(

∫
S1(

√
ρ2−|w|2)

log ||fw||η1 − log ||fw(0)||

+ log
√
1 + |fw(0)|2)σn−1(w)

≤ log+
{
(
ρ

r
)2n−2ρ2−2n

∫
Bn−1(ρ)

(∫
S1(

√
ρ2−|w|2)

log ||fw||η1 − log ||fw(0)||

+ log
√
1 + |fw(0)|2

)
σn−1(w)

}
+ log 2

= log+
{
(
ρ

r
)2n−2(

∫
Sn(ρ)

log ||f ||ηn −
∫
Sn(ρ)

log ||F ||ηn

+

∫
Sn(ρ)

log
√
1 + |F |2ηn)

}
+ log 2

≤ log+{
∫
Sn(ρ)

log ||f ||ηn −
∫
Sn(ρ)

log ||F ||ηn +

∫
Sn(ρ)

log
√
1 + |F |2ηn}

+ (2n− 2)(log+ ρ+ log+
1

r
) + log 2.

By (3) we have that

∫
Sn(ρ)

log ||f ||ηn = Tf (ρ) + log ||f(0)||,
∫
Sn(ρ)

log ||F ||ηn = TF (ρ) + log ||F (0)||.

Also, by (4),

∫
Sn(ρ)

log
√
1 + |F |2ηn ≤

∫
Sn(ρ)

1

2
log+(1 + |F |2)ηn

≤
∫
Sn(ρ)

log+ |F |ηn +
1

2
log 2 ≤ T (ρ, F ) +

1

2
log 2

≤ TF (ρ) + log
√
1 + |F (0)|2 + 1

2
log 2.

We thus obtain that

log+{
∫
Sn(ρ)

log ||f ||ηn −
∫
Sn(ρ)

log ||F ||ηn +

∫
Sn(ρ)

log
√
1 + |F |2ηn}

≤ log+{Tf (ρ) + log ||f(0)|| − (TF (ρ) + log ||F (0)||) + TF (ρ)

+ log
√
1 + |F (0)|2 + 1

2
log 2}

= log+{Tf (ρ) + log
√
1 + |F (0)|2 + 1

2
log 2}

≤ log+{T (ρ, f)− log
√
1 + |f(0)|2 + log

√
1 + |F (0)|2 + log 2}

≤ log+ T (ρ, f) + log 2.
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Also, it is easy to verify that 1√
ρ2−|w|2−

√
r2−|w|2

≤ 1
ρ−r and that

r2−2n

∫
Bn−1(r)

log+
1√

r2 − |w|2
σn−1

=

∫
Bn−1(1)

log+
1

r
√
1− |w|2

σn−1 ≤ log+
1

r
+ c1

with c1 =
∫
Bn−1(1)

log+ 1√
1−|w|2

σn−1.

Combining the above estimates we obtain from (7) that∫
Sn(r)

log+ |∂
kf

∂zkn
/f |ηn ≤ c0{2 log+ T (ρ, f) + log+ log+

1

|f(0)|

+ (4n− 2) log+ ρ+ 2n log+
1

ρ− r
+ (2n− 1) log+

1

r
+ c2}

≤ c{log+ T (ρ, f) + log+ log+
1

|f(0)| + log+ ρ+ log+
1

ρ− r
+ log+

1

r
+ 1},

where c2 = 1 + 5 log 2 + log 3 + c1, and c is a positive constant depending only on
k and n. This proves the theorem. �

3. Applications

As applications of Theorem 1, we give in this section a Schottky-type estimate
and a Montel-type normality criterion for meromorphic solutions of the partial
differential equations (8) below. The proofs of the results adopt the estimate in
Theorem 1 for both order k = 1 and order k > 1, from which it is clear why the
dependence of the estimate on log+ T (ρ, f) and log+ log+ 1

|f(0)| only and without

exceptional intervals may be important.
Consider the partial differential equations

(8) L(y) := L(z, y,
∂y

∂z1
, · · · , ∂y

∂zn
, · · · ) = b(z)

in Cn, where L is a homogeneous polynomial of degree q ≥ 1 in y and all partial
derivatives ∂y

∂z1
, · · · , ∂y

∂zn
, · · · of order at most m with polynomial coefficients, and

b �≡ 0 is a polynomial. The special case with q = 1 is L =
∑m

|I|=0 aI
∂|I|y

∂inzn···∂i1z1
,

where I = (i1, · · · , in) ∈ (Z+)
n
with |I| = i1 + · · ·+ in, Z

+ = {0, 1, 2, · · · }, and the
aI ’s are polynomials. In this case, equation (8) is a general non-homogeneous linear
partial differential equation with polynomial coefficients. The well-known eiconal
(eikonal) partial differential equations ( ∂u

∂z1
)2 + ( ∂u

∂z2
)2 + · · · + ( ∂u

∂zn
)2 = 1 and the

Fermat partial differential equations ( ∂u
∂z1

)q + ( ∂u
∂z2

)q + · · ·+ ( ∂u
∂zn

)q = 1 (q ≥ 3) are

all special cases of (8).

Theorem 2. Let f be a meromorphic solution of (8) in the ball |z| < R < +∞ of
Cn. If f(z) �= 0 in the ball, then for 0 < r < R,

T (r, f) ≤ c{1 + log+ |f(0)|+ log+ R + log+
1

R− r
},

where c is a positive constant independent of f, r, R.
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The estimate in Theorem 2 is motivated by the famous Schottky theorem (see e.g.
[4], [9], [13]), which estimates the maximum modulus of a holomorphic function f
that omits 0 and 1 in |z| < R with a similar bound in terms of f(0), R and r < R:
logmax|z|=r |f(z)| ≤ cR

R−r (log
+ |f(0)| + log 2R

R−r ). The function f is required to
omit 0 and 1. It is this condition that produces a series of important theorems
including the Montel normality criterion (see below), thereby constituting the so-
called Montel cycle. Theorem 2 is concerned with solutions f of partial differential
equations of the form (8) with homogeneity and we are thus able to require less:
f is allowed to be meromorphic, and is only required to omit 0. This condition of
course cannot be dropped (cf. Remark 4(i) below).

As an application of Theorem 2, we have the following.

Corollary 3. A family of meromorphic solutions of (8) in a domain D of Cn that
omits 0 is a normal family in D.

Corollary 3 is in the direction of the celebrated Montel normality criterion (see
e.g. [1], [9], [13]): A family of holomorphic functions in a domain D of the complex
plane that omits 0 and 1 is a normal family in D (the meromorphic version requires
that the functions omit three distinct values). The notion of a normal family has
played an important role in the development of complex function theory. We refer
to [1], [3], [6], [9], [13], etc. and the references therein for various results on normal
families and applications.

Remark 4. We address a number of natural questions raised by Theorem 2 to show
that the result is “best possible”.

(i) As mentioned above, the condition that f omits 0 in Theorem 2 cannot be
dropped. For example, the entire function u = z1+ez2−z3 , which clearly has zeros, is
a solution of the Fermat partial differential equation ( ∂u

∂z1
)q+( ∂u

∂z2
)q+( ∂u

∂z3
)q = 1 (q

is odd). The solution u cannot satisfy the estimate in Theorem 2, since otherwise
T (r, u) = O(log r) (by taking R = 2r in Theorem 2), which implies that u is a
polynomial, a contradiction.

(ii) It is assumed that b(z) �≡ 0 in (8). When q = 1, this means that the linear
partial differential equation is non-homogeneous. Can this condition be removed?
Does Theorem 2 also hold for homogeneous linear partial differential equations, i.e.,
b(z) ≡ 0? The answer is negative. For example, u = ez1−z2 is an entire solution of
the equation ( ∂u

∂z1
)q +( ∂u

∂z2
)q = 0 (q is odd), which is of the form (8) with, however,

b(z) = 0. The solution u omits 0, but u cannot satisfy the estimate in Theorem 2,
since otherwise u would be a polynomial, as in (i).

(iii) It is trivial to note that a meromorphic function omitting 0 but without
being a solution of (8) in general cannot satisfy the estimate in Theorem 2 (see the
example in (ii)).

Remark 5. As in Remark 4 for Theorem 2, let us show that the result in Corollary
3 is also “best possible”.

(i) The condition that f omits 0 cannot be dropped in Corollary 3. For example,
consider the sequence {fn} with fn(z1, z2) = enz1+z2 − 1, which is clearly not a
normal family in |z| < 1, since fn(0, 0) = 0 but fn(

1
2 , 0) → ∞. But each fn is a

solution of the equation ∂w
∂z2

−w = 1 of the form (8). It is easy to check that fn(z)
has zeros in any neighborhood of the origin for large n.

(ii) The condition that meromorphic functions in a family do not assume 0 alone
(without being solutions) is of course not enough for normality in Corollary 3. For
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example, {fn} with fn(z) =
1

1−enz is clearly not normal in |z| < 1, although 1
1−enz

omits 0 (it also omits 1). By Montel’s theorem mentioned above, it in general
requires that the meromorphic functions do not assume three distinct values.

(iii) As in Theorem 2, the condition b(z) �≡ 0 in (8) cannot be dropped in
Corollary 3. Consider fn(z1, z2) = enz1+z2 . Then fn(z) �= 0 and fn is a solution of
∂w
∂z2

− w = 0 with b(z) = 0. But, {fn} is clearly not normal in |z| < 1.

Proof of Theorem 2. Since

L(f) = L(z, f,
∂f

∂z1
, · · · , ∂f

∂zn
, · · · ) = b(z),

we have that b
fq = L(f)

fq , where q is the degree given in (8). We may assume that

f(0) �= ∞, since otherwise the estimate in the theorem has +∞ on the right-hand
side and is already true. Applying Theorem 1 (for orders ranging from 0 to m) to

each term in L(f)
fq and noting that for any polynomial a,

T (r, a) ≤ c1(1 + log r)

for some c1 > 0, we have that for 0 < r < ρ < R,

m(r,
1

f
) =

1

q
m(r,

1

fq
) ≤ 1

q
{m(r,

b

fq
) +m(r,

1

b
)} =

1

q
{m(r,

L(f)

fq
) +m(r,

1

b
)}

≤ c2{log+ T (ρ, f) + log+ log+
1

|f(0)| + log+ ρ+ log+
1

ρ− r
+ log+

1

r
+ 1}

+ c3(1 + log r),

(9)

where c2 is a positive constant depending only on n, m and q in (8), and c3 is a
positive constant depending only on b(z) and the polynomial coefficients in (8). We
may assume that c2 ≥ e. It is easy to check that for any x > 0 and A ≥ e,

log x+A log+ log+
1

x
≤ log+ x+A(logA− 1)

(see e.g. [13, p. 47]). Thus,

(10) log |f(0)|+ c2 log
+ log+

1

|f(0)| ≤ log+ |f(0)|+ c2(log c2 − 1).

Since f(z) �= 0, we have that, by virtue of (9) and (10),

T (r, f) = T (r,
1

f
) + log |f(0)| = m(r,

1

f
) + log |f(0)|

≤ log+ |f(0)|+ c2(log c2 − 1) + c2{log+ T (ρ, f) + log+ ρ

+ log+
1

ρ− r
+ log+

1

r
+ 1}+ c3(1 + log r)

≤ log+ |f(0)|+ c2(log c2 − 1) + c2{log+ R + log+
1

r
+ 1}+ c3(1 + logR)

+ c2 log
+ T (ρ, f) + c2 log

+ 1

ρ− r
.

We then use the following Bureau lemma (see [5], [13, p. 48]): Let a(r) be a non-
negative and non-increasing function in (0, R), and b and c two constants. If for
0 < r < ρ < R,

T (r, f) < a(r) + b log+
1

ρ− r
+ c log+ T (ρ, f),
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then

T (r, f) < 2a(r) +B log+
2

R− r
+ C

for 0 < r < R, where B and C depend only on b and c. Applying this result to our
situation, we obtain that

T (r, f) ≤ c4{1 + log+ |f(0)|+ log+
1

r
+ log+ R+ log+

1

R− r
},

where c4 is a constant depending only on c2 and c3. Thus, when R
2 ≤ r < R, we

have that

T (r, f) ≤ c4{1 + log+ |f(0)|+ log+
2

R
+ log+ R+ log+

1

R − r
}

≤ c{1 + log+ |f(0)|+ log+ R + log+
1

R− r
},

where c is a positive constant depending only on n,m, q, b(z) and the polynomial
coefficients in (8). This is also true for r ≤ R

2 , since for such an r we have that

T (r, f) ≤ T (R2 , f), which gives the same bound. �

Proof of Corollary 3. Let F be a family of meromorphic solutions of (8) in a domain
D of Cn that do not assume 0. Since normality is a local property, we only need
to show that F is a normal family in a neighborhood of each point ζ in the domain
D. Take a small ball {|z− ζ| < R} ⊂ D and any sequence {fl} in F . For any fixed
l, we write f = fl for notational convenience. We claim that either |f(z)| ≤ 1 for
all z in the ball |z − ζ| < R

16 , or
1

|f(z)| ≤ c for all z in the ball |z − ζ| < R
16 , where

c is a constant independent of l and z. If |f(z)| ≤ 1 for all z in |z − ζ| < R
16 , or

|f(z)| ≥ 1 for all z in |z − ζ| < R
16 , the claim then already holds in this case. In

the opposite case, we have |f(z)| ≤ 1 for some z and |f(z)| ≥ 1 for some other z
in |z − ζ| < R

16 . Then, by the continuity of |f(z)| (outside the set of singularities,

which has measure zero), we obtain a point w in |z − ζ| < R
16 such that |f(w)| = 1.

Applying Theorem 2 for f in the ball |z −w| < R
2 (i.e., for g(z) := f(w+ z) in the

ball |z| < R
2 ), we have that for 0 < r < R

2 ,

T (r, w, f) ≤ c{1 + log+ |f(w)|+ log+
R

2
+ log+

R

R− 2r
}

= c{1 + log+
R

2
+ log+

R

R− 2r
},

where T (r, w, f) is the characteristic of f in the ball |z − w| < R
2 and c is a

constant independent of l and z. We can assume that c ≥ 1. We then have that
for 0 < r < R

2 ,

T (r, w,
1

f
) = T (r, w, f) + log

1

f(w)

= T (r, w, f) ≤ c{1 + log+
R

2
+ log+

R

R− 2r
}.

(11)

Since f �= 0 in |z − ζ| < R, 1
f is holomorphic in |z − ζ| < R. We can then use the

following result (see e.g. [10, p. 21]): For any holomorphic function g in |z| < R in
Cn,

log+ M(θr, g) ≤ 1 + θ

(1− θ)2n−1
(T (r, g) +

log 2

2
)



6266 BAO QIN LI

for 0 < θ < 1 and 0 < r < R, where M(r, g) = max|z|=r{|f(g)|}. Applying this

result with g = 1
f in |z − w| < R

2 and θ = 1
2 , r = R

4 , we obtain that

log+ M(
R

8
, w,

1

f
) ≤ 3(22n−2){T (R

4
, w,

1

f
) +

log 2

2
}

≤ 3c22n−2{1 + 3

2
log 2 + log+

R

2
}.

Noting that the ball |z − ζ| < R
16 is contained in the ball |z − w| < R

8 , we thus

obtain that in |z − ζ| < R
16 ,

1

|f(z)| ≤ 3c22n−2{1 + 3

2
log 2 + log+

R

2
}.

This proves the claim.
From the above claim, we see that in |z − ζ| < R

16 , either the sequence {fl} is

uniformly bounded, or { 1
fl
} is uniformly bounded. By the Cn-version of the Montel

theorem: A family of uniformly bounded holomorphic functions in a domain of Cn

is normal (see e.g. [3, p. 54]), we know that {fl} or { 1
fl
} is a normal family. In

either case, we obtain a subsequence of fn that converges in |z − ζ| < R
16 . (Note

that the limit function is allowed to be ∞ for a normal family.) This shows that F
is a normal family in D. �

We conclude the paper by noting another consequence of Theorem 2: Any
meromorphic solution u of the eiconal and Fermat partial differential equations
( ∂u
∂z1

)m+( ∂u
∂z2

)m+ · · ·+( ∂u
∂zn

)m = 1, or more generally, a1(z)(
∂u
∂z1

)m+a2(z)(
∂u
∂z2

)m+

· · · + an(z)(
∂u
∂zn

)m = b(z) in Cn, where m ≥ 1 is any positive integer and b �≡ 0,

aj(1 ≤ j ≤ n) are polynomials, assumes each complex number without any excep-
tions. This is a Picard-type theorem. (The Picard theorem says that a non-constant
meromorphic function in C assumes each complex number with possibly two ex-
ceptions.) The proof follows immediately from Theorem 2: If for some complex
number a, the function f := u − a, which is still a solution of the equation and
thus not a constant, does not have any zeros in Cn, then by Theorem 2 (taking
R = 2r), we have that T (r, f) = O{log r}, which implies that f is a polynomial
without zeros, and thus f and then u must be a constant, a contradiction. Sim-
ilarly, a meromorphic solution u of the above partial differential equation in the
ball |z| < R < +∞ with T (r, u) �= O{log 1

R−r} as r → R assumes each complex

number without any exceptions. The condition T (r, u) �= O{log 1
R−r} as r → R

cannot be dropped here. For example, u = (z1 − 1) sin 1
1−z2

is a solution of the

equation a1(z)(
∂u
∂z1

)2 + a2(z)(
∂u
∂z2

)2 = b(z) with a1 = (z1 − 1)2, a2 = (1− z2)
4 and

b = (z1 − 1)2. But, it is easy to check that this solution u does not assume 0 in
|z| < R when R is small.

In fact, a meromorphic function f is called admissible in |z| < R ≤ +∞ if either
R = +∞ and f is non-constant, or if R < +∞ and T (r, f) �= O{log 1

R−r} as r → R

(see [4, p. 42]). Thus, the above shows that an admissible meromorphic solution
in |z| < R ≤ +∞ of the above partial differential equation assumes each complex
number without any exceptions.

We refer to [7], [8] for some other results such as the structure of entire solutions
of Fermat partial differential equations.
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