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PROPER ACTIONS OF WREATH PRODUCTS

AND GENERALIZATIONS

YVES CORNULIER, YVES STALDER, AND ALAIN VALETTE

Abstract. We study stability properties of the Haagerup Property and of
coarse embeddability in a Hilbert space, under certain semidirect products.
In particular, we prove that they are stable under taking standard wreath
products. Our construction also provides a characterization of subsets with
relative Property T in a standard wreath product.

1. Introduction

A countable group is Haagerup if it admits a metrically proper isometric action
on a Hilbert space. Groups with the Haagerup Property are also known, after
Gromov, as a-T-menable groups as they generalize amenable groups. However,
they include a wide variety of non-amenable groups: for example, free groups are
a-T-menable; more generally, so are groups having a proper isometric action either
on a CAT(0) cubical complex, e.g. any Coxeter group, or on a real or complex
hyperbolic symmetric space, or on a product of several such spaces; this includes the
Baumslag-Solitar group BS(p, q), which acts properly by isometries on the product
of a tree and a real hyperbolic plane.

A nice feature about Haagerup groups is that they satisfy the strongest form of
the Baum-Connes conjecture, namely the conjecture with coefficients [HK].

The Haagerup Property appears as an obstruction to Kazhdan’s Property T and
its weakenings such as the relative Property T. Namely, a countable group G has
Kazhdan’s Property T if every isometric action on a Hilbert space has bounded
orbits; more generally, if G is a countable group and X a subset, the pair (G,X)
has the relative Property T if for every isometric action of G on a Hilbert space,
the “X-orbit” of 0, {g · 0|g ∈ X} is bounded. Clearly, if X is infinite, then G does
not have the Haagerup Property.

The class of countable groups with the Haagerup Property is obviously closed
under taking subgroups. However, unlike the class of amenable groups, it is not
closed under taking quotients, nor extensions, even semidirect products, as Kazhdan
proved that the pair (Z2

� SL2(Z),Z
2) has the relative Property T.

However, for a semidirect product Γ = W � G of groups with the Haagerup
Property, it is reasonable to expect Γ to have the Haagerup Property in the case
when G acts “very freely” on W . For instance, consider two Haagerup groups G, H,
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and let W = ∗g∈G H be the free product of copies of H indexed by G, with G
acting by shifting indices. Then W � G is isomorphic to the free product H ∗ G,
and therefore it is Haagerup.

If instead of taking the free product of copies of H indexed by G, we take the
direct sum H(G) =

⊕
g∈G H and form the semidirect product H(G)

� G, where
G acts by shifting the copies of H in the direct sum, we get the standard wreath
product H �G (often referred to as the wreath product) of H and G.

Our first main result, which answers Question 62.3 in [Ch] is:

Theorem 1.1. Let G,H be countable groups. If G and H have the Haagerup
Property, then so does the standard wreath product H �G.

As obviously H is Haagerup if and only if H(G) is, this appears as a stability
under a special kind of extensions. This theorem was announced in [CSV] and
proved there in special cases, e.g. E �F, where E is finite and F is free. That special
result appeared since then in the book [BrO]. We also refer to [CSV] for applications
of the result in harmonic analysis. Here we mention another application. It was
asked in [Co1, 7.7(1)] whether the quotient of a Haagerup group by an amenable
normal subgroup is always Haagerup; the answer is negative in a strong sense.

Corollary 1.2. There exists a Haagerup group Γ1 with a non-Haagerup quotient
Γ2 = Γ1/N with N normal abelian in Γ1; namely, Γ1 = Z � SL2(Z) and Γ2 =
Z2

� SL2(Z).

Proof. If Λ = SL2(Z) and ZΛ is its group ring, the standard wreath product Z �
SL2(Z) can be identified with ZΛ�Λ, and Z2 is a cyclic Λ-module, so is a quotient
of the free cyclic Λ-module by some submodule N , and Z2

� Λ is the quotient of
ZΛ � Λ by the abelian normal subgroup N . �

The definition of the Haagerup Property, in terms of affine isometric actions on
Hilbert spaces, provides many examples, but is not very tractable to give stability
results. Permanence of the class of countable Haagerup groups, either under direct
limits or under extensions with amenable quotients [CCJJV, Example 6.1.6], relies
on the characterization of the Haagerup Property in terms of unitary representa-
tions (see the beginning of Section 6).

The proof of Theorem 1.1 is based on the characterization due to [RS, CMV]
of the Haagerup Property by actions on spaces with measured walls; see Section
2. These actions are more closely related to isometric actions on L1 than on L2.
The fact that wreath products behave better for actions on L1-spaces than Hilbert
spaces is illustrated by the wreath product Z � Z: on the one hand it has an iso-
metric action on an L1-space whose orbital maps are quasi-isometric embeddings
(as follows easily from the construction in Section 4); on the other hand it does not
embed quasi-isometrically into a Hilbert space as follows from the existence of a
quasi-isometrically embedded 3-regular tree in Z �Z (which follows e.g. from [CT])
and the non-existence of a quasi-isometric embedding of such a tree into a Hilbert
space [Bo]. Better constraints on embeddings of Z � Z into a Hilbert space were
brought out by [AGS, ANP].

Our second theorem, which follows from the same construction as the first one,
concerns relative Property T. In the statement below, we identify the underlying
set of the group H �G with the cartesian product H(G) ×G.
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Theorem 1.3. Let H,G be countable groups and X a subset of H �G. The following
statements are equivalent:

(i) (H �G,X) has relative Property T;
(ii) there exist subsets Y ⊂ H and Z ⊂ G with X ⊂ Y (Z) ×Z, the pairs (H,Y )

and (G,Z) have relative Property T, and the following additional condition
is satisfied: the function X → N : (w, g) �→ #Supp(w) is bounded (where
Supp(w) denotes the support of w).

This additional condition shows in particular that whenever G is infinite and
H �= {1}, the wreath product H � G does not have Property T, a fact proved in
[CMV, N]. Also note that condition (ii) can also be rephrased as: there are relative
Property T subsets Y ⊂ H = H{1} and Z ⊂ G such that X ⊂ (Y Z)n for some
n ≥ 1.

Our construction also provides a coarse analog of Theorem 1.1.

Theorem 1.4. Let G,H be countable groups. If G and H admit a coarse embedding
into a Hilbert space, then so does the standard wreath product H �G.

Actually, Dadarlat and Guentner [DG] proved that coarse embeddability into
Hilbert spaces is preserved by extensions with exact quotient, which yields the
above theorem when G is exact.

Since we made an earlier version of this text available, S. Li [L] gave alternative
proofs (albeit based on similar ideas) of our Theorems 1.1 and 1.4 and proved a
new result: if G and H have positive (non-equivariant) Hilbert space compression,
then so does the wreath product H �G.

The above results concern standard wreath products. More generally, if X is a
G-set, the permutational wreath product H �X G := H(X)

� G can be defined; the
results of Section 5 apply only to some of these permutational wreath products.
For example, we prove

Theorem 1.5. Let G,H be countable groups, and N a normal subgroup of G.
Suppose that G, H, and G/N all have the Haagerup Property; then so does the
permutational wreath product H �G/N G.

The non-trivial part of the converse, namely that if H �G/N G is Haagerup and
H �= {1}, then G/N is Haagerup, was proved by Chifan and Ioana [CI], disproving
a conjecture made in the first version of this paper.

The outline of the paper is as follows. In Section 2 we define our first main tool,
namely measured wall structures, inspired from [RS] and from the spaces with
measured walls in [CMV].

In Section 3, we introduce our second main tool, gauges, a generalization of the
support function on H(G) (taking values in finite subsets of G), and give several
examples. In Section 4, gauges are used to transfer invariant measured walls struc-
tures from G to W �G. In Section 5, this allows us to prove the Haagerup property
or coarse embeddability for several cases of semidirect products; in particular, The-
orems 1.1 and 1.4 are proved.

We take a closer look at wreath products in Section 6, where Theorem 1.3 is
proved. Section 7 deals with the L1-compression of wreath products with free
groups. We prove:

Theorem 1.6. Let G be a finitely generated group and let F be a finitely generated
free group. Then the equivariant L1-compression of G � F is equal to the one of G.
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Finally, Appendix A shows that, on countable sets, the concept of measured
walls structure, introduced in Section 2 below, is equivalent to the concept of space
with measured walls from [CMV]. Appendix B links invariant proper kernels to
Hecke pairs.

2. Measured walls structures

Let X be a set. Let 2X be the power set of X, endowed with the product
topology. For x ∈ X, denote Ax = {A ⊂ X|A 
 x}: this is a clopen subset of 2X .
Set P ′(X) = 2X − {∅, X}, a locally compact space in the relative topology.

Definition 2.1. A measured walls structure is a pair (X,μ), where X is a set and
μ is a Borel measure on 2X such that for all x, y ∈ X,

dμ(x, y) := μ(Ax �Ay) < ∞.

It is then straightforward that dμ is a pseudo-distance on X.

Example 2.2. Let X be the vertex set of a tree T . Define a half-space as one class
of the partition of X into two classes, obtained by removing some edge from the
tree. For a subset B of 2X , define μ(B) as half the number of half-spaces contained
in B. Then (X,μ) is a measured walls structure, and dμ(x, y) is exactly the tree
distance between the vertices x and y.

Example 2.3. More generally, let (X,W , f) be a discrete space with walls, meaning
that X is a set, W is a set of partitions into 2 classes (called walls), and f : W →
N ∪ {∞} is a function such that, for every x, y ∈ X:

w(x, y) :=
∑

m∈W(x|y)
f(m) < +∞,

where W(x|y) is the set of walls separating x from y. Define a half-space as one
class of some wall in W ; denote by H the set of half-spaces, and let p : H → W be
the canonical map. For B ⊂ 2X , define

μ(B) =
1

2

∑
A∈B∩H

f ◦ p(A).

Then (X,μ) is a measured walls structure, and dμ(x, y) = w(x, y) for x, y ∈ X.

Lemma 2.4. For every measured walls structure μ on a countable set X, the
restriction of μ to P ′(X) is a Radon measure.

Proof. Let (X,μ) be a measured walls structure. The locally compact space P ′(X)
has a prebasis consisting of compact sets (Ax \Ay)x,y∈X , which have finite measure
for μ. Every compact subset K of P ′(X) is contained in a finite union of subsets
in the prebasis, so μ(K) < +∞. Since X is countable, every open subset of P ′(X)
is σ-compact, so every Borel measure on P ′(X) which is finite on compact subsets
is a Radon measure (see Theorem 2.18 in [Ru]). �

Let X,Y be sets; if f : X → Y is a map and (Y, μ) a measured walls structure,
we can push forward the measure μ by the inverse image map f−1 : 2Y → 2X to
get a measured walls structure (X, f∗μ), whose distance is obviously df∗μ(x, x

′) =
f∗dμ(x, x

′) = dμ(f(x), f(x
′)). When f is one-to-one and is viewed as an inclusion,

f∗μ can be viewed as the restriction of the measured walls structure (Y, μ) to X.
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Let (Xi, μi) be a family of measured walls structures. Fix a base point in each
Xi. Let pi denote the natural projection

⊕
Xj → Xi. Then the measure μ =∑

i p
∗
iμi defines a measured walls structure whose associated pseudo-distance is

dμ((xi), (yi)) =
∑

i dμi
(xi, yi). We call (

⊕
Xi, μ) the direct sum of the measured

walls structures (Xi, μi).

Definition 2.5. 1) A measure definite kernel on X is a function κ : X ×X → R+

such that there exists a measured space (Y, T ,m) and a map F : X → T with
κ(x, y) = m(F (x)� F (y)) for all x, y ∈ X.

2) For p ∈ [1,∞), an Lp-embeddable kernel on X is a function κ : X ×X → R+

such that there exists a measured space (Y, T ,m) and a map f : X → Lp(Y,m)
with κ(x, y) = ‖f(x)− f(y)‖p for all x, y ∈ X.

Proposition 2.6. Let X be a countable set and let κ : X ×X → R+ be a kernel.
The following are equivalent:

(i) κ is measure definite;
(ii) κ is an L1-embeddable kernel;
(ii′) κ1/p is an Lp-embeddable kernel for every p ∈ [1,∞);
(iii) κ = dμ for some measured walls structure (X,μ).

Proof. The less trivial implication (i)⇒(iii) is [RS, Proposition 1.2]; it is the only
one for which we need the countability assumption (however, we do not know if it
is really needed). The implication (iii)⇒(i) is trivial: just map x to Ax.

The classical implication (ii)⇒(i) works as follows: observe that the class of
measure definite kernels is a convex cone, closed under pointwise convergence [RS,
Proposition 1.3]. As the cone of L1-kernels is generated by cut metrics, i.e. pull-
backs of the {0, 1}-valued metric on two elements (see Section 4.2 in [DL]), it is
enough to check that cut metrics are measure definite, which is straightforward.
The implication (ii′)⇒(ii) is trivial, and we get (i)⇒(ii′) by choosing any base-
point x0 ∈ X, defining f(x) = 1F (x) − 1F (x0) ∈ Lp(Y,m), and observing that

κ(x, y)1/p is the Lp-norm of 1F (x) − 1F (y) = f(x)− f(y). �

Proposition 2.7. If κ is an L2-embeddable kernel, then it is an L1-embeddable
kernel.

This just means that L2 embeds isometrically into L1. For the classical proof
using Gaussian random variables, see [BDK]; a proof using spaces with measured
walls can be found in [RS, Proposition 1.4].

Let G be a group; a kernel κ on a G-set X is uniform if for all h1, h2 ∈ X, the
map g �→ κ(gh1, gh2) is bounded on G.

On the other hand, for X a G-set, we say that the measured walls structure
(X,μ) is uniform if the distance dμ is a uniform kernel. It is left-invariant if the
measure μ is invariant for the left action of G on 2X (given by g · 1Y = 1gY ). Of
course, left-invariant implies uniform.

Proposition 2.8. Let G be a group, X a countable G-set, and let κ be a left-G-
invariant kernel on X. Consider the following properties:

(i) κ is measure definite;
(ii) (X,κ) is G-equivariantly embeddable into a metric space Y with an isomet-

ric G-action, Y being isometrically embeddable into some L1-space;
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(ii′) for every p ∈ [1,∞), (X,κ1/p) is G-equivariantly embeddable into a metric
space Y with an isometric G-action, Y being isometrically embeddable into
some Lp-space;

(iii) κ = dμ for some G-invariant measured walls structure (X,μ);
(iv) (X,κ) is G-equivariantly embeddable into some L1-space with an isometric

G-action;
(iv′) for every p ∈ [1,∞), (X,κ1/p) is G-equivariantly embeddable into some

Lp-space with an isometric G-action.

Then
(iii) ⇔ (iv′) ⇔ (iv) ⇒ (i) ⇔ (ii) ⇔ (ii′).

Moreover:

• If G is amenable, then all these properties are equivalent.
• If κ is an L2-embeddable kernel, then it satisfies all the above conditions.
This is in particular the case when κ is the square root of a measure-definite
kernel.

Remark 2.9. Somewhat surprisingly, the reverse implication (i) ⇒ (iv) is not known
in general (for instance when X = G is non-abelian free).1

Proof of Proposition 2.8. The implication (iii) ⇒ (iv′) was essentially proved in
[CTV, Proposition 3.1]. Here we recall the proof, translated in the present language.
Let (X,μ) be a G-invariant measured walls structure with dμ = κ. First consider
the linear isometric action of G on Lp(2X , μ), given by πp(g)f(A) = f(g−1A). Fix
a base point x0 ∈ X. Then G acts affinely isometrically on Lp(2X , μ) with linear
part πp, by

αp(g)f = πp(g)f + 1Agx0
− 1Ax0

.

Now define the map f : X → Lp(2X , μ) by f(x) = 1Ax
− 1Ax0

.
We see that f(gx) = 1Agx

−1Ax0
and πp(g)f(x) = 1Agx

−1Agx0
. It follows that

αp(g)f(x) = f(gx); i.e., we get equivariance when Lp(2X , μ) is a G-set through αp.
Also

d(f(x), f(y)) = ‖1Ax
− 1Ay

‖p = κ(x, y)1/p.

The implication (iv) ⇒ (iii) follows essentially from [CDH]. Namely, assume
that f : X → Y = L1(Z,m) is a G-equivariant embedding satisfying κ(x, y) =
||f(x)−f(y)||1. Then Y is a median space [CDH, Example 2.8(7)]. Thus, by [CDH,
Theorem 5.1], Y can be turned into a space with measured walls (Y,W ,B, μ), in
the sense of [CMV], such that G acts by automorphisms of spaces with walls [CDH,
Definition 3.5]. We then consider the pull-back (X,WX ,BX , μX) with respect to f ;
by [CDH, Lemma 3.9], we have κ = dμX

, and G acts by automorphisms of spaces
with walls. As X is countable, this ensures the existence of a measure ν such that
(X, ν) is a G-invariant measured walls structure with κ = dν ; see Appendix A.

All other implications are either trivial or follow from their non-equivariant coun-
terpart; for (i) ⇒ (ii′), we set f(x) = 1F (x)−1F (x0) ∈ Lp(Y, T ,m) and we observe as

in Proposition 2.6 that κ1/p = ||f(x)−f(y)||p. Then, we define a G-action on f(X)
by g · f(x) = f(gx). To check that it is well-defined, observe that f(x) = f(x′)
if and only if κ(x, x′) = 0; hence, since κ is G-invariant, f(x) = f(x′) implies

1A “proof” of the implication (i) ⇒ (iii) appears in Proposition 2(2) of [CMV]: this proof is
erroneous, as it rests on a misquotation of Theorem 2.1 in [RS]. This error does not affect the
main results in [CMV].
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f(gx) = f(gx′). Notice that a priori Lp(Y, T ,m) is endowed with no G-action, so
that this does not prove (iv′).

In case G is amenable, let us now prove the implication (i) ⇒ (iii). Suppose that
κ is measure definite and consider the set C of measures μ on P ′(X) such that (X,μ)
is a measured wall structure (μ being extended to 2X with μ({∅, X}) = 0) with
corresponding distance dμ = κ. By Proposition 2.6, C is non-empty. By Lemma
2.4, we can view each μ ∈ C as a Radon measure on P ′(X). We claim that C is
weak-* compact. It is clearly closed and convex. Moreover, if u is any continuous
compactly supported function on P ′(X), then Supp u is contained in a finite union
of subsets in the natural prebasis (Ax \Ay)x,y∈X of the topology of P ′(X), showing
that

∫
P ′(X)

udμ is bounded when μ ranges over C. This shows that C is compact.

Therefore the natural action of the amenable group G has a fixed point ν. Then
(X, ν) is the desired G-invariant measured walls structure.

If κ is an L2-embeddable kernel (i.e., κ2 is conditionally negative definite), ar-
guing as in the proof of [RS, Theorem 2.1], we get that κ satisfies the strongest
condition (iii). Finally, if κ is measure definite, then κ1/2 is L2-embeddable, by the
implication (i) ⇒ (ii′) in Proposition 2.6. �

3. Gauges

Let W,X be sets. Let A = 2(X) denote the set of finite subsets of X.

Definition 3.1. An A-gauge on W is a function φ : W ×W → A such that:

φ(w,w′) = φ(w′, w) ∀w,w′ ∈ W ;

φ(w,w′′) ⊂ φ(w,w′) ∪ φ(w′, w′′) ∀w,w′, w′′ ∈ W.

Observe that if φ1, φ2 are A-gauges, then φ1 ∪ φ2 is an A-gauge as well.

Example 3.2. If W = X is any set and A = 2(X), then φ(w,w′) = {w,w′} is an
A-gauge on X.

When W is a group, φ is left-invariant if and only if it can be written as
φ(w,w′) = ψ(w−1w′). For future reference, we record this as a definition.

Definition 3.3. Let W be a group. A W -invariant A-gauge on W is a function
ψ : W → A such that

ψ(w) = ψ(w−1) ∀w ∈ W ;

ψ(ww′) ⊂ ψ(w) ∪ ψ(w′) ∀w,w′ ∈ W.

Example 3.4. If W = Sym0(X), the group of finitely supported permutations of
X, then ψ(w) = Supp(w) is a W -invariant A-gauge on W .

Example 3.5. If F is a set with base point 1,

W = F (X) = {f : X → F |f(x) = 1 for all but finitely many x},

then

φ(w,w′) = {x|w(x) �= w′(x)}
is an A-gauge on W . If F is a group, then this gauge is left-invariant.
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Example 3.6. Suppose that W is a group generated by the union of a family of
subsets (Ux)x∈X ; we say that this family is regular if it satisfies the following axiom:
for any subset Y of X, denoting by WY the subgroup of W generated by

⋃
y∈Y Uy,

we assume that WY ∩WZ = WY ∩Z for all Y, Z ⊂ X. Then for each w ∈ W , we can
define its support as the smallest finite subset ψ(w) = Y of X such that w ∈ WY .
Plainly, the support function satisfies the axioms of a W -invariant A-gauge on W .

Let us give several examples of groups with a regular generating family of subsets.

i) A direct sum
⊕

Hx, by the family (Hx);
ii) A free product ∗Hx, by the family (Hx);
iii) A Coxeter group, by the family of its given Coxeter generators (this family

is regular by [Bk, Chap. IV.§1, Theorem 2(ii)]);
iv) An Artin group, by the family of its given Artin generators (this family is

regular by [vdL, Theorem 4.14]);
v) Any group G endowed with a Tits system (or BN-pair) (B,N), with set of

reflections S: the family (BsB)s∈S is regular; indeed, for X ⊂ S, let PX

be the subgroup generated by
⋃

s∈X BsB: by 3.2.2 in [T], these parabolic
subgroups PX satisfy PX∩Y = PX ∩ PY .

vi) Let V be a variety of groups, i.e. the class of all groups satisfying a set
of laws (wi)i∈I . For X a set, we denote by V [X] the relatively free group
on X, i.e. the largest quotient of the free group F[X] belonging to V . For
Y ⊂ X, the inclusion F[Y ] ↪→ F[X] induces an inclusion V [Y ] ↪→ V [X].
As a consequence, with Vx = V [{x}], the generating family (Vx)x∈X is
regular in V [X]. For the Burnside variety defined by the law wN (where
N ≥ 2), the relatively free group on X is the free Burnside group B(X,N)
of exponent N . A variety V is said to be locally finite if every finitely
generated group in V is finite. It is a well-known fact that the Burnside
variety is locally finite for N = 2, 3, 4, 6.

vii) More generally, any group W generated by the union of a family of subsets
(Ux)x∈X such that for every Y there exists a retraction pY of W onto
WY such that pY |Wz

is constant for every z ∈ X\Y . One example is the
following. For every group G, denote by G∗ the largest residually finite
quotient of G, i.e. the quotient of G by the intersection of all finite index
subgroups. For every set X, set W = B(X,N)∗, where B(X,N) is the free
Burnside group as above. For x ∈ X, let Ux be the subgroup generated by
x ∈ X. This family (Ux)x∈X satisfies the above assumption on retractions,
by functoriality of the correspondence G → G∗. Note that W is locally
finite, by the solution to the restricted Burnside problem due to Zelmanov
[Z1, Z2].

If A, Y ⊂ X, we say that A cuts Y and we write A � Y if neither Y ⊂ A nor
Y ⊂ Ac, i.e., if A induces a non-trivial partition of Y .

Lemma 3.7. Let Y,X be sets, A ⊂ X, and φ an A-gauge on Y . Assume that
φ(y, y) is a singleton for every y ∈ Y . Set dA(y, y

′) = 1 if A � φ(y, y′) and 0
otherwise. Then dA is a pseudodistance on Y .

Proof. The symmetry follows from the symmetry of φ. Also, since A cannot cut
any singleton, dA vanishes on the diagonal. As dA takes values in {0, 1}, the tri-
angle inequality amounts to checking that being at distance zero is a transitive
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relation. Suppose that dA(y, y
′) = dA(y

′, y′′) = 0. Replacing A by its comple-
ment if necessary, we can suppose that φ(y, y′) ⊂ A. In particular, φ(y, y′) ∩
φ(y′, y′′) ⊂ A. Moreover, φ(y′, y′) ⊂ φ(y′, y) ∪ φ(y, y′) = φ(y, y′) and similarly
φ(y′, y′) ⊂ φ(y′, y′′). Therefore, φ(y, y′) ∩ φ(y′, y′′) contains the singleton φ(y′, y′).
In particular, φ(y′, y′′) ∩ A �= ∅. As dA(y

′, y′′) = 0, it follows that φ(y′, y′′) ⊂ A.
Therefore φ(y, y′′) ⊂ φ(y, y′) ∪ φ(y′, y′′) ⊂ A, so dA(y, y

′′) = 0. �

4. Lifting measured walls structures

In this section, all sets are assumed to be (at most) countable.

Definition 4.1. Let κ be a symmetric, non-negative kernel on a set X.

(1) We say that κ is proper if, for every x ∈ X, R ≥ 0, the set {y ∈ X :
κ(x, y) ≤ R} is finite.

(2) Let Y be a subset of X. We say that κ is proper on the subset Y if the
restriction of κ on Y is a proper kernel.

The element (w, x) ∈ W ×X will be denoted by wx. The aim of this section is
to prove:

Theorem 4.2. Let X,W be sets, A = 2(X). Let φ be an A-gauge on W and
assume that φ(w,w) = ∅ for all w ∈ W . Let (X,μ) be a measured walls structure.

(i) There is a naturally defined measure μ̃ on 2W×X such that (W ×X, μ̃) is a
measured walls structure with corresponding pseudo-distance given by

dμ̃(w1x1, w2x2) = μ{A|A � φ(w1, w2) ∪ {x1, x2}}.

(ii) Suppose that X is a G-set, W a G-group, and φ is W -invariant and G-
equivariant. If (X,μ) is uniform (respectively invariant) under G, then (W ×X, μ̃)
is uniform (resp. invariant) under W � G.

(iii) We say that φ is proper if {w ∈ W |φ(w,w′) ⊂ F} is finite whenever F is
finite and w′ ∈ W . If dμ is proper and φ is proper, then dμ̃ is proper.

4.1. The {0, 1}-valued pseudo-distance dA. Let us now consider two sets X,W ,
and A = 2(X). Let φ be an A-gauge on W and assume that φ(w,w) = ∅ for all
w ∈ W . Define an A-gauge on W ×X as follows: φ′(wx,w′x′) = {x, x′}∪φ(w,w′).
Note that φ′(wx,wx) = {x}. By Lemma 3.7, for all A ⊂ X, the corresponding map
dA is a pseudo-distance on W ×X.

Now, every {0, 1}-valued pseudo-distance d on a set S defines a partition by
a family of subsets (Bi) of S, which are the classes of the equivalence relation
d(x, y) = 0. We can define a measured walls structure on S as νd = 1

2

∑
i δBi

whose
associated distance is obviously d. Here we define νA as νdA

.

4.2. Integration of the νA’s. Suppose now that (X,μ) is a measured walls struc-
ture, and recall that φ takes values in finite subsets of X. We want to define
μ̃ as the measure “

∫
νAdμ(A)”. For this to make sense, observe that νA is a

Radon measure on P ′(W ×X). The locally compact topological space P ′(W ×X)
has a prebasis consisting of compact subsets K = {B|w1x1 ∈ B,w2x2 /∈ B} for
w1x1, w2x2 ∈ W ×X. For such a subset K, we have νA(K) = dA(w1x1, w2x2)/2.
Moreover, the map A �→ dA(w1x1, w2x2) is the characteristic function of the subset
{A|A � φ(w1, w2) ∪ {x1, x2}} ⊂ 2X ; in particular, it is a measurable function. It
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follows that A �→ νA(K) is measurable, and∫
2X

νA(K)dμ(A) =
1

2
μ{A|A � φ(w1, w2) ∪ {x1, x2}},

which is always finite as φ(w1, w2) ∪ {x1, x2} is finite.

Lemma 4.3. For every continuous compactly supported function f on P ′(W ×X),
the function A �→ νA(f) :=

∫
P ′(W×X)

f dνA is measurable on 2X and the integral∫
2X

νA(f)dμ(A) is finite.

Proof. One can prove that f is the uniform limit of functions fn which are linear
combinations of characteristic functions of cylinders. Here, we define cylinder as a
finite intersection of (at least one) elements of the prebasis. First, we claim that

A �→ νA(C) is measurable for any cylinder C. Indeed, let us write C =
⋂k

j=1 Kj ,

where Kj = {B|ujxj ∈ B, vjyj /∈ B} and ujxj , vjyj ∈ W × X. Fix A ⊂ X
and denote by W × X =

⊔
iBi the partition induced by the equivalence relation

“dA = 0”. If for some (necessarily unique) i, one has ujxj ∈ Bi and vjyj /∈ Bi

for all j, then 2νA(C) = δBi
(C) +

∑
� �=i δB�

(C) = 1 + 0 = 1; otherwise, one has

νA(C) = 0. Hence, A �→ 2νA(C) is the characteristic function of the set

{A ⊂ X|A �� φ′(ujxj , uj′xj′) and A � φ′(ujxj , vjyj) for all j, j
′}

(recall that φ′(wx,w′x′) = {x, x′} ∪ φ(w,w′)); in particular, it is a measurable
function.

Then, the functions A �→ νA(fn) are measurable as linear combinations of func-
tions A �→ νA(Ci) associated to cylinders Ci, and the function A �→ νA(f) is
measurable as the pointwise limit of functions A �→ νA(fn).

Moreover, as the support of f is contained in the union of finitely many elements
of the prebasis, say Supp(f) ⊂

⋃n
j=1 Kj , we have∫

2X
νA(f)dμ(A) ≤

∫
2X

‖f‖∞
n∑

j=1

νA(Ki)dμ(A) = ‖f‖∞
n∑

j=1

∫
2X

νA(Ki)dμ(A) .

This proves that the integral
∫
2X

νA(f)dμ(A) is finite. �

It follows that the map f �→
∫
2X

νA(f)dμ(A) is a positive linear form on
Cc(P

′(W × X)), so by the Riesz representation theorem it is the integral with
respect to some Radon measure μ̃. If K is the element of the prebasis defined
above, we may evaluate on the characteristic function of K (which is continuous)
and the previous computation yields μ̃(K) = 1

2μ{A|A � φ(w1, w2) ∪ {x1, x2}}, so
that (W ×X, μ̃) is a measured walls structure with associated distance

dμ̃(w1x1, w2x2) = μ{A|A � φ(w1, w2) ∪ {x1, x2}}.
This concludes the proof of part (i) of Theorem 4.2.

4.3. The case of G-sets. Now suppose that X and W are G-sets and that φ is
G-equivariant, i.e.

φ(gw, gw′) = gφ(w,w′) ∀g ∈ G,w,w′ ∈ W.

The set W ×X is a G-set under the product action.

Lemma 4.4. For all g ∈ G, one has g̃∗μ = g∗μ̃ and therefore g · dμ̃ = dg̃∗μ.
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In particular if μ is invariant under G, then μ̃ is G-invariant, and hence dμ̃ is
G-invariant as well.

Proof. The induced action on C(P ′(W ×X)) is defined by the formula g · f(A) =
f(g−1 ·A) and the measure g∗μ̃ satisfies

(g∗μ̃)(f) = μ̃(g−1 · f) =
∫
2X

νA(g
−1 · f)dμ(A)

for any f ∈ Cc(W ×X). On the other hand, setting ϕ(A) = νA(f), we obtain

g̃∗μ(f) =

∫
2X

νA(f)d(g∗μ)(A) = (g∗μ)(ϕ), and∫
2X

νgA(f)dμ(A) =

∫
2X

(g−1 · ϕ)(A)dμ(A) = μ(g−1 · ϕ).

Therefore, we have g̃∗μ(f) =

∫
2X

νgA(f)dμ(A). It remains to prove:

Claim. One has νgA(f) = νA(g
−1 · f), for all A ∈ 2X .

The gauge φ being G-equivariant, one can easily prove the relation

dgA(g · w1x1, g · w2x2) = dA(w1x1, w2x2),

for all w1x1, w2x2 ∈ W × X. Hence, denoting by (Bi)i the partition of W × X
induced by the pseudodistance dA, the partition induced by dgA is (gBi)i. Conse-
quently, one has

2νgA(f) =
∑
i

δgBi
(f) =

∑
i

f(gBi)

=
∑
i

(g−1 · f)(Bi) = 2νA(g
−1 · f).

This proves the claim. �

Lemma 4.5. If μ is uniform under G, then so is μ̃.

Proof. If wx,w′x′ ∈ W ×X and g varies in G, we have

dμ̃(g · wx, g · w′x′) = dμ̃(g · w.g · x, g · w′.g · x′)

= μ{A|A � φ(gw, gw′) ∪ {gx, gx′}} = μ{A|A � gF}
with F = φ(w,w′) ∪ {x, x′}. Now

μ{A|A � gF} ≤
∑

y,z∈F

dμ(gy, gz) ≤
∑

y,z∈F

(sup
g∈G

dμ(gy, gz)),

which is finite. �

Suppose now moreover that W is a G-group, so that W ×X is a (W � G)-set
with action

wg · (w′, x) = (w.(g · w′), g · x),
and that φ is W -invariant, i.e. φ(ww′, ww′′) = φ(w′, w′′) for all w,w′, w′′ ∈ W . If
μ is G-invariant, then one can see that μ̃ and dμ̃ are (W � G)-invariant by using
Lemma 4.4. For the same reason, if μ is assumed G-uniform instead of invariant,
then it follows from Lemma 4.5 that μ̃ is (W � G)-uniform as well. This proves
part (ii) of Theorem 4.2.
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4.4. Properness of dμ̃. We continue with the assumptions of Theorem 4.2.

Proposition 4.6. If a subset of W ×X is dμ̃-bounded, then it is contained in

{w ∈ W |φ(w,w′) ⊂ B} ×B′

for some dμ-bounded subsets B,B′ of X and w′ ∈ W . If dμ is proper, the converse
also holds.

Proof. Fix w′x′ and r > 0. If

dμ̃(wx,w
′x′) = μ{A|A � φ(w,w′) ∪ {x, x′}} ≤ r,

then μ{A|A � {v, x′}} ≤ r for every v ∈ φ(w,w′) ∪ {x}, that is, φ(w,w′) ∪ {x} is
contained in the r-ball around x′ for the distance dμ.

Conversely, assume that dμ is proper and set E = {w ∈ W |φ(w,w′) ⊂ B} × B′,
for some dμ-bounded subsets B,B′ of X and w′ ∈ W . There exist x′ ∈ X and
R > 0 such that

E ⊂
{
wx ∈ W ×X|φ(w,w′) ∪ {x} ⊂ B(x′, R)

}
.

For wx ∈ E, one has thus

dμ̃(wx,w
′x′) = μ{A|A � φ(w,w′) ∪ {x, x′}} ≤ μ{A|A � B(x′, R)} .

If A � B(x′, R), then clearly A � {y, x′} for some y ∈ B(x′, R). As dμ is proper,

we have |B(x′, R)| =: n ∈ N∗, whence

dμ̃(wx,w
′x′) ≤

∑
y∈B(x′,R)

μ{A|A � {y, x′}} ≤
∑

y∈B(x′,R)

dμ(y, x
′) ≤ n ·R ,

so that E is dμ̃-bounded. �

Remark 4.7. The properness assumption on dμ cannot be dropped. Indeed, endow
X = F∞ with the walls structure induced by the edges of its Cayley tree and
W = (Z/2Z)(X) with the gauge φ(w,w′) = Supp(w−1w′). One can see that

E =
{
w ∈ W |φ(w, 0W ) ⊂ B(1X , 1)

}
× {1X} ,

where 1X and 0W are the trivial elements in X and W , is dμ̃-unbounded, while

B(1X , 1) is dμ-bounded.

Proposition 4.6 immediately implies part (iii) of Theorem 4.2, whose proof is
therefore completed.

However, in applications (such as wreath products with infinite base group), the
gauge may be non-proper. Let u be a measure definite (resp. conditionally negative
definite) kernel on W and extend it to W×X by u(wx,w′x′) = u(w,w′); this is still
measure definite (resp. conditionally negative definite). When W,X are G-sets and
u is G-invariant (resp. G-uniform), then this measure definite (resp. conditionally
negative definite) kernel is G-invariant (resp. G-uniform) as well.

Proposition 4.8. Keep the notation as in Theorem 4.2. Suppose that dμ is proper
(but maybe not φ). Let u be a conditionally negative definite kernel on W , extended
as above to W × X. Suppose that u is proper on every subset of the form {w ∈
W |φ(w′, w) ⊂ F} for some finite F and w′ ∈ W . Then the conditionally negative
definite kernel dμ̃ + u is proper on W ×X. If W,X are G-sets, φ is G-equivariant,
μ and u are G-invariant (resp. G-uniform), then dμ̃ + u is G-invariant (resp.
G-uniform).
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Proof. Fix w0x0 ∈ W ×X and R > 0; we have to prove that the set

E := {wx ∈ W ×X|dμ̃(w0x0, wx) + u(w0, w) ≤ R}

is finite. Elements wx ∈ E satisfy the relations dμ̃(w0x0, wx) ≤ R and u(w0, w)
≤ R. As E is a dμ̃-bounded set, Proposition 4.6 gives a dμ-bounded set B ⊂ X
and a point w′ ∈ W such that one has

E ⊂
{
w ∈ W |φ(w′, w) ⊂ B

}
×B .

Moreover, B is finite, since dμ is proper. Afterwards, by properness of u on the
subset {w ∈ W |φ(w′, w) ⊂ B}, we obtain that E is finite.

The last assertion follows directly from the above remarks and the discussion in
Paragraph 4.3. �

5. Applications

5.1. Haagerup Property. Recall that a group is Haagerup if 1 is a pointwise
limit of C0 positive definite functions. A group is Haagerup if and only if all its
finitely generated subgroups are Haagerup [CCJJV, Proposition 6.1.1]. Moreover,
a countable group is Haagerup if and only if it has a proper conditionally negative
definite function, which is also equivalent to having a proper measure definite func-
tion (this follows from Proposition 2.7 and the implication (i)⇒(ii′) of Proposition
2.6).

Theorem 5.1. Let W,G be groups, with G acting on W by automorphisms. Set
A = 2(G). Let ψ be a left W -invariant, G-equivariant A-gauge on W , in the sense
of Definition 3.3. Assume that there exists a G-invariant conditionally negative
definite function u on W such that, for every finite subset F ⊂ G, the restriction of
u to every subset of the form WF := {w ∈ W : ψ(w) ⊂ F} is proper. Then W � G
is Haagerup if and only if G is Haagerup.

Remark 5.2. The assumption on u in Theorem 5.1 implies that W is Haagerup. To
see it, we prove that every finitely generated subgroup of W is Haagerup. Observe
that, for F a finite subset of G, the set WF is a subgroup of W . If w1, ..., wn is
a finite collection of elements in W , take F =

⋃n
i=1 ψ(wi), so that the subgroup

〈w1, ..., wn〉 generated by the wi’s is contained in WF . The assumption on u then
implies that 〈w1, ..., wn〉 is Haagerup. By the remarks preceding Theorem 5.1, the
group W is itself Haagerup.

Proof of Theorem 5.1. In view of the remarks preceding Theorem 5.1, we may as-
sume that W and G are countable. We can suppose that ψ(1) = ∅ (otherwise we
just change ψ(1) by ∅, without altering the other hypotheses). Since the Haagerup
property is inherited by subgroups, one implication is obvious. To prove the non-
trivial implication, we first extend u to W � G by setting u(wg) := u(w). As u is
conditionally negative definite and G-invariant on W , the extension is conditionally
negative definite on W � G. On the other hand, as G is Haagerup, there exists
a proper, G-invariant, L2-embeddable kernel κ on G, so by Proposition 2.8 there
exists a G-invariant measured walls structure (G,μ) such that κ = dμ. Then we
consider the function wg �→ dμ̃(1, wg) + u(wg): by Theorem 4.2 and Proposition
4.8, this is a proper conditionally negative definite function on W � G, so that
W � G is Haagerup. �
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Proof of Theorem 1.1. Let H,G be countable Haagerup groups. Set W = H(G), so
that H � G = W � G. The W -invariant gauge ψ(w) = Supp(w) is G-equivariant.
Let u be a proper, conditionally negative definite function on H and extend u to W
by u(w) =

∑
g∈G u(wg): the extended function is conditionally negative definite,

and its restriction to HS is proper, for every finite subset S ⊂ G. So Theorem 5.1
applies. �
Corollary 5.3. Let W,G be groups, with G acting on W by automorphisms. Set
A = 2(G). Let ψ be a left W -invariant, G-equivariant A-gauge on W , in the sense
of Definition 3.3. Assume that there exists a G-invariant conditionally negative
definite function u on W such that, for every finite subset F ⊂ G, the subgroup WF

is finite. Then W � G is Haagerup if and only if G is Haagerup.

Proof. Since WF is finite, the function u ≡ 0 satisfies the assumption in Theorem
5.1, which therefore applies to give the result. �
Example 5.4. Let X = G be a countable group. Define the group W either as in
Example 3.4 or as in (vi) (locally finite variety) or (vii) (restricted Burnside groups)
of Example 3.6: in each case, the subgroups WF are finite (for F ∈ 2(G)), so that
W � G is Haagerup if and only if G is Haagerup, by Corollary 5.3.

Example 5.5. We elaborate on (iii) of Example 3.6. Let G be a countable group,
endowed with a left-invariant structure of a Coxeter graph with G as set of vertices
X. Let WX be the Coxeter group associated with X, so that G acts by automor-
phisms on WX . Let u be the word length on WX with respect to the set of Coxeter
generators. Then u is conditionally negative definite [BJS] and, for F ∈ 2(G), the
restriction u|WF

is proper, as it corresponds to word length on a finitely generated
group. So Theorem 5.1 applies: W � G is Haagerup if and only if G is.

5.2. Coarse embeddability. We freely use basic terminology about coarse ge-
ometry, for which we refer to [Ro]. Pseudometric spaces are endowed with their
bounded coarse structure and groups with their left ‘canonical’ coarse structure. In
other words:

(1) if (X, d) is a pseudometric space, a subset E of X ×X is controlled if and
only if sup{d(x, y)|(x, y) ∈ E} < +∞;

(2) if G is a group, a subset E of G×G is controlled if and only if the subset
{g−1h|(g, h) ∈ E} is finite.

In case a group G is endowed with a left-invariant proper metric d, the coarse
structures arising from (1) and (2) coincide.

Definition 5.6. Let κ be a symmetric, non-negative, kernel on a group G. It is
effectively proper if, for all R > 0, the subset {(x, y) ∈ X × X : κ(x, y) ≤ R} is
controlled.

There is a strong link with coarse embeddability into Hilbert spaces.

Proposition 5.7. Let G be a group. The following are equivalent:

(i) G coarsely embeds into a Hilbert space;
(ii) there exists a conditionally negative definite, G-uniform, and effectively

proper kernel on G.

This proposition is interesting for countable groups only: it is easy to see that
any group satisfying (i) or (ii) is countable.
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Proof. If f is a coarse embedding of G into a Hilbert space, then the kernel
κ(x, y) = ‖f(x) − f(y)‖2 satisfies (ii). Conversely, if κ is a kernel as in (ii), the
GNS-construction furnishes a coarse embedding of G into a Hilbert space. The
details are left to the reader. �

We now adapt ideas of Sections 4.4 and 5.1 to prove Theorem 1.4.

Proposition 5.8. Keep the notation as in Theorem 4.2 (i). Then, the set⋃
(wx,w′x′)∈E

(φ(w,w′) ∪ {x, x′})2 ⊂ X ×X

is dμ-controlled, whenever E is a dμ̃-controlled subset of (W ×X)2.

Proof. Take a positive number R such that dμ̃(wx,w
′x′) ≤ R for all (wx,w′x′) ∈ E.

Then, for all u, v ∈ X and (wx,w′x′) ∈ E such that u, v ∈ φ(w,w′) ∪ {x, x′}, we
have

dμ(u, v) ≤ μ{A|A � φ(w,w′) ∪ {x, x′}} = dμ̃(wx,w
′x′) ≤ R . �

Proposition 5.9. Let G be a group and keep the notation as in Theorem 4.2 (i),
with X = G. Let u be a conditionally negative definite kernel on W , extended to
W × G by u(wx,w′x′) = u(w,w′). Suppose that W is a G-group, dμ is effectively
proper, and

(H) for all controlled subsets C ⊂ G×G and for all R > 0, the subset{
(vx, wy) ∈ (W � G)2 | (φ(v, w) ∪ {x, y})2 ⊂ C and u(v, w) ≤ R

}
is controlled.

Then, dμ̃ + u is an effectively proper kernel on W � G.

Proof. Fix R > 0; we have to prove that the set

E := {(vx, wy) ∈ (W � G)2 | dμ̃(vx, wy) + u(v, w) ≤ R}
is controlled. As E is dμ̃-controlled, Proposition 5.8 tells us that the subset

D :=
⋃

(wx,w′x′)∈E

(φ(w,w′) ∪ {x, x′})2

is dμ-controlled. As dμ is effectively proper, D is also controlled with respect to the
group coarse structure. Finally, E is contained in{

(vx, wy) ∈ (W � G)2 | (φ(v, w) ∪ {x, y})2 ⊂ D and u(v, w) ≤ R
}
,

so that it is a controlled subset of (W � G)2 by (H). �

Here is a coarse analog of Theorem 5.1.

Theorem 5.10. Let W,G be groups, with G acting on W by automorphisms. Set
A = 2(G). Let ψ be a left W -invariant, G-equivariant A-gauge on W , in the sense of
Definition 3.3. Assume that there exists a W -uniform, G-invariant, conditionally
negative definite kernel u on W such that, for every finite subset F ⊂ G and every
R > 0, the set

{(v, w) ∈ W ×W | ψ(v−1w) ⊂ F and u(v, w) ≤ R}
is controlled. Then W � G coarsely embeds into a Hilbert space if and only if G
does.
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Proof. The “only if” part is obvious. Assume that G coarsely embeds into a Hilbert
space. By Proposition 5.7, there exists a conditionally negative definite kernel κ
on G which is G-uniform and effectively proper. By Proposition 2.6, there exists
a measured walls structure (G,μ) such that κ = dμ. We extend u to W � G
by u(vg, wh) = u(v, w). This kernel is still conditionally negative definite and is
(W � G)-uniform.

By Theorem 4.2 (ii), the kernel dμ̃ + u on W � G is (W � G)-uniform; it is
also conditionally negative definite by construction. Now, by Proposition 5.7, it is
sufficient to prove that dμ̃ + u is effectively proper.

In order to apply Proposition 5.9, let us check hypothesis (H). Let C ⊂ G × G
be a controlled subset and let R > 0. Up to enlarging C, we may assume that C is
symmetric and invariant under the diagonal action. We are to show that

E := {(vg, wh) ∈ (W � G)2| (ψ(v−1w) ∪ {g, h})2 ⊂ C and u(v, w) ≤ R}

is a controlled subset. As C is controlled, the set F ′ := {x−1y| (x, y) ∈ C} is finite.
Suppose (vg, wh) ∈ E. We get(

ψ(g−1v−1wg) ∪ {1, g−1h}
)2 ⊂ C

by G-invariance of C, so that g−1h ∈ F ′ and ψ(g−1v−1wg) ⊂ F ′. Now, by hy-
pothesis, the set {(s, t) ∈ W ×W |ψ(s−1t) ⊂ F ′ and u(s, t) ≤ R} is controlled, so
that

F ′′ := {s−1t| s, t ∈ W, ψ(s−1t) ⊂ F ′ and u(s, t) ≤ R}
is finite. Consequently, we obtain (vg)−1wh = (g−1v−1wg)g−1h ∈ F ′′F ′ . The last
set being finite, we have proved that E is controlled. Finally, by Proposition 5.9,
the kernel dμ̃ + u is effectively proper, as desired. �

Proof of Theorem 1.4. By Proposition 5.7, there exists a conditionally negative def-
inite, H-uniform, and effectively proper kernel u on H. We extend u to W := H(G)

by u(v, w) =
∑

g∈G u(vg, wg). It is easy to check that this kernel on W is condi-

tionally negative definite, G-invariant, and (W � G)-uniform.
Whenever F is a finite subset of G and R is a positive number, the set

E := {(v, w) ∈ W ×W | Supp(v−1w) ⊂ F and u(v, w) ≤ R}

is controlled. Indeed, if (v, w) ∈ E, we have vx = wx for x ∈ G\F and u(vx, wx) ≤ R
for x ∈ F . As u is effectively proper on H, the set F ′ := {a−1b| a, b ∈ H, u(a, b) ≤
R} is finite. Hence, we get v−1

x wx ∈ F ′ for all x ∈ F , so that {v−1w|(v, w) ∈ E} is
finite.

Finally, Theorem 5.10 implies that H �G = W �G coarsely embeds into a Hilbert
space. �

6. Wreath products

6.1. Permutational wreath products. Let L be a subgroup of G; we say that
L is co-Haagerup in G if there exists a proper G-invariant conditionally negative
definite kernel on G/L.

Example 6.1. i) Obvious examples include: finite index subgroups; finite
subgroups in a Haagerup group; normal subgroups with G/L Haagerup.
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ii) A subgroup H of G is co-Følner if the homogeneous space G/H carries a
G-invariant mean. It should be emphasized that co-Følner subgroups are
not necessarily co-Haagerup. To see it, consider G = (Z ⊕ Z) � (Z/2Z)
(where Z/2Z acts by the flip σ of the two factors) and H the first factor
in Z ⊕ Z. Clearly H is co-Følner in G. But observe that every length
function � : G → R+ which is bounded on H is bounded on G; indeed, by
subadditivity � is bounded first on σHσ−1 (i.e. the second factor of Z⊕Z),
then on Z ⊕ Z (which is generated by H and σHσ−1), then on G. As a
consequence, H is not co-Haagerup in G.

iii) If L is co-Haagerup in G, then (G,L) is a Hecke pair (this follows e.g. from
Proposition B.2 in Appendix B). The converse is not true, as illustrated by
the Hecke pair (SL3(Z[1/p]), SL3(Z)).

iv) If G acts on a locally finite tree T and L is some vertex stabilizer, then
the distance function on T descends to a proper G-invariant conditionally
negative definite kernel on G/L, i.e. L is co-Haagerup in G. This applies
for instance to L = SL2(Z) in G = SL2(Z[1/p]) (use the SL2(Qp)-action
on the (p+ 1)-regular tree). Another example is given by a subgroup L in
an HNN-extension G = HNN(L,A, ϑ), where both A and ϑ(A) have finite
index in L. For a concrete example, consider e.g. the Baumslag-Solitar
group

G = BS(m,n) = 〈a, b | abma−1 = an〉
with respect to the subgroup L = 〈b〉.

Theorem 6.2. Let H,G be groups, and let L be a subgroup of G. Suppose that
G and H are Haagerup and that L is co-Haagerup in G. Then the permutational
wreath product H �G/L G = H(G/L)

� G is Haagerup.

In the proof of Theorem 6.2, we use the construction of Section 4 and the fol-
lowing auxiliary construction.

Lemma 6.3. Let G be a group, Y a G-set, and H another set. Let (H,σ) be a
measured walls structure. Then there exists a naturally defined G-invariant measure

σ̂ on 2H
(Y )×G, such that (H(Y )×G, σ̂) is a measured walls structure with associated

distance given by

dσ̂(wg,w
′g′) =

∑
y∈Y

dσ(wy, w
′
y).

Suppose moreover that H is a group. If (H,σ) is left-invariant (resp. uniform)
under H, then (H(Y )

� G, σ̂) is invariant (resp. uniform) under H(Y )
� G.

Proof. Consider the direct sum, indexed by Y , of copies of the measured walls
structure (H,σ), as in Section 2. The corresponding pseudo-distance is given by
d(w,w′) =

∑
y∈Y dσ(wy, w

′
y). Take the inverse image to H(Y ) × G, to get the G-

invariant measured walls structure (H(Y )
�G, σ̂), whose associated pseudo-distance

is the desired one. The last assertion is also straightforward. �

Proof of Theorem 6.2. Using the remarks at the beginning of Section 5, we can
suppose that G and H are countable.

Define X = G/L, A = 2(X), and W = H(G/L). Let φ be the A-gauge on W
given by Example 3.5: φ(w,w′) = Supp(w−1w′).
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By the co-Haagerup Property, there exists a G-invariant L2-embeddable proper
kernel κ on G/L. By Proposition 2.8, there exists a G-invariant measured walls
structure μ on X with dμ = κ.

Consider the measured walls structure (W ×X, μ̃) constructed in Section 4. By
Theorem 4.2, the corresponding pseudo-distance is given by

dμ̃(1, wx) = μ{A|A � φ(1, w) ∪ {1, x}}.
Let us now consider the projections ρ : W � G → W ×X and p : W � G → G.
By properness of dμ, it then follows from Proposition 4.6 that any subset of

W × G which is bounded for dρ∗μ̃ is contained in a subset of the form {wg ∈
W × G | Supp(w) ⊂ F, g ∈ F ′}, where F ⊂ G/L is finite and F ′ is a subset of G
with finite image in G/L.

On the other hand, let (G, λ) be a proper G-invariant measured walls structure.
The bounded subsets of W �G for dp∗λ are contained in subsets of the form W ×F
for F ⊂ G a finite subset. It follows that bounded subsets for the pseudo-distance
associated to the measured walls structure (W � G, ρ∗μ̃ + p∗λ), which is W � G-
invariant, are contained in subsets of the form {wg ∈ W×G | Supp(w) ⊂ F, g ∈ F ′},
where F ⊂ G/L and F ′ ⊂ G are both finite.

Since H is Haagerup, there is an H-invariant measured walls structure (H,σ)
whose associated pseudo-distance is proper. Consider the measured walls structure
(W �G, σ̂) from Lemma 6.3. For all finite subsets F, F ′ of G/L and G, the pseudo-
distance dσ̂ is proper in restriction to the subset {wg ∈ W � G | Supp(w) ⊂ F, g ∈
F ′} of W ×G.

We finally get that the measured walls structure (W � G, ρ∗μ̃ + p∗λ + σ̂) is
W � G-invariant and the corresponding distance is proper. �

Remark 6.4. It readily follows from the proof that

• if L is finite (e.g. in the case of standard wreath products, in which ρ is
the identity), then it is enough to consider ρ∗μ̃+ σ̂;

• if H is finite, then it is enough to consider ρ∗μ̃+p∗λ, although the distance
associated to σ̂ may still be unbounded;

• in particular, when L and H are both finite, then the pseudo-distance dρ∗μ̃

is proper.

6.2. Relative property T. If G is a group and X a subset, recall from [Co2]
that (G,X) has relative Property T if whenever a net of positive definite functions
converges pointwise to 1, the convergence is uniform on X. It is known that this
holds if and only if G has some finitely generated subgroup H containing X such
that (H,X) has relative Property T [Co2, Theorem 2.5.2]. Moreover, if G is count-
able, then (G,X) has relative Property T if and only if any conditionally negative
definite function on G is bounded on X [Co2, Theorem 2.2.3], or equivalently if
any measure definite function on G is bounded on X. Here is a reformulation of
Theorem 1.3.

Theorem 6.5. Let H,G be any groups. Let C be a subset of the standard wreath
product H � G. Then (H � G,C) has relative Property T if and only if the four
following conditions are fulfilled:

• (G,C1) has relative Property T, where C1 is the projection of C on G;
• (H,C2) has relative Property T, where C2 is the projection of C on H, i.e.
the union of all projections on all copies of H;
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• (G, Supp(C)) has relative Property T, where Supp(C) is the union of sup-
ports of all w, for wg ∈ C ⊂ H(G) ×G;

• the function wg �→ #Supp(w) is bounded on C.

To get Theorem 1.3, simply put Y = C2 and Z = C1 ∪ Supp(C).

Proof. Using the remarks above, we can suppose that H and G are countable.
If μ and σ are invariant measured walls structures on G and H, we freely use

the notation used in the proof of Theorem 6.2. First, assuming that (H �G,C) has
relative Property T, we prove that the four conditions of the theorem hold:

• If (H �G,C) has relative Property T, then we see by projecting that (G,C1)
has relative Property T.

• If the function wg �→ #Supp(w) is unbounded on C, we pick σ as the
discrete measured walls structure on H, that is, σ(A) = 1

2#{h ∈ H|{h} ∈
A}, so that dσ(h, h

′) = 0 if h = h′ and 1 otherwise. Then dσ̂(w, 1) =
#Supp(w) is unbounded on C.

• If (H,C2) does not have relative Property T, then we pick σ unbounded on
C2 and get that dσ̂ is unbounded on C.

• Finally if (G, Supp(C)) does not have Property T, pick μ with dμ un-
bounded on Supp(C), so that dμ̃ is unbounded on C.

Let us now prove that the conditions are sufficient. Suppose they all hold. Let ψ
be a measure-definite function on H � G. Note that ψ is subadditive. Identify H
with the subgroup of H(G) consisting of functions supported at the identity of G.
There exists a positive constant K such that: (i) ψ(g) ≤ K for all g ∈ C1; (ii)
ψ(h) ≤ K for all h ∈ C2; (iii) ψ(g) ≤ K for all g ∈ Supp(C); (iv) #Supp(w) ≤ K
for all wg ∈ C. Hence, any wg ∈ C can be written in the form

wg = g1h1g
−1
1 · · · gkhkg

−1
k · g

with Supp(w) = {g1, . . . , gk}, whence k ≤ K, and h1, . . . , hk ∈ C2. Recall that
g ∈ C1. Consequently, one has ψ(wg) ≤ (3k + 1)K ≤ 3K2 +K; this proves that ψ
is bounded on C. �

In the permutational case, we can characterize the relative Property T for certain
subgroups.

Proposition 6.6. Let H,G be groups, X a non-empty G-set, and W = H(X). For
x ∈ X, let px : W → H : w �→ wx denote the projection on the x-th factor of W .
Let K be a subgroup of W . The following are equivalent:

(i) (W,K) has relative Property (T);
(ii) (H �X G,K) has relative Property T;
(iii) there exists a finite subset C ⊂ X such that K ⊂ HC , and (H, px(K)) has

relative Property T for every x ∈ C.

Lemma 6.7. Let X be an infinite set and (Si)i∈I a family of finite subsets of
bounded cardinality. Suppose that

⋃
i Si is infinite. Then there exists an infinite

subset J ⊂ I, a subset F ⊂ X, and pairwise disjoint non-empty finite subsets
Fj ⊂ X − F (j ∈ J) such that Sj = F ∪ Fj for all j ∈ J .

Proof. First, let (in) be a sequence in I such that Sin is not contained in
⋃

m<n Sim .
Define J0 = {in : n ≥ 0}. Let J1 ⊂ J0 be an infinite subset such that the cardinality
d of F = limj∈J1

Sj is maximal and set Fj = Sj−F for j ∈ J1. Note that Fj is empty,
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that is, Sj is contained in F , only for finitely many j’s because of the definition of
J0. Moreover, for any j1 ∈ J1, the set of indices j ∈ J1 such that Fj1 ∩ Fj �= ∅ is
finite, since otherwise one would get an infinite subset J2 ⊂ J1, contradicting the
maximality of d. Therefore there exists J ⊂ J1 fulfilling the desired properties. �

Proof of Proposition 6.6. (i) ⇒ (ii) is trivial. For (ii) ⇒ (iii), assume that (H �X
G,K) has relative Property T. Exactly as in the proof of Theorem 6.5, it is seen
that the function w �→ #Supp(w) is bounded on K. Let us check that C :=⋃

w∈K Supp(w) is finite. Otherwise, apply Lemma 6.7 to find in K a sequence (wn)
with support F ∪ Fn with F, (Fn) pairwise disjoint and Fn not empty. Clearly, the
elements

∏n
i=1 wi of K have support of unbounded cardinality, a contradiction. If,

for some x ∈ C, the pair (H, px(K)) does not have the relative Property T, we find
a measured wall structure σ on H such that dσ is unbounded on px(K), and get
that dσ̂ is unbounded on K, hence contradicting our assumption.

Finally, assume that the conditions in (iii) are satisfied. Then (HC ,
∏

x∈C px(K))

has the relative Property T. So increasing HC to W and decreasing
∏

x∈C px(K)
to K, we see that (W,K) has the relative Property T, i.e. that (i) is satisfied. �

As a special case of Proposition 6.6, the pair (H �X G,W ) has relative Property
T if and only if W has Property T if and only if X is finite and H has Property T
(this can also be deduced from Section 2.8 in [BHV]).

Proposition 6.6 allows us to characterize the existence of an infinite subgroup
with relative Property T. This improves on a result of Neuhauser [N, Theorem 1.1].

Theorem 6.8. Let H,G be groups, and X a non-empty G-set. Then H �X G has
relative Property T with respect to some infinite subgroup if and only if either H or
G has relative Property T with respect to some infinite subgroup.

Proof. The condition is obviously sufficient. Conversely suppose that G and H do
not have relative Property T with respect to any infinite subgroup, and let us show
that the same holds for H �X G. So let K be a subgroup of H �X G with the relative
Property T. Then the projection of K on G is finite. Replacing K with a finite
index subgroup, we may assume that K ⊂ H(X). By Proposition 6.6, there exists
a finite subset C ⊂ X, with K ⊂ HC , and moreover each projection px(K) (for
x ∈ C) is finite. So K itself is finite. �

7. Wreath product with a free group

Given a tree T = (V,E), let us recall that each (unoriented) edge e defines a
partition V = V +

e �V −
e corresponding to connected components of T \{e}. Setting

W =
⋃

e∈E{V +
e , V −

e } and μ = 1
2

∑
W∈W δW , we obtain a discrete walls structure

on V such that the associated distance dμ coincides with the tree distance.
Let us now consider a finitely generated free group F = F(S). Its Cayley graph

being a tree, we obtain a discrete wall structure μ on F, whose distance coincides
with the word length with respect to S. Obviously, μ is F-invariant.

Let H be a finitely generated group with word length | · | with respect to some
generating subset S′. We form the wreath product H � F = H(F)

� F. In what
follows, we identify F with the subgroup {1}×F andH with the functions supported
on {1} in H(F). With this convention, S∪S′ is a finite generating set of H �F. The
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associated word length is given by

|wg| = m(w, g) +
∑
g′∈F

|wg′ |,

where g ∈ F, w ∈ H(F) and m(w, g) is the length of the shortest path in the Cayley
graph of F joining 1 to g and covering Supp(w) (see for instance [P, Theorem 1.2]).

We can now introduce the main result of this section.

Definition 7.1. Let G be a finitely generated group with word length | · | and let d
be a left-invariant pseudo-distance on G. A compression function for d is a function
α : R+ → R+ such that d(1, g) ≥ α(|g|) for all g ∈ G.

Proposition 7.2. Let α : R+ → R+ be a non-decreasing and subadditive function
and let F be a finitely generated free group. If a finitely generated group H has a
left-invariant measured walls structure whose corresponding pseudo-distance admits
α as a compression function, then so does the wreath product H � F.

Proof. Choose a constant C ≥ 1 such that the function β = α/C satisfies β(r) ≤ r/2
for all r ∈ N∗. Let σ be a left-invariant measured walls structure on H such that
α is a compression function for dσ. Then β is a compression function for dσ, which
is still non-decreasing and subadditive.

Let Φ(σ) = μ̃ + σ̂, where σ̂ is constructed as in Lemma 6.3, with Y = F, and
μ̃ is constructed as in Section 4 with respect to the gauge φ : H(F) ×H(F) → 2(F)

given by φ(w,w′) = Supp(w−1w′). This is a left-invariant measured walls structure
on H � F by Theorem 4.2 and Lemma 6.3. We also get the formula

dΦ(σ)(wg, 1) = #
{
edges cutting Supp(w) ∪ {1, g}

}
+

∑
g′∈F

dσ(1, wg′),

where we identify the free group F to the vertices of its Cayley tree.
Let us now recall that the edges cutting Supp(w) ∪ {1, g} form a finite subtree,

namely the convex hull of Supp(w) ∪ {1, g}.

Claim. Let T be a finite tree with n edges. Then there exists a loop of length 2n
covering T .

This is proved by a trivial induction: if T has at least one edge, pick a terminal
vertex v, and use the induction hypothesis on the subtree with vertex set T − {v}.

It follows from the claim and properties of β that

dΦ(σ)(wg, 1) ≥ 1

2
m(w, g) +

∑
g′∈F

β(|wg′ |)

≥ β(m(w, g)) +
∑
g′∈F

β(|wg′ |)

≥ β

⎛
⎝m(w, g) +

∑
g′∈F

|wg′ |

⎞
⎠ = β(|wg|).

Hence, β is a compression function for dΦ(σ), and α = Cβ is a compression function
for dC·Φ(σ). �

In particular, Proposition 7.2 can be applied to the n-fold iterated wreath prod-
uct Hn = (. . . ((H � Fk1

) � Fk2
) · · · � Fkn

). For instance, if H has a left-invariant
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measured walls structure whose corresponding pseudo-distance has compression nd

for some d ∈ [0, 1], then so does Hn.

Definition 7.3. Let G be a finitely generated group. We set B1(G) to be the
supremum of the numbers d ∈ [0, 1] such that r �→ rd is a compression function for
some pseudo-distance associated to a left-invariant measured walls structure on G.

Using (iii) ⇔ (iv) in Proposition 2.8, one can see that B1(G) is equal to the
(strong) equivariant L1-compression of G, that is, the supremum of the numbers
d ∈ [0, 1] such that there exists an L1-space E, endowed with an isometric G-action,
and a G-equivariant map f : G → E which satisfies

|x−1y|d ≤ ||f(x)− f(y)|| ∀x, y ∈ G

(note that such a map always satisfies ||f(x)− f(y)|| ≤ C · |x−1y| for some positive
constant C). Proposition 7.2 has the following immediate consequence:

Corollary 7.4. One has B1(Hn) = B1(H) for all n ≥ 1.

Remark 7.5. One could define another notion of equivariant L1-compression by
replacing E by a metric space Y , endowed with an isometric G-action, which is
isometrically embeddable into an L1-space. Note that these numbers would be
equal if we could prove the “missing implication” in Proposition 2.8.

Remark 7.6. It might be tempting to streamline the construction of Section 4 and
the proof of Theorem 6.2 by directly constructing a measure definite kernel instead
of a left-invariant measured walls structure. However, since we do not know if
the “missing implication” in Proposition 2.8 holds (see the remark following this
proposition), and since the construction as well as dμ̃ itself definitely depends on
the measured walls structure and not only on the associated distance, there would
be a loss in the iterates; for instance, we would only get B1(Hn) ≥ 2−nB1(H).

Appendix A. Measured walls structures vs spaces

with measured walls à la Cherix-Martin-Valette

For the purpose of the appendix, we introduce the following definition. It seems
even more natural than the one of measured walls structure, but we chose the latter
because it is sometimes more tedious to work with partitions (walls) rather than
subsets (half-spaces).

Definition A.1. An alternate measured walls structure is a pair (X, ν), where X
is a set and ν is a Borel measure on the set of bipartitions of X such that for all
x, y ∈ X,

dν(x, y) := ν({A|A � {x, y}}) < ∞.

Define W(X), the set of bipartitions of X, i.e. the quotient of 2X by the com-
plementation involution s : 2X → 2X ;A �→ Ac. Besides, say that a measured
walls structure on X is symmetric if μ is s-invariant. Let p be the canonical map
2X → W(X).

Lemma A.2. The map μ �→ p∗μ is a (canonical) bijection between the set of
symmetric measured walls structures on X and the set of alternate measured walls
structures on X, which preserves the associated pseudo-distance.
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Proof. This map obviously preserves the associated pseudo-distance.
Fix x ∈ X. The restriction of p to {A ∈ 2X |A 
 x} is a homeomorphism whose

inverse we denote by j. Note that j∗ν is not symmetric. We have p ◦ j = Id and
p ◦ s ◦ j = Id, so p∗j∗ν = ν and p∗s∗j∗ν = ν. Now

Tν =
1

2
(j∗ν + s∗j∗ν)

is symmetric, and p∗Tν = ν. This proves that T is a right inverse of p∗. We claim
that, if we restrict to symmetric measured walls structures, this is an inverse.

Consider B a Borel subset of 2X and write B = Bx � B′
x, where Bx = {A ∈

B|A 
 x}. Then
j∗p∗μ(B) = j∗p∗μ(Bx) + j∗p∗μ(B

′
x) = μ(Bx) + μ(s(Bx)) + 0

and similarly
s∗j∗p∗μ(B) = 0 + μ(s(B′

x)) + μ(B′
x),

so

Tp∗μ(B) =
1

2
(μ(Bx) + μ(s(Bx)) + μ(s(B′

x)) + μ(B′
x)).

If μ is symmetric, this gives

Tp∗μ(B) = μ(Bx) + μ(B′
x) = μ(B). �

Note that any alternate measured walls structure defines a space with measured
walls, with Borel subsets as the σ-algebra.

Conversely, if (X,W ,B, μ) is a space with measured walls (as in [CMV, Def-
inition 2]) on a countable set X, consider the embedding i of W into W(X).
Then the σ-algebra i∗B = {A ∈ W(X)|A ∩ W ∈ B} contains all basic clopen
sets A{x,y} = {A|A � {x, y}}, hence contains all Borel sets, and i∗μ provides an
alternate measured walls structure. This corresponds to a measured walls structure
by Lemma A.2.

As all the constructions given here are canonical (the introduction of x in the
proof of Lemma A.2 is not canonical but is only used to prove that some canonically
defined map is a bijection), they are compatible with group actions.

Appendix B. Hecke pairs

Definition B.1. Let H be a subgroup of the group G. The pair (G,H) is a Hecke
pair if all H-orbits on G/H are finite.

Clearly, (G,H) is a Hecke pair if either H is finite, or H has finite index, or
H is normal in G. A non-trivial example is the pair (SL2(Q), SL2(Z)) (see e.g.
[Kr], to which we also refer for more background). The following result allows us
to construct many more examples.

Proposition B.2. For a subgroup H of a group G, consider the following proper-
ties:

i) The homogeneous space G/H carries a G-invariant structure of a con-
nected, locally finite graph.

ii) There exists a G-invariant, proper, non-negative kernel on G/H.
iii) (G,H) is a Hecke pair.

Then (i) ⇒ (ii) ⇔ (iii). If moreover G is finitely generated, then all conditions are
equivalent.



3182 YVES CORNULIER, YVES STALDER, AND ALAIN VALETTE

Proof. (i) ⇒ (ii) If G/H carries a G-invariant structure of a connected, locally
finite graph X, then the distance function on X is a G-invariant proper kernel on
G/H (properness following from the finiteness of the balls in X).

(ii) ⇒ (iii) Let K be a proper G-invariant kernel on G/H. Fix gH ∈ G/H. Set
R = K(eH, gH) and F = {xH ∈ G/H : K(eH, xH) = R}; the latter is a finite set,
by properness of K. For h ∈ H, we have by G-invariance of K:

K(eH, hgH) = K(h−1H, gH) = K(eH, gH) = R,

so that hgH ∈ F . This shows that H-orbits in G/H are finite.
(iii) ⇒ (ii) Assume that (G,H) is a Hecke pair. Let f : G → N be a proper

function; replacing f by f + f̌ , we may assume that f is symmetric. Define, for
g ∈ G:

k(g) = min{f(w) : w ∈ HgH}.
Then k : G → N is a symmetric, bi-H-invariant function, so K(gH, g′H) =
k(g−1g′) is a well-defined G-invariant, symmetric, kernel on G/H. To check proper-
ness, fix R ≥ 0. If k(g) ≤ R, then the double class HgH meets the finite set
FR = f−1[0, R], so that gH ⊂ HFRH. As (G,H) is a Hecke pair, HFRH con-
sists of finitely many left cosets of H, so that there are finitely many gH’s with
K(eH, gH) ≤ R.

Assume now that G is generated by a finite symmetric set S, and that (G,H) is
a Hecke pair. We define a graph X with vertex set G/H by declaring gH, g′H to be
adjacent if gHs∩ g′H �= ∅ for some s ∈ S. This adjacency relation is symmetric, as
S = S−1, and obviously G-invariant. Now observe that gHs ∩ g′H �= ∅ if and only
if g′H ⊂ gHsH. This holds in particular if g′ = gs. So the canonical projection
G → G/H, g �→ gH induces a homomorphism of graphs from the Cayley graph
G(G,S) to X. In particular, X is connected. Finally, fix gH ∈ G/H; since gHsH
consists of finitely many left cosets of H, and S is finite, we see that there are
finitely many cosets g′H such that g′H ⊂

⋃
s∈S gHsH, so that gH has finitely

many neighbors, and X is locally finite. This proves (iii) ⇒ (i). �
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