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FORCING, GAMES AND FAMILIES OF CLOSED SETS

MARCIN SABOK

Abstract. We study forcing properties of σ-ideals generated by closed sets.
We show that if a σ-ideal is Π1

1 on Σ1
1 and generated by closed sets, then

it is generated by closed sets in all forcing extensions. This implies that the
countable-support iteration of forcings associated with such σ-ideals is proper.
We use it to prove an infinite-dimensional version of the Solecki theorem about
inscribing positive Gδ sets into positive analytic sets.

We also propose a new, game-theoretic, approach to the idealized forcing,
in terms of fusion games. We provide a tree representation of such forcings,
which generalizes the classical approach to Sacks and Miller forcing.

Among the examples, we investigate the σ-ideal E generated by closed null
sets and σ-ideals connected with not piecewise continuous functions. For the
first one we show that the associated forcing extensions are of minimal degree.
For the second one we show that the associated forcing notion is equivalent to
Miller forcing.

1. Introduction

Idealized forcing is a technique of applying forcing to descriptive set theory. It
was systematically investigated by Zapletal in [21] and [22]. If I is a σ-ideal on
a Polish space X, we consider the associated forcing notion PI = Bor(X)/I (or
an equivalent forcing, Bor(X) \ I ordered by inclusion). Among the well-known
examples are Sacks forcing and Miller forcing. The former is associated to the σ-
ideal of countable subsets of the Cantor space (or any other Polish space), and the
latter is associated to the σ-ideal of Kσ subsets of the Baire space (i.e. the σ-ideal
generated by compact subsets of ωω).

Zapletal [22] investigated forcings arising from σ-ideals generated by closed sets
and proved [22, Theorem 4.1.2] that if I is a σ-ideal on a Polish space X generated
by closed sets, then the forcing PI is proper and has continuous reading of names
in the topology of X.

Definability of a σ-ideal usually relies on the property called Π1
1 on Σ1

1 (cf. [9,
Definition 35.9]), which says that for any analytic set A ⊆ X2, the set {x ∈ X :
Ax ∈ I} is coanalytic. By classical results of Mazurkiewicz [9, Theorem 29.19] and
Arsenin–Kungui [9, Theorem 18.18], both the σ-ideal of countable subsets of 2ω

and the σ-ideal Kσ on ωω are Π1
1 on Σ1

1. It is well known (see [9, Theorem 35.38])
that if K is a hereditary (i.e. closed under taking subsets) and coanalytic (in the
sense of the Effros space) family of closed subsets of X, then the σ-ideal generated
by K is Π1

1 on Σ1
1.
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Note that if I is a Π1
1 on Σ1

1 σ-ideal, then it makes sense to define IW in any
model W of ZFC (containing the parameters of the definition) as the family of
analytic sets satisfying the Π1

1 definition of I. We prove the following result.

Theorem 1.1. Let I be a Π1
1 on Σ1

1 σ-ideal. If I is generated by closed sets in V ,
then IW is generated by closed sets in all forcing extensions V ⊆ W .

Notice that, as a corollary, we get that if I is Π1
1 on Σ1

1 and generated by closed
sets, then PI is proper in all forcing extensions and hence the countable-support
iteration of such forcings is proper.

Solecki proved [18, Theorem 1] that if I is a σ-ideal on a Polish spaceX generated
by closed sets, then each analytic set in X either belongs to I or contains an I-
positive Gδ set.

Note that this result has forcing consequences: it implies that if I is generated
by closed sets, then the forcing PI is equivalent to the forcing QI with analytic
I-positive sets.

Kanovei and Zapletal [22, Theorem 5.1.9] proved that if I is iterable and Π1
1

on Σ1
1, then for each α < ω1, any analytic set A ⊆ Xα either belongs to Iα (the

α-th Fubini power of I) or contains a special kind of Borel Iα-positive set. In
this paper we extend this result and prove an analogue of the Solecki theorem for
the Fubini products of Π1

1 on Σ1
1 σ-ideals generated by closed sets. Namely, we

re-introduce the notion of Ī-positive cubes when 〈Iβ : β < α〉 is a sequence of
σ-ideals, 〈Xβ : β < α〉 is a sequence of Polish spaces, Iβ on Xβ respectively, and
α is a countable ordinal. Similar notions have been considered by other authors
under various different names; cf. [8], [4] or [22]. We prove the following (for the
definitions see Section 4).

Theorem 1.2. Let 〈Xn : n < ω〉 be a sequence of Polish spaces and Ī = 〈In : n <
ω〉 a sequence of Π1

1 on Σ1
1 σ-ideals generated by closed sets, In on Xn, respectively.

If A ⊆
∏

n<ω Xn is Σ1
1, then

• either A ∈
⊗

n<ω In
• or A contains an Ī-positive Gδ cube.

Recall that Sacks and Miller forcings are equivalent to forcings with trees (perfect
or superperfect trees, respectively). In both these cases we have fusion (Axiom A),
which implies both the properness and continuous reading of names. We generalize
this as follows.

Theorem 1.3. If I is a σ-ideal generated by closed sets on a Polish space X, then
the forcing PI is equivalent to a forcing with trees with the fusion property.

Axiom A alone can also be deduced from a result of Ishiu [6, Theorem B] and
the fact that PI is <ω1-proper [23, Lemma 1.3]. Our result shows how to intro-
duce additional structure (trees) which gives deeper insight in the forcing PI . In
particular, it can be used to give an alternative proof of the continuous reading of
names.

The proof of Theorem 1.3 uses a technique of fusion games, which are general-
izations of the Banach–Mazur game (cf. [9, Section 8.H]). Independently, T. Mátrai
[11] introduced and studied similar games. The approach of [11] shows a connection
between fusion games and infinite-dimensional perfect set theorems.

In the last two sections we study examples of σ-ideals generated by closed sets,
motivated by analysis and measure theory.
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First, we investigate an example from measure theory. Let E denote the σ-ideal
generated by closed null sets in the Cantor space (cf. [3]). In Theorem 7.1 we show
that PE does not add Cohen reals, which implies that any forcing extension with
PE is minimal. In Corollary 7.4 we establish a fusion game for the σ-ideal E .

Next we study an example from the theory of real functions. Let X and Y be
Polish. To any function f : X → Y we associate the σ-ideal If (on X) generated
by closed sets on which f is continuous. The σ-ideal If is nontrivial if and only
if f cannot be decomposed into countably many continuous functions with closed
domains, i.e. f is not piecewise continuous. Piecewise continuity of Baire class 1
functions has been studied by several authors (e.g. Jayne and Rogers [7], Solecki
[19], and Andretta [1]). In Corollary 8.10 we show that if f : X → ωω is Baire
class 1 and not piecewise continuous, then the forcing PIf is equivalent to Miller
forcing. As a consequence, in Corollary 8.11 we get that any Borel function defined
on an If -positive set can be restricted to an If -positive set, on which it is either
1-1 or constant. In Corollary 8.14 we establish a fusion game for the σ-ideal If

when f : 2ω → 2ω is Borel.

2. Notation

All Polish spaces in this paper are assumed to be recursively presented.
If T ⊆ Y <ω is a tree, then we say that T is a tree on Y . We write lim(T ) for

{x ∈ Y ω : (∀n < ω) x�n ∈ T}. Levn(T ) stands for the set of all elements of T which
have length n. If τ ∈ T , then we write T (τ ) for the tree {σ ∈ T : σ ⊆ τ ∨ τ ⊆ σ}.
We write [τ ]T for {x ∈ lim(T ) : τ ⊆ x} (when T is clear from the context, such as
ω<ω or 2<ω, then we write only [τ ]). We say that τ ∈ T is a stem of T if T = T (τ )
and τ is maximal such. We say that F ⊆ T is a front of T if F is an antichain in
T and for each x ∈ lim(T ) there is n < ω such that x�n ∈ F .

By a σ-ideal we mean a family I ⊆ P(X) closed under subsets and countable
unions. We say that a set B ⊆ X is I-positive if B 	∈ I. A σ-ideal of analytic sets
is a family of analytic sets closed under analytic subsets and countable unions. A
σ-ideal of closed sets is defined analogously. If I is a σ-ideal and B is an I-positive
set, then we write I�B for {A ∩B : A ∈ I}.

3. Coanalytic families of closed sets

If K is a family of closed subsets of a Polish space X, then its projective complex-
ity can be defined in terms of the Effros space F (X). Namely, if Γ is a projective
pointclass, then we say that K is Γ if it belongs to Γ in F (X).

Recall that if X = ωω, then for each closed set C ⊆ X there is a pruned subtree
T of ω<ω such that C = lim(T ). If X is an arbitrary Polish space, then for each
closed set C ⊆ X the family U = {U basic open : U ∩ C = ∅)} can be treated as a
code for C (since C = X \

⋃
U). Moreover, the family U has the following property:

(∗) ∀U basic open U ⊆
⋃

U ⇒ U ∈ U .

We can code all families U satisfying (∗) by elements of ωω and create a universal

closed set C̃ ⊆ ωω ×X such that if t ∈ ωω codes U(t), then C̃t = X \
⋃
U(t).

Using the property (∗) of the coding, we can check that the function

ωω � t �→ C̃t ∈ F (X)
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is Borel measurable (i.e. preimages of Borel sets in F (X) are Borel). Therefore,
for any projective pointclass Γ, a family of closed sets K is Γ if and only if the set
{t ∈ ωω : C̃t ∈ K} is Γ in ωω.

The projective complexity of families of closed subsets of X can also be general-
ized to families of sets in other Borel pointclasses — in terms of universal sets. We
will now introduce a Borel structure on the family of Gδ sets.

Note that for any Gδ set G ⊆ ωω there is a pruned tree T ⊆ ω<ω and a family
〈στ ∈ ω<ω : τ ∈ T 〉 such that the family of clopen sets 〈[στ ] : τ ∈ T 〉 forms a Lusin
scheme and G =

⋂
n<ω

⋃
τ∈T∩ωn [στ ]. Generalizing this to an arbitrary Polish space

X we claim that for any Gδ set G in X there is a Souslin scheme 〈Uτ : τ ∈ ω<ω〉
of basic open sets such that

(i) diam(Uτ ) < 1/|τ |,
(ii) Uτ ⊆ Uτ�(|τ |−1),
(iii) if Uτ 	= ∅, then Uτ�n 	= ∅ for some n < ω,

and G =
⋂

n<ω

⋃
|τ |=n Uτ . Indeed, if G =

⋂
n<ω On (each On open and On+1 ⊆

On), then we construct a Souslin scheme Uτ by induction on |τ | as follows. Having
all Uτ for |τ | ≤ n we find a family {Uτ : τ ∈ ωn+1} such that

• for each τ ∈ ωn+1 we have Uτ ∩G 	= ∅,
• for each σ ∈ ωn we have Uσ ∩On+1 =

⋃
{Uτ : σ ⊆ τ, τ ∈ ωn+1}.

Let us code all Souslin schemes of clopen sets satisfying (i)–(iii) by elements of the

Baire space ωω and create a universal Gδ set G̃ ⊆ ωω ×X such that if t ∈ ωω codes
a Souslin scheme 〈Uτ (t) : τ ∈ ω<ω〉, then G̃t =

⋂
n<ω

⋃
|τ |=n Uτ (t).

Remark 3.1. Here we show how the above coding is done in the case of the Baire
space and Luzin schemes (the general case is analogous). We pick any bijection ρ
between ω and ω<ω and consider the set H of all elements of ωω which code (via ρ)
a Luzin scheme satisfying (iii). This set is a Gδ set and thus there is a continuous
bijection f : ωω → H. Now, we say that x ∈ ωω codes a Gδ set G if f(x) codes a
Luzin scheme Uτ such that G =

⋂
n<ω

⋃
|τ |=n Uτ .

Lemma 3.2. If U ⊆ X is open, then

{t ∈ ωω : G̃t ∩ U 	= ∅} is open.

Proof. Note that by (iii) and (ii), G̃t ∩ U 	= ∅ if and only if there is a nonempty
basic open set V ⊆ U such that V occurs in the Souslin scheme coded by t. �

If Γ is a projective pointclass and G is a family of Gδ sets, then we say that G
is Γ if {t ∈ ωω : G̃t ∈ G} is Γ in ωω. By Lemma 3.2 the map

Gδ � G �→ G ∈ F (X)

is Borel (i.e. preimages of Borel sets in F (X) are Borel).
Let K be a family of closed sets in a Polish space X. We say that K is hereditary

if for any two closed sets C,D such that C ⊆ D, if D ∈ K, then C ∈ K.
Let I be a σ-ideal on a Polish space X and A ⊆ X. We say that A is I-perfect

if A 	= ∅ and for each open set U the set A∩U is either empty or I-positive. If K is
a family of closed sets in a Polish space X and D ⊆ X is closed, then we say that
D is K-perfect if the sets from K have relatively empty interior on D. Note that if
K is hereditary, then a closed set D is K-perfect if and only if for each basic open
set U in X, either U ∩D = ∅ or U ∩D 	∈ K.
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Lemma 3.3. Let I be a σ-ideal generated by closed sets on a Polish space X. If
G ⊆ ωω is a Gδ set and G is I-perfect, then G 	∈ I.

Proof. Let C = G and suppose C is I-perfect yet G ∈ I. If G ⊆
⋃

n Fn and Fn

are closed sets in I, then each Fn ∩ C is a closed nowhere dense subset of C. This
contradicts the Baire category theorem. �

Lemma 3.4. Let I be a σ-ideal generated by closed sets on a Polish space X. If
G ⊆ ωω is an I-positive Gδ set, then it contains an I-perfect Gδ set G′.

Proof. Put G′ = G \
⋃
{U : U is basic open set and U ∩G ∈ I}. �

Lemma 3.5. Let X be a Polish space.

(i) Let I be a σ-ideal on X generated by closed sets. If G ⊆ X is a Gδ set,
then G is I-perfect if and only if G is I-perfect.

(ii) Let K be a family of closed subsets of X, let σ(K) be the σ-ideal of closed
sets generated by K and let I be the σ-ideal generated by K. If D ⊆ X is
closed, then the following are equivalent:

• D is K-perfect,
• D is σ(K)-perfect,
• D is I-perfect.

Proof. (i) Clearly, if G is I-perfect, then G is also I-perfect. Suppose G is I-perfect
but G is not I-perfect. Then we can find an open set U such that U ∩G ∈ I and
U ∩G 	= ∅. Consider U ∩G, which is I-perfect because G is I-perfect. U ∩G is a
Polish I-perfect space which contains a dense Gδ set in I. By Lemma 3.3 we get
a contradiction with the Baire category theorem.

(ii) This follows directly from the Baire category theorem. �

Lemma 3.6. Let X be a Polish space and let I be a Π1
1 on Σ1

1 σ-ideal generated
by closed sets on X. Let K be a hereditary coanalytic family of closed sets on X.
Then

(i) the family of I-perfect Gδ sets is Σ1
1,

(ii) the family of K-perfect closed sets is Σ1
1,

(iii) the family of Gδ sets with K-perfect closure is Σ1
1.

Proof. (i) We see that G ∈ Gδ is I-perfect if and only if

G 	= ∅ ∧ ∀U basic open (G ∩ U 	= ∅ ⇒ G ∩ U 	∈ I).
This is a Σ1

1 condition by Lemma 3.2 and the assumption that I is Π1
1 on Σ1

1.
(ii) Note that a closed set D is K-perfect if and only if

D 	= ∅ ∧ ∀U basic open (D ∩ U 	= ∅ ⇒ D ∩ U 	∈ K).

This is a Σ1
1 condition since the closure is a Borel map.

(iii) This follows (ii) and the fact that the closure is a Borel map. �

Remark 3.7. In addition to coding Gδ sets by Luzin schemes, we can also code
continuous partial functions on their dense Gδ subsets, that is, triples (G, f,G′)
where G is a Gδ set, G′ is a dense Gδ subset of G and f : G′ → ωω is continuous.
For a sample method of coding see e.g. [9, Proposition 2.6]. If D ⊆ ωω × ωω is a
closed set and G ⊆ ωω is a Gδ set, then we write

f : G
∗−→ D
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to denote that f is a continuous function from a dense Gδ subset of G and the
graph of f is contained in D.

It is well known (see [9, Theorem 35.38] or [5, Lemma 4.8]) that if K is a coana-
lytic hereditary family of closed sets, then the σ-ideal generated by K is Π1

1 on Σ1
1.

Let us present a new proof of this fact, which uses idealized forcing and Solecki’s
theorem.

Corollary 3.8. Let X be a Polish space. If K is a coanalytic hereditary family of
closed sets in X, then the σ-ideal generated by K is Π1

1 on Σ1
1.

Proof. Let I be the σ-ideal generated by K and let A ⊆ X × X be Σ1
1. Denote by

G the family of I-perfect Gδ sets. By Lemmas 3.5 and 3.6, G is Σ1
1. By Solecki’s

theorem and Lemma 3.4, if x ∈ X, then

Ax 	∈ I iff ∃G ∈ G G ⊆ Ax.

Let D ⊆ X2 × ωω be a closed set such that A = π[D] (π denotes the projection to
the first two coordinates). Note that G ⊆ Ax is equivalent to

∀y ∈ G ∃z ∈ ωω (y, z) ∈ Dx.

By Σ1
2-absoluteness we get a name żx such that

G � (ġ, żx) ∈ Dx.

Now, by the continuous reading of names and properness of PI we get a G′ ∈ G,
G′ ⊆ G and a continuous function fx : G′ → ωω reading żx. Notice that the graph

of fx is contained in Dx, so fx : G′ ∗−→ Dx. Conversely, if there is such a function
f , then dom(f) is an I-perfect Gδ-set contained in Ax. Thus, we have shown that

Ax 	∈ I iff ∃G ∈ G ∃f : G
∗−→ Dx.

Using the coding of Gδ sets and partial continuous functions, one can easily check
that

∃f : G
∗−→ Dx

is a Σ1
1 formula. Thus, the whole formula is Σ1

1 and we are done. �

Analytic sets in a Polish space X can be coded by a Σ1
1-universal Σ

1
1 set on

ωω × X. In the remaining part of this section we fix a universal analytic set
Ã ⊆ ωω ×X which is Σ1

1 and good (cf. [12, Section 3.H.1]). The set Ã will be used
to code analytic sets in X as well as Σ1

1(t) sets for each t ∈ ωω.
We say that a set S ⊆ ωω codes a σ-ideal I of analytic sets if the family I =

{Ãt : t ∈ S} is a σ-ideal of analytic sets. Let I(v) be a Π1
1 formula. Note that the

family of analytic sets whose codes satisfy I(v) is Π1
1 on Σ1

1 (because Ã is good and
I(v) is a Π1

1 formula).

Lemma 3.9 (Folklore). If A is a Π1
1 on Σ1

1 family of analytic sets, then A is
downward closed, i.e. if A,B ∈ Σ1

1 are such that A ⊆ B and B ∈ A, then A ∈ A.

Proof. Suppose A ⊆ B are Σ1
1 and B ∈ A. Let Z ⊆ ωω be such that Z ∈ Σ1

1 \Π1
1.

Take L ⊆ ωω ×X such that

(t, x) ∈ L ⇔ (t ∈ Z ∧ x ∈ B) ∨ x ∈ A.

As {t ∈ ωω : Lt ∈ A} ∈ Π1
1, we conclude that A ∈ A. �
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Suppose V ⊆ W is a generic extension and in V we have a Π1
1 on Σ1

1 σ-ideal I.
Let I(v) be a Π1

1 formula which codes the σ-ideal of analytic sets I∩Σ1
1. By IW we

denote the family of analytic sets whose codes satisfy I(v) in V [G]. This definition
does not depend on the formula I(v) since if I ′(v) is another such formula, then

∀t ∈ ωω I(t) ⇔ I ′(t)

is a Π1
2 sentence and hence it is absolute for V ⊆ W .

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let K(v) be a Π1
1 formula defining the set of codes of closed

sets in I. By KW we denote the family of closed sets in W whose codes satisfy
K(v) (as previously, this does not depend on the formula K(v)).

First we show that in W the family KW is hereditary. Consider the following
sentence:

∃t, s ∈ ωω (¬K(s) ∧ K(t) ∧ C̃s ⊆ C̃t).

It is routine to check that it is Σ1
2 and hence absolute for V ⊆ W . This shows that

KW is hereditary.
Next we show that IW is a σ-ideal of analytic sets. Let D ⊆ ωω ×X × ωω be

a closed set such that π[D] = Ã (here π denotes the projection to the first two
coordinates). Consider the following formula I ′(v):

¬ (∃G ∈ Gδ G is K-perfect ∧ ∃f : G
∗−→ Dv)

(writing that G is K-perfect we mean that G is perfect with respect to the family
of closed sets defined by K(v)). Using Lemma 3.6(iii) we can check that I ′(v) is a
Π1

1 formula. From the proof of Corollary 3.8 and from Lemmas 3.3, 3.4 and 3.5 we
conclude that in V we have

∀t ∈ ωω I(t) ⇔ I ′(t).

This is a Π1
2 sentence and hence it holds in W . Therefore, it is enough to check

that (I ′)W (ωω) codes a σ-ideal of analytic sets. However, it follows from Solecki’s
theorem and from Lemmas 3.3, 3.4 and 3.5, that (I ′)W (ωω) codes the σ-ideal
generated by K(ωω)W .

The fact that IW is Π1
1 on Σ1

1 now follows from the remarks preceding this
proposition. �

We also have the following alternative proof.

Alternative proof of Theorem 1.1. Throughout this proof we denote the closure of
a set A by clA. Without loss of generality assume that I is Π1

1 on Σ1
1 and X = ωω.

We will use the following notation. If ϕ(v) is a formula and t ∈ ωω, then by
Σ1

1(t)∧ϕ (respectively Δ1
1(t)∧ϕ) we denote the family of Σ1

1(t) (respectively Δ1
1(t))

sets whose codes satisfy ϕ(v).
Let I(v) be a Π1

1 formula defining the set of codes of analytic sets in I. Let K
be the family of closed sets in I and let K(v) be a Π1

1 formula defining the set of

codes of the (closed) sets in K (in terms of the universal closed set C̃). Consider

the formula K̂(v) saying that clÃv ∈ K. Note that K̂(v) can be written as follows:

∀s ∈ ωω C̃s ⊆ clÃv ⇒ K(s),

and notice that it is a Π1
1 formula.
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Consider the set F ⊆ ωω ×X defined as follows:

(t, x) ∈ F iff x ∈
⋃

(Δ1
1(t) ∧ K̂).

By the usual coding of Δ1
1 sets we get that F is Π1

1.

Lemma 3.10. For each t ∈ ωω we have⋃
(Σ1

1(t) ∧ K̂) =
⋃

(Δ1
1(t) ∧ K̂) =

⋃
(Σ1

1(t) ∧ I).

Proof. Without loss of generality assume that t = 0. The first equality follows
from the First Reflection Theorem (since K̂(v) is a Π1

1 formula). Denote C =⋃
(Δ1

1(t) ∧ K̂) =
⋃
(Σ1

1(t) ∧ K̂).

In the second equality, the left-to-right inclusion is obvious since K̂(s) implies
I(s), for each s ∈ ωω. We need to prove that if A ∈ Σ1

1 is not contained in C,
then A 	∈ I. Suppose A ∈ Σ1

1 and A 	⊆ C. Since C ∈ Π1
1, we may assume that

A ∩ C = ∅. Let T be a recursive pruned tree on ω × ω such that A = proj[T ].
If A ∈ I, then there is a sequence of closed sets 〈Dn : n < ω〉 such that each
Dn ∈ I and A ⊆

⋃
n<ω Dn. By induction we construct a sequence of 〈τn ∈ ω<ω〉

and σn ∈ T such that for each n < ω the following hold:

• σn+1 � σn and τn+1 � τn,
• proj[T (σn)] ⊆ [τn],
• proj[T (σn−1)] ∩ [τn] ∩ Dn = ∅.

We take σ−1 = ∅. Suppose σn and τn are constructed. Notice that proj[T (σn)] is
Σ1

1. Since A∩C = ∅ we see that cl(proj[T (σn)]) 	∈ K. Consequently, proj[T (σn)] 	⊆
Dn and hence there is τn+1 � τn, [τn+1] ⊆ τn such that

(i) proj[T (σn)] ∩ [τn+1] 	= ∅,
(ii) proj[T (σn)] ∩ [τn+1] ∩Dn = ∅.

Using (i) find σn+1 � σn such that σn+1 ∈ T and proj[T (σn+1)] ⊆ [τn+1].
Now, if s =

⋃
n<ω σn, then s ∈ lim(T ), so π(s) ∈ A, but π(s) 	∈

⋃
n<ω Dn. This

ends the proof of the lemma. �

Consider the following formula I ′(v) (v is a variable):

∀z ∈ X z ∈ Ãv ⇒ z ∈ Fv.

Note that I ′ is a Π1
1 formula and

V |= ∀t ∈ ωω I(t) ⇔ I ′(t).

This is a Π1
2 sentence, so by absoluteness we see that I and I ′ define the same set

of codes of analytic sets in W .
Now we will show that IW is a σ-ideal generated by closed sets. The fact that

IW is closed under taking analytic subsets follows from Lemma 3.9 because IW is
Π1

1 on Σ1
1.

Let us show that IW is closed under countable unions. Pick a recursive bijection
�·� : (ωω)ω → ωω. The sentence

(∗) ∀〈tn : n < ω〉 ∈ (ωω)ω ((∀n < ω I ′(tn)) ⇒ I ′(�tn : n < ω�))
is Π1

2 and hence it is absolute. Note that for any 〈tn : n < ω〉 ∈ (ωω)ω we have
Ftk ⊆ F�tn:n<ω� for each k < ω (because tk ∈ Δ1

1(�tn : n < ω�)). Therefore (∗)
holds in V and hence also in W . This shows that the family of analytic sets coded
by (I ′)W (ωω) is closed under countable unions.
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To see that IW is generated by closed sets, take any t ∈ W ∩ ωω such that
(ÃW )t ∈ IW . This means that W |= I ′(t), so (ÃW )t ⊆ (FW )t. Let 〈tn : n < ω〉 ∈
W be the sequence of all elements of ωω in W which are Δ1

1(t) and satisfy K̂(v).
By the definition of F we see that

W |= (ÃW )t ⊆
⋃
n<ω

(ÃW )tn

is satisfied in W . Let 〈sn : n < ω〉 ∈ W be a sequence of elements of W ∩ ωω

such that W |= (C̃W )sn = cl(ÃW )tn for each n < ω. Now W |= K̂(tn) implies

W |= K(sn). Therefore W |= (C̃W )sn ∈ IW because

∀t, s ∈ ωω (Ãs ⊆ C̃t ∧ K(t)) ⇒ I(s)

is Π1
2 and holds in V . Since

W |= (ÃW )t ⊆
⋃
n<ω

(C̃W )sn ,

we conclude that IW is generated by closed sets. �

4. Products and iterations

If I is a σ-ideal on X, then we write ∀Ix ∈ X ϕ(x) to denote that {x ∈ X :
¬ϕ(x)} ∈ I. Let I and J be σ-ideals on Polish spaces X and Y , respectively.
Recall that the Fubini product of I and J , denoted by I ⊗ J , is the σ-ideal of
those A ⊆ X × Y such that

∀Ix ∈ X ∀J y ∈ Y (x, y) 	∈ A.

If Ik is a σ-ideal on Xk, for each k < n, then we naturally extend the above
definition to define

⊗
k<n Ik = I0⊗

⊗
0<k<n Ik. For each n < ω we also define the

Fubini powers of a σ-ideal I as follows: In =
⊗

k<n I.

Lemma 4.1 (Folklore). Suppose I and J are Π1
1 on Σ1

1 σ-ideals on Polish spaces
X and Y , respectively. Let A ⊆ X × Y be a Σ1

1 set in I ⊗J . There is a Σ1
1 set D

such that A ∩D = ∅ and

∀Ix ∈ X ∀J y ∈ Y (x, y) ∈ D.

Proof. To simplify notation suppose that X = Y = ωω, A ∈ Σ1
1, and I and J are

Π1
1 on Σ1

1. Put

U1 =
⋃

(Σ1
1 ∩ I)

and let U2 ⊆ ωω × ωω be such that for each t ∈ ωω we have

(U2)t =
⋃

(Σ1
1(t) ∩ J ).

By the First Reflection Theorem we have U1 =
⋃
(Δ1

1∩I) and (U2)t =
⋃
(Δ1

1(t)∩J )
for each t ∈ ωω. Therefore, by the usual coding of Δ1

1 sets, we get that U1 and U2

are Π1
1. Put

C = (U1 × Y ) ∪ U2.

Notice that A ⊆ C (since otherwise we get that A 	∈ I ⊗ J ). Now B = X × Y \ C
is as needed. �
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Generalizing the finite Fubini products, one can define the Fubini product of
length α for any α < ω1. A game-theoretic definition of Iα is given in [22, Definition
5.1.1]. Definition 4.3 below (equivalent to [22, Definition 5.1.1]) appears in [4, p.
74]. If 0 < β < α are countable ordinals, then we write πα,β for the projection to
the first β coordinates from

∏
γ<α Xγ to

∏
γ<β Xγ . For each D ⊆

∏
γ<α Xγ , we

define πα,0[D] to be X. If A ⊆
∏

γ<β+1 Xγ and x ∈
∏

γ<β Xγ , then Ax denotes the
vertical section of A at x. If A ⊆ X and x ∈ X, then we put Ax = A.

Definition 4.2. Let α be a countable ordinal, 〈Xβ : β < α〉 be a sequence of Polish
spaces and Ī = 〈Iβ : β < α〉 be a sequence of σ-ideals, Iβ on Xβ , respectively. We
say that a set D ⊆

∏
β<α Xβ is an Ī-positive cube if

(i) for each β < α and for each x ∈ πα,β [D] the set

(πα,β+1[D])x is Iβ+1-positive,

(ii) for each limit β < α and x ∈ Xβ,

x ∈ πα,β [D] ⇔ ∀γ < β x�γ ∈ πα,γ [D].

We say that D is an Ī-full cube if additionally we have

(i′) for each β < α and for each x ∈ πα,β [D] the set

(πα,β+1[D])x is Iβ+1-full.

If Γ is a projective pointclass, then we say that D is an Ī-positive (resp. full) Γ
cube if D is an Ī-positive (resp. full) cube and additionally

• for each β ≤ α the set πα,β [D] ∈ Γ(
∏

γ<β Xγ).

Analogous definitions also appear in [8], [4] and [22]. Now we define Fubini
products.

Definition 4.3. Let α be a countable ordinal, 〈Xβ : β < α〉 be a sequence of Polish
spaces and Ī = 〈Iβ : β < α〉 be a sequence of σ-ideals, Iβ on Xβ, respectively.
A set B ⊆

∏
β<α Xβ belongs to

⊗
β<α Iβ if and only if there is an Ī-full cube

D ⊆
∏

β<α Xβ disjoint from B.

Remark 4.4. Let X be a Polish space and let I be a Π1
1 on Σ1

1 σ-ideal on X,
generated by closed sets. Suppose A ⊆ X2 is Σ1

1. We will show that either A
belongs to I2 or contains an I2-positive Gδ set.

Let D ⊆ X2 × ωω be a closed set such that π[D] = A (here π denotes the
projection to the first two coordinates). By Lemma 3.6, the family G of I-perfect
Gδ sets is Σ

1
1 (in the sense of Section 3, in terms of G̃). Put A′ = {x ∈ X : Ax 	∈ I}.

If A′ ∈ I, then clearly A ∈ I2. Suppose that A′ 	∈ I.
By Solecki’s theorem, for each x ∈ A′ there is an I-perfect Gδ set G contained

in Ax. Pick x ∈ A′ and such a G ⊆ Ax. Using Σ1
2-absoluteness, we get a PI-name

ẏ for an element of D such that (we identify (X2)x with X here)

G � π(ẏ) = ġ

(ġ is the name for the generic point).
Now, by properness and continuous reading of names for PI , there is an I-perfect

Gδ set G
′ ⊆ G and a continuous function f : G′ → ωω with f ⊆ D. To see this, find

a continuous function f ′ reading ẏ, take a suitable countable elementary submodel
M ≺ Hκ (κ large enough), find G′ consisting of generic reals over M and put
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f = f ′ �G. The fact that (x, f(x)) ∈ D for x ∈ G follows from Σ1
1-absoluteness

between M [x] and V .
Therefore, for each x ∈ A′ the following holds:

∃G ∈ G ∃f : G
∗−→ Dx.

This is a Σ1
1 formula, so by Σ1

2-absoluteness we have

A′ � ∃G ∈ G ∃f : G
∗−→ Dġ.

Again, by properness and continuous reading of names (applied to the name for (a
code of) dom(f)) we get an I-perfect Gδ set G′ ⊆ A′ and a continuous function

g : G′ → G such that for each x ∈ G′ we have G̃g(x) ⊆ Ax. Let G = {(x, y) ∈ X2 :

x ∈ G′ ∧ y ∈ G̃g(x)} = (g, id)−1[G̃]. This is an I2-positive Gδ set contained in A.

Note that the following lemma immediately follows from Lemma 4.1.

Lemma 4.5 (Folklore). Suppose Ī = 〈Ik : k < n〉 is a sequence of Π1
1 on Σ1

1

σ-ideals, Ik on Xk. Let A ⊆
∏

k<n Xk be a Σ1
1 set in

⊗
k<n Ik. There is an Ī-full

Σ1
1 cube D disjoint from A.

If α is a countable ordinal and 〈Iβ : β < α〉 is a sequence of iterable σ-ideals,
Iβ on Xβ, then we denote by ∗β<αPIβ

the countable support iteration of PIβ
’s of

length α. If A ⊆
∏

β<α Xβ is an Ī-positive Bor cube, then we associate with A the

following condition pα(A) in ∗β<αPIβ
. If β < α, then pα(A)(β) is a ∗γ<βPIγ

-name

Ẏβ (for an Iβ-positive Borel set) such that

pβ(πα,β[A]) � Ẏβ = Aġβ ,

where ġβ is the name for the ∗γ<βPIγ
-generic point in

∏
γ<β Xγ . Zapletal proved

the following (the statement in [22, Theorem 5.1.6] deals with just one σ-ideal I,
but the proof shows the stronger statement).

Theorem 4.6 (Zapletal, [22, Theorem 5.1.6]). Let α be a countable ordinal. If
Ī = 〈Iβ : β < α〉 is a sequence of iterable σ-ideals on Polish spaces Xβ, respectively,
then the function pα is a dense embedding from the poset of Ī-positive Bor cubes
(ordered by inclusion) into ∗β<αPIβ

. Moreover, any
⊗

β<α Iβ-positive Borel set in∏
β<α Xβ contains an Ī-positive Bor cube and the forcing P⊗

β<α Iβ
is equivalent

to ∗β<αPIβ
.

The proof of this result uses Shelah’s method of showing that the countable-
support iteration of proper forcings is proper. Theorem 4.6 was further used by
Kanovei and Zapletal to prove the following result (again, the statement of [22,
Theorem 5.1.9] deals with one σ-ideal, but the proof generalizes to the statement
below).

Theorem 4.7 (Kanovei, Zapletal, [22, Theorem 5.1.9]). Let α be a countable or-
dinal and Ī = 〈Iβ : β < α〉 be a sequence of iterable σ-ideals on Polish spaces Xβ,
respectively. If A ⊆

∏
β<α Xβ is Σ1

1, then either A ∈
⊗

β<α Iβ or A contains an

Ī-positive Bor cube.

In the proof of Theorem 4.7, Kanovei and Zapletal generalized Lemma 4.5 in the
following way.
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Theorem 4.8 (Kanovei, Zapletal, [22, proof of Theorem 5.1.9]). Let α be a count-
able ordinal and Ī = 〈Iβ : β < α〉 be a sequence of Π1

1 on Σ1
1 σ-ideals on Polish

spaces Xβ, respectively. If A ⊆
∏

β<α Xβ, is Σ1
1 and A ∈

⊗
β<α Iβ, then there is

an Ī-full Σ1
1 cube D disjoint from A.

The following (unpublished) corollary was communicated to the author by Paw-
likowski.

Corollary 4.9 (Pawlikowski, [15]). If X is a Polish space and α is a countable
ordinal, then M(X)α ∩Σ1

1(X
α) ⊆ M(Xα).

Theorem 1.2 was motivated by Solecki’s theorem, Theorem 4.7 and Corollary
4.9. Now we restate it, in a slightly stronger version.

Theorem 4.10. Let 〈Xn : n < ω〉 be a sequence of Polish spaces and Ī = 〈In :
n < ω〉 be a sequence of Π1

1 on Σ1
1 σ-ideals generated by closed sets, In on Xn,

respectively. If A ⊆
∏

n<ω Xn is Σ1
1, then

• either A ∈
⊗

n<ω In
• or A contains an Ī-positive Gδ cube G such that

(Σ1
1(

∏
n<ω

Xn) ∩
⊗
n<ω

In)�G ⊆ M(G).

Proof. Suppose A ⊆
∏

n<ω Xn is an analytic
⊗

n<ω In-positive set. By Solecki’s
theorem and Theorem 1.1, the σ-ideals In are iterable, so we may apply Theorem
4.7 and assume that A is an Ī-positive Bor cube. For each n < ω write An for
πω,n[A] and let En ⊆

∏
i<nXi × ωω be a closed set projecting to An. Let Gn ⊆ ωω

be the analytic set from Lemma 3.6 consisting of codes of all In-perfect Gδ sets.
In this proof we denote πn,n−1 by πn and write Īn for 〈Ii : i < n〉.

We will use the following lemma.

Lemma 4.11 (Kuratowski, Ulam). Let X and Y be Polish spaces and let f : Y →
X be a continuous open surjection. Suppose B ⊆ Y has the Baire property and

∀Mx ∈ X B ∩ f−1[{x}] is meager in f−1[{x}].

Then B is meager in Y .

Proof. The proof is almost the same as the proof of the “product” version of the
Kuratowski-Ulam theorem [9, Theorem 8.41]. The difference is that instead of [9,
Lemma 8.42], we need to prove that if U ⊆ Y is open dense, then

(∗) ∀Mx ∈ X U ∩ f−1[{x}] is open dense in f−1[{x}].

To show this, we take the open basis 〈Un : n < ω〉 of Y and show that for each
n < ω the set

Vn = {x ∈ X : f−1[{x}] ∩ Un = ∅ ∨ f−1[{x}] ∩ Un ∩ U 	= ∅}

contains an open dense set. Indeed, let Wn = X \ f [Un] and notice that the set
f [Un] ∪Wn is open dense in X. Moreover, Wn ⊆ Vn and Vn ∩ f [Un] is dense open
in f [Un]. Now, notice that if x ∈

⋂
n<ω Vn, then U ∩ f−1[{x}] is open dense in

f−1[{x}]. This proves (∗). �
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We shall construct a sequence of Gδ sets Gn ⊆
∏

i<n Xi such that

(i) πn[Gn] ⊆ Gn−1 is comeager in Gn−1,
(ii) for each x ∈ πn[Gn] the set (Gn)x is In-perfect,
(iii) πn�Gn : Gn → πn[Gn] is an open map,
(iv) if D ⊆

∏
i<n Xi is an Īn-full Σ1

1 cube, then D ∩Gn is comeager in Gn.

Note that, by Lemma 4.5, (iv) implies

(v) (Σ1
1(

∏
i<n Xi) ∩

⊗
i<n Ii)�Gn ⊆ M(Gn).

For n = 0 use Lemma 3.4 to find an I0-perfect Gδ-set G0 ⊆ A0. Notice that
(Σ1

1(X0) ∩ I0)�G0 ⊆ M(G0) follows from the fact that G0 is I0-perfect.
Suppose the set Gn ⊆ Xn is constructed. Similarly as in Remark 4.4 we conclude

that by Lemma 3.4, Σ1
2-absoluteness and continuous reading of names for PI , for

each x ∈ Gn there is a code c(x) ∈ Gn+1 for an In+1-perfect Gδ set G̃c(x) and a

function f : G̃c(x)
∗−→ (En+1)x. Consider the set

W = {(x, d) ∈ Xn × ωω : x ∈ Gn, ∃c ∈ Gn+1 ∃f : G̃c
∗−→ (En+1)x dom(f) = G̃d}.

W is analytic and all vertical sections of W are nonempty. Hence, by the Jankov-
von Neumann theorem, W has a σ(Σ1

1)-measurable uniformization g : Gn → Gn+1.
In particular, g is Baire measurable and hence it is continuous on a dense Gδ set
G′

n ⊆ Gn. Let

Gn+1 = {(x, y) ∈ Xn ×X : x ∈ G′
n ∧ y ∈ G̃g(x)}.

Gn+1 is a Gδ set since Gn+1 = (g, id)−1[G̃]. Moreover, πn+1[Gn+1] = G′
n is comea-

ger in Gn.
Note that the function πn+1�Gn+1 : Gn+1 → G′

n is open by Lemma 3.2 and the
fact that g is continuous on G′

n.
Now, let D ⊆

∏
i<n+1 Xi be an Īn+1-full Σ

1
1 cube. The set Dn = πn+1[D]

is an Īn-full Σ1
1 cube, so, by the inductive hypothesis, Dn ∩ Gn is comeager in

Gn. Therefore, Dn ∩ G′
n is comeager in G′

n. Moreover, if x ∈ G′
n ∩ Dn, then

Dx ∩ (Gn+1)x is comeager in (Gn+1)x, since (Gn+1)x is In+1-perfect. Now, D has
the Baire property, so by Lemma 4.11 (for the function πn+1�Gn+1 : Gn+1 → G′

n)
we have that D ∩Gn+1 is comeager in Gn+1.

This ends the construction.
Put

G =
⋂
n<ω

π−1
ω,n[Gn].

G is a Gδ set and it is contained in A since A is a (Ī-positive) cube. For each
n, k < ω also consider the set

Hk
n = {xn ∈ Gn : ∀Myn+1 ∈ (Gn+1)xn

. . . ∀Myn+k ∈ (Gn+k)(xn,yn+1,...,yn+k−1)

∃yn+k+1 ∈ (Gn+k+1)(xn,yn+1,...,yn+k) (xn, yn+1, . . . , yn+k+1) ∈ Gn+k}.

Applying (k + 1)-many times Lemma 4.11 we conclude that Hk
n is comeager in

Gn for each k < ω. Put

Hn =
⋂
k<ω

Hk
n.
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Each Hn is also a comeager subset of Gn. Notice that πn+1[Hn+1] ⊆ Hn and
πn+1[Hn+1] is comeager in Gn for each n < ω. Moreover, for each n < m < ω

(∗) πm,n[Hm] is comeager in Gn

(by repeatedly applying Lemma 4.11).
Notice that for each n < ω we have⋂

n<m<ω

πm,n[Hm] ⊆ πω,n[G].

Consequently, by (∗) we have that πω,n[G] is comeager in Gn. Therefore, it is⊗
i<n Ii-positive, by (v). For each k < ω and x ∈ πω,k[G] we may repeat the

above argument in the space (
∏

n<ω Xn)x and conclude that the set (πω,k+1[G])x
is comeager in (Gk+1)x and hence is Ik+1-positive (since (Gk+1)x is Ik+1-perfect).
Therefore G is an Ī-positive Gδ cube.

Now we prove that (Σ1
1(

∏
n<ω Xn) ∩

⊗
n<ω In)�G ⊆ M(G). By Theorem 4.8

it is enough to prove that if D ⊆
∏

n<ω Xn is an Ī-full Σ1
1 cube, then D ∩ G is

comeager in G. Write Dn = πω,n[D]. Using (iv) we see that Dn is comeager in Gn.
For each n < ω find a dense in Gn Gδ set G′′

n ⊆ Dn such that G′′
n+1 ⊆ π−1

n [G′′
n].

Let G′′ =
⋂

n<ω π−1
ω,n[G

′′
n]. Note that G′′ ⊆ D ∩ G and G′′ is a Gδ set. We will

prove that G′′ is dense in G.
Repeatedly applying Lemma 4.11 and property (iv) we see that for each n < ω

the following holds:

∀My0 ∈ G0 ∀My1 ∈ (G1)y0
. . .∀Myn ∈ (Gn)(y0,...,yn−1) (y0, . . . , yn) ∈ G′′

n.

Using this we can easily show G′′ is nonempty, and, in fact, that if Un ⊆ Xn is
open, then G′′ ∩ π−1

ω,n[Un] is nonempty. But this implies that G′′ is dense in G.
This ends the proof. �

Let X and Y be Polish spaces and F : X → P(Y ) be a multifunction. If A is
a family of subsets of X, then we say that F is A-measurable if for each open set
U ⊆ Y the set F−1(U) = {x ∈ X : F (x) ∩ U 	= ∅} belongs to A. We say that F is
an analytic multifunction if its graph, i.e.

⋃
x∈X {x} × F (x), is analytic in X × Y .

The following result was motivated by the Kuratowski-Ryll Nardzewski theorem.

Proposition 4.12. Let X be a Polish space and I a σ-ideal on X generated by
closed sets. If F : X → P(ωω) is an analytic multifunction, then there is an
I-positive Gδ set G such that F�G is Σ0

3-measurable.

Proof. Denote the graph of F by A and let a be such that A ∈ Σ1
1(a). Let A(v, w)

be a Σ1
1(a) formula defining the set A. Take M ≺ Hκ (for a large enough κ)

containing a and PI . Let Gen(M) ⊆ X be the set of all PI-generic reals over M .
Gen(M) is an I-positive Borel set by properness of PI . Find an I-positive Gδ set
G ⊆ Gen(M). We will show that F �G is Σ0

3-measurable. Notice that if τ ∈ ω<ω

and x ∈ X, then

x ∈ F−1([τ ]) iff ∃y ∈ [τ ] A(x, y).

This is a Σ1
1(a) formula, so it is absolute for M [x] ⊆ V . Therefore, by a usual

forcing argument and the fact that I-positive Gδ sets are dense in PI , we get

F−1
[
[τ ]

]
=

⋃
{G ∈ PI ∩M : G ∈ Gδ ∧ G � ∃y ∈ [τ ] A(ġ, y)}.

This is a Σ0
3 set. �
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5. Fusion games

In this section we briefly recall basic definitions concerning infinite games and
introduce fusion games for σ-ideals.

By a game scheme we mean a set of rules for a two-player game (the players are
called Adam and Eve, and Adam begins). Formally, a game scheme is a pruned
tree (i.e. without terminal nodes) G ⊆ Y <ω for a countable set Y where the last
elements of sequences at even and odd levels are understood as possible moves of
Eve and Adam, respectively. In particular, in any game scheme the first move is
made by Adam (the moves are numbered by ω \ {0}). Nodes of the tree G of even
length are called partial plays and elements of lim(G) are called plays. Note that
partial plays always end with a move of Eve.

If τ is a partial play in a game scheme G, then by the relativized game scheme
Gτ we mean the tree {σ ∈ Y <ω : τ�σ ∈ G}. The game scheme Gτ consists of the
games which “continue” the partial play τ .

A payoff set p in a game scheme G is a subset of lim(G). By a game we mean a
pair (G, p) where G is a game scheme and p is a payoff set in G (we say that the
game (G, p) is in the game scheme G). For a game (G, p) we say that Eve wins a
play g ∈ lim(G) if g ∈ P . Otherwise we say that Adam wins g.

A strategy for Adam in a game scheme G is a subtree S ⊆ G such that:

• for each odd n ∈ ω and τ ∈ S such that |τ | = n, the set of immediate
successors of τ in S contains precisely one point,

• for each even n ∈ ω and τ ∈ S such that |τ | = n, the sets of immediate
successors of τ in S and G are equal.

The strategy for Eve is defined analogously. If (G, p) is a game in the game scheme
G and S is a strategy for Adam in G, then we say that S is a winning strategy
for Eve in the game (G, p) if lim(S) ⊆ p. Winning strategy for Adam is defined
analogously.

Recall the classical Banach–Mazur game [9, Section 8.H] which “decides” whether
a Borel set is meager or not, in terms of existence of a winning strategy for one of
the players. Now we introduce an abstract notion of a fusion game which will cover
the classical examples as well as those from Sections 7 and 8. Suppose we have a
game scheme G together with a family of payoff sets p(A) for each A ⊆ X such
that:

(i) p(A) ⊆ lim(G) is Borel, for each Borel set A ⊆ X,
(ii) p(A) ⊆ p(B) for each B ⊆ A,
(iii) p(

⋃
n<ω An) =

⋂
n<ω p(An) for each sequence 〈An : n < ω〉.

Intuitively, p(A) is such that a winning strategy for Eve in (G, p(A)) “proves” that
A is “small”. For each A ⊆ X the game G(A) is the game in the game scheme G
with the payoff set p(A). We denote by G(·) the game scheme G together with the
function p. We call G(·) a fusion scheme if

(iv) the moves of Adam code (in a prescribed way, in terms of a fixed enu-
meration of the basis) basic open sets Un such that Un+1 ⊆ Un and
diam(Un) < 1/n,

(v) for each Borel set A ⊆ X and each play g in G(A) if Adam wins g, then
the single point in the intersection of Un’s (as above) is in A.
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Notice that if the family of sets q ⊆ lim(G) such that Eve has a winning strategy
in the game (G, q) is closed under countable intersections, then the family of sets
A ⊆ X such that Eve has a winning strategy in G(A) forms a σ-ideal (by (iii)).

The idea of considering σ-ideals defined in terms of a winning strategy in a game
scheme occurs in a paper of Schmidt [17] and later in a work of Mycielski [14].

If the family of sets A ⊆ X for which Eve has a winning strategy in G(A) forms
a σ-ideal I, then we say that G(·) is a fusion scheme for I.

Suppose X = lim(T ) for some countable tree T . Also suppose that the game
scheme G is such that the possible n-th moves of Adam correspond to elements at
the n-th level of T (such as in (iv), to the basic clopen sets [τ ]T for τ ∈ Levn(T )).
Let GI(·) be a fusion scheme for a σ-ideal I and let τ be a partial play in the game
scheme GI . Let U be the basic clopen set coded by the last move of Adam in τ .
Recall that the relativized game scheme (GI)τ consists of the continuations of τ in
GI . The game scheme (GI)τ , together with the function pτ (A) = p(A)∩U , defines
a relativized fusion scheme. Using the property (v) we easily get the following.

Proposition 5.1. Let X = lim(T ), GI , τ and U be as above. Let A ⊆ X. Eve
has a winning strategy in (GI)τ (A) if and only if Eve has a winning strategy in
GI(A ∩ U).

6. Fusion in the forcing PI

In this section we give a proof of Theorem 1.3. The main ingredient here is fusion
schemes for σ-ideals generated by closed sets.

We now give an informal outline of the proof of Theorem 1.3. The general idea is
as follows: having a σ-ideal I generated by closed sets, we find a fusion scheme GI(·)
for I such that the trees of winning strategies in GI(B) (for B ∈ PI) determine
some analytic I-positive sets. Moreover, for each B ∈ PI the winning condition
for Adam (the complement of the payoff set) in GI(B) is a Gδ set in lim(GI). We
consider the forcing with trees of winning strategies for Adam in the games GI(B)
(for all B ∈ PI) and show that it is equivalent to the original forcing PI (we in
fact show that it is equivalent to the forcing with I-positive Σ1

1 sets and then use
Solecki’s theorem to conclude that all three forcings are equivalent). Using the fact
that the winning conditions in GI(B) are the intersections of ω many open sets,
we define ω many fronts in the trees of winning strategies (such that crossing the
n-th front implies that the game is in the n-th open set). Now, using these fronts
as analogues of the splitting levels in perfect or superperfect trees, we define fusion
in the forcing of winning strategies for Adam.

Although the general idea is based on the above outline, we will have to addi-
tionally modify the games in order to avoid some determinacy problems. That is,
instead of a fusion scheme for I and the games GI(B) we will use their unfolded
variant. We would like to emphasize that in many concrete cases of σ-ideals (such as
in Sections 7 or 8), we can use simpler fusion schemes and the fusion from Theorem
1.3 can be simplified.

Proof of Theorem 1.3. To simplify notation we assume that the underlying space
X is the Baire space ωω. Pick a bijection ρ : ω → ω × ω. Hω1

stands for the
family of hereditarily countable sets (it will be used to make sure that the forcing
we define is a set).
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We will use the following notation:

• Let Y be an arbitrary set. If τ ∈ (ω×Y )<ω, then by τ̄ ∈ ω<ω we denote the
sequence of the first coordinates of the elements of τ . Suppose T is a tree
on ω × Y . The map pY : lim(T ) → ωω is defined as follows: if t ∈ lim(T )
and t�n = τn, then pY (t) =

⋃
n<ω τ̄n.

• Let z be arbitrary. If τ ∈ (ω × Y )<ω and τ = 〈ai : i < |τ |〉, then by
τ z ∈ (ω × Y × {z})<ω we denote the sequence 〈(ai, z) : i < |τ |〉. If T is a
tree on ω× Y , then by T z we denote the tree {τ z : τ ∈ T} on ω× Y ×{z}.

• If Y = W × Z and τ ∈ (ω × Y )<ω, then by τW ∈ (ω × W )<ω we denote
〈πω×W (ai) : i < |τ |〉 (where πω×W : ω ×W ×Z → ω ×W is the projection
to the first two coordinates). By TW we denote the tree {τW : τ ∈ T}.

For Y ∈ Hω1
and a tree T on ω × Y let GI(Y, T ) be the game scheme in which

• in his n-th turn Adam constructs τn ∈ T such that τn � τn−1 (τ−1 = ∅),
• in her n-th turn Eve picks a clopen set On in ωω such that

proj[T (τn)] 	∈ I ⇒ On ∩ proj[T (τn)] 	∈ I.
By the end of a play, Adam and Eve have a sequence of closed sets Ek in ωω defined
as follows:

Ek = 2ω \
⋃
i<ω

Oρ−1(i,k).

Put x =
⋃

n<ω τ̄n ∈ ωω. Consider a payoff set in GI(Y, T ) such that Adam wins if
and only if

x 	∈
⋃
k<ω

Ek.

In this proof, the game in the game scheme GI(Y, T ) with the above payoff set will
also be denoted by GI(Y, T ) (this should not cause confusion since we are not going
to consider other payoff sets in the game scheme GI(Y, T )).

Here is more notation:

• If S is a subtree of the game scheme GI(Y, T ), then by Ŝ ⊆ T we denote
the tree built from the moves of Adam in partial plays in S (i.e. we forget

about Eve’s moves). We write proj[S] for proj[Ŝ].
• If Y ′ = Y ×Z, z ∈ Z is fixed and T ′ is a tree on Y ′ such that T z ⊆ T , then
by Sz we denote the subtree of GI(Y

′, T ′), in which the moves τ of Adam
are changed to τ z.

Lemma 6.1. The game GI(Y, T ) is determined. Eve has a winning strategy in
GI(Y, T ) if and only if

proj[T ] ∈ I.

Proof. First suppose that proj[T ] ∈ I. Then Eve chooses ∅ in all her moves and
wins the game.

On the other hand, suppose that proj[T ] is I-positive. We define a winning
strategy for Adam as follows. In his moves, Adam constructs τn ∈ T so that

• [τ̄n] ⊆ On−1,
• proj[T (τn)] 	∈ I.

Suppose Adam is about to make his n-th move, his previous move is τn−1 and the
last move of Eve is On−1 (O−1 = ∅). Using the fact that On−1∩proj[T (τn−1)] 	∈ I,
Adam picks τn ∈ T extending τn−1 such that [τ̄n] ⊆ On−1 and proj[T (τn)] 	∈ I.
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This is the strategy for Adam. It is winning since after each play we have that
x ∈ On for each n < ω, so in particular x ∈

⋃
k<ω Ek. �

Remark 6.2. Note that if S is a winning strategy for Adam in the game GI(Y, T ),
then for each partial play π ∈ S, we have proj[S(π)] 	∈ I. This is because otherwise
we could construct a counterplay to the strategy S. In particular, if τ is the last
move of Adam in π, then we have proj[T (τ )] 	∈ I.

Now we define the key notion in this proof. Let π be a partial play in GI(Y, T ) of
length 2l, in which Eve chooses clopen sets Oi, for i < l, and Adam picks τl−1 ∈ T
in his last move. Suppose that Y ′ = Y ×Z, Z ∈ Hω1

, z ∈ Z is fixed and T ′ is a tree
on ω× Y ′ such that (τl−1)

z ∈ T ′. By the relativized unfolded game GI(Y
′, T ′)zπ we

mean the game in which

• in his n-th move Adam picks τ ′n+l ∈ T ′, τ ′n+l � τ ′n+l−1 (τ ′l−1 = (τl−1)
z),

• in her n-th move Eve picks a clopen set On+l in ωω such that

proj[T ′(τ ′n+l)] 	∈ I ⇒ On+l ∩ proj[T ′(τ ′n+l)] 	∈ I.
The payoff set is the same as in the unrelativized case, i.e. we use all 〈On : n < ω〉
to define a sequence of closed sets 〈Ek : k < ω〉, we put x =

⋃
l−1≤n<ω τ̄ ′n and Eve

wins if and only if x ∈
⋃

k<ω Ek.
With an analogous proof as in Lemma 6.1 we get the following lemma.

Lemma 6.3. Suppose π is a partial play in GI(Y, T ) and τ is the last move of
Adam in π. Let GI(Y

′, T ′)zπ be a relativized unfolded game. Eve has a winning
strategy in GI(Y

′, T ′)zπ if and only if

proj[T ′(τ z)] ∈ I.

Lemma 6.4. If S is a winning strategy for Adam in GI(Y, T ), then

proj[S] 	∈ I.

Proof. Let A = proj[S]. If A ∈ I, then there are closed sets Ek ∈ I such that
A ⊆

⋃
k<ω Ek. Let Um

k be clopen sets such that Um
k ⊆ Um+1

k and ωω \ Ek =⋃
m<ω Um

k for each k < ω. We construct an Eve’s counterplay to the strategy S
in the following way. Suppose she is to make her n-th move and let τn be the last
move of Adam. By Remark 6.2, proj[T (τn)] 	∈ I. Let ρ(n) = (i, k). She chooses
m ≥ n large enough so that

Um
k ∩ proj[T (τn)] 	∈ I.

Let her n-th move be On = Um
k . If she plays in this way, then⋃
i<ω

Oρ−1(i,k) = ωω \ Ek,

i.e., the closed sets she gets are precisely the sets Ek. If x =
⋃

n<ω τ̄n is the point
in ωω constructed by Adam, then by the definition of A, x ∈ A ⊆

⋃
k<ω Ek, which

shows that Eve wins. �

Note that it follows from Lemmas 6.1 and 6.4 that any analytic I-positive set
A ⊆ ωω contains an analytic I-positive subset of the form proj[S] for a winning
strategy S for Adam in a game GI(Y, T ) (where Y = ω and T is a tree on ω × ω
such that A = proj[T ]).
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Let TI be the set of all triples (Y, T, S) where Y ∈ Hω1
, T is a tree on ω × Y

and S is a winning strategy for Adam in the game GI(Y, T ). TI is a forcing notion
with the following ordering: for (Y ′, T ′, S′), (Y, T, S) ∈ TI let

(Y ′, T ′, S′) ≤ (Y, T, S) iff proj[S′] ⊆ proj[S].

Notice that (Y, T, S) �→ proj[S] is a dense embedding from TI to QI = (Σ1
1 \

I,⊆). Indeed, suppose that (Y ′, T ′, S′) ⊥ (Y, T, S). If proj[S′] and proj[S] were
compatible in QI , then we would find an I-positive Σ1

1 set A ⊆ ωω such that
A ⊆ proj[S′]∩ proj[S]. Take any tree T on ω × ω such that proj[T ] = A and find a
winning strategy S′′ for Adam in GI(ω, T ). Then (ω, T, S′′) ≤ (Y ′, T ′, S′), (Y, T, S),
a contradiction.

By Solecki’s theorem, PI is dense in QI . Therefore the three forcing notions
TI , QI and PI are equivalent. We will show that the forcing TI satisfies Axiom A.

Take (Y, T, S) ∈ TI and recall that for each play p ∈ lim(S) ending with t ∈
ωω × Y ω, with x ∈ ωω (defined from the moves of Adam) and a sequence of closed
sets En (defined from the moves of Eve), we have x 	∈

⋃
k Ek. Note that for each

k ∈ ω there is n ∈ ω (even) such that (the partial play) t�n already determines that
x 	∈ Ek (i.e. [τ̄n] ⊆ Om for some m < ω such that ρ(m) = (i, k) for some i < ω).
Let n0(p) ∈ ω be the minimal such n for k = 0. Put

F0(S) = {p�n0(p) : p ∈ lim(S)}.

Note that F0(S) is a front in S. Analogously we define Fk(S) for each k < ω
(instead of E0 take Ek and put nk(p) > nk−1(p) as a minimal even number such
that p�nk(p) determines x 	∈ Ek).

Define (Y ′, T ′, S′) ≤k (Y, T, S) iff

(i) (Y ′, T ′, S′) ≤ (Y, T, S),
(ii) there is Z ∈ Hω1

such that Y ′ = Y × Z,
(iii) there is z ∈ Z such that T z ⊆ T ′,

(iv) (T ′)Y ⊆ Ŝ,
(v) Fk(S

′) = Fk(S)
z.

We will prove that TI satisfies Axiom A with the inequalities ≤k. Condition (ii)
serves for unfolding the game and condition (iii) is used later to make the unfolding
“rigid”. Condition (iv) is a technical detail. The crucial one is (v), which says that
the “splitting levels” are kept up to k-th in the k-th step of the fusion.

1. Fix k < ω. Suppose that (Y, T, S) ∈ TI and α̇ is a name for an ordinal.
We shall find (Y ′, T ′, S′) ≤k (Y, T, S) and a countable set of ordinals A such that
(Y ′, T ′, S′) �TI α̇ ∈ Ǎ.

For each π ∈ Fk(S) find an ordinal απ and an I-positive analytic set Aπ ⊆
proj[S(π)] (recall that proj[S(π)] is I-positive by Remark 6.2) such that

Aπ �QI α̇ = α̌π.

Let τπ ∈ T be the last move of Adam in π. Next, pick Zπ ∈ Hω1
such that 0 ∈ Zπ

(0 will be used as z from (iii); it does not matter what element we choose for z, as
long as it belongs to Hω1

) and find a pruned tree Tπ on ω × Y × Zπ such that

• τπ
0 ∈ Tπ and τπ

0 is a stem of Tπ,
• (Tπ)Y ⊆ Ŝ,
• Aπ = proj[Tπ].
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(Tπ is chosen such that its projection to ωω×Y ω is the analytic set lim(Ŝ)∩p−1
Y [Aπ].)

Ensure also that

• for each π, π′ ∈ Fk(S), if π 	= π′, then Zπ ∩ Zπ′ = {0},
• for each τ ∈ Tπ if τ � (τπ)

0, then τ (|τ | − 1) ∈ ω × Y × (Zπ \ {0}).
Put

Z =
⋃

π∈Fk(S)

Zπ, z = 0, Y ′ = Y × Z.

For each π ∈ Fk(S) let Sπ be a winning strategy for Adam in GI(Y × Zπ, Tπ)
0
π.

Such a strategy exists by Lemma 6.3 since proj[Tπ(τπ
0)] = proj[Tπ] = Aπ 	∈ I

(recall that τπ
0 is a stem of Tπ). Let

T ′ = T 0 ∪
⋃

π∈Fk(S)

Tπ

and consider the game GI(Y
′, T ′). The tree

S′ =
⋃

π∈Fn(S)

(π0)�Sπ

is a strategy in G(Y ′, T ′) since all π0, for π ∈ Fk(S), are partial plays in G(Y ′, T ′)
(because T 0 ⊆ T ′). Moreover, it is a winning strategy for Adam since each Sπ is
a winning strategy for Adam in GI(Y × Yπ, Tπ)π. Therefore (Y ′, T ′, S′) ∈ TI . By
the construction we have (Y ′, T ′, S′) ≤k (Y, T, S). Moreover,

(Y ′, T ′, S′) �TI α̇ ∈ {ατ : τ ∈ Fk(S)}
because the set {proj[S′(π)] : π ∈ Fk(S)} is predense below proj[S′] and we have
proj[S′(π)] �QI α̇ = α̌π (since proj[S′(π)] ⊆ Aπ).

2. Let 〈(Yk, Tk, Sk) : k < ω〉 be a fusion sequence. For each k < ω let Zk ∈ Hω1

be such that Yk+1 = Yk × Zk and let zk ∈ Zk be as in the definition of ≤k. Let
�zk = 〈zk, zk+1, . . .〉. Put Y =

⋃
k<ω(Yk)

�zk and T =
⋃

k<ω(Tk)
�zk . T is a tree on Y .

Notice that for each k < ω, for each τ ∈ Tk we have

(∗) proj[Tk(τ )] = proj[T (τ�zk)].

Indeed, proj[Tk(τ )] ⊆ proj[T (τ�zk)] follows from (iii) and proj[T (τ�zk)] ⊆ proj[Tk(τ )]
from (iv) (because for each t ∈ lim(T (τ�zk)) a sequence of its initial coordinates is

in lim(Ŝk) and hence in lim(Tk)).
Consider the game GI(Y, T ) and let

S =
⋃
k<ω

Fk(Sk)
�zk .

Note that it follows from (∗) that S is a strategy for Adam in GI(Y, T ). Moreover,
for each k < ω we have Fk(S) = Fk(Sk)

�zk , by the definition of Fk. Since for each
p ∈ lim(S) we have

∀k < ω ∃m < ω p�m ∈ Fk(S),

it follows that S is a winning strategy for Adam in GI(Y, T ). Therefore (Y, T, S) ∈
TI .

To see that (Y, T, S) ≤ (Yk, Tk, Sk) we use property (iv). Indeed, if x ∈ proj[S],
then there is a play in lim(S) in which x is defined. By (iv), however, we can extract
from this play a play in lim(Sk) in which x is defined.

To check that (Y, T, S) ≤k (Yk, Tk, Sk) we put Z =
∏

m≥k Zm and z = �zk.
This ends the proof of Theorem 1.3. �
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7. Closed null sets

We denote by E the σ-ideal generated by closed null sets in 2ω (with respect to
the standard Haar measure μ on 2ω). The sets in E are both null and meager. E
is properly contained in M∩N [2, Lemma 2.6.1] and, in fact, one can show that
E is not ccc.

The family of closed sets in E coincides with the family of closed null sets and
E ∩Π0

1(2
ω) is a Gδ set in K(2ω) (for each ε > 0 the set {C ∈ K(2ω) : μ(C) < ε} is

open). Therefore, E is Π1
1 on Σ1

1 by Corollary 3.8.
The forcing PE adds an unbounded real and a splitting real. In fact, one can

check that the generic real is splitting. To see that PE adds an unbounded real,
recall a theorem of Zapletal [22, Theorem 3.3.2], which says that a forcing PI is
ωω-bounding if and only PI has continuous reading of names and compact sets are
dense in PI . Let G be a Gδ set such that G ∈ N and 2ω \G ∈ M. G is E-positive,
but no compact E-positive set is contained in G. In particular, compact sets are
not dense in PE and hence this forcing is not ωω-bounding. PE does not, however,
add a dominating real. This follows from another theorem of Zapletal [22, Theorem
3.8.15], which says that if I is a Π1

1 on Σ1
1 σ-ideal, then the forcing PI does not

add a dominating real.
Zapletal proved in [22, Theorem 4.1.7] (see the first paragraph of the proof) that

if I is a σ-ideal generated by an analytic collection of closed sets and V ⊆ V [G] is
a PI -extension, then any intermediate extension V ⊆ W ⊆ V [G] is equal either to
V or V [G], or is an extension by a Cohen real. Therefore it is natural to ask if PE
adds Cohen reals.

Recall that a closed set D ⊆ 2ω is self-supporting if for any clopen set U the
set D ∩ U is either empty or not null. Notice that a closed set is self-supporting
if and only if it is E-perfect. If μ is a Borel measure on X and A ∈ Bor(X) is
such that μ(A) > 0, then by μA we denote the relative measure on A defined as
μA(B) = μ(A ∩B)/μ(A).

Theorem 7.1. The forcing PE does not add Cohen reals.

Proof. Suppose B ∈ PE and ẋ is a name for a real such that

B � ẋ is a Cohen real.

By Lemma 3.4 and continuous reading of names we find a Gδ set G ⊆ B such
that D = G is self-supporting and a continuous function f : G → ωω such that
G � ẋ = f(ġ). Pick a continuous, strictly positive measure ν on G. For each
τ ∈ ω<ω the set Cτ = f−1

[
[τ ]

]
is a relative clopen set in G. Find open sets C ′

τ ⊆ D
such that Cτ = C ′

τ ∩ G. D is zero-dimensional, so by the reduction property for
open sets we may assume that

• C ′
τ0 ⊆ C ′

τ1 for τ0 ⊆ τ1,
• C ′

τ0 ∩ C ′
τ1 = ∅ for τ0 ⊥ τ1.

We will find a tree T ⊆ ω<ω such that lim(T ) is nowhere dense in ωω and the
closure of the set f−1[lim(T )] is self-supporting.

Enumerate all nonempty clopen sets in D in a sequence 〈V ′
n : n < ω〉 and all

nonempty clopen sets in G in a sequence 〈Vn : n < ω〉, and elements of ω<ω in a
sequence 〈σn : n < ω〉. If τ ∈ ω<ω, then 〈C ′

τ�n : n < ω〉 is a sequence of disjoint
open sets in D and 〈Cτ�n : n < ω〉 is a sequence of disjoint open sets in G. Thus
for each ε > 0 there is n ∈ ω such that μ(C ′

τ�n) < ε as well as ν(Cτ�n) < ε.
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Moreover, for each m ∈ ω there is n ∈ ω such that μV ′
m
(V ′

m ∩ C ′
τ�n) < ε and

νVm
(Vm ∩ Cτ�n) < ε.
By induction, we find a collection of nodes τn ∈ ω<ω such that the tree

T = {τ ∈ ω<ω : ∀n τn 	⊆ τ}
is such that lim(T ) is nowhere dense, and for each m < ω we have

either V ′
m ⊆

⋃
n<ω

C ′
τn or μ(Vm \

⋃
n<ω

C ′
τn) > 0

and

either Vm ⊆
⋃
n<ω

Cτn or ν(Vm \
⋃
n<ω

Cτn) > 0.

Along the induction we also construct sequences of reals εn ≥ 0 and δn ≥ 0.
At the n-th step of the induction consider the sets U ′

n = V ′
n \

⋃
i<n C

′
τi and Un =

Vn \
⋃

i<n Cτi , which are either empty or of positive measure (μ or ν, respectively)
by the inductive assumption. Put εn = μ(U ′

n), δn = μ(Un). Find τn ∈ ω<ω such
that τn = σn

�k for some k < ω and for each i ≤ n

• if εi > 0, then μV ′
i
(C ′

τn ∩ V ′
i ) < 2−n−1εi,

• if δi > 0, then νVi
(Cτn ∩ Vi) < 2−n−1δi.

The set

A = G \
⋃
n

Cτn

is of type Gδ. Moreover, it follows from the construction that A = D \
⋃

n C
′
τn and

that A is self-supported, so A 	∈ E by Lemma 3.3. On the other hand, A � ẋ ∈
lim(T ), which gives a contradiction, since lim(T ) is nowhere dense. �

Corollary 7.2. If G is PE -generic over V , then the extension V ⊆ V [G] is minimal.

Now we will introduce a fusion scheme for the σ-ideal E . Denote by GE the
following game scheme. In his n-th turn, Adam picks ξn ∈ 2n such that ξn � ξn−1

(ξ−1 = ∅). In her n-th turn, Eve picks a basic clopen set Cn ⊆ [ξn] such that

μ[ξn](Cn) <
1

n
.

For a set A ⊆ 2ω we define the game GE(A) in the game scheme GE as follows.
Eve wins a play in GE(A) if

x 	∈ A ∨ ∀∞n x ∈ Cn

(where x ∈ 2ω is the union of the ξn’s picked by Adam). Otherwise Adam wins.

Proposition 7.3. For any set A ⊆ 2ω, Eve has a winning strategy in GE(A) if
and only if A ∈ E .

Proof. First suppose that Eve has a winning strategy S in GE(A). For each σ ∈ 2<ω

consider a partial play τσ in which Adam picks successively σ�k for k ≤ |σ|. Let
Cσ be Eve’s next move, according to S, after τσ. Put En =

⋃
σ∈2n Cσ. Clearly En

is a clopen set and μ(En) ≤ 1/n. Let Dn =
⋂

m≥nEn. Now, each Dn is a closed

null set and A ⊆
⋃

n Dn since S is a winning strategy. Therefore A ∈ E .
Conversely, assume that A ∈ E . There are closed null sets Dn such that A ⊆⋃

n Dn. Without loss of generality assume Dn ⊆ Dn+1. Let Tn ⊆ ω<ω be a tree
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such that Dn = lim(Tn). We define a strategy S for Eve as follows. Suppose Adam
has picked σ ∈ 2n in his n-th move and consider the tree Tn(σ). Since lim(Tn(σ))
is of measure zero, there is k < ω such that

|Tn(σ) ∩ 2k|
2k

<
1

n
.

Let Eve’s answer be the set
⋃

τ∈Tn(σ)∩2k [τ ]. One can readily check that this defines

a winning strategy for Eve in GE(A). �

Corollary 7.4. If B ⊆ 2ω is Borel, then B ∈ E if and only if Eve has a winning
strategy in GE(B).

8. Decomposing Baire class 1 functions

Let X and Y be Polish spaces and f : X → Y be a Borel function. We say that
f is piecewise continuous if X can be covered by a countable family of closed sets
on each of which f is continuous.

Recall that a function is Gδ-measurable if preimages of Gδ sets are Gδ or,
equivalently, if preimages of open sets are Gδ. If f : X → Y is a Gδ-measurable
function, then preimages of closed sets are Fσ. Therefore, if Y is zero-dimensional,
then preimages of open sets are also Fσ, so consequently Δ0

2.
The following characterization of piecewise continuity has been given by Jayne

and Rogers.

Theorem 8.1 (Jayne, Rogers, [7, Theorem 5]). Let X be a Souslin space and Y
be a Polish space. A function f : X → Y is piecewise continuous if and only if it
is Gδ-measurable.

A nice and short proof of the Jayne-Rogers theorem can be found in [13]. Classi-
cal examples of Borel functions which are not piecewise continuous are the Lebesgue
functions L,L1 : 2ω → R (for definitions see [19, Section 1]). For two functions
f : X → Y and f ′ : X ′ → Y ′ we write f � f ′ if there are topological embeddings
ϕ : X → X ′ and ψ : Y → Y ′ such that f ′ ◦ ϕ = ψ ◦ f . In [19] Solecki strengthened
Theorem 8.1 proving the following result.

Theorem 8.2 (Solecki, [19, Theorem 3.1]). Let X be a Souslin space, Y be a Polish
space and f : X → Y be Baire class 1. Then

• either f is piecewise continuous
• or L � f , or L1 � f .

Theorem 8.1 follows from Theorem 8.2 because neither L nor L1 is Gδ-
measurable.

From now until the end of this section we fix a Polish space X and a Baire class
1, not piecewise continuous function f : X → ωω (ωω can be replaced with any
zero-dimensional Polish space). Consider the σ-ideal If on X generated by closed
sets on which f is continuous. We will prove that the forcing PIf is equivalent to
Miller forcing (see Corollary 8.10).

Suppose C ⊆ X is a compact set and c : 2ω → C is a homeomorphism. We call
(c, C) a copy of the Cantor space and denote it by c : 2ω ↪→ C ⊆ X. We denote by
Q the set of all points in 2ω which are eventually equal to 0.
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Proposition 8.3. Suppose that G ⊆ X is a Gδ set such that G 	∈ If . There exist
an open set U ⊆ ωω and a copy of the Cantor space c : 2ω ↪→ C ⊆ X such that

• f−1[U ] ∩ C = c[Q],
• C \ c[Q] ⊆ G.

Proof. Denote {τ ∈ 2<ω : τ = ∅ ∨ τ (|τ | − 1) = 0} by Q.

Definition 8.4. A Hurewicz scheme is a Cantor scheme of closed sets Fτ ⊆ X
for τ ∈ 2<ω together with a family of points xτ ∈ X and clopen sets Uτ ⊆ ωω for
τ ∈ Q such that

• xτ�0 = xτ , Uτ�0 = Uτ ,
• xτ ∈ Fτ ∩ f−1[Uτ ].

Suppose that G =
⋂

n Gn with each Gn open and Gn+1 ⊆ Gn. We will construct
a Hurewicz scheme such that for each τ ∈ 2n the following two conditions hold:

•
(
Fτ \ f−1

[ ⋃
σ∈2n∩Q Uσ

])
∩G 	∈ If ,

• Fτ�1 ⊆
(
Fτ \ f−1

[ ⋃
σ∈2n∩Q Uσ

])
∩G|τ |.

We need the following lemma (its special case can be found in the proof of the
Jayne-Rogers theorem in [13]).

Lemma 8.5. If F is a closed set in X and F ∩G 	∈ If , then there is x ∈ F and a
clopen set U ⊆ ωω such that f(x) ∈ U and for each open neighborhood V of x

(V \ f−1[U ]) ∩G 	∈ If .

Moreover, if W ⊆ ωω is a clopen set such that F ∩ f−1[W ] 	∈ If , then we may
require that U ⊆ W .

Proof. First let W = ωω. Without loss of generality assume that for each nonempty
open set V ⊆ F we have V ∩G 	∈ If . Suppose that the conclusion is false. We show
that f is continuous on F , contradicting the fact that F ∩G 	∈ If . Pick arbitrary
x ∈ F and a clopen set U such that f(x) ∈ U . By the assumption there is an open
neighborhood V � x such that (V \ f−1[U ])∩G ∈ If . We claim that V ⊆ f−1[U ].
Suppose otherwise; then there is y ∈ V such that f(y) 	∈ U . Pick a clopen set U ′

such that U ′ ∩ U = ∅ and f(y) ∈ U ′. Again, by the assumption there is an open
neighborhood V ′ of y such that (V ′ \ f−1[U ′]) ∩ G ∈ If . Now V ′′ = V ∩ V ′ is a
nonempty open set and since U ′ ∩ U = ∅ we have that

V ′′ ∩G ⊆ (V \ f−1[U ]) ∩G ∪ (V ′ \ f−1[U ′]) ∩G.

This shows that V ′′ ∩G ∈ If , a contradiction.
Now, if W ⊆ ωω is a clopen set such that F ∩ f−1[W ] 	∈ If , then f−1[W ]∩ F is

an Fσ set since f is Baire class 1. So there is a closed set F ′ ⊆ F such that F ′ 	∈ If

and f [F ′] ⊆ W . Applying the previous argument to F ′ we get a clopen set U such
that U ⊆ W . This ends the proof. �

Now we construct a Hurewicz scheme. First use Lemma 8.5 to find x∅, U∅ and
put F∅ = X. Suppose the scheme is constructed up to the level n− 1.

First we will construct Uσ�0 and xσ�0 for each σ ∈ 2n−1 \ Q (recall that for
σ ∈ 2n−1 ∩Q we put Uσ�0 = Uσ and xσ�0 = xσ).

For each σ ∈ 2n−1 \ Q find a nonempty, perfect closed set Cσ ⊆ ωω such that
Fσ ∩ f−1[V ] 	∈ If for each nonempty relatively clopen set V ⊆ Cσ (this is done by
removing from ωω those clopen sets U such that Fτ ∩ f−1[U ] ∈ If ).
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Lemma 8.6. There is a sequence of nonempty clopen (in ωω) sets 〈Wτ : τ ∈
2n−1 \Q〉 such that

• Wτ ∩ Cτ 	= ∅,
• for each σ ∈ 2n−1 ∩Q and for each open neighborhood V of xσ we have((

V \
⋃

σ′∈2n−1∩Q

f−1[Uσ′ ]
)
\

⋃
τ∈2n−1\Q

f−1[Wτ ]

)
∩G 	∈ If .

Proof. Enumerate 2n−1 \Q in a sequence 〈τi : i < 2n−2〉 and construct the sets Wτi

by induction on i < 2n−2. Fix i < 2n−2 and suppose that Wτj are already defined
for j < i and ((

V \
⋃

σ∈2n−1∩Q

f−1[Uσ]
)
\

⋃
j<i

f−1[Wτj ]

)
∩G 	∈ If .

Claim. If O0 and O1 are two disjoint nonempty clopen sets in ωω, then for each
σ ∈ 2n−1 ∩Q there exists k ∈ {0, 1} such that for each open neighborhood V of xσ

the following holds:((
V \

⋃
σ∈2n−1∩Q

f−1[Uσ]
)
\

⋃
j<i

f−1[Wτj ]

)
∩G \ f−1[Ok] 	∈ If .

Proof. Notice that for a single open neighborhood V of xσ one k ∈ {0, 1} is good.
If 〈Vn : n < ω〉 is a base at xσ, then some k ∈ {0, 1} is good for infinitely many of
them. �

Enumerate 2n−1 ∩Q in a sequence 〈σk : k < 2n−2〉. Using the above Claim and
the fact that Cτi is perfect, find a decreasing sequence of nonempty clopen sets
Ok ⊆ ωω for k < 2n−2 such that

• Ok ⊆ Ok−1,
• Ok ∩ Cτi 	= ∅,
• for each open neighborhood V of xσk((

V \
⋃

σ∈2n−1∩Q

f−1[Uσ]
)
\

⋃
j<i

f−1[Wτj ]

)
∩G \ f−1[Ok] 	∈ If .

Finally, let Wτi be the last of the Ok’s. �

By the assumption on Cτ ’s, we have Fτ ∩ f−1[Wτ ] 	∈ If , for each τ ∈ 2n−1 \Q.
Using Lemma 8.5, for each τ ∈ 2n−1 \Q find a clopen set Uτ�0 ⊆ Wτ and a point
xτ�0 such that the assertion of Lemma 8.5 holds.

Now all Uτ and xτ for τ ∈ 2n ∩ Q are defined and we need to find sets Fσ for
σ ∈ 2n.

Claim. For each σ ∈ 2n−1 there are two disjoint If -positive closed sets Fσ�0, Fσ�1 ⊆
Fσ of diameters less than 1/n such that

Fσ�1 ⊆
(
Fσ \

⋃
τ∈2n∩Q

f−1[Uτ ]
)
∩Gn−1

and Fσ�0 contains xσ�0.
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Proof. For each σ ∈ 2n−1 take an open neighborhood Vσ of xσ�0 of diameter < 1/n.
The set

Vσ \ f−1
[ ⋃
τ∈2n∩Q

Uτ

]

is Fσ (since f is Baire class 1) which has If -positive intersection with G. Thus it
has a closed subset F such that F also has If -positive intersection with G. Now,
the set F ∩Gn−1 is Fσ, so find Fσ�1 which is a closed subset of F ∩Gn−1 and has
If -positive intersection with F ∩ G. Let Fσ�0 be a closed neighborhood of xσ�0,
disjoint from Fσ�1. �

This ends the construction of the Hurewicz scheme. To finish the proof, we put
U =

⋃
τ∈2<ω Uτ , C =

⋂
n<ω

⋃
τ∈2n Fτ and c : 2ω ↪→ C ⊆ X such that c(x) ∈⋂

n<ω Fx�n for each x ∈ 2ω. �

Proposition 8.7. The σ-ideal If is Π1
1 on Σ1

1.

Proof. This follows from Corollary 3.8 since the family of closed sets on which f is
continuous is hereditary and Π1

1. �

Remark 8.8. Using Proposition 8.3 we can explicitly write the formula defining the
set of closed sets in If . Let K̃ ⊆ ωω ×X be the universal closed set. Notice that
K̃x 	∈ If if and only if

∃U ⊆ 2ω open ∃c : 2ω → K̃x topological embedding(
c[2ω] ∩ f−1[U ] is dense in c[2ω]

)
∧

(
c[2ω] \ f−1[U ] is dense in c[2ω]

)
.

Indeed, the left-to-right implication follows from Proposition 8.3 (when G = X).
The right-to-left implication holds because the set f−1[U ] is an Fσ set which is
dense and meager on c[2ω], therefore it cannot be a relative Gδ set on c[2ω]. Hence,
by the Jayne-Rogers theorem we have that f is not piecewise continuous on c[2ω]

and K̃x 	∈ If .
Now, the above formula is Σ1

1. Indeed, it is routine to write a Σ1
1 formula saying

that c : 2ω → Kx is a topological embedding. The first clause of the conjunction
can be written as

∀τ ∈ 2<ω ∃x ∈ [τ ] f(c(x)) ∈ U,

which is Σ1
1, and analogously we can rewrite the second clause.

If G ⊆ X is a Gδ set and b : ωω → G is a homeomorphism, then we call (b,G) a
copy of the Baire space and denote it by b : ωω ↪→ G ⊆ X.

Proposition 8.9. For any B ∈ PIf there is an If -positive Gδ set G ⊆ B and a
copy of the Baire space b : ωω ↪→ G ⊆ X such that

If�G = {b[A] : A ⊆ ωω, A ∈ Kσ}.

Proof. By Solecki’s theorem and the continuous reading of names we may assume
that B is of type Gδ and f is continuous on B. Applying Proposition 8.3 we
get a copy of the Cantor space c : 2ω ↪→ C ⊆ X and an open set U ⊆ ωω such
that f−1[U ] ∩ C = c[Q] and C \ c[Q] ⊆ B. Let G = C \ c[Q]. Via a natural
homeomorphism of ωω and 2ω \Q we get a copy of the Baire space b : ωω ↪→ G ⊆ X.
Note that C 	∈ If (by Theorem 8.1, since f−1[U ] ∩ C is not Gδ in C) and hence
also G 	∈ If .
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The σ-ideal If �G is generated by the sets D ∩ G for D ⊆ C closed such that
f�D is continuous. The σ-ideal {b[A] : A ⊆ ωω, A ∈ Kσ} is generated by compact
subsets of G. We need to prove that these two families generate the same σ-ideals
on G.

If D ⊆ G is compact, then D is closed in C and f is continuous on D because f
is continuous on G. Hence D = D ∩G ∈ If�G.

If D ⊆ C is such that f is continuous on D, then D ∩G = (f�D)−1[ωω \ U ] is a
closed in D subset of G, therefore compact.

This ends the proof. �
As an immediate consequence of Proposition 8.9 we get the following corollary.

Corollary 8.10. The forcing PIf is equivalent to Miller forcing.

Recall that Miller forcing has the following property: if x ∈ ωω is a real added
in a generic extension, then either x is a ground model real or there is a ground
model Borel automorphism ϕ : ωω → ωω such that ϕ(x) is the generic real. From
this and the above corollary we get the following result, which does not mention
forcing at all.

Corollary 8.11. For any If -positive Borel set B and any Borel function g : B →
ωω there is an If -positive set C ⊆ B such that g � C is either 1-1 or constant.

Recall a theorem of Kechris, Louveau and Woodin [10, Theorem 7] which says
that any coanalytic σ-ideal of compact sets in a Polish space is either a Gδ set or is
Π1

1-complete. If X is compact, then If ∩K(X) is a coanalytic σ-ideal of compact
sets by Proposition 8.7.

Proposition 8.12. If ∩ F (X) is a Π1
1-complete set in F (X).

Proof. As in Proposition 8.9 take c : 2ω ↪→ C ⊆ X as a copy of the Cantor space
and b : ωω ↪→ G ⊆ X a copy of the Baire space, and G ⊆ C a dense Gδ set in
C. Recall that the Borel structure on F (C) is induced from the topology of the
hyperspace.

It is well known (see [9, Exercise 27.9]) that the set Kσ∩F (ωω) is a Π1
1-complete

set in F (ωω). Let ϕ : F (ωω) → K(C) be the function

F (ωω) � F �→ b[F ] ∈ K(C),

where A denotes the closure of A in C (for A ⊆ G). It is routine to check that ϕ
is Borel-measurable. By Proposition 8.9 we have ϕ−1[If ] = Kσ. This proves that
If is Π1

1-complete. �
Piecewise continuity of functions from ωω to ωω has already been investigated

from the game-theoretic point of view. In [20] Van Wesep introduced the Backtrack
Game GB(g) for functions g : ωω → ωω. Andretta [1, Theorem 21] characterized
piecewise continuity of a function g in terms of the existence of a winning strategy
for one of the players in the game GB(g).

For a Borel not piecewise continuous function g : ωω → ωω, the Backtrack Game
can be used to define a fusion scheme for the σ-ideal Ig. In the remaining part of
this section, we will show a very natural fusion scheme for Ig when g : 2ω → 2ω is
Borel, not piecewise continuous.

Recall that partial continuous functions from 2ω to 2ω with closed domains can
be coded by monotone functions from 2<ω into 2<ω (see [9, Section 2B]).
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If T ⊆ 2<ω is a finite tree, m : T → 2<ω is a monotone function and n < ω,
then we say that (T,m) is a monotone function of height n if m(τ ) is of length n
for each terminal node τ of T . We say that (T1,m1) extends (T0,m0) if T1 is an
end-extension of T0 and m1 ⊇ m0.

We define the game scheme Gpc as follows. In his n-th move, Adam picks ξn ∈ ωn

such that ξn ⊇ ξn−1 (ξ−1 = ∅). In her n-th turn, Eve constructs a sequence of finite
monotone functions 〈Hn

i : i < ω〉 such that

• ∀∞i Hn
i = ∅,

• Hn
i extends Hn−1

i ,
• Hn

i is a monotone function of height n whenever Hn
i 	= ∅.

In each play in Gpc, for each i < ω we have that Hi =
⋃

n<ω Hn
i is a monotone

function which defines a partial continuous function hi with closed domain (possibly
empty).

Let g : ωω → ωω be a not piecewise continuous function and B ⊆ ωω. The game
Gg

pc(B) is a game in the game scheme Gpc with the following payoff set. Eve wins
a play p in Gg

pc(B) if for x =
⋃

n<ω ξn (ξn is the n-th move of Adam in p)

x 	∈ B ∨ ∃i ∈ ω (x ∈ dom(hi) ∧ g(x) = hi(x))

(where the functions hi are computed from Eve’s moves as above). Otherwise Adam
wins p.

Proposition 8.13. For any set A ⊆ ωω, Eve has a winning strategy in the game
Gg

pc(A) if and only if A ∈ Ig.

Proof. If A ∈ Ig, then there are closed sets Cn ⊆ 2ω such that A ⊆
⋃

n Cn and
g�Cn is continuous. Each function g�Cn has its monotone function Gn and Eve’s
strategy is simply to rewrite the Gn’s.

On the other hand, suppose that there is a winning strategy for Eve and let
S be the tree of this strategy. The nodes of S are determined by Adam’s moves,
so S is isomorphic to 2<ω. For τ ∈ T let mτ

k : T τ
k → 2<ω be the monotone

function Hk defined by Eve in her last move of the partial play τ . Denote by Hτ
k [τ ]

the restriction of mτ
k to T τ

k (τ ). Put Gk =
⋃

τ∈T Hτ
k [τ ] and let gk be the partial

continuous function with closed domain determined by the monotone function Gk.
It follows from the fact that S is winning for Eve, that g�A ⊆

⋃
n gn. This proves

that A ∈ Ig. �

Corollary 8.14. If B ⊆ 2ω is Borel and g : 2ω → 2ω is a Borel, not piecewise
continuous function, then B ∈ Ig if and only if Eve has a winning strategy in
Gg

pc(B).
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