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PHASE-TRANSLATION GROUP ACTIONS ON STRONGLY

MONOTONE SKEW-PRODUCT SEMIFLOWS

QIANG LIU AND YI WANG

Abstract. We establish a convergence property for pseudo-bounded forward
orbits of strongly monotone skew-product semiflows with invariant phase-
translation group actions. The results are then applied to obtain global con-
vergence of certain chemical reaction networks whose associated systems in
reaction coordinates are monotone, as well as the dynamics of certain reaction-
diffusion systems in time-recurrent structure including periodicity, almost pe-
riodicity and almost automorphy.

1. Introduction

Monotone dynamical systems have been widely studied because these systems
provide relevant mathematical unified framework for the qualitative analysis of
many important equations, including second-order parabolic equations and various
classes of systems of ordinary, parabolic and functional differential equations. One
may see [47, 20] for a comprehensive survey on the development of this theory.

The path-breaking work by Hirsch [18, 19] showed that trajectories in strongly
monotone systems have a strong tendency to be not chaotic, i.e., almost all of their
ω-limit sets consist of equilibria. Now it has been well known that, for smooth
strongly monotone systems, the forward orbits are generically convergent to equi-
libria in the continuous-time case or to cycles in the discrete-time case (see, e.g.
[47, 38, 39]). Recently, nonperiodic and nonautonomous equations have been at-
tracting more attention. A unified framework to study the nonautonomous equation
is the so-called skew-product semiflow generated by the equation (see [42, 43, 44],
etc.). However, in contrast to the autonomous and periodic cases, the generic con-
vergence cannot hold (see [44]) in strongly monotone skew-product semiflows, even
for quasi-periodic or almost periodic cases. In such cases, the failure of generic
convergence is mainly because of the multiple frequencies introduced in the base
flow.

Over the past 20 years, many researchers in this field tried to impose additional
conditions to obtain a more useful structure and information of the ω-limit sets of
the orbits. One of the popular approaches is to provide reasonable assumptions
to guarantee global convergence of the orbits. Such assumptions include subhomo-
geneity ([23, 33, 46, 52, 56, 58]), minimal equilibria ([16, 57]), a first integral with
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positive gradient ([5, 24, 30, 45, 53]) and orbital stability ([1, 2]), etc. Surpris-
ingly, orbital (uniform) stability can even guarantee the convergence of all orbits
for skew-product semiflows (see [25]).

An alternative interesting approach is to impose group actions on monotone dy-
namical systems. This idea originated from the investigation of the spatio-temporal
behavior of parabolic equations and systems in which the domain and the coef-
ficients exhibit a certain symmetry (see [8, 29]). In such a case, the semiflow
commutes with the action of a topological group G. Typical examples of such a
topological group include a rotation group SO(N), a translation group, etc. Mier-
czyński and Poláčik [31] first investigated the symmetry structure associated with
a compact connected group G and showed that the ω-limit sets of almost all (i.e.,
generic) bounded orbits are symmetric with respect to G, which we now call asymp-
totic symmetry of generic orbits. Later on, such generic asymptotic symmetry was
generalized by Takáč [51] to discrete-time systems with connected compact group
action. Ogiwara and Matano [35, 36] also relaxed the requirements of compactness
of the acting group G in [31, 51] which allowed them to discuss the monotonicity of
the traveling waves for reaction-diffusion equations or systems in bistable cases. We
note that the translation group is an important simple example of a noncompact
connected group.

For general nonperiodic systems, one cannot expect more useful generic asymp-
totic symmetry information because the generic convergence property failed (see
[44]). Recently, one of the present authors [55] obtained the asymptotic symmetry
of uniformly stable bounded orbits for skew-product semiflows with compact con-
nected group action. However, here we emphasize that stable bounded orbits are
not the “generic” ones in skew-product semiflows anymore.

The purpose of this paper is to study the global dynamics of strongly monotone
skew-product semiflows with a special phase-translation group action. More pre-
cisely, for a strongly ordered Banach space X with some v ∈ IntX+, let G be the
group of phase-translations

a : X → X, a · x = x+ av,

by a scalar a ∈ R. The action of topological group G commutes with the skew-
product semiflow Π : Πt(x, g) = (φt(x, g), g · t) (see (2.1)) as follows (also called
group equivalence in [31]):

φt(a · x, g) = a · φt(x, g) for all t ≥ 0, a ∈ G, x ∈ X and g ∈ Y.

We will incorporate the above two different approaches, i.e., convergence and group
actions, for the monotone systems into a common framework. The connection
between these two different approaches is fully established in our cases.

Via the special G-group action, we can introduce a skew-product semiflow Π̃ (see
(3.1)) on a codimensional-one orthogonal set of v in X. Our main result (Theorem
A) indicates that such a G-group action plays an essential role in determining global

dynamics of the skew-product semiflow Π̃, i.e., any bounded forward orbit of Π̃ will
converge. Noticing that Π̃ is not monotone in general, this result essentially en-
ables one to obtain a global convergence property for a nonmonotone skew-product
semiflow, which has interesting applications to the dynamics of several benchmark
models in time-dependent chemical reaction networks (see the following paragraphs
and Section 4).
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Back to the original monotone skew-product semiflow Π, one can also prove that
every bounded forward orbit of Π is convergent. However, it deserves to point out
(see Remark 2.7) that the forward orbit of Π is not necessarily bounded even if

its induced forward orbit of Π̃ is bounded (the forward orbit of Π is called pseudo-
bounded; see Definition 2.6 and Remark 3.2). Such insight will be particularly useful
when we discuss the dynamics of the time-recurrent chemical reaction networks in
Section 4.

In Section 4, we focus on investigating the dynamical behavior of certain classes
of chemical reaction networks. In much of the earlier studies, many researchers
restricted their consideration to the time-independent chemical reaction networks
(see, e.g., [3, 4, 27, 41, 48, 26] and the references therein). However, in practical
laboratory experiments, the system evolves influenced by external time-dependent
effects which are periodic, roughly periodic, or under environmental forcing which
exhibits different, noncommensurate periods. Then it is unlikely one can main-
tain the time-independent restriction, and it is therefore of considerable interest
to study the problem when the sort of time dependence is involved. Our main
results will be applied to obtain global dynamics for such chemical reaction net-
works with time-recurrent structure including periodicity, almost periodicity and
almost automorphy. The key idea of our approach is to lift such a chemical re-
action network to an alternative representation under which the resulting system
(called the associated system in reaction coordinates [3, 37]) is strongly monotone.
There are large quantities of models taken from the current biochemical literature
admitting the monotonicity of the new system description in reaction coordinates.
The benchmark examples include the phosphorylation/dephosphorylation processes
(sometimes called enzyme futile cycles; see, e.g., [12, 26, 41, 4]), nonmass action ki-
netics under the QSSA assumption in dimerization reactions of proteins (see [3, 26])
and more complex reaction networks which arise in many signal transduction path-
ways, the MAPK cascade and the RKIP inhibited ERK pathway from Cho et al.
[9, 3]. Among them, we will choose a simple phosphorylation/dephosphorylation
process in mass action kinetics as an illustrated example to show the technical detail
of verifying the monotonicity for the new system in reaction coordinates.

Although the new system in reaction coordinates has been known to be strongly
monotone, a careful examination immediately yields that the change to such a
new system does not seem particularly useful because there is no guarantee that
the solutions of the new system are bounded. (Recently, Hu and Jiang [21, 22]
discussed such a new monotone system under the assumption of boundedness for
every solution.) In fact, as pointed out by Angeli et al. in [3, p. 596]: “this issue
constitutes the main technical difficulty that needs to be surmounted in order for
us to obtain the convergence results for the system”. To overcome such difficulty,
motivated by [4], we therefore introduce the “pseudo-boundedness” (see Definition
2.6 and Remark 2.7) and accomplish showing that every orbit of the new system
is pseudo-bounded, which enables us to obtain convergence results for the original
chemical reaction networks.

Finally, we will also use our main results in Section 5 to obtain a convergence
property for a certain class of time-recurrent reaction-diffusion systems.

This paper is organized as follows. In Section 2 we agree on some notation and
give relevant definitions and preliminary results which will be important to our
proofs. We state our main results and give their proofs in Section 3. Sections 4 and
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5 are devoted to the study of global convergence results in time-dependent chemical
reaction networks and nonlinear reaction-diffusion equations for which our abstract
theorems in Section 3 apply.

2. Preliminaries

In this section, we collect some preliminary materials that will be used later.
First, we recall the definitions of partial order and the induced topology. We then
summarize some definitions and basic properties of strongly monotone skew-product
semiflows. Finally, we give a brief review about almost periodic functions.

Let Y be a compact metric space with metric dY and let σ : Y ×R → Y, (g, t) �→
g · t be a continuous flow on Y , denoted by (Y, σ) or (Y,R). A subset S ⊂ Y is
invariant if σt(S) = S for every t ∈ R. A nonempty compact invariant set S ⊂ Y
is called minimal if it contains no nonempty, proper and invariant subset. We
say that the continuous flow (Y,R) is minimal if Y itself is a minimal set. Let
(Z,R) be another continuous flow. A continuous map p : Z → Y is called a flow
homomorphism if p(z · t) = p(z) · t for all z ∈ Z and t ∈ R. Moreover, p is called a
flow isomorphism if it is a homeomorphism from Z to Y .

We say that (X, ‖·‖) is a strongly ordered Banach space if there is a closed
convex cone, that is, a nonempty closed subset X+ ⊂ X satisfying X++X+ ⊂ X+,
X+ ⊂ αX+ for all α ≥ 0, andX+∩(−X+) = {0} with nonempty interior IntX+ 	= ∅
(also say that X+ is solid). The cone X+ induces a strong ordering on X via
x1 ≤ x2 if x2 − x1 ∈ X+. We write x1 < x2 if x2 − x1 ∈ X+ \ {0}, and x1 � x2

if x2 − x1 ∈ IntX+. Given x1, x2 ∈ X, the set [x1, x2] = {x ∈ X : x1 ≤ x ≤ x2}
is called a closed order interval in X and [[x1, x2]] = {x ∈ X : x1 � x � x2} is
called an open order interval in X. The cone X+ is said to be normal if the norm
‖ · ‖ is semimonotone, i.e., there is a constant c such that the property 0 ≤ x1 ≤ x2

implies that ‖x1‖ ≤ c‖x2‖. Define the order topology on X which is induced by the
ordered norm defined by ‖x‖e = inf {λ > 0 : x ∈ λ[[−e, e]]} for some e ∈ IntX+. In
general, ‖x‖ is stronger than ‖x‖e. If X+ is solid and normal, then the induced
order topology is equivalent to the original topology (see [10], p. 230).

Throughout this paper, we always assume that the flow (Y,R) is minimal and
X is a strongly ordered Banach space with normal cone X+.

Let R
+ = {t ∈ R : t ≥ 0}. We consider a continuous skew-product semiflow

Π : X × Y × R
+ → X × Y defined by

(2.1) Πt(x, g) = (φt(x, g), g · t) , ∀(x, g, t) ∈ X × Y × R
+,

satisfying (1) Π0 = Id; (2) the cocycle property φt+s(x, g) = φs (φt(x, g), g · t) for
each (x, g) ∈ X × Y and s, t ∈ R

+.
A subset A ⊂ X × Y is positively invariant if Πt(A) ⊂ A for all t ∈ R

+ and is
totally invariant if Πt(A) = A for all t ∈ R

+. The forward orbit of any (x, g) ∈ X×Y
is defined by O+(x, g) = {Πt(x, g) : t ≥ 0}, and the ω-limit set of (x, g) is defined
by ω(x, g) = {(x̂, ĝ) ∈ X × Y : Πtn(x, g) → (x̂, ĝ)(n → ∞) for some sequence tn →
∞}. A skew-product semiflow (X × Y,Π,R+) is called completely continuous if for
any bounded set E ⊂ X, Πt(E × Y ) is relatively compact for any t > 0. Clearly,
if Π is completely continuous, then the omega-limit set O(ω, x) of every bounded
forward orbit O+(x, g) is a nonempty, compact and totally invariant subset in Ω×X
for Π.
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A flow extension of (X×Y,Π,R+) is a continuous skew-product flow (X×Y, Π̂,R)

such that Π(x, g, t) = Π̂(x, g, t) for each (x, g) ∈ X × Y and all t ∈ R
+. A compact

positively invariant subset is said to admit a flow extension if the semiflow restricted
to it does as well. Actually, a compact positively invariant set A ⊂ X × Y admits
a flow extension if every point in A admits a unique backward orbit which remains
inside the set A (see [44]).

Assume that E ⊂ X×Y is a compact positively invariant set for Π which admits
a flow extension. Let p : X × Y → Y be the natural projection. Then p is a flow
homomorphism for the flows (E,R) and (Y, σ).

A set E ⊂ X × Y is said to be positively fiber distal if for any g ∈ Y ,

inf
t∈R+

‖φt(x1, g)− φt(x2, g)‖ > 0

whenever (xi, g) ∈ E ∩ p−1(g) for i = 1, 2. A compact invariant subset E ⊂ X × Y
of Π is called a 1-cover of Y based on Π if p−1(g)∩E is a singleton for any g ∈ Y .

The strong ordering on X induces a strong ordering on X × Y as follows:

(x1, g) ≤ (x2, g) ⇔ x1 ≤ x2,

(x1, g) < (x2, g) ⇔ x1 < x2,

(x1, g) � (x2, g) ⇔ x1 � x2.

In other words, for skew-product semiflows, we use the order relation on each fiber
p−1(g). We write (x1, g) ≤g (<g,�g) (x2, g) if x1 ≤ x2 (x1 < x2, x1 � x2).
Without any confusion, we will drop the subscript “g”. One can also define similar
definitions and notation in p−1(g) as in X, such as order-intervals, etc.

Definition 2.1. The skew-product semiflow Π is monotone if

Πt(x1, g) ≤ Πt(x2, g)

whenever (x1, g) ≤ (x2, g) and t ≥ 0. Moreover, Π is strongly monotone if it is
monotone and

Πt(x1, g) � Πt(x2, g) whenever (x1, g) < (x2, g) and t > 0.

Definition 2.2 (Uniform stability). A forward orbit O+(x0, g0) of Π is said to be
uniformly stable if for every ε > 0 there is a δ = δ(ε) > 0 such that if s ≥ 0 and
‖x− φs(x0, g0)‖ ≤ δ(ε) for certain x ∈ X, then for each t ≥ 0,

‖φt(x, g0 · s)− φs+t(x0, g0)‖ = ‖φt(x, g0 · s)− φt(φs(x0, g0), g0 · s)‖ ≤ ε.

The following two results are adopted from [34, 44] and will play important roles
in our forthcoming sections.

Lemma 2.3. Assume that a forward orbit O+(x, g) is relatively compact and uni-
formly stable. Then the ω-limit set ω(x, g) is a minimal set which admits a fiber
distal flow extension.

Proof. It follows from Theorem 3.4 in [34]. �

Lemma 2.4. Assume that Π is strongly monotone and let K be a minimal set of
X × Y which admits a flow extension. If K is fiber distal, then no two points on
the same fiber are ordered.

Proof. It follows from Theorem 2.3.2 and Corollary 2.3.3 in [44]. �
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Fix v ∈ IntX+ with ‖v‖ = 1. Let G be the group of phase-translation

a : X → X; a · x = x+ av,

by a scalar a ∈ R.

Definition 2.5. The phase-translation group G commutes with the skew-product
semiflow Π if

(2.2) φt(a · x, g) = a · φt(x, g)

for any (x, y) ∈ X × Y , t ≥ 0 and a ∈ G.

For such v above, the Banach space X has a direct sum decomposition

(2.3) X = X0 ⊕ span{v},
where X0 is the null space of a bounded linear functional f on X with 〈f, v〉 = 1.
A natural projection on X0 is defined as

(2.4) π : X → X0 : x �→ x− 〈f, x〉v.

Definition 2.6. A forward orbit O+(x, g) of Π is said to be pseudo-bounded if
(πφt(x, g), g · t) is bounded in X × Y for all t ≥ 0.

Remark 2.7. Clearly, “Boundedness” =⇒ “Pseudo-boundedness”. However, the
reverse is not true. As a simple counterexample, we consider the following au-
tonomous system of ODEs:

(2.5)

{
ẋ = −x+ y + 1,
ẏ = x− y + 1,

t > 0.

A direct calculation yields the solution, with the initial value u0 = (x0, y0)
T ,

φt(u0) =

(
x(t;u0)
y(t;u0)

)
=

⎛
⎝ t+ 1

2 (x0 + y0) +
1
2 (x0 − y0)e

−2t

t+ 1
2 (x0 + y0)− 1

2 (x0 − y0)e
−2t

⎞
⎠ .

Choose v = ( 12 ,
1
2 )

T ∈ IntR2
+ and let G be the phase-translation group w.r.t. v.

Then G commutes with the flow of (2.5). It is easy to see that every solution φt(u0)
is pseudo-bounded (with X0 = {(x, y) ∈ R

2 : x+ y = 0}), but not bounded.

We finish this section with the definitions of almost periodic (almost automor-
phic) functions and flows.

A function f ∈ C(R,Rn) is almost periodic if, for any ε > 0, the set T (ε) := {τ :
|f(t + τ ) − f(t)| < ε, ∀t ∈ R} is relatively dense in R. f is almost automorphic if
for any {t′n} ⊂ R there is a subsequence {tn} and a function g : R → R

n such that
f(t+ tn) → g(t) and g(t− tn) → f(t) hold pointwise.

Let D ⊆ R
m be a subset of Rm. A continuous function f : R×D → R

n; (t, u) �→
f(t, u) is said to be admissible if f(t, u) is bounded and uniformly continuous on
R × K for any compact subset K ⊂ D. A function f ∈ C(R × D,Rn)(D ⊂ R

m)
is uniformly almost periodic (almost automorphic) in t if f is both admissible and
almost periodic (almost automorphic) in t ∈ R.

Let f ∈ C(R×D,Rn)(D ⊂ R
m) be admissible. Then H(f) = cl{f · τ : τ ∈ R}

is called the hull of f , where f · τ (t, ·) = f(t + τ, ·) and the closure is taken under
the compact open topology. Moreover, H(f) is compact and metrizable under the
compact open topology (see [43, 44]). The time translation g · t of g ∈ H(f) induces
a natural flow on H(f) (cf. [43]).
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Definition 2.8. An admissible function f ∈ C(R × D,Rn)(D ⊂ R
m) is called

time-recurrent if H(f) is minimal.

Remark 2.9. H(f) is always minimal if f is periodic or uniformly almost periodic
(almost automorphic) in t (see, e.g. [44]).

Let f ∈ C(R × R
n,Rn) be a uniformly almost periodic (almost automorphic)

function, and let

(2.6) f(t, x) ∼
∑
λ∈R

aλ(x)e
iλt

be a Fourier series of f (see [54, 45] for the definition and the existence of a Fourier
series). Then S = {λ : aλ(x) 	≡ 0} is called the Fourier spectrum of f associated to
the Fourier series (2.6), and M(f) = the smallest additive subgroup of R containing
S(f) is called the frequency module of f . Moreover, M(f) is a countable subset of
R. Let f, g ∈ C(R×R

n,Rn) be two uniformly almost periodic (almost automorphic)
functions in t. The module containment M(f) ⊆ M(g) if and only if there exists
a flow epimorphism from H(g) to H(f) (see [14] or [44, Section 1.3.4]).

3. Main results and proofs

In this section, we first collect our standing assumptions as follows:

(A1) Y is minimal, X is a strongly ordered Banach space with normal cone X+;
(A2) the skew-product semiflow Π onX×Y is strongly monotone and completely

continuous;
(A3) the phase-translation group G commutes with Π (see Definition 2.5).

We introduce an induced continuous mapping Π̃ by Πt, t ≥ 0, as follows:

(3.1)
Π̃t : X0 × Y → X0 × Y,

(x̃, g) �→ (φ̃t(x̃, g), g · t) := (πφt(x̃, g), g · t),

where X0, π are defined in (2.3) and (2.4). Then Π̃ satisfies the following:

Proposition 3.1. The mapping Π̃ is a skew-product semiflow on X0×Y . Moreover,
for any (x, g) ∈ X × Y and t ≥ 0, one has

(3.2) πφt(x, g) = φ̃t(πx, g).

Proof. We first prove (3.2). For any (x, g) ∈ X × Y and t ≥ 0, by the definition of

Π̃ one has φ̃t(πx, g) = πφt(πx, g). Moreover, it follows from (A3) and the definition
of the projection π that

πφt(x, g) = πφt(πx+ 〈f, x〉v, g) = π(φt(πx, g) + 〈f, x〉v) = πφt(πx, g).

As a consequence, πφt(x, g) = φ̃t(πx, g).
For any (x̃, g) ∈ X0 × Y , pick an x ∈ π−1(x̃). By virtue of (3.2), we have

φ̃0(x̃, g) = πφ0(x, g) = πx = x̃. Moreover, for every t, s ≥ 0,

φ̃s+t(x̃, g) = πφs+t(x, g) = πφs(φt(x, g), g · t)
= φ̃s(πφt(x, g), g · t) = φ̃s(φ̃t(x̃, g), g · t).

Thus, we proved that Π̃ is a skew-product semiflow on X0 × Y . �

From now on, for any (x̃, g) ∈ X0 × Y , we denote by Õ+(x̃, g) and ω̃(x̃, g) the

forward orbit and the omega-limit set with respect to Π̃, respectively.
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Remark 3.2. The pseudo-boundedness of an orbit O+(x, g) implies the boundedness

of the induced orbit Õ+(πx, g). On the contrary, if Õ+(x̃, g) is bounded, then
O+(x, g) is pseudo-bounded for any x ∈ π−1(x̃).

Now we present our main results.

Theorem A. Assume that X, Y and Π satisfy (A1)–(A3). Let (x̃1, g), (x̃2, g) ∈
X0 × Y be such that their orbits Õ+(x̃1, g) and Õ+(x̃2, g) are bounded. Then it
holds that

(3.3) ‖φ̃t(x̃1, g)− φ̃t(x̃2, g)‖ → 0 as t → ∞.

In particular, the following statements hold:

(i) There exists at most one 1-cover of Y with respect to Π̃.

(ii) For any bounded orbit Õ+(x̃, g), the omega-limit set ω̃(x̃, g) is a 1-cover of

Y with respect to Π̃.

Theorem B. Assume that X, Y and Π satisfy (A1)–(A3). Let O+(x, g) be a
forward orbit of Π. Then

1) the omega-limit set ω(x, g) of O+(x, g) is a 1-cover of Y if O+(x, g) is
bounded;

2) the omega-limit set ω̃(πx, g) of Õ+(πx, g) is a 1-cover of Y if O+(x, g) is
pseudo-bounded.

Before addressing the technical steps of the proof, it is helpful to build up some
useful lemmas.

Lemma 3.3. For any (x0, g0) ∈ X × Y , the forward orbit O+(x0, g0) of Π is
uniformly stable.

Proof. Since X is normal, it suffices to show that O+(x0, g0) is uniformly stable
with respect to ‖ · ‖v. For any ε > 0, choose δ = ε. For every x ∈ X, if s ≥ 0
and ‖x− φs(x0, g0)‖v ≤ δ, we have φs(x0, g0)− δv � x � φs(x0, g0) + δv. It then
follows from monotonicity of Π that

φt(φs(x0, g0)− δv, g0 · s) � φt(x, g0 · s) � φt(φs(x0, g0) + δv, g0 · s),

for each t ≥ 0. By virtue of (A3), one obtains

φt+s(x0, g0)− δv � φt(x, g0 · s) � φt+s(x0, g0) + δv,

and hence ‖φt(x, g0 · s)− φt+s(x0, g0)‖v ≤ δ = ε. �

Remark 3.4. By appealing to the results in [25], Lemma 3.3 may imply the global
convergence provided that EACH orbit of Π is bounded (and hence relatively com-
pact since Π is completely continuous). In our case, however, Π may possess pseudo-
bounded rather than bounded orbits (see Remark 2.7). Consequently, we are led to

consider the induced nonmonotone skew-product semiflow Π̃ in (3.1) independently:

Lemma 3.5. For every (x̃0, g0) ∈ X0 × Y , the induced forward orbit Õ+(x̃0, g0) is
uniformly stable.

Proof. Since the projection π is a linear bounded operator, we may assume that
‖π‖ ≤ M for some M > 0. Fix an x0 ∈ π−1(x̃0). For any ε > 0, it follows from
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Lemma 3.3 that there exists some δ(ε) > 0 such that

(3.4) ‖φt(x, g0 · s)− φs+t(x0, g0)‖ < ε/M (t ≥ 0)

whenever s ≥ 0, x ∈ X and ‖x− φs(x0, g0)‖ < δ.

Given any x̃ ∈ X0 and s ≥ 0 with ‖x̃− φ̃s(x̃0, g0)‖ < δ, by virtue of Proposition
3.1, we obtain that

(3.5) ‖πx− πφs(x0, g0)‖ = ‖x̃− φ̃s(x̃0, g0)‖ < δ,

whenever x ∈ π−1(x̃).
Choose an x ∈ π−1(x̃). Note that

x− φs(x0, g0) = πx− πφs(x0, g0)− λ0v,

for some λ0 ∈ R. Then, by (3.5), one has ‖x+λ0v−φs(x0, g0)‖ < δ. Together with
(3.4), we deduce that ‖φt(x+λ0v, g0 · s)−φs+t(x0, g0)‖ < ε/M, for all t ≥ 0. Thus,
‖πφt(x + λ0v, g0 · s) − πφs+t(x0, g0)‖ < ε, for all t ≥ 0. Again by Proposition 3.1,
we obtain that

‖φ̃t(x̃, g0 · s)− φ̃s+t(x̃0, g0)‖ ≤ ε for all t ≥ 0.

This completes the proof. �

Lemma 3.6. If an orbit O+(x, g) is pseudo-bounded, then its induced orbit

Õ+(πx, g) is relatively compact in X0 × Y .

Proof. By Remark 3.2, the induced orbit Õ+(πx, g) is bounded in X0 × Y . Since

Π is completely continuous, Πτ (Õ+(πx, g)) is relatively compact for every τ >

0, and hence Π̃τ (Õ+(πx, g)) is relatively compact. Note that Π̃τ (Õ+(πx, g)) =

{Π̃t(πx, g) : t ≥ τ}. It then follows that {Π̃t(πx, g) : t ≥ τ} is relatively compact

for any fixed τ > 0. Thus, Õ+(πx, g) is relatively compact in X0 × Y . �

Together with Lemmas 3.5 and 3.6, we have the following

Lemma 3.7. Suppose that the orbit O+(x, g) is pseudo-bounded. Then the omega-

limit set ω̃(πx, g) of Π̃ is minimal and admits a fiber distal flow extension.

Proof. It follows from Lemma 2.3, Lemma 3.5 and Lemma 3.6. �

Now we are in a position to introduce a function V : X × Y → R
+,

V (x, g) := inf{α ≥ 0 : (−αv, g) ≤ (x, g) ≤ (αv, g)}.

Lemma 3.8. Let V be defined as above. Then

(i) V is a well-defined nonnegative function which is continuous on X×Y and
Lipschitz in x ∈ X;

(ii)

(3.6) V (φt(x1, g)− φt(x2, g), g · t) ≤ V (x1 − x2, g)

for all x1, x2 ∈ X, g ∈ Y and t > 0. Moreover, the equality in (3.6) holds
if and only if x1 − x2 ∈ span{v}.

Proof. (i) Since [[−v, v]] is an open neighborhood of zero, one has x/α ∈ [[−v, v]]
for all α > 0 sufficiently large. Consequently, V (x, g) is a well-defined nonnegative
function. It is also easy to see that V is continuous on X × Y .
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We now prove that V is Lipschitz in x ∈ X. To end this, choose an ε0 > 0 such
that (−v, g) ≤ (ε0z, g) ≤ (v, g) for all ‖z‖ = 1. It then follows that

(3.7) (−ε−1
0 ‖x1 − x2‖v, g) ≤ (x1 − x2, g) ≤ (ε−1

0 ‖x1 − x2‖v, g)
for any two points x1, x2 ∈ X. Meanwhile, it follows from the definition of V that

(3.8) (−V (x2, g)v, g) ≤ (x2, g) ≤ (V (x2, g)v, g).

By (3.7) and (3.8), one has

(−ε−1
0 ‖x1 − x2‖v − V (x2, g)v, g) ≤ (x1, g) ≤ (ε−1

0 ‖x1 − x2‖v + V (x2, g)v, g),

which implies that V (x1, g) ≤ ε−1
0 ‖x1 − x2‖ + V (x2, g), and hence V (x1, g) −

V (x2, g) ≤ ε−1
0 ‖x1 − x2‖. Note that x1 and x2 are arbitrary; this implies that

|V (x1, g)− V (x2, g)| ≤ ε−1
0 ‖x1 − x2‖. Therefore, V is Lipschitz in x ∈ X.

(ii) For any x1, x2 ∈ X and each g ∈ Y , one has

(x2 − V (x1 − x2, g)v, g) ≤ (x1, g) ≤ (x2 + V (x1 − x2, g)v, g).

By virtue of monotonicity and (A3), it follows that

φt(x2, g)− V (x1 − x2, g)v ≤ φt(x1, g) ≤ φt(x2, g) + V (x1 − x2, g)v,

for t ≥ 0. This implies that

(3.9) (−V (x1 − x2, g)v, g · t) ≤ (φt(x1, g)− φt(x2, g), g · t) ≤ (V (x1 − x2, g)v, g · t).
Hence V (φt(x1, g)− φt(x2, g), g · t) ≤ V (x1 − x2, g) for all t ≥ 0.

Now if x1 − x2 ∈ span{v}, then it is easy to see that

V (φt(x1, g)− φt(x2, g), g · t) = V (x1 − x2, g) for all t ≥ 0.

Suppose that x1 − x2 /∈ span{v}. Then
(x2 − V (x1 − x2, g)v, g) < (x1, g) < (x2 + V (x1 − x2, g)v, g).

By exploiting strong monotonicity of Π, one immediately obtains

φt(x2 − V (x1 − x2, g)v, g) � φt(x1, g) � φt(x2 + V (x1 − x2, g)v, g).

Again by (A3), we have −V (x1 − x2, g)v � φt(x1, g)− φt(x2, g) � V (x1 − x2, g)v,
which implies that V (φt(x1, g)− φt(x2, g), g · t) < V (x1 − x2, g) for all t > 0. Thus,
the equality in (3.6) holds if and only if x1 − x2 ∈ span{v}, which completes our
proof. �
Remark 3.9. By virtue of (3.9), we note that the orbit difference {φt(x1, g) −
φt(x2, g) : t ≥ 0} is bounded, although the orbits O+(xi, g) themselves, i = 1, 2,
may not necessarily be bounded.

Proof of Theorem A. Before giving the proof of property (3.3), we show how this

asymptotic property helps us to deduce the uniqueness of the 1-cover w.r.t. Π̃, as
well as the 1-cover property of ω̃(x̃, g) for every bounded orbit Õ+(x̃, g).

Indeed, let Ki = {(x̃i
g, g) : g ∈ Y }, i = 1, 2, be two 1-covers of Y with respect

to Π̃. Suppose that there exists a g∗ ∈ Y such that x̃1
g∗ 	= x̃2

g∗ . Then, choose a
sequence tn such that g∗ · tn → g∗ as n → ∞. By property (3.3), one has

0 	= ‖x̃1
g∗ − x̃2

g∗‖ = lim
n→∞

‖x̃1
g∗·tn − x̃2

g∗·tn‖ = lim
n→∞

‖φ̃tn(x̃
1
g∗ , g∗)− φ̃tn(x̃

1
g∗ , g∗)‖ = 0,

a contradiction. So K1 = K2, which leads to the uniqueness of the 1-cover.
Now, for any (x̃, g) ∈ X0 × Y with bounded orbit Õ+(x̃, g), suppose that there

exists a g0 ∈ Y such that on this fiber one can find two distinct points from its
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omega-limit set, i.e., (z̃1, g0), (z̃2, g0) ∈ ω̃(x̃, g)∩ p−1(g0). It then follows from (3.3)
that

‖φ̃t(z̃1, g0)− φ̃t(z̃2, g0)‖ → 0 as t → ∞,

which implies that (z̃1, g0) and (z̃2, g0) are not a positively fiber distal pair of the

skew-product semiflow Π̃. This contradicts Lemma 3.7. Therefore, ω̃(x̃, g) is a

1-cover of Y with respect to Π̃. So it remains to prove the property (3.3).
Suppose on the contrary that there exist two points (x̃i, g), i = 1, 2, with their

orbits Õ+(x̃i, g) bounded, such that (3.3) does not hold. Then, by Lemma 3.6, one

can choose a sequence tn → ∞ such that g · tn → g∗ ∈ Y and φ̃tn(x̃i, g) → x∗
i , i =

1, 2, as n → ∞. Here x∗
1, x

∗
2 ∈ X0 and x∗

1 	= x∗
2.

Now pick some xi ∈ π−1(x̃i), i = 1, 2. It follows from Proposition 3.1 that

(3.10) πφtn(xi, g) = φ̃tn(x̃i, g) → x∗
i , i = 1, 2,

as n → ∞. By the definition of π,

φtn(x1, g)− φtn(x2, g)

= πφtn(x1, g)− πφtn(x2, g) + 〈f, φtn(x1, g)− φtn(x2, g)〉v.
(3.11)

Fix a τ > 0; it follows from (A3) that

φτ (φtn(x1, g)− φtn(x2, g), g · tn)
= φτ (πφtn(x1, g)− πφtn(x2, g), g · tn) + 〈f, φtn(x1, g)− φtn(x2, g)〉v.

(3.12)

By eliminating v from (3.11) and (3.12), one has

φtn(x1, g)− φtn(x2, g) = πφtn(x1, g)− πφtn(x2, g)

+ φτ (φtn(x1, g)− φtn(x2, g), g · tn)− φτ (πφtn(x1, g)− πφtn(x2, g), g · tn).
(3.13)

Note that Π is completely continuous and {φtn(x1, g) − φtn(x2, g)} is bounded by
Remark 3.9. Then there exists a subsequence of {tn}, still denoted by {tn}, such
that φτ (φtn(x1, g) − φtn(x2, g), g · tn) converges as n → ∞. Together with (3.10)
and (3.13), it yields that

(3.14) φtn(x1, g)− φtn(x2, g) → η as n → ∞.

Back to (3.11), we obtain that

(3.15) φtn(x1, g)− φtn(x2, g) → x∗
1 − x∗

2 + 〈f, η〉v as n → ∞.

On the other hand, given any t > 0, it holds that

φtn+t(x1, g)− φtn+t(x2, g)
= φt(φtn(x1, g), g · tn)− φt(φtn(x2, g), g · tn)
= φt(πφtn(x1, g), g · tn)− φt(πφtn(x2, g), g · tn)

+〈f, φtn(x1, g)− φtn(x2, g)〉v.

It then follows from (3.14) and (3.10) that

(3.16) φtn+t(x1, g)− φtn+t(x2, g) → φt(x
∗
1, g

∗)− φt(x
∗
2, g

∗) + 〈f, η〉v,

as n → ∞.
Now, by virtue of Lemma 3.8, we note that the continuous function

s �→ V (φs(x1, g)− φs(x2, g), g · s)
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converges decreasingly as s → ∞. By letting tn → ∞ in (3.15) and (3.16) it then
follows that

V (φt(x
∗
1, g

∗)− φt(x
∗
2 − 〈f, θ〉v, g∗), g∗ · t) = V (x∗

1 − (x∗
2 − 〈f, θ〉v), g∗)

for any t > 0. According to Lemma 3.8(ii), this indicates

x∗
1 − x∗

2 + 〈f, θ〉v ∈ span{v}
and hence x∗

1 − x∗
2 ∈ span{v}. Note that x∗

1, x
∗
2 ∈ X0 and x∗

1 	= x∗
2, a contradiction.

Thus we have proved (3.3), which completes the proof of Theorem A. �
Proof of Theorem B. 1) Assume that O+(x, g) is bounded. Then it is relatively
compact because Π is completely continuous. As a consequence, ω(x, g) is a mini-
mal set which admits a fiber distal flow extension by Lemma 2.3 and Lemma 3.3.
Suppose that ω(x, g) is not a 1-cover of Y . Then there exist two distinct points
(x1, g0), (x2, g0) ∈ ω(x, g). By virtue of the property (3.3), one can find a sequence
tn → ∞ such that

(3.17) lim
n→∞

[φtn(x1, g0)− φtn(x2, g0)] ∈ span{v} as n → ∞.

Note that ω(x, g) is totally invariant and compact. One can assume without loss
of generality that φtn(xi, g0) → (x∗

i , g
∗) ∈ ω(x, g) as n → ∞, for i = 1, 2. It then

follows from (3.17) and the fiber-distal property of ω(x, g) that (x∗
1, g

∗) and (x∗
2, g

∗)
are two distinct points related by “�”on the same fiber. This contradicts Lemma
2.4. Hence ω(x, g) is a 1-cover of Y w.r.t. Π.

2) It is a direct corollary by Remark 3.2 and Theorem A. �

4. Time-dependent chemical reaction networks

Due to the challenges posed by molecular and systems biology, the investigation
of the asymptotical behavior of chemical reaction networks is an area of growing
interest. In this section, we will utilize our main theoretical results to establish the
global dynamics of time-dependent chemical reaction networks.

A chemical reaction network is a list of chemical reactions Ri, i = 1, · · · , n,
which specify how certain combinations of chemical species are converted into other
combinations of chemical species. Let Sj be the j-th chemical species for j =
1, · · · ,m. The i-th chemical reaction Ri can be written as

Ri :

m∑
j=1

αijSj →
m∑
j=1

βijSj (called irreversible reactions)

or

Ri :

m∑
j=1

αijSj ↔
m∑
j=1

βijSj (called reversible reactions),

where αij , βij are nonnegative integers called stoichiometry coefficients. For conve-
nience we arrange these coefficients in a matrix, called a stoichiometry matrix M ,
defined as

Mi,j = αij − βij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Let Uj be the concentration of the j-th reaction species Sj , and define U =
(U1, U2, · · · , Um) as the m-vector of the species concentrations. Since each chemical
reaction Ri takes place continuously in time with its own reaction rate fi affected
by the concentrations of different species, we write the n-vector of reaction rates
f(t, U) = (f1(t, U), f2(t, U), · · · , fn(t, U)).



PHASE-TRANSLATION GROUP ACTIONS 3793

The most popular functional form of fi(t, U) found in the literature are mass
action kinetics, Michaelis-Menten (or Monod) kinetics and Hill kinetics, which in
case of an irreversible reaction are given by the following specific form:

κi

∏
j:αij>0

U
αij

j , mi

∏
j:αij>0

Uj

Uj + aj
, Di

∏
j:αij>0

(Uj)
j

(Uj)j + bj
,

respectively. Here the reaction parameters ki,mi, aj , Di, bj are positive and depend
on time t.

In practical laboratory experiments the system usually evolves, influenced by ex-
ternal time-dependent effects which are periodic or roughly periodic. For instance,
in the case of mass action kinetics, the reaction coefficients κi(t) are time-periodic
or may exhibit different, noncommensurate periods. As a consequence, one may
assume that κi(t) are time-recurrent functions in time t. With the above notation,
a chemical reaction network is described by the following differential equations:

(4.1)

{
U̇ = Mf(t, U), t > 0,
U(0) = U0 ∈ R

m
+ ,

where R
m
+ = {U ∈ R

m : Ui ≥ 0}. Of course, U0 is the initial concentration of all
species and f(t, U) is a time-recurrent vector-valued function. In general, by using
certain conversation laws (see, e.g., [3, 26]), one may assume that every solution of
(4.1) is bounded.

Given a chemical reaction network (4.1), we introduce the so-called associate
system in reaction coordinates (see, e.g., [4, 37]). For any σ ∈ R

m
+ , such a system

in reaction coordinates is defined as the following nonautonomous system:

(4.2)

{
u̇ = Fσ(t, u), t > 0,
u(0) = u0 ∈ R

n,

where Fσ(t, u) = f(t, σ + Mu) is time-recurrent. Here u = (u1, · · · , un) is called
the extent of the reaction (see [37]).

For systems (4.2) and (4.1), let H(Fσ) and H(f) be the hull of Fσ and f , re-
spectively. Then H(Fσ) and H(f) are minimal because f is time-recurrent. More-
over, there is a flow isomorphism from H(Fσ) to H(f). As a consequence, for any
g ∈ H(Fσ) there exists a unique h ∈ H(f) such that

(4.3) g(t, u) = h(t, σ +Mu).

In particular, g = Fσ if and only if h = f .
For every g ∈ H(Fσ) and h ∈ H(f) in (4.3), let U(t;U0, h) and u(t;u0, g) be the

solutions of

(4.1h)

{
U̇ = Mh(t, U), t > 0,
U(0) = U0 ∈ R

m
+

and

(4.2g)

{
u̇ = g(t, u), t > 0,
u(0) = u0 ∈ R

n,

respectively.
The following lemma shows an important relation between the solutions

U(t;U0, h) and u(t;u0, g). As a consequence, at least in principle, the dynamics
of (4.1h) can be understood by studying the dynamics of (4.2g).
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Lemma 4.1. Let U(t;U0, h) and u(t;u0, g) be the solutions of (4.1h) and (4.2g),
respectively. If the initial value U0 = σ +Mu0, then

U(t;U0, h) = σ +Mu(t;u0, g) for t ≥ 0.

Proof. We use similar arguments as in [4]. Since U(t;U0, h) is bounded (hence
defined on all t ≥ 0), we define

û(t) := u0 +

∫ t

0

h(τ, U(τ ;U0, h)) dτ

and

(4.4) N(t) := σ +Mû(t) = (σ +Mu0) +

∫ t

0

Mh(τ, U(τ, U0, h)) dτ

for all t ≥ 0. By differentiating N , it yields that dN/dt = Mh(t, U(t, U0, h)). So
dN/dt = dU(t;U0, h)/dt, and hence N(t) = U(t, U0, h)+C, t ≥ 0, for some constant
C. By virtue of (4.4) and our initial value assumption, we have N(0) = σ+Mu0 =
U0 = U(0;U0, h). It then follows that

(4.5) U(t;U0, h) = N(t) = σ +Mû(t)

for all t ≥ 0, and consequently

û(t) = û(0) +

∫ t

0

h(τ, σ +Mû(τ )) dτ.

Noticing (4.3), we have û(t) = û(0) +
∫ t

0
g(τ, û(τ )) dτ, which implies that û(t)

is a solution of (4.2g). By uniqueness of the solutions, one obtains that û(t) =
u(t;u0, g), and hence, by (4.5),

U(t;U0, h) = σ +Mu(t;u0, g)

for all t ≥ 0. Thus we have completed the proof. �

For the new introduced system (4.2g), choose a subset

Xn
σ = {u ∈ R

n : σ +Mu ≥ 0}.

It then follows from Lemma 4.1 that one can define a skew-product flow associated
with (4.2g) by Π : Xn

σ ×H(Fσ)× R
+ → Xn

σ ×H(Fσ),

(4.6) Π(t, u0, g) = (u(t;u0, g), g · t).

Remark 4.2. The main reason for lifting the nonmonotone chemical reaction net-
work (4.1) to the new system (4.2g) is that quite surprisingly, in many examples,
including very large ones taken from the current biochemical literature (e.g., the
benchmark models in the area of the phosphorylation/dephosphorylation process,
and more complex reaction networks which arise in many signal transduction path-
ways, the futile cycle and the MAPK cascade (see [12, 26, 41, 4, 9])), the skew-
product flow Π of the new system description in reaction coordinates turns out to
be strongly monotone. As an illustrated example, we will show at the end of this
section the technical detail of verifying the monotonicity for a simple phosphory-
lation process. A more general graph-theoretic approach for the monotonicity can
be found in the recent work [3].
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According to Remark 4.2, in the following we will thoroughly analyze the skew-
product flow Π associated with the new system (4.2g) under the assumption that
Π is strongly monotone.

Now, by choosing any v ∈ KerM with ‖v‖ = 1, we can define the phase-
translation group G with respect to v,

a : Xn
σ → Xn

σ ; a · u := u+ av,

by any scalar a ∈ R acting on Xn
σ .

The following proposition indicates that Π satisfies (A3) in Section 3:

Proposition 4.3. The group G commutes with Π, i.e., u(t; g, a ·u0) = a ·u(t; g, u0),
for any (u0, g) ∈ Xn

σ ×H(Fσ), t ≥ 0, and a ∈ G.

Proof. By uniqueness of the solutions, it suffices to show that a · u(t; g, u0) is a
solution of (4.2g). To end this, choose any g ∈ H(Fσ). It follows from (4.3) that
there exists some h ∈ H(f) such that g(t, u) = h(t, σ +Mu). Consequently,

d(a · u(t; g, u0))

dt
=

d(u(t; g, u0) + av)

dt
=

du(t; g, u0)

dt
= g(t, u(t; g, u0))

= h(t, σ +Mu(t; g, u0))

= h(t, σ +M(u(t; g, u0) + av))

= g(t, u(t; g, u0) + av) = g(t, a · u(t; g, u0)),

for each a ∈ G. We have completed the proof. �

Remark 4.4. Although the skew-product flow Π has been known to be strongly
monotone and G-invariant with respect to the phase-translation group, we ignore
that a priori there is no guarantee that solutions of (4.2g) are bounded, and hence no
guarantee for the boundedness of the orbit of Π as well. (Notice that this is different
from the case in the chemical reaction network (4.1), where the boundedness of the
solutions is fully guaranteed by certain conservation laws.) As pointed out by Angeli
et al. in [3, p. 596]: “this issue constitutes the main technical difficulty that needs
to be surmounted in order for us to obtain the convergence results for system (4.1)”.
In order to resolve such a problem, we introduced the so-called pseudo-boundedness
of the orbits of Π in the previous section.

The following proposition shows that the orbits of Π are actually pseudo-bounded
if the kernel of the stoichiometry matrix M intersects the interior of Rn

+:

Proposition 4.5. Assume that v ∈ KerM ∩ IntRn
+ 	= ∅ with ‖v‖ = 1. Let π be

defined as in (2.4). Then, for any (u0, g) ∈ Xn
σ ×H(Fσ), the orbit O+(u0, g) of Π

in (4.6) is pseudo-bounded.

Proof. Given any (u0, g) ∈ Xn
σ ×H(Fσ), it then follows from Lemma 4.1 that there

exist some h ∈ H(f) such that

U(t;U0, h) = σ +Mu(t;u0, g) for all t ≥ 0.

Since U(t;U0, h) is bounded for all t ≥ 0, Mu(t;u0, g) is bounded for all t ≥ 0.
It is easy to see that we are done if we proved the following claim: O+(u0, g) is

pseudo-bounded if and only if Mu(t;u0, g) is bounded for all t ≥ 0. Indeed, on the
one hand, note that

(4.7) Mπu = M(u− 〈f, u〉v) = Mu− 〈f, u〉Mv = Mu
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for any u ∈ R
n. So, the pseudo-boundedness of O+(u0, g) implies the boundedness

of Mu(t;u0, g). On the other hand, let Q = M |X0
be the restriction of M to the

space X0. Since KerM = span{v}, it is easy to see that Q : X0 → RangeM ⊂ R
m

is a one-to-one map. Moreover, both Q and Q−1|RangeM are Lipschitz. As a
consequence, Q−1Mu = Q−1Mπu = Q−1Qπu = πu, for all u ∈ R

n. Moreover,
the Lip-property of Q−1|RangeM implies that πu(t;u0, g) is bounded if Mu(t;u0, g)
is bounded. Thus we have proved the claim, which completes our proof. �

Based on our main results in Section 3, one can show the global convergence for
the chemical reaction network (4.1) with time-recurrent kinetics. For simplicity,
here we only present the convergence result with time almost-periodic (almost-
automorphic) kinetics.

Theorem 4.6. Let U(t) be any solution, with the initial value U0 ∈ R
m
+ , of the

time almost-periodic (almost-automorphic) chemical reaction network (4.1) with
KerM ∩ IntRn

+ 	= ∅. Assume that the skew-product flow Π associated with system
(4.2g) in reaction coordinates is strongly monotone. Then U(t) is asymptotic to
an almost-periodic (almost-automorphic) solution U∗(t) of (4.1) with its frequency
module M(U∗) ⊆ M(f).

In particular, if f in (4.1) is periodic (quasi-periodic) in time t, then U(t) is
asymptotic to a periodic (quasi-periodic) solution U∗(t) of (4.1).

Proof. By virtue of Proposition 4.3 and our assumption, the skew-product flow Π
(see (4.6)), associated with system (4.2g), satisfies the assumptions (A1)-(A3) in
Section 3.

Note also that KerM ∩ IntRn
+ 	= ∅. It then follows from Proposition 4.5 that

the orbit O+(u0, g) of Π is pseudo-bounded for any (u0, g) ∈ Xn
σ × H(Fσ). In

particular, choose (u0 = 0, g = Fσ) ∈ Xn
σ ×H(Fσ). Then Theorem B implies that

the omega-limit set of induced orbit Õ+(0, Fσ) is a 1-cover of H(Fσ). That is to
say, πu(t; 0, Fσ) is asymptotic to an almost-periodic (almost-automorphic) function
w∗

σ(t) with its module M(w∗
σ) ⊆ M(Fσ). Now choose σ ∈ R

m
+ such that σ = U0 =

σ + M · 0. It follows from (4.7) and Lemma 4.1 that U(t) = σ + Mu(t; 0, Fσ) =
σ +Mπu(t; 0, Fσ) = U0 +Mπu(t; 0, Fσ). Therefore, U(t) will be asymptotic to an
almost periodic (almost automorphic) solution U∗(t) = U0 +Mw∗

σ(t) of (4.1) with
its module M(U∗) ⊆ M(w∗

σ) ⊆ M(Fσ) ⊆ M(f).
In particular, if f in (4.1) is periodic (quasi-periodic) in time t, then U(t) is

asymptotic to a periodic (quasi-periodic) solution U∗(t) of (4.1). We have com-
pleted the proof. �

As mentioned in Remark 4.2, there are large quantities of models taken from
the current biochemical literature admitting the monotonicity of the new system
description in reaction coordinates. The benchmark examples include the phospho-
rylation/dephosphorylation processes (sometimes called enzyme futile cycles; see,
e.g., [12, 26, 41, 4]), nonmass action kinetics under the QSSA assumption in the
dimerization reactions of proteins (see [26]) and more complex reaction networks
which arise in many signal transduction pathways, the MAPK cascade and the
RKIP inhibited ERK pathway from Cho et al. [9].

Accordingly Theorem 4.6 implies the global dynamics of all the above-mentioned
time-dependent benchmark chemical reaction networks. In the following, we do not
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intend to present them all in detail, but choose a simple phosphorylation/dephos-
phorylation process in mass action kinetics as an illustrated example to show the
technical detail of verifying the monotonicity for the new system in reaction coor-
dinates.

• Simple phosphorylation/dephosphorylation (Enzymatic futile cycle). The
model is diagrammed in Figure 1. Such a cycle occurs when two metabolic path-

Figure 1. Enzymatic futile cycle reaction mechanism.

ways run simultaneously in opposite directions and have no overall effect other than
to dissipate energy in the form of heat (see, e.g., [41, 48]). In Figure 1, E+, E− de-
note the forward and reverse (e.g., activating and deactivating) enzymes, and S, P
stand for the concentrations of the forward substrate and product, respectively.
Enzymatic futile cycles and cycle cascades represent a recurring control theme in
biological molecular networks, appearing in a wide variety of processes from energy
metabolism to signal transduction (see [11, 27, 7, 15, 50, 28, 49]).

The representation for such a model, illustrated in Figure 1, is

S + E+ ↔ C+ → P + E+,

P + E− ↔ C− → S + E−,

where the intermediate complex, C+ or C−, dissociates either back into the original
reactants or into the product and the enzyme. Denote concentrations with the same
letters as the substrates or enzymes. The well-mixed mass-action kinetics model of
such futile cycle is obtained as (see [4, 3])

(4.8)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṡ = −κ1(t)E+S + κ−1(t)C+ + κ4(t)C−,

Ṗ = κ2(t)C+ − κ3(t)E−P + κ−3(t)C−,

Ė+ = −κ1(t)E+S + κ−1(t)C+ + κ2(t)C+,

Ė− = −κ3(t)E−P + κ−3(t)C− + κ4(t)C−,

Ċ+ = κ1(t)E+S − κ−1(t)C+ − κ2(t)C+,

Ċ− = κ3(t)E−P − κ−3(t)C− − κ4(t)C−,

t > 0.

Here κi(t), i = ±1, 2,±3, 4, are time-dependent reaction coefficients which quantify
the speed of the different reactions. For more generality, we assume that κi(t) are
almost-periodic (almost-automorphic) functions in time t. We also assume that all
the κi(t) are uniformly positive, i.e., there exists a δ > 0 such that κi(t) ≥ δ for all
i = ±1, 2,±3, 4 and t ≥ 0.
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Now we rewrite equations (4.8) in a standard form of system (4.1) with m = 6
for representing the chemical reaction network, in which

U = (P,Q,E+, E−, C+, C−)
T ∈ R

6
+

is the species vector, and f(t, U) and M are the reaction rates vector and the
stoichiometry matrix, respectively:

f(t, U) =

⎛
⎜⎜⎝

κ1(t)E+S − κ−1(t)C+

κ2(t)C+

κ3(t)E−P − κ−3(t)C−
κ4(t)C−

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1
0 1 −1 0
−1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Along each solution, one can easily see that S(t) + P (t) + C+(t) + C−(t), E+(t) +
C+(t) and E−(t) + C−(t) satisfy the conservation law : such three quantities are
invariant with respect to time t. Together with the fact that all the components of
U are nonnegative, the conservation law implies that every solution U(t) of (4.1)
is bounded.

Now we change the system (4.1) to the new associated system (4.2) with n = 4
in reaction variables, for which

Fσ(t, u) =

⎛
⎜⎜⎝

κ1(t)(σ3 + u2 − u1)(σ1 + u4 − u1)− κ−1(t)(σ5 + u1 − u2)
κ2(t)(σ5 + u1 − u2)

κ3(t)(σ4 + u4 − u3)(σ2 + u2 − u3)− κ−3(t)(σ6 + u3 − u4)
κ4(t)(σ6 + u3 − u4)

⎞
⎟⎟⎠

with σ = (σ1, · · · , σ6) ∈ R
6
+.

Note that v = ( 14 ,
1
4 ,

1
4 ,

1
4 ) ∈ KerM ∩ IntR4

+ 	= ∅. Then, in order to utilize
Theorem 4.6 to obtain the convergence result for the futile cycle (4.8), one only
needs to show the strong monotonicity of the skew-product flow Π associated with
the system (4.2g).

To this end, for each g ∈ H(Fσ), a direct calculation yields that the Jacobian
∂g
∂u of g has the form

(4.9)

⎛
⎜⎜⎝

− + 0 κg
1(t)(σ3 + (u2 − u1))

+ − 0 0
0 κg

3(t)(σ4 + (u4 − u3)) − +
0 0 + −

⎞
⎟⎟⎠ ,

where κg
i (t), i = 1, 3, are the corresponding parts of κi(t) with respect to g ∈

H(Fσ). It is easy to see that κg
i (t) is uniformly-positive as well. Moreover, in (4.9),

“−” represents strictly negative elements and “+” means strictly positive elements.
Therefore, Π is monotone in the sense of Definition 2.1. Furthermore, we have

Lemma 4.7. Π is strongly monotone if the Jacobian matrix ∂g
∂u (t, u) is irreducible

almost everywhere along each solution of (4.2g).

Proof. Let u(t) and v(t) be solutions of (4.2g) with initial data u0 and v0 (u0 > v0),
respectively. Let w(t) := u(t)− v(t). Then{

ẇ(t) = A(t)w(t), t ≥ 0,
w(0) = w0 > 0,
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where A(t) =
∫ 1

0
∂g
∂u (t, λu(t) + (1− λ)v(t)) dλ. Note that every element of ∂g

∂u (t, u)

is linear with respect to u. It then follows that A(t) = 1
2 (

∂g
∂u (t, u(t)) +

∂g
∂u (t, v(t))).

So, A(t) is irreducible almost everywhere in t > 0 because ∂g
∂u is irreducible almost

everywhere along all solutions of (4.2g). Moreover, by (4.9), we have Aij(t) ≥ 0
for every 1 ≤ i 	= j ≤ 4. It then follows that w(t) > 0 for all t > 0 (see, e.g., [47,
Proposition 3.1.1 and Remark 3.1.3]).

Without loss of generality, one may even assume that Aij(t) ≥ 0 for every

1 ≤ i, j ≤ 4 and t > 0 (otherwise, consider Ã = A+ μI for some μ > 0).
Now we claim that wi(t) > 0 (the subscript i denotes the i-th component) for

any t > 0 and 1 ≤ i ≤ 4, which means (4.6) is strongly monotone. Otherwise, the
index set K1 = {i ∈ {1, 2, 3, 4} : wi(ti) = 0 for some ti > 0} is nonempty. Note
also that wi(ti) = 0 implies wi(t) = 0 for any t ∈ [0, ti], because wi(0) ≥ 0 and
ẇi(t) ≥ 0 for all t > 0. So, we can rewrite K1 = {i ∈ {1, 2, 3, 4} : wi(t) = 0, ∀t ∈
[0, t̃] for some t̃ > 0}. Let K2 = {j ∈ {1, 2, 3, 4} : wj(t) > 0 for all t > 0}. Then
K1∩K2 = ∅ and K1∪K2 = {1, 2, 3, 4}. Since w(0) > 0, one has K2 	= ∅. Moreover,
noticing that A(t) is irreducible almost everywhere in t > 0, one can always choose
some t0 ∈ (0, t̃) (no matter how small t̃ is). For such t0, there exist an i0 ∈ K1 and
a j0 ∈ K2 such that A(t0)i0j0 > 0. It then follows that

ẇi0(t0) =
∑
l

A(t0)i0lwl(t0) =
∑
l∈K2

A(t0)i0lwl(t0) ≥ A(t0)i0j0wj0(t0) > 0.

On the other hand, the fact that i0 ∈ K1 and t0 ∈ (0, t̃) implies that ẇi0(t0) = 0,
which is a contradiction. We have completed the proof. �

Lemma 4.8. If σ3 + σ5 	= 0 and σ4 + σ6 	= 0, then the Jacobian matrix ∂g
∂u (t, u) is

irreducible almost everywhere along all solutions, and hence Π is strongly monotone.

Proof. The last statement is due to Lemma 4.7 directly. We only prove the first
statement. Fix g ∈ H(Fσ). By virtue of (4.9) and the uniform-positivity of κg

i (t),
it is sufficient to prove that σ3+(u2−u1) 	≡ 0 and σ4+(u4−u3) 	≡ 0 in any interval
of time t. We shall prove that this is the case when σ3 + σ5 	= 0 and σ4 + σ6 	= 0.
Suppose that σ4 + (u4 − u3) ≡ 0 in a time-interval [t1, t2] along one solution of
(4.2g). Then, by equations (4.2g), one obtains that

κg
4(t)(σ6 + u3 − u4) = u̇4 = u̇3

= κg
3(t)(σ4 + u4 − u3)(σ2 + u2 − u3)− κg

−3(t)(σ6 + u3 − u4),

for all t ∈ [t1, t2]. It then follows that

(κg
−3(t) + κg

4(t))(σ6 + σ4) ≡ 0, for all t ∈ [t1, t2].

This contradicts σ4 + σ6 	= 0. Similarly, one can also prove that σ3 + (u2 − u1) 	≡ 0
in any time-interval because σ3 + σ5 	= 0. The proof has been completed. �

Now we are ready to show the global convergence of the solutions for the time-
dependent enzymatic futile cycle in mass-action kinetics:

Theorem 4.9. Let U(t) be a solution, with any initial value U0 ∈ R
6
+, of the time

almost-periodic (almost-automorphic) enzymatic-futile-cycle model (4.8). Then
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U(t) is asymptotic to an almost-periodic (almost-automorphic) solution U∗(t) of
(4.8) with its module M(U∗) ⊆ M(f).

In particular, if κi(t), i = ±1, 2,±3, 4, in (4.8) are periodic with a common
period T , then each solution U(t) is asymptotic to a T -periodic solution of (4.8).
Moreover, if κi(t), i = ±1, 2,±3, 4, exhibit different, noncommensurate periods,
then each solution U(t) is convergent to a quasi-periodic solution of (4.8).

Proof. For (4.8), note that

U(t) = (P (t), Q(t), E+(t), E−(t), C+(t), C−(t))
T

for t ≥ 0. Then U0 = (P (0), Q(0), E+(0), E−(0), C+(0), C−(0))
T . For such U0, one

of the following alternatives holds:

(i): E+(0) + C+(0) > 0 and E−(0) + C−(0) > 0; or otherwise

(ii): either E+(0) + C+(0) or E−(0) + C−(0) equals 0.

We consider these two alternatives separately:

Case (i). Set σ = U0 ∈ R
6
+; one has σ3 + σ5 > 0 and σ4 + σ6 > 0. Then it follows

from Lemma 4.8 that Π is strongly monotone. Accordingly one can deduce the
conclusion directly from Theorem 4.6.

Case (ii). Without loss of generality, we assume that E−(0) + C−(0) = 0. Since
E−(t) + C−(t) satisfies the conservation law, i.e., E−(t) + C−(t) ≡ constant for
all t ∈ R, one obtains that E−(t) + C−(t) ≡ 0, ∀t ∈ R. Hence E−(t) = C−(t) ≡
0, ∀t ∈ R, because U(t) is nonnegative. Thus, Ṗ = κ2(t)C+ in (4.8), which implies
that P (t) is nondecreasing. Since U(t) is bounded, P (t) will converge as t → ∞.
Again, noticing that S(t) + P (t) + C+(t) + C−(t) satisfies the conversation law,
we have that S(t) + C+(t) will converge decreasingly as t → ∞. Together with
−κ2(t)C+ = d

dt [S(t) + C+(t)] ≤ 0 in (4.8) and the uniform-positivity of κi, it then
follows that C+(t) will converge as t → ∞. Consequently, S(t) will also converge
as t → ∞. Of course, E+(t) will converge as well, because E+(t) + C+(t) satisfies
a conservation law. Thus, we have proved that all the components of U(t) will
converge at t → ∞ in Case (ii), which completes the proof of the theorem. �

Remark 4.10. Theorem 4.9 indicates that, in Case (ii), the chemical reaction will
run only in one direction and there will be no cycle. For instance, if the reverse
enzymes (E−) and reverse intermediate complex (C−) disappear, then the reaction
will only result in the production of P . Theorem 4.9 also implies that Case (i)
guarantees the occurrence and dynamics of the enzymatic futile cycle.

5. Application to reaction-diffusion systems

Consider the following reaction-diffusion system for an unknown vector-valued
function u(t, x) ∈ R

n on a bounded domain Ω ⊂ R
N with smooth boundary ∂Ω:

(5.1)

{
ut = D(t)Δu+ F (t, u), t > 0,
∂u/∂n = 0, x ∈ ∂Ω.

Here n and N are positive integers. D(t) = diag(d1(t), · · · , dn(t)) is a diagonal
matrix with all entries greater than some positive constant. The functions F (t, ·) :
R

n → R
n, D and F are sufficiently smooth and F = (f1, · · · , fn) satisfies the strong
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cooperativity condition: ∂fi/∂uj ≥ δ > 0 for some δ > 0 and all i, j = 1, · · · , n
with i 	= j. We also assume that both D and F are admissible and time almost-
periodic (almost-automorphic). Of course, here Δ is the Laplacian and ∂/∂n is the
unit outward normal vector field on ∂Ω.

Let v∗ = (v∗1 , · · · , v∗n) ∈ IntRn
+, with all the components v∗i , 1 ≤ i ≤ n, being a

fixed positive vector. We assume that the nonlinearity F satisfies

(5.2) F (t, u+ av∗) = F (t, u), for any a ∈ R, u ∈ R
n and t ≥ 0.

We further make the following additional assumption: For each v0 ∈ R
n, the cor-

responding ODE

(5.3)
dv

dt
= h(t, v), v(0) = v0

possesses a solution bounded on [0,+∞) uniformly for all h in the hull H(F ).
Let Y be the hull H(D,F ) and X = {u ∈ C(Ω̄,Rn) : ∂u/∂n|∂Ω = 0}. Then one

can define a skew-product semiflow Π on X × Y by the solutions of (5.1) (cf. [17,
Sec. 3.4], [32] or [6, Sec. 6]). Strong cooperativity in conjunction with the strong
comparison principle implies the strong monotonicity of Π onX×Y (cf. [40]). Also,
it follows from the work in [17] and the standard a priori estimates for parabolic
equations that Π is completely continuous. Let G be the phase-translation group
with respect to v∗ ∈ IntRn

+. Then it is not difficult to check that G commutes with
Π.

Applying our main results in Section 3, we obtain a convergence result for
reaction-diffusion system (5.1):

Theorem 5.1. Any solution u(t) of (5.1) will be asymptotic to an almost-periodic
(almost-automorphic) solution u∗(t) of (5.1) with its module M(u∗) ⊆ M(F ). In
particular, u(t) is asymptotic to a T -periodic solution when the nonlinearity F is
T -periodic in time t.
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