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LARGE TIME DECAY AND GROWTH FOR SOLUTIONS
OF A VISCOUS BOUSSINESQ SYSTEM

LORENZO BRANDOLESE AND MARIA E. SCHONBEK

ABSTRACT. In this paper we analyze the decay and the growth for large time of
weak and strong solutions to the three-dimensional viscous Boussinesq system.
We show that generic solutions blow up as ¢ — oo in the sense that the
energy and the LP-norms of the velocity field grow to infinity for large time
for 1 < p < 3. In the case of strong solutions we provide sharp estimates, both
from above and from below, and explicit asymptotic profiles. We also show
that solutions arising from (ug,0g) with zero-mean for the initial temperature
0o have a special behavior as |z| or ¢ tends to infinity: contrary to the generic
case, their energy dissipates to zero for large time.

1. INTRODUCTION

In this paper we address the problem of heat transfer inside viscous incompress-
ible flows in the whole space R3. Accordingly with the Boussinesq approximation,
we neglect the variations of the density in the continuity equation and the local heat
source due to the viscous dissipation. We rather take into account the variations
of the temperature by putting an additional vertical buoyancy force term in the
equation of the fluid motion.

This leads us to the Cauchy problem for the Boussinesq system:

00 +u - VO = KAD,

du+u-Vu+ Vp =vAu+ [bes,
(1.1) Vou=0

ul—o = ug, 0= = 0o,

Here u: R? x Rt — R3 is the velocity field. The scalar fields p: R® x Rt — R
and #: R? x RT — R denote respectively the pressure and the temperature of the
fluid. Moreover, e3 = (0,0,1), and 8 € R is a physical constant. For the decay
questions that we address in this paper, it will be important to have strictly positive
viscosities in both equations: v,x > 0. By rescaling the unknowns, we can and do
assume, without loss of generality, that v = 1 and 8 = 1. To simplify the notation,
from now on we take the thermal diffusion coefficient £ > 0 such that x = 1.

As for the Navier-Stokes equations, obtained as a particular case from (LI
putting 6 = 0, weak solutions to (I.T)) do exist, but their uniqueness is not known.
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The global existence of weak solutions, or strong solutions in the case of small data,
has been studied by several authors. See, e.g., [1], [I1], [1I7], [I8], [34]. Conditional
regularity results for weak solutions (of Serrin type) can be found in [9]. The
smoothness of solutions arising from large axisymmetric data is addressed in [2] and
[24]. Further regularity issues on the solutions also have been discussed [20], [T5].

The goal of this paper is to study in which way the variations of the temperature
affect the asymptotic behavior of the velocity field. We point out that several differ-
ent models are known in the literature under the name of “viscous (or dissipative)
Boussinesq system”. The asymptotic behaviour of viscous Boussinesq systems of
a different nature have been recently addressed, e.g., in [3, 12]. But the results
therein cannot be compared with ours.

Only a few works are devoted to the study of the large time behavior of solutions
to (D). See [211 26]. These two papers deal with self-similarity issues and stability
results for solutions in critical spaces (with respect to the scaling). On the other
hand, we will be mainly concerned with instability results for the energy norm, or
for other subcritical spaces, such as LP with p < 3.

A simple energy argument shows that weak solutions arising from data 6y €
L'NL? and ug € L2 satisfy the estimates

lu()]]2 < O+ )1

and

10(t)]]2 < C(1+ )2/,
The above estimate for the temperature looks optimal, since the decay agrees with
that of the heat kernel. On the other hand the optimality of the estimate for the
velocity field is not as clear.

For example, in the particular case 6y = 0, the system boils down to the Navier—
Stokes equations, and in this simpler case one can improve the bound for the velocity
into ||u(t)]l2 < |Juoll2. In fact, ||u(t)||2 — O for large time by a result of Masuda [28].
Moreover, in the case of Navier-Stokes the decay of ||u(t)||2 agrees with the L?-
decay of the solution of the heat equation. See [35] 25, [B9] for a more precise
statement.

The goal of this paper will be to show that the estimate of weak solutions
u(t)]]2 < C(1 +t)*/* can be improved if and only if the initial temperature has
zero mean. To achieve this, we will establish the validity of the corresponding lower
bounds for a class of strong solutions.

In particular, this means that very nice data (say, data that are smooth, fast
decaying and “small” in some strong norm) give rise to solutions that become large
as t — oo. Our results imply the growth of the energy for strong solutions:

(1.2) c1+ )Y < |ut)| <CA+)Y4,  t>1.

The validity of the lower bound in (L2) (namely, the condition ¢ > 0) will be
ensured whenever the initial temperature is sufficiently decaying but

[o o

We feel that is important to point out here an erratum to the paper [23]. Unfor-
tunately, the lower bound in ([2)) contredicts a result in [23, Theorem 2.3], where
the authors claimed that ||u(t)|2 — 0 under too general assumptions, weaker than
those leading to our growth estimate. The proof of their theorem (in particular,



DECAY AND GROWTH OF SOLUTIONS OF BOUSSINESQ 5059

of inequalities (5.6) and (5.8) in [23]) can be fixed by putting different conditions
on the data, including [y = 0. This is essentially what we will do in part (b) of
our Theorem [Z2 below. Similarly, the statement of Theorem 2.4 in [23] contradicts
our lower bound (6] below (inequalities (5.18)—(5.20) in their proof do not look
correct). This will also be corrected by our Theorem 221 We would like to give
credit to the paper [23] (despite the above mentioned errata), because from there
we obtained inspiration for our results of Sections [3] and @l

Our main tool for establishing the lower bound will be the derivation of exact
pointwise asymptotic profiles of solutions in the parabolic region |z| > v/t. This
will require a careful choice of several function spaces in order to obtain as much
information as possible on the pointwise behavior of the velocity and the tempera-
ture. A similar method has been applied before by the first author in [6] in the case
of the Navier—Stokes equations, although the relevant estimates were performed
there in a different functional setting.

Even though several other methods developed for Navier—Stokes could be effec-
tive for obtaining estimates from below (see, e.g., [13} 22], [30]), our analysis has the
advantage of putting into evidence some features that are specific to the Boussi-
nesq system: in particular, the different behavior of the flow when |z3] — oo or
when /22 + 23 — 00, due to the verticality of the bouyancy forcing term ez (see
Theorem below). Moreover, the analysis of solutions in the region |z| > v/t
and our use of weighted spaces completely explain the phenomenon of the energy
growth: the variations of the temperature push the fluid particles in the far field.
Even though in any bounded region the fluid particles slow down as ¢ — oo (this
effect is measured e.g., by the decay of the L>°-norm established in Proposition 23],
large portions of fluid globally carry an increasing energy during the evolution. Our
result thus illustrates the physical limitations of the Boussinesq approximation, at
least for the study of heat convection inside fluids filling domains where Poincaré’s
inequality is not available, such as the whole space.

In fact, our method also applies to weighted LP-spaces, so let us introduce the

weighted norm
1/p
1912z = (156 + 1ol as)

Then we will show that strong solutions starting from suitably small and well
decaying data satisfy, for ¢ > 0 large enough,

(13) e+ < Jullzy < OO+ HICTED
for all

3
r>0, 1<p<oo, T4+ = <3
p

As before in ([I2)), these lower bounds hold true with a constant ¢ > 0 as soon as
the initial temperature has non-zero mean. Notice that in this case the LP-norms
asymptotically blow up for large time if and only if p < 3.

The above restriction r + % < 3 on the parameters is optimal. Indeed, under the
same conditions yielding to (L3)) we will also prove that when » > 0, 1 < p < oo
and r + % > 3, then one has ||u(t)|| > = oo, for all £ > 0. The fact that the L2-
norm becomes infinite instantaneously for this range of the parameters is related to
the fact that the velocity field immediately spatially spreads out and cannot decay
faster than |z| =3 as |z| — oo for ¢ > 0, and this even if uy € C§°(R3).
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As we observed before, the lower bound in (I3) breaks down when [ 6, = 0.
In such a case, our decay estimates can be improved. We will establish the upper
bound for weak solutions

(1.4) lu(®)ll2 < C"(1+6)7H*

by the Fourier splitting method. This method was first introduced in [35]. We will
need no smallness assumption on ug to prove (L4). We have to put, however, a
smallness condition of the form

(1.5) 1601 < €o.

We do not know if it is possible to get rid of (LT to establish (I.4]). Such a smallness
condition, however, looks natural, as it respects the natural scaling invariance of
the system (LTJ).

As before, the decay estimate (4] is optimal for generic solutions satisfying
J 6o = 0. Indeed, when we start from localized and small velocity, we can establish
the upper-lower bounds for strong solutions

(1.6) CA+1)20H 7D < u(t)|| g < C(1+1)2 T2,
for all ,
r>0, 1<p<oo, T+];<4.

Similarily as before, the validity of the lower bound (the condition ¢’ > 0) now
requires a non-vanishing condition in the first moments of 6.

1.1. Notation. We denote by C§° the space of smooth functions with compact
support. The L? will be denoted by || - ||, and in the case p = 2 we will simply
write || - ||. Moreover,

V={¢eCy|V-¢=0},
L? denotes the completion of V under the norm || - ||,, and V is the closure of V in
H.

We will adopt the following convention for the Fourier transform of integrable
functions: Ff(&) = f(f) = [ f(z)e?™®¢ dz. Here and throughout the paper all
integral without integration limits are over the whole R3.

The notation LP¢ and LP have a different meaning. For 1 < p < oo and
1 < ¢ < 00, LP'? denotes the classical Lorentz space. For the definition and the basic
inequalities concerning Lorentz spaces (namely the generalisation of the straightfor-
ward LP-L? Holder and Young convolution inequalities), the reader can refer to |27,
Chapter 2]. Here we just recall that LPP agrees with the usual Lebesgue space LP
and that LP>*° agrees with the weak Lebesgue space L, (or Marcinkiewicz space)

LE, = {f :R" — C, measurable , ||f||pr < co}.

The quasi-norm

=

[z, = supt[As(t)]
t>0
is equivalent to the natural norm on LP*°, for 1 < p < oco. Here, as is usual, we
define
Ap(s) = Ma: f(x) > s},
where A denotes the Lebesgue measure. On the other hand, for 1 < p < oo and
0 <r < oo, L? is the weighted Lebesgue space consisting of the functions f such
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that (14 |z])?f € LP. Notice that the bold subscript o introduced above is not a
real parameter: in the notation LP, this subscript simply stands for “solenoidal”.
To denote general constants we use C' which may change from line to line. In
certain cases we will write C'(a) to emphasize the constants’ dependence on «.
We denote by €2 the heat semigroup. Thus, e®ug = [ g:(x —y)uo(y) dy, where
g¢(x) = (47)=3/2¢=121°/(41) i5 the heat kernel.
We denote by E(x) the fundamental solution of —A in R3. The partial derivatives
of E are denoted by Ey;, Ey; z,, etc.

1.2. Organization of the paper. All the main results are stated without proof
in Section @I The statement of our theorems are split into two parts: part (a) is
devoted to the properties of solutions in the general case (where the integral [ 6y is
not necessarily zero). In part (b) of our theorems we are concerned with the special
case [0y =0.

The rest of the paper is organized as follows. Sections BH] are devoted to the
proof of our results on weak solutions and Sections to strong solutions. In
Section [7] we collect a few technical remarks.

2. STATEMENT OF THE MAIN RESULTS

2.1. Results on weak solutions. We will consider weak solutions to the viscous
Boussinesq equations and establish existence and natural decay estimates in LP-
spaces, 1 < p < oo, for the temperature, together with bounds for the growth
of the velocities. Such estimates rely on the fact that in both equations of the
system ([[LT]) we have a diffusion term. They complete those obtained in [I6] where
there was no temperature diffusion.

We start by recalling the basic existence result of weak solutions to the sys-

tem (II)). See, e.g., [9] [16].

Proposition 2.1. Let (6y,up) € L? x L2. There exists a weak solution (6,u) of the
Boussinesq system (1)), continuous from RT to L? with the weak topology, with
data (ug,8p) such that, for any T > 0,

0€L*0,T; H)YNL>(0,T; L),  we L*0,T;V)NL>®(0,T;L2).

Such a solution satisfies, for all t € [0,T], the energy inequalities

t
21) oo +2 [ 190 as < oo
and
t
(2.2) u®I +2 [ [Vu(s)|? ds < +C (luoll + 2160])
0

for all t > 0 and some absolute constant C' > 0.

One can improve the growth estimate on the velocity as soon as 6y belongs to
some LP-space, with p < 2. For simplicity we will consider only the case 6y €
L*n L2

Moreover, it is natural to ask under which supplementary conditions on the
initial data one can ensure that the energy of the fluid ||u(t)|? remains uniformly
bounded. Theorem provides an answer. Beside a smallness assumption on
160]|1, we need to assume that [ 6y = 0.
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In addition, it is possible to prove that |u(¢)|] not only remains uniformly
bounded, but actually decays at infinity (without any rate). Explicit decay rates
for |lu(t)| can also be prescribed, provided the linear part e®ug decays at the ap-
propriate rate.

Theorem 2.2. (a) Let (6p,up) € L? x L%2. Under the additional condition
0y € L' the estimates on the weak solution constructed in Proposition 211
can be improved into

10(t)]|* < C(t+1)7%,

(2.3) 1
lu(®)|? < C(t+1)=.

Moreover, if §g € L' N LP, for some 1 < p < oo, then
6@, < Cp)(t+1)7207%).

(b) (The [0y = O case.) In this part we additionally assume 6y € L} and
f00 = 0. Then there exists an absolute constant €9 > 0 such that if

(2.4) 1601 < €0,

then the weak solution of the Boussinesq system ((LIl) constructed in Propo-
sition 211 satisfies, for some constant C > 0 and all t € RT,

(2.5) lot))? <C(1+1t)~%
and

(2.6) u(t)]|? — 0 as t — oo.

Moreover, under the additional condition uy € L3/% N L2, we have
(2.7) lu()|* <C(1+1)~12.

The proof of part (a) of Theorem 22 is straightforward. Part (b) is more subtle;
its proof relies on the following inductive argument. Assuming that the approximate
velocity «”~! grows in L? at most like ¢1/8 (which is actually better than provided
by Proposition [Z]), we can prove that the same growth estimate remains valid
for u”. A smallness condition on 6y is needed to ensure that in the inequality
u™(t)|| < C(1 +t)*/® the constant can be taken independently on n. With this
improved control on the growth of the velocity, by applying the Fourier splitting
method (introduced in [35]) and a few boot-strapping we can improve our estimates

up to the rates given in (Z8) and (27).

Remark 2.3. Solutions of the Boussinesq system (1)) with energy decaying faster
than ¢—'/2 might exist, but they are likely to be highly non-generic. Indeed, it seems
difficult to construct such solutions, assuming only that the data belong to suitable
function spaces (possibly with small norms). The main obstruction is that one
would need stringent cancellations properties on the data, which however turn out
to be non-invariant under the Boussinesq flow. A possible way to obtain such fast
decaying solutions would be to start with data satisfying some special rotational
symmetries, as those described in [5].
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2.2. Results on strong solutions. The best way to prove the optimality of the
estimates contained in Theorem is to establish the corresponding lower bound
estimates at least for a subclass of solutions. For the study of the estimates from
below we will limit our considerations to a class of strong solutions. This is not a
real restriction, as lower bound estimates established for solutions emanating from
well localized, smooth and small data are expected to remain valid in the larger
class of weak solutions. Studying strong solutions also has the advantage of better
putting in evidence some interesting properties specific of the Boussinesq system,
such as the influence of the vertical buoyancy force on the pointwise behavior of
the fluid in the far-field.

The existence of strong solutions to the system (I)) will be ensured by a fixed
point theorem in function spaces invariant under the natural scaling of the equation.
Thus, if v € X, where X is a Banach space to be determined, we want to have, for
all A > 0,

luallx = |Jullx, where uy(z,t) = /\u(/\x,)\zt)

is the rescaled velocity. A suitable choice for norm of the space X, inspired by [10],
is

(2.8) lullx = ess sup  (Vt+ |z|)|u(z,t)|.
TER3,t>0

This choice for X is quite natural. Indeed, whenever |ug(x)| < C|z|~!, the linear
evolution e*®uqy belongs to X, and this paves the way for the application of the
fixed point theorem in such space.

More precisely, we define X' as the Banach space of all locally integrable diver-
gence-free vector fields u such that |ju|lx < oo, and continuous with respect to ¢
in the following usual sense: u(t) — u(0) in the distributional sense as t — 0, and
ess sup,cps || |u(z,t) —u(z,t')| = 0ast — ¢ if t’ > 0.

In the same way, if € belongs to a Banach space ), we want to have

191l = 116y, where Ox(z,t) = )\39()\37, /\2t)

is the rescaled temperature. We then define a Banach space ) of scalar functions
through the norm

(2.9) 16]ly = 116l Lge(Lry +ess sup  (VE+|z])?]0(x, 1)
T€ER3,t>0

and the natural continuity condition on the time variable as before.

The starting point of our analysis will be the following proposition, providing a
simple construction of mild solutions (u,0) € X x ). We will refer to them also
as strong solutions. Indeed, one could prove that such solutions turn out to be
smooth, as one could check by adapting to the system (LI) classical regularity
criteria for the Navier—Stokes equations like that of Serrin [37]. See the paper [9].
The smoothness of these solutions, however, plays no special role in our arguments.

Proposition 2.4. There exists an absolute constant € > 0 such that if

(2.10) 1661 < e, ess sup |z||00(2)| < e, ess sup |z| |uo(z)| <,
z€R3 z€ER3
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where uy is a divergence-free vector field, then there is a constant C > 0 and a
(mild) solution (u,0) € X x Y of () such that

(2.11) lul|x < Ce and 10]ly < Ce.
Moreover, these conditions define u and 6 uniquely.

The next proposition shows it is possible to obtain better space-time decay esti-
mates, provided one starts with suitably decaying data.

Proposition 2.5. (a) Let up and 6y be as in Proposition 24, and satisfying
the additional decay estimates, for some 1 < a < 3, b > 3, and a constant
C >0,

uo(z)| < C(1+ [2])77,

(2.12) o
[0o(2)] < C(1+ [z])~".
Then the solution constructed in Proposition [24] satisfies, for another con-
stant C' > 0 independent on x and t,
) < i -n (n—1)/2
(2.13) [u(z, )] < € Inf |71 +1)
and
) < i -n (n=3)/2
(2.14) 0] <€ int [o] 1+ 1)

(b) (The [0y =0 case.) Assume now 2 < a <4, a#3, and b >4, and let ug
and 0y satisfy the previous assumptions. If, in addition,

(2.15) /00 =0 and By € Ly,

then the decay of u and 0 is improved as follows:

P —n (n-2)/2
fu(z, )| <€ inf (1+]2])™"(1+1) :

(2.16)
< : -n (77_4)/2.
16(z,t)] < C’Oér:]fgb(l—i— |z)) (1 +¢t)

Recall that the fundamental solution of —A in R3 is E(z) = c|z|~!. Thus, in
the following asymptotic expansions, VE,, and VE,, .. are vectors whose compo-
nents are homogeneous functions of degree —3 and —4, respectively. In particular,
[VEq, (2)] < Cle| and [VE,, 4, (2)| < Cla| 2.

We are now in a position to state our main results on strong solutions. The
first theorem describes the asymptotic profiles of solutions in the parabolic region
|z| > v/t. Roughly, it states that all sufficiently decaying solutions (u,) of (L))
behave in such a region like a potential flow.

Theorem 2.6.

(a) Leta> 3 and b > 3. Let (u,0) be a (mild) solution of (L) satisfying the
decay estimates 213)-@2I4). Then the following profile for u holds:

(2.17) u(z,t) = ePug(z) + (/ 90) t (VEg,)(z) + R(x,1),
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where R(x,t) is a lower order term with respect to t VE,,(x) for |z| > /t,
namely,

R(z,t
(2.18) lim LJ
ol o0 tf]

=0.

(b) (The [0y = 0 case.) Assume now a > 2 and b > 4. Assume also that
0o = 0. Let (u,0) be a solution satisfying the decay condition (2.10).
Then the following profiles for u; (j =1,2,3) hold:

(219) (@, t) = Pug(x) — VEyu () - ( /O t / Y0y, ) dyds) + Rz, 1),

where R is a lower order term, for |z| > V> 1, namely

t
(2.20) lm @0
t,%—wo t|1’|74

=0.

The following remark should give a better understanding of the theorem.

Remark 2.7. (a) (The case [y # 0.) We deduce from the asymptotic pro-
file (ZI7) the following: when |e*®ug(z)| < t|z|~% (this happens, e.g.,
when we also assume |ug(z)| < Clz|~3 and |z| > vt > 1) and [0y # 0,
then

(2.21) u(z,t) ~ (/ 90> t (VEL,)(z), for || > V/t.

(The exact meaning of our notation and of statements (Z21)) and ([2:22])
below is made precise in the proof.)

(b) (The [ 6y = 0 case.) We deduce from the profile (Z.I9) the following: when
letAug(z)| < t|lz|~* (this happens, e.g., when we also assume |ug(z)| <
Clz|=* and |z| > v/t > 1), then

(222)  wj(z,t) ~ —VE, 4, () - (/Ot/yﬁ(y,s)dyds) for |z| > vt > 1.

A remarkable consequence of the previous theorem is the following.

Corollary 2.8.

(a) Leta> 3, b>3 and let (u,0) be a solution as in part (a) of Theorem 20
Then for all r,p such that

3
r >0, 1<p<oo, r + — < min{a, 3},
p
there exists tg > 0 such that the solution satisfies the upper and lower

estimates in the weighted-LP-norm

F(r+2-1)

(2.23) é(Jmaol) (1 +1) < )|y < ' (1 +4)70 T2

forallt > tg. Here, mg = f90 and ¢: RT — R is some continuous function
such that ¢(0) =0 and ¢(o) > 0 if o > 0.
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(b) (The [ 6y =0 case.) Under the assumptions of the previous item, with the
stronger conditions a > 2, b > 4 and the additional zero mean condition

mo = 0, let us set m = liminf;_,, % ‘fgf y0(y, s)dyds|. Then, for all r,p
such that

3
r >0, 1<p< oo, r 4+ — < min{a, 4},
p

we have

(2.24) o(m) (1+1)2"0 2 < lu(t)| < C'(1+1
for another suitable continuous function ¢: R* — R such that ¢(0) = 0
and ¢(o) >0 for o > 0.

Remark 2.9. When [ 6y # 0, we thus get b the sharp large time behavior

) g Y p larg
u(t) gy = 2570,
When [ 6y = 0 and m # 0 we have the faster sharp decay |lu(t)||pr ~ 2ty =2

The condition m # 0 is satisfied for generic solutions. It prevents 6 from having
oscillations at large times.

)%(T+%*2)

3. THE MOLLIFIED BOUSSINESQ SYSTEM AND EXISTENCE OF WEAK SOLUTIONS

The existence of weak solutions to the Boussinesq system is well known; see
[9]. Their uniqueness, however, is an open problem. Moreover, we do not know
if any weak solutions satisfy the energy inequality and the decay estimates stated
in Proposition 2l For this reason, we now briefly outline another construction of
weak solutions, which is well suited for obtaining all our estimates.

We begin by introducing a mollified Boussinesq system. As the construction
below is a straightworward adaptation of that of Caffarelli, Kohn and Nirenberg,
[8], we will be rather sketchy. For completeness we recall the definition of the
“retarded mollifier” as given in [8]. Let ¢(z,t) € C* such that

¥ >0, //1/)dxdt21, supptp C {(z,t): x> < t,1 <t <2}
0

For T > 0 and u € L?(0,T; L%), let @ : R® x R — R3 be

. u(z,t) if (x,t) € R? x (0,7T),
o otherwise.

Let 6 = T/n. We set
Us(u)(x,t) =62 P —y,—T u(x —y,t — 1) dydr.

Consider, for n =1,2,... and 6 = T'/n, the mollified Cauchy problem
0™ + Us(u"1) - VO = A",

(3.1) o + V- (Ts(u™) @u™) + Vp™ = Au™ + 0"es, reR3LtER,
V-u"=0

with data

(3.2) 0" |1=0 = 6o and u"|—o = ug.

The iteration scheme starts with u? = 0.
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Note that since divu = 0, we also have div (Us(u™)) = 0, for t € Ry. At each
step m, one solves recursively n + 1 linear equations: first one solves the transport-
diffusion equation (with smooth convective velocity) for the temperature; after 6"
is computed, solving the second part of (B.I]) amounts to solving a linear equation
on each strip R3 x (md, (m + 1)), for m =0,1,...,n — 1.

For solutions to (B]) we have the following existence and uniqueness result.

Proposition 3.1. Let (6y,ug) € L? x L2. For each n € {1,2,...} there exists
a unique weak solution (0™,u",p™) of the approzimating equations with data (B2
such that, for any T >0,

6™ € L*(0,T; HY) N L>(0,T; L?), u™ € L*(0,T; V)N L>=(0,T; L2)

and
p" e L3(0,T; L°/3) + L>=(0,T; LY).

Moreover, for all t > 0, ™ and u™ satisfy the energy inequalities as in 21)) and
@2). In particular, the sequences 0™, u™ and p™, n = 1,2,..., are bounded in their
respective spaces.

Proof. This can be proved using the Faedo-Galerkin method. As the argument is
standard (see, e.g., [38, Theorem 1.1, Chapter III] or [8, Appendix]), we skip the
details. We only prove the condition on the pressure since this is the only change
that we have to make in [§].

Taking the divergence of the second equation in [B1]) we get p = p}' + p%, where

Apt == 0,0;(uju})
i

and
Aply = 0., 0.

Thus, pT' € L5/3 (0,7 L5/ 3) uniformly with respect to n, by the energy inequality
for u™, interpolation, and the Calderon-Zygmund theorem, as proved in [8]. On the
other hand, —p§ = E,, * 6, where E(z) is the fundamental solution of —A. Thus,
E,.(r) = <% belongs to the Lorentz space L3/%>(R3). But 6" € L>(0,T;L?)

R
uniformly with respect to n, hence Young convolution inequality in Lorentz spaces
(see [27, Chapter 2]) yields pi € L>(0,T; L®) uniformly with respect to n. O

It follows from Proposition [3I] that, extracting suitable subsequences, p™ =
p? + p3, where (p}) converges weakly in L%/3(0,T;L%/3) and p§ converges in
L>(0,T; L% in the weak-* topology. Moreover, (u™) is convergent with respect
to the topologies listed in [8 pp. 828-829]. On the other hand (™) will be con-
vergent with respect to the same topologies, because all estimates available for u™
also hold for ™.

No additional difficulty in the passage to the limit in the non-linear terms arises in
the equation of the temperature other than those already existing for the Navier—
Stokes equations. Hence, the distributional limit (6, u,p) of a convergent subse-
quence of (6™, u™, p") is a weak solution of the Boussinesq system. This establishes
Proposition 211 O
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We finish this section by establishing the natural LP-estimates for the approxi-
mating temperatures:

Lemma 3.2. Let (0y,ug) € L? x L2 and let (™, u",p") be the solution of the
mollified Boussinesq system BIl) for some n € {1,2,...}. Also let 1 <p < co. If
0o € L' N LP, then

n ct —30-3)
(3.3) 6 (0)l < ol (% + 4) :
where A = A(p, ||6oll1, [|00lp) and ¢ > 0 is an absolute constant.
Proof. First notice that, for each n, ™ is the solution of a linear transport-diffusion
equation with smooth and divergence-free velocity ¥(u"~1). The LP decay es-
timates for these equations are well known. We reproduce the same proof as
in [I4] [19], stating the constants more explicitly, as we will need the expressions of
such constants later on.

A basic estimate (valid for 1 < p < 00) is

(3.4) 16 ()l < [160ll,-

See [14, Corollary 2.6] for a nice proof of ([B4]) that remains valid in the much more
general case of transport equations with (or without) fractional diffusion.

We start with the case 2 < p < co. Multiplying the equation for 8™ by p|6™|P—26™
and integrating, we get

4(p-1)

d n n
pr Ol IV (6" P) 0 < o.

By the Sobolev embedding theorem, H' C LS; hence

6™ ()15, < CIV (16" P/2) @)1

The interpolation inequality yields
10" @)1l < 0™ @)Dl @)l .

Combining these two inequalities with the basic estimate [|0™(¢)|l1 < [|6o]1, we
obtain the differential inequality
d Alp—1)

10" @Il <

@ (I 0lg) .

- 2p/(3p—3
Cpll6ol 77

Integrating this we get

8t 1 ) —3(p—-1)/2

||9”<t>|ps( e ——
30|/ CPY (|6 P

and estimate [B3) follows with

0 (2p)/(3p—3)
Y (n 0|1> |
100]]»

The case 1 < p < 2 is deduced by interpolation. O

In the p = 2 case, we obtain the following.
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Lemma 3.3. Let 0y € L' N L? and ug € L2. Let (™, u™,p"™) be the solution of the
mollified Boussinesq system BI) for some n € {1,2,...}. Then

n —3/4
16" ()| < 160l (C't + Ag) ",

(35) n ! 1/4
[ ()] < [luoll + C* o]l 77,

for two absolute constants C,C’' >0 and Ay = (||90||1/||90||2)4/3.
Proof. We only have to estimate the L2-norm of the velocity. We make use of the
identity

d

Gl @iz = [wroar

that can be justified exactly as for the mollified Navier-Stokes equations; see [§]
and [35].

Multiplying the velocity equation in the Boussinesq system (B.I) by u™ and
integrating, we get

d n n n n
(3.6) e O + 2V O < 20l @) ll16" @)l
Dividing by [Ju™(t)]|,

Sl < 1601

Now we use the decay of ||0™(t)|| obtained in Lemma[3:2] Integrating we obtain the
second part of (B.H]). O

4. IMPROVED BOUNDS FOR WEAK SOLUTION IN THE CASE [ 6y =0

The estimates obtained in Lemma [B.3] can be considerably improved provided
we additionally assume [ 6, = 0 and the moment condition 6y € Li. First of all,
from an elementary heat kernel estimate one easily checks that in this case

(4.1) |e260]12 < Ay(t+1)7/2,

where A; > 0 depends only on the data, through its L?-norm and the [ |z||0y(z)|dz
integral.

We will now see that in this case the approximated temperature 8™ (t) also decays
at the faster rate (¢t +1)7%/% in the L?-norm. Using this new decay rate for 6™ it is
possible to show that the velocities are uniformly bounded in L?. Once we have a
solution such that ||u"(¢)|| remains bounded as ¢ — oo, one can go further and prove
that u™ actually decays at infinity in L? at some algebraic decay rate, depending
on the decay of the linear evolution e?®ug. In view of the passage to the limit from
the mollified system ([B]) to the Boussinesq system (L], all the estimates must be
independent on n.

Proposition 4.1. Let (6o, uo) € (L{ NL?) x L2 and assume [ 6y = 0. There exists
an absolute constant g > 0 such that if

(4.2) [16ol]1 < €0,
then the solution of the mollified Boussinesq system [B.Il) with data (ug,6p) satisfies
(43) 0" (> <AL +1)"3



5070 LORENZO BRANDOLESE AND MARIA E. SCHONBEK

and
(4.4) [u™()]* < A

for alln € N and t € RT. Here A > 0 is some constant depending on the data ug
and 0y, and independent on n, and t.

Proof. We denote by C a positive absolute constant, which may change from line
to line. We also denote by Aj, As, ... positive constants that depend only on the
data. More precisely, A; = A;(||6o], 16ollz1, lluoll)-

Step 1. An auxiliary estimate.

We make use of the Fourier splitting method introduced in [35]. The first step
consists in multiplying the temperature equation by 8™ and to integrate by parts.
Using the Plancherel theorem in the energy inequality for 0™, we get

n 2 > 9
2dt/|9 (& 1) d€ < — /I£||9 (&,0)]? de.

Now split the integral on the right-hand side into S U §¢, where

(15 { €l < ((t’il)>1/2}

and k is a constant to be determined below. Noting that for £ € S¢ one has

—[¢]* < 2(t+1) it follows that

_ k _
& [ Feora <=5 [ Feor

— n( 2 v n( 2
— i [ Fenr a2 [P s

Multiplying by (1 +#)* we obtain
(4.6) jt[l—i—t /|9n§t|2d§]<kt+1’“/9n§t2d§,

where S is as in ([{5).
Taking the Fourier transform in the equation for ™ in ([B1l) we get

2

A7) TR < 2P R 4+ 2 ( [ e ||9"<s>|ds)

Hence

/ G, 1) e < C
S

e~ 1eF 002 + (1 +¢)~5/2 (/O lu™ ()] ||9”(S)|d$> ] :

Replacing this in ([{8) and applying the Plancherel theorem we get

asoremor] <c [Hem%nm 07 o (e enas) } |
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From where it follows, letting k = 7/2,
(4.8)

o ? < ool + | e 202 + %2

- t ([ o |e”<r>|dr)2 ).

Recalling the estimate (@1]) for the linear evolution we get, for all n € N,
(4.9)

107 (B2 < C | AL+ 8)752 4 (14 1) 72 / ( / ) ||9"<r>||dr) ds].

We now use the following inequality, deduced from estimate (B.5):
(4.10) 16" ()] < C 160l ¢/,

Putting this inside (9] we obtain a new bound for ||0"||?, namely
(4.11)

t s 2
ol <C |+ 072 4 ool [ [t siar) ds].
0 0

Step 2. The inductive argument.

We will now prove by induction that for all positive integers n we have
(4.12) [ @O < Nuoll + MEYE,

where M > 0 is some constant independent on n (but possibly dependent on the
data 6y, ug) to be determined. Notice that estimate ([AI2]) is actually better than
what we have so far (compare with the second part of ([B.H)).

For n = 1 the inductive condition {IZ) is immediate since u = 0. Let us now
prove that [|[u™|| < |lug|| + Mt'/8, assuming that [@I2) holds true.

We get from ([@II) and the induction assumption [@I2]) that

lo"@)|* < ¢ {Al(l + )72 4 |6o]| ol (1 + )7 + MZ[|o | F(1 + )77/

This implies

(4.13) 67 @) < €[V + ol (1ol + 1) 1+ 677
This last inequality will be used to estimate ||u™]|| as follows. First recall that
d,
(4.14) @l < 16" @ll-

After an integration in time we get, using ({I3)),
o (01 < ol + VA -+ 160l (ol + 31) 17

For the induction argument we need to prove ||u”|| < |luo|| + Mt'/®. Hence we need
that

¢|VAr + 6ol (ol +21) | < .
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Choosing M large enough, for example,
M = max{|[uo|, 2CVA; }
our condition then boils down to the inequality
[6olly < 1/(4C).

The validity of this last inequality is ensured by assumption (£Z). This concludes
the induction argument and establishes the validity of the estimate (Z12)) for all n.

Step 3. Uniform bound for the L2-norm of the velocities u™.

The result of Step 2 implies the existence of a constant A; > 0 such that, for all
n>1,

(4.15) =t (1)]|? < Aa(1 + t)M/™

In the proof of the previous step we also deduced that, for some Az > 0,
16711 < As(1+¢)7T%.

Combining such two estimates with inequality (@3] we easily get
10" ()]* < Aa(1+1)72

Now using this improved estimate for ||"||?> with (@I5) in (@3) arrive at
16" < As(1+ )%,

Going back to the differential inequality (@I4) we finally get, for some constant
Ag > 0 independent on n, and ¢t € RT,

lu™ (@)]* < As.
Replacing this in ([£9) we can further improve the decay of 8™ up to
167 (£)]* < A7(1+1¢)~5/2.
O

We would now like to improve the result of the previous proposition by estab-
lishing decay properties for |[u"(t)||?. Specifically, if we assume in addition that
the linear part of the velocity satisfies ||e'®uo||> < C(1 4 t)~/2 (this happens e.g.,

when uy € L?¥/2 N L2), then the same decay holds for the approximate velocities

u™.

Proposition 4.2. Let (6y,up) € (L} N L?*) x L2). Assume also that [0y =0 and
160l < €0, where gq is the constant obtained in the previous proposition.
Then the approzimate solutions of BIl) satisfy

llu"(t)|] — 0, as t — oo,
uniformly with respect to n. Moreover, if ug € L3/? N L2, then
(4.16) lu™(@)I* < A(L+6)712,

for some constant A > 0 independent on n and t.
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Proof. We denote by A > 0 a constant depending only on the data that might
change from line to line. The proof follows by the Fourier Splitting. Since the
estimates are independent of n, we simply denote the solutions by (6, ). Multiply
the second equation in ([B.I)) by u, integrate in space. By Proposition 1] we get

d 5
(4.17) Ellﬂ(t)ll%r?\lvﬂ\l2 <Ct+1)7r

Arguing as for the proof of inequality (6] we obtain

(418) G|+ DA < Cre+ 0t [ el as+ otk iR,

where S was defined in ({5]). From now on, k = 7/2.

We need to estimate |[u(,t)| for € € S. Computing the Fourier transform in the
equation for v in (@) and next applying the estimate ||u(t)||> < A obtained in
Proposition 1] we get

t t
e, ) < e G| + I / lu(s)|P ds + / 8(e, s)) ds
0 0
t
< 6P 5] + Atle] + / 6(e, 5)| ds.
0

But computing the Fourier transform in the equation for 6 in BI]) and applying
once more the estimates of Proposition [£.] we have

10(¢,5)] < e > B0 | + Alg] < [Bo(€)] + Al¢].
Hence,
(4.19) (e DI < A[e 1 (1512 + 16ol?) + 26

Integrating on S and applying inequality (@1l we deduce

/‘agﬂﬁdfﬁAbkmuM2+(L+olﬂ}
S

Putting this inside (I8) and integrating on an interval of the form [t.,¢], with
¢ > 0 arbitrary and ¢ chosen in such a way that |e*®ug||> < € for t > t., we obtain

lu(®)] =0,  ast— oco.

On the other hand, in the case uy € L3/2nN L2, we have

[ fate. 0P de < A+
s
Now going back to ([AI8)) and integrating in time we finally get
lu(t)|* < AL+ )72
O

We are now in a position of deducing our result on weak solutions to the Boussi-
nesq system (LIJ).
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Proof of Theorem 22l Now this is immediate: passing to a subsequence, the ap-
proximate solutions #" and u™ converge in L? (RT,R?) to a weak solution (0, u) of
the Boussinesq system (II]). Moreover, the previous lemmata imply that 8™ and

u” satisfy estimates of the form
[v" (@) < (1), for all t > 0,

where f(t) is a continuous function independent on n. Then the same estimate
must hold for the limit 6 and u, except possibly points in a set of measure zero.
But since weak solutions are necessarily continuous from [0,00) to L? under the
weak topology, ||0(¢)]| and ||u(t)|| are lower semi-continuous, and hence they satisfy
the above estimate for all ¢ > 0. This observation on the weak semi-continuity is
borrowed from [25]. O

5. STRONG SOLUTIONS: PRELIMINARY LEMMATA

The integral formulation for the Boussinesq system, formally equivalent to (II]),
reads

t
O(t) = 0y — / AT . (Qu)(s) ds,
0

5.1 t t
(5.1) u(t) = e®ug — / B=IAPY - (u @ u)(s) ds + / e=)APY(s)es ds,
0 0

V'UO:O.

The above system will be solved by applying the following abstract lemma, which
slightly generalizes that of G. Karch and N. Prioux (see [26] Lemma 2.1]).

Lemma 5.1. Let X and Y be two Banach spaces, let B: X x X — X and B: Y x
X — Y be two bilinear maps and let L: Y — X be a linear map satisfying the
estimates || B(u,v)llx < arllullx([vlx, B0, v)lly < aollfllyllullx and [|L(O)]x <
30|y, for some positive constants oy, as and as.

Let 0 < n < 1 be arbitrary. For every (U,0) € X x Y such that

ain(l _77)2
U 9|y < —————
Ul x + asl|©[ly < (201 T a2)?”
the system
(5.2) 0 =0+B0,u), u=U-+B(u,u)+ L(0)

has a solution (u,0) € X x Y. This is the unique solution satisfying the condition
ullx +aslflly <n(l —n)(2e0 + az).

Proof. In the case 0 < a3 < 1, one can take n = as. In such a particular case,
this lemma is already known; see [26] Lemma 2.1]. Therefore, we only have to
prove that we can get rid of the restriction 0 < a3 < 1. This is straightforward.
We introduce on the space ) an equivalent norm, defined by |0y = %HGHJ; By
Lemma 2.1 of Karch and Prioux, applied in the space (X, | - |lx) and (Y, | - |l»7),
we have that if

ai(1—n)?

Ullx + 0]y < o— 1
Ul + 10y < Gr oy
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then the system (B.2]) has a unique solution such that
[ullx + (101l < (1 —=n)(2a1 + az2).
The conclusion of Lemma [5.]] is now immediate. O

Remark 5.2. Using our improved version of Lemma 2.1 of [26], it is be possible
to get rid of the smallness assumption |5] < 1 in the main results of Karch and
Prioux [26].

Remark 5.3. The proof of Lemma 2.1 in [26] relies on the contraction mapping
theorem. In particular, the solution can be obtained by passing to the limit with
respect to the X x Y-norm in the iteration scheme (k =1,2,...):

(UO, 90) = (U’ @),
(uF 1,05 = (u® + B(uP, ub) + L(6%),6° + B(u*, 0%)).

See [26] for more details. See also [33, Lemma 4.3] for similar abstract lemmata.

(5.3)

Let a > 1. We define X, as the Banach space of divergence-free vector fields
u = u(z,t), defined and measurable on R? x RT, such that, for some C' > 0,

. <C —n (-1)/2,
(5.4) ju(a, 0] < C il |2 (1 +1)

In the same way, for b > 3 we define the space Y, of functons § € L°(L') satisfying
the estimates

. <O - (n-3)/2.
(5.5) 0,0 € int | laf (1 +1)

Such spaces are equipped with their natural norms.

They are obviously decreasing with respect to inclusion as a and b grow. Re-
calling the definition of X and ) in Section 2] we see that X1 = X' N L;ft with
equivalence of the norms and that Y3 =) N Lg‘ft.

The estimates ([213)-(214) in Proposition are thus equivalent to the condi-
tions u € X, and 0 € ).

We start with some elementary embeddings.

Lemma 5.4. Let LP'? be the Lorentz space, with 1 < p < oo and 1 < g < oco. Then
the following four inequalities hold:

[u(®)|zra < Cllullx 270, 3 <p< oo,
103 __ <
(5.6 [u(®)|[zra < Cllullx, 1 +8)2G7D 3 < p<oo,
10(t)|[zoa < ClOy 2572 1< p< oo,
10| ra < COlly, (1 + 82D, 1< p < oo,

for some constants C' depending only on p and q. In particular, choosing p = q one
gets the correponding estimates for the classical LP-spaces.

Proof. The above estimates for the weak Lebesgue spaces LP>*° are simple. Indeed,
if u € X, then |u(z,t)| < C|x|_3/pt%(%71), and one has only to recall that any
function bounded by |z|~3/? belongs to L>°. The other LP'*-estimates for u and
6 are contained in (B.6]). In the case 1 < ¢ < oo, we use the fact that LP9 is a real
interpolation space between LP~5> and LPT&>® foralll <p—ec<p < p+e < 0.
Therefore estimates (5.6 for all 1 < ¢ < oo follow from the corresponding estimates
in the particular case ¢ = co wia the interpolation inequality. O
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The first useful estimate in view of the application of Lemma[5.1lis the following.

Lemma 5.5. Let 1 < a < 3 and 0 € V3. We have, for some constant C > 0
depending only on a,

(5.7) IL(O)]lx, < Cl0]ly,-
Moreover,
(5.8) ILO)][x < C0]ly-

Proof. We prove only (57 since the proof of (B8] is essentially the same. By a
renormalization, we can and do assume that ||6||y, = 1. Let K(x,t) be the kernel
of the operator e!*P. Then we can write

t
L0 )= [ [ Kl =yt = 5100y e dy ds.
0
We have the well-known estimates for K (see, e.g., [7, Prop. 1]):
(5.9) IK(z,t)| < Clz|~%= G942 forall 0 <a <3,

where C' > 0 is come constant independent on z,¢ and 0 < a < 3. We also recall
the scaling relation

(5.10) K(x,t) = t~3/*K(x/Vt, 1)
and the fact that K(-,¢) € C*°(R3) for t > 0. The usual L? estimates for K are
(5.11) K@), < Ct3/2 %, 1<p<o
Using the L2-L? convolution inequality, we get
t
IL(6) ()] < c/ (t—s)3/*(1+5)"¥ds <C(1+1t)"V2
0
Owing to this estimate, the conclusion L(6) € X, will follow provided we prove the
pointwise inequality,
IL(O)|(x,1) < Colz|~ @ D/2 V(x,t) st. |z| > 2Vt
This leads us to decompose
L(0) = I + Iz + I3,
t t t
where 1= Jofiyi<iayj -+ 2= Jofamyi<iatzz - 209 T = Jolyiz 012, fomyizlatjz -
Using 0 € L°(L') we get
(5.12) |I1|(z,t) < Clz| 3,

which is even better in the region {(x,t): |z| > 2v/t} than what we need (recall
that 1 < a < 3). Now using |6(x,t)| < C|z|~3 and the scaling properties of K, we
obtain by a change of variables

t
Bl <l [ [ K1) dy
0 Jy|<|zl/(2V/s)

< Clz|~% t log(||/Vt)
< L|x|*at(a*1)/2

— 3—a
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for |z| > 2v/t, and 1 < a < 3. Next, again using |0(z,t)| < C|z|~ and |K(z,t)| <
Cla|™,

t
Ble<c [ [y tdyds < cpal e
0 J|y|>|=]/2

Therefore,
IL(O)|(z, 1) < 55|t/ 2] > 22,

Lemma is now established. O

We collect in the following lemma all the estimates on B(u,v) that we shall need.
(We will apply estimate (5.15]) in the proof of Proposition 24 estimate (514 for
Proposition 2:4] and estimate (5.14) in Theorem

Lemma 5.6. Let 1 < a < 3. For some constant C > 0, depending only on a, we

have

(5.13) [B(w,v)|[ y, < Cllull o[|v]l,
and

(5'14) HB(u’U)HX(m)* <

where (2a), = min{2a,4}. Moreover,
(5.15) 1B 0 < Cllull o]l -

Proof. We begin with the proof of the first estimate. As before, we can assume
v||, = 1. We start by writing

lull =

(5.16) B(u,v)(m,t)z/O/F(x—y,t—s)(u®v)(y,s) dy ds,

where F(z,t) is the kernel of the operator e!APV.
The well known counterpart of relations (B.9)-(E.I0) are (see, e.g., [29], [T, Prop.

1))
(5.17) |F(z,t)| < Cle|™m=G=m/2 forall 0 < n < 4
and some constant C' > 0 independent on x,t and on 0 < a < 4. Moreover,
(5.18) F(z,t) =t"2F(z/V1,1).
These bounds imply the useful estimates
(5.19) IF@)], <Ct*% (1<p<oo).
Applying the first of (5.8) with p = ¢ = 6, we get [|u(t)|¢ < t~/%. Similarily,
lv(s)||oe < (1 +t)~'/2. Hence,
t
[1B(u, v) o0 < C/ [1E(t = s)llo/sllu @ v(s)lle ds

(5.20) < C’/ “8/44-1/4(1 4 )71/ g

<Ol 41712

It remains to establish a pointwise estimate in the region {(x,t): |2| > 2v/t}.
Let us decompose
B(u,v) =1} + I,
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by splitting the integrals as fOtf\y|§\z|/2 ... and fg f\ylzlr\/Q ... . For the estimate
of I we use |u| < s71/2, |u| < |y|~*s@=D/2 and |F(z,t)| < Clz|~3t~ /2. For the
estimate of I, we again use |u| < s™/2, |v| < Cly|=%s(*=1/2 and the L'-estimate
for F' (see (5I9)). This leads to

IB(u,v)|(2,t) < Ctla] =72,

The conclusion follows by combining this with estimate ([520). The proof of es-
timate (B.I4) is similar. Notice the limitation (2a). < 4, which is due to the
restriction on 7 in inequality (GI7). The proof of (B.I5) also follows along the
same lines and is left to the reader. ]

We finish with B(6, u).

Lemma 5.7. Leta > 1, b > 3. For some constant C > 0 depending only on a,b,
we have

(5.21) 1B, w)ly, < Cllulyll]ly,

and

.22 1@, wlly, ., < Clully, ol -
Moreover,

(5.23) 1B, w5, < Cllull [l6]], -

Proof. As before, we give details only for the first estimate. Denoting F (z,t) as
the kernel of AV, we can write

(5.24) B(0,u)(x,t) = /O/ﬁ(x —y,t —3s)(0u)(y,s)dyds.

Notice that F rescales exactly as F'. Moreover,
(5.25) |F(,t)| < Cplz|™m~4=m/2 forall 0 <1 < oo.

These are the same estimates as for F, but there is now no limitation to the spatial
decay rate (i.e., the restriction 7 < 4 appearing in (5I7) can be removed).
Therefore, the space-time pointwise decay estimates for E(O, u)(x,t) can be
proved essentially in the same way as in the previous lemma.
The L'-estimate (useful for estimating the J-norm) is straightforward:

t
|B(6,u)(®)]|, < C/O (t =) 2 u(s)]loc|0(s)|l1 ds < Clluf 2 ]|6]y-
This allows us to conclude the lemma. O

Proof of Proposition 24l We need two elementary estimates on the linear heat
equation. Namely,

(5.26) e 8olly < C(I16olls + esssup |*[6o()] )

and

(5.27) et ug|x < Cesssup || |[ug(x)].
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Both estimates immediately follow from direct computations on the heat kernel
g¢(x) = (4 t)=3/2¢=121*/(4) (See, e.g., [429].) Here one only needs to use |g;(z)| <
C|z|~3 and the usual L'-L> estimates for g;. Letting U = ¢*2uy and © = e'*f,
by assumption (ZI0) we get, for some C' > 0, ||U]|x+||O]ly < Ce. The system (5.1])
can be written in the abstract form ([.2]). By inequalities (B8], (&15) and (523),
all the assumptions of Lemma [5.7] are satisfied provided € > 0 is small enough. The
conclusion of Proposition 2.4 readily follows. O

Proof of part (a) of Proposition 25 By construction, the solution (u, d) of Propo-
sition 24 is obtained as the limit in X x ) of the sequence (u*, §*) defined in ([E3).

By the first of assumptions (Z212)), and applying straightforward estimates on the
heat kernel (see also [4,29)]), [e!Aug(x)| < C(1+ |z])~* and |e!Puo| < C(1+1t)~%/2.
(Here we need 0 < a < 3.) These two conditions imply in particular that e*®ug €
X,. Similarily one deduces from the second inequality in [2I2) that 20y € Wy
(when b = 3 one also needs 0y € L1).

By estimate (5.2I) and assumption [Z.I0Q), for all k =1,2... we get

A
165 |y, < [le*2bolly, + Cell6®|ly, -

If € > 0 is small enough, then Ce < 1 (the size of the admissible e thus depends
on b and, as we will see later, also on a). Iterating this inequality shows that the

sequence (%) is bounded in ).
Combining estimates (57) with (BI3) we get

[, < llePuollx, + Cellu® |2, + Cllbklly,-

Assuming Ce < 1, we deduce from the boundness of (6%) in Y5 that (u*) is bounded
in X,. Thus, the solution (u,8) belongs to X, x ), and the first part of Proposi-
tion follows. O

Proof of part (b) of Proposition 23l The proof of the second part of Proposi-
tion 2Z.0lis quite similar but relies on the use of slightly different function spaces. So,
let @ > 2. We define X, as the Banach space of divergence vector fields u = u(x, t)
such that, for some C' > 0,

(5.28) lu(z,t)| < C inf |z|7"(1 +t)(77_2)/2,
0<n<a

For b > 4 we define the space Y, of functons 6 € L$°(L1) satisfying the estimates
) <O i -7 (n—-4)/2,
(5.29) 0, )] < C inf o] ™"(1+1)

Such spaces are equipped with their natural norms.

Notice that the spaces /'Ez and jb differ from the their counterparts X, and ),
only by the fact that the time decay conditions are slightly more stringent in the
former case.

The counterpart of estimates (5.6]) are

5.30) [u(®)llra < Cllul g, 1+, max{1,3} <p < oo,
10@)zra < CllOl5, 1+ 87D, 1<p<oc.
The first part of (530) can be completed by

(5.31) lut)ll < Cllullg, (1 +H)7H%,  if3<a<4
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This last estimate follows immediately by splitting the integral [ |u| into the regions
|z| >tV and |z| < tV/e.
We also notice the continuous embedding

(5.32) Vo CLE(LY),  ifb>4

that follows easily by splitting the integral [(1+|x[)|f(x, )| dz into [,

<L)/
and f‘z'>(1+t)1/2 ..., and using the bound |§(x,t)| < C(1 +t)~2 for the first term

and |0(z,t)| < C|z|~t for the second one.
Lemma 5.8. Let 2 < a <4. If [0(t)dx =0 for all t, then for some C > 0,
(5.33) ILO) 5, < Clioly,-

Assume, without restriction, |||y, = 1. The time decay estimate

2O = | [ e sy ots) a5 < o4

immediately follows by the L2-L? Young inequality. It only remains to prove that
L(#) can be bounded by C|z|~*(1+1)(@=2)/2 for all (z,t) belonging to the parabolic
region |z| > 2v/t. Thus, we decompose

(5.34) LO)=9L+L+Is= L1+ 5o+ 1Li3)+ L+ Is,

where I, I and I3 are as in Lemma, and and the terms contributing to I are
defined below. First,

(Iljl)j(m,t) E/O Kjg,(ac,t—s)/H(y,s) dyds =0

by the zero-mean assumption on 6. Next

(112 / K s(x / 0(y, s) dy ds
ly|>|x]/2

(113 // (/<x|/2 Kj,g(x—)\y,t—s)dy)-y@(y,s)d)\ds,

where we have used the Taylor formula to write the difference K; 3(z —y,t —s) —
]Kjvg(x,t - S).
From the bounds |K(z,t)| < Clz|™3 and |VK (z,t)| < Clz|~* we get

and

10| + |T1 3] < Clz| ™,

where we used the continuous embedding of L% into )74 that follows from the defini-
tion of such a space. The above pointwise estimate is even better, in our parabolic
region |z| > 2+/%, than what we actually need.

Next,
12 // j y7t - S)e(yv S) dde
le—y|<|x|/2
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can be bounded as follows:

t
|12| S C|I|4// <lal/2 |Kj,3($—y7t— S)|dyd8
z—y|<|z

< Cla|~*tlog(|z|/ V1)
< C|J)|_at(a_2)/2

for all (z,t) such that || > 2v/ (recall that 2 < a < 4)
Moreover, again using |K (z — y,t — s)| < Clz — y| =2 shows that

I3 / / ]Kj,3(x -y, t— S)@(y, 8)
lyl=|z]/2, lz—y|>|z|/2

can be bounded by
Clax|~ .
So far, we proved that
[L(0)|(x,t) < Cla|~t* /2 < Cla|~*(1 4 1)@=/

for all (z,t) such that |x| > 2v/t. Our previous L>®-bound on L(#) implies the
validity of such an estimate in the region |z| < 2v/t. We thus conclude that L(#) €
X, and Lemma [5.8] follows. O

The next lemma is a simple variant of Lemma,
Lemma 5.9. Let 2 <a <4 and b > 4. Then, for some constant C > 0,
(5.35)

and
(5.36) [B(w. )5, < Cllull o[l0]5,-

Proof. This lemma can be easily proved by following the steps of estimates (5.13])
and (5.21)). We thus skip the details.

The last estimates that we need concern the heat equation. The computations
are straightforward (see [4, 29]). Recall that 2 < a < 4 and a # 3. Moreover, we
assumed |ug(z)| < C(1+ |z|)~* When 2 < a < 3 then, as we already observed,
letAug(z)] < C(1+|z])~* and | ug| < C(141)~%/2. In fact this estimate remains
valid also for 3 < a < 4 (here one uses the fact that ug is integrable and divergence
free, and so [ug = 0). Thus, in particular, e'®ug € X,.

In the same way, one proves that by our assumptions e**6, € fb for b > 4.

Therefore, going back to the approximation scheme (B.3]) and arguing as in the
proof of part (a) of Proposition 25 we see that the sequence (6%) is bounded in Y,
and (u*) is bounded in X,. Part (b) of Proposition A follows. O

6. ASYMPTOTIC PROFILES AND DECAY OF STRONG SOLUTIONS

We denote by E(x) = ﬁ the fundamental solution of the Laplacian in R and

by (Ez,.a,)(x) its second order derivatives for 2 # 0. Notice that E,, ., is a
homogeneous function of degree —3. The next lemma describes the asymptotic
profile for L(6)(x,t) as |x| — oo by establishing that

L(6)(x,t)~ (/ 90> t (Eq,;05)(2), as |z| > V.
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Lemma 6.1. Let 0=0(x,t) be any function satisfying the pointwise estimates (214,
for some 3 < b < 4 and such that [0(t) = [0y for allt > 0. Then the j-component
L(0),(t) of L(8) can be decomposed as

(6.1) L(0);(z,t) = (/90> t (Bxywy) (@) + Rj(z,t) (5 =1,2,3),
where the remainder function R’ satisfies
(6.2) IR (,t)] < Clz| =2 t®=V/2 log(|z|/VE),  V(x,t) st |z| > 2Vt
In particular, in the region |z| > V/t, one has
R (z,1)] < Ct|Ey; 0, (2)|
along almost all directions.

Remark 6.2. This idea of obtaining information on the large time behavior of so-
lutions by first studying their behavior in the parabolic region |z| > v/t comes
from [6].

Proof. We go back to the decomposition (5.34) of L(#), as was done in Lemma 5.8
We now treat I using the estimate |0(x,t)| < Clz|~° (1 +¢)*=3)/2. This yields to
the inequality, valid for |z| > 2v/%,

L2, ) < Cla| (1 + )~V 2 log (|| /V1).
With the bound on € we also obtain
\I3](z,t) < Cla|~0(1 +)®=1/2,
Now recall that I} = Iy 1 + I 2 + I 3, where

©3) (hat) = [ t / 1 ( /lml/z VI 5z — Ayt — 5) dA) By, 5) dy ds,

and that VK satisfies the estimate |VK(z,t)| < C|z|~%. Then, since 3 < b < 4,

t
1Ty 3] (2 ) < Claf ™ / / iyl 60y, )| dy ds
0 Jy|<|z|/2
§C|(E|7b (1+t)(b71)/2.

The estimate for (I12); = — fot K;s(z,t —s) fly\>\ml/2 0(y, s) dy ds is straightfor-
ward: >
11 5|(z,t) < Clz| ™ (14 ¢)0-1/2,

Finally, since the mean of § remains constant in time,

(Im)j(x,t) = /OtK%g(x,t—s)/@(y,s) dyds = (/00> /ijg(x,t—s) ds.

But the following decomposition of the kernel K, established in [7], holds:
KL/C(xvt) = Exj,xk (I) + “T|73\I/j,k(x/\/z)a j7 k= 1a 25 37

where U, ;, is fast decaying: |¥(y)| < Ce=lvl® for all y € R® and some constats
¢,C > 0. Hence, we can estimate |¥(y)| < Cly|~°*3.
We now define R/(z,t) through the relation

L(0)(x, ) = ( / eo) F(Er, ) (@) + R (2 1),
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and all the previous estimates imply |R'(z,t)| < C|z|~%(1 + t)*=1/21og(|z|/V/1)
for all |z| > 2+/t. O

In the case [ 6y =0, we can use the following variant of Lemma [6.1]

Lemma 6.3. Let 0 = 0(x,t) be any function satisfying the second of (210, for
some 4 < b <5 and such that [ 0(t) = [0y =0 for allt > 0. Then the j-component
L(0);(t) of L(#) can be decomposed as

(6.4) L(0)(x,t) = =VEg 4, (x) - (/O/yﬁ(y,s) dyds) +R"j(x,t)
with

(6.5) R |(z,8) < Cla|~* (1 + )~/ 2 log(|a| V1)

for all (x,t) such that |z| > 2v/t.

Proof. We only have to reproduce the proof of the previous lemma with slight
modification. Using the estimate |0(z,t)| < Clz|~* (1+t)*~*/2 we now obtain, for
|z| > 2+/t, that
|Ia| (2, £) < Cla| (14 1)~/ log(|z|/ V),

next that

|I3](z,t) < Cla|~0(1 4 1) *=2/2,
and then that

|[11a|(2,t) < Cla| (1 + ) 072)/2,

Next, by the vanishing mean condition I; ; = 0. It remains to treat I; 3. We
can decompose I; 3, whose j-component we recall is

t
L Baale =t = ) = Kol - 91600, 5) dy ds,
0 Jyl<|=|/2

into the sum of three more terms:
ILis=IL3z1+Iiz2+1133.

Such a decomposition is performed in exactly the same way as in the proof of
Lemma 6.1l The j-component of the first term is thus

(6.6) (Ih,31)(z,t) = —/0 VK, 3(z,t —s) - /y@(y,s) dy ds.

The second term,
t
(I 3,2)(x,t) = / VK s(z,t — s) / y0(y, s) dy ds,
0 ly|>[x]/2

can be bounded by the right-hand side of (6.5) using |VK(z,t)] < Clz|~* and
0(2,t)| < Clz|~8(1 + t)(*=4/2, Next, the j-component of I 3 3,

t
— // K;s(x —y,t —s) —K;s(z,t —s) + VK(z,t — s) - y|0(y, s) dy ds,
0 J|y|<|=]/2

can be treated with the Taylor formula. The simple estimate |V2K(z,t)| < C|z|~®
allows us to see that also I; 3 3 is bounded by the right-hand side of ([G.5). Therefore,
both I 30 and I 33 can be included into the remainder term R”(z,t).
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Let us go back to ([66). As shown in [7], the following decomposition holds true:
(6.7) VK k(@ t) = VE, 4, () + 2]~ T(x/VE),

with |¥(y)| < Ce=¥l” for some constants C, ¢ > 0 and all y € R3. In particular, we
can estimate |¥(y)| < Cly|~=%. On the other hand, J 1yl 10(y, s)| dy is uniformly
bounded because of the embedding (5.32)). This shows that (I1,31);(z,t) can be
written in the region |z| > 2/t as in the right-hand side of (@3] (even without
logarithmic factors).

This finally gives ([©.4). O

We can now establish our main results as simple corollaries:

Proof of Theorem 2.8, part (a). Let (u,6) be a mild solution of the system (G&.1I),
satisfying the pointwise decay estimates (ZI3)-(2I4), with a > 3 and b > 3. Recall

that the spaces X, and )} decrease as a and b grow. Without restriction we can

then assume % < a < 3and 3 < b < 4 in our calculations. According to our

notation, we can write
(6.8) u(z,t) = e®ug(z) + B(u, u)(z,t) + L(0)(z,t).
By estimate (5.14]), owing to the condition a > %, we have

B t
lim (u7 u)_(g‘r? )
el ot

=0.

Therefore B(u,u) can be included inside the remainder term in the asymptotic
||

profile of u for i oo Moreover, Lemma and the condition b > 3 guarantee
that

L(0)(z,t) = (/ 0()) tVE,,(z) + o(t|z|?), as % — 00.

This yields the asymptotic profile (217 for w.

Let us also prove here the claim in part (a) of Remark 271 As usual, we denote
gi(x) = (4mt)=3/2¢=121/(41) a5 the standard gaussian. Under the additional as-
sumption |ug| < C|z|~3, we have fly\ZIxW gi(z — y)|uo(y)| dy < C|z|~3. Moreover,
by the third part of (ZI0), we have also, e.g., |ug(z)| < Clxz|~2. So

/ gi(x —y)luo(y)ldy < Clz|  sup  gi(2) < Vil|a| 2.
ly|<|e| /2

lz—a|<|z|/2
Combining these estimates we get
lePug(z)| < tlz|™3, ast>1.

Thus, when [ 6y # 0, under the additional condition that |ug(z)| < C|z|~3 for |z| >
> +/t > 1, the solution u behaves like ( f uo)tVExg (z) along almost all directions.
More precisely, using spherical coordinates and letting x = pw, with p > 0, for
almost all w in the unit sphere, we have

im0/ / W)y, 0, (2)) = 1.
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Proof of Theorem 28, part (b). We can assume without restictrions for the calcu-
lations below that 2 < a < 3 and b > 4. Moreover, by our assumption [y = 0.

The velocity field u belongs to ??2. Then
|B(u, w)|(x,1) < Cla| 112,

as it can be proved easily by splitting B(u,u) into fotf\y|<|x\/2 and fotf and

lyl=]=|/2
by using |u| < Clz|~2 and ||u(t)| < Ct~/* (see (5:30)). We get easily a bound for

both terms in the region |z| > 2v/%, implying

B t

lim [B(w, w)l(z,?) =0.
t —‘I‘—>oo t|1’|74

PVt

Thus, B(u,u) can be included inside the remainder term. Now applying Lemma [6.3]
yields the asymptotic expansion ([Z19]).

Under the additional assumption |ug(z)| < Clz|™*, we get, by @I0), |uo(z)| <
C|x|=5/2. If we use the bound |g;(x)| < Ct¥/*|z|~%/? and the usual L'-estimate
for g; we get |et®a(z)| < C(1 +t3/*)|z|~*. Thus,

et ug(z)| < ta| ™4, ast>1,
and the last claim (made rigorous exactly as above) of the theorem follows. O

We now deduce from Theorem sharp upper and lower bound estimates in
LP-spaces.

Proof of Corollary 2.8, part (a). The upper bounds are simple: indeed, applying
the arguments that we used in the proof of Lemma B4l to (1 + |-])"|u(-,t)| instead
of u (and putting p = ¢ in a such way that Lorentz spaces boil down to the usual
Lebesgue spaces) gives the result.

We now discuss lower bounds. By the proof of Lemma and of Theorem [2.6]
we can find an exponent 7 > 0 (any 0 < 1 < min{2a — 3,b — 3,1} will do) such
that, for j = 1,2, 3,

Juj(, 1) — " (ug ;) ()|

_slzl\—n
zt‘/e} E,. v (z)] = Ctlz| 3 (=2) 7",
of [Ea; s ()] \l(\/l;)
provided |z| > Av/t and A > 0 is large enough.
Consider the parabolic region Da ¢ = {(z,t): |z| > AVt}. For 1 < p < oo, we
denote by || - [[zz(p, ,) the norm

/1

1/p
Lf.(m,t):(/m f(f”)|p(1+lw)rpdx> '

Thenforalltz1and1<p<oo,7“208uchthatr—|—%<37

wi(t) — e®u ‘
H i@ S Le(Da)

ol

LY (Dat

/90]—,4—77).

LY (Da.,t)

N Ct%(r-l—%—l)Ar-i-%—S <C’
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This shows that it is possible to define a continuous function ¢: [0, €] — RT (where
€ > 0 is the constant of Proposition 24)) such that ¢(0) = 0, ¢ is strictly positive
outside the origin, and satisfying

0= e, 2 [lult) - e*uol
Hu() e"“ug 1 u(t) — e ug DA

> (| [ oul) £33

for all ¢ > 0 large enough. By comparing the two terms inside the parentheses in
the inequality above, i.e., by taking A such that Al_" < %3\ [ 6o, we get an explicit
I+5(B=r=%)

(6.9)

behavior for ¢(o) near zero, namely, ¢(c) ~ co ,as 0 — 0T, with ¢ > 0

small enough.
We now restrict ourselves to the smaller range 0 < r + % < min(3,a), al-

ways with » > 0 and 1 < p < oo. Let us compute the LP-norm of e*®uyq
From |ug(z)| < Cmin{|z|~", |z|~*} we obtain, for t > 1, e*2/2|ug|(z)(1 + |z|)" <
C(1 + |z|)~(@="). Applying the semigroup property of the heat kernel, we get, for
t > 2, e ug|(x)(1+ |z])" < e2/2(1 + |z[)~(@="). Computing the LP-norm of this
quantity, we deduce

le®uoll e < llgeo * (147,

(6.10) < Cllgej2llner with 1+ 1 =
=t zler=3),

a—=r
+ 3

1
a

In this computation, L? denotes as usual the weighted LP-space, whereas L*? is a
Lorentz space. Here we made use of Young convolution inequality, generalised to
Lorentz spaces (see [27, Prop. 2.4]).

By comparing the large time behavior of the RHS in expressions (6.9)-(6.10), we
deduce the lower bound

lu(®)llze > 1o( / 0ol) 1A forall ¢ > o,

where tg > 0 is some constant depending on all the parameters and the initial data,
but independent on t. (I

Proof of Corollary 28|, part (b). The estimate from above follows by applying in-
equalities (£.30) and (E31) to (14| ) u.

Let us now estimate [|u(t)||.» from below. The proof is based on the asymptotic
expansion ([2I9). Computing the third order derivatives outside the origin of the
fundamental solution E of —A in R3, i.e., E(x) = %, shows that (see also [7, Eq.

(9b)])

(D) gt
B ik (@)]]® — 5z R R
(6.11) Eajana(2) = —75 |7 ’

with o p,(2) = §;pxk + Op kxj + Ok jxn. It is now easy to see that the expression
ZZ 1 B wpz, () My i identically vanishes if and only if My is a scalar mul-
tiple of the identity matrix. Let m(t) = fotf y0(y, s) dyds. We deduce that the
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homogeneous function of degree —4,
VEy;, 2, () m(t),
is identically zero, for any fixed ¢, if and only if jm(¢)| = 0.
If m = liminf, ‘% fotf y0(y,s)dyds| # 0, then there exists ¢ > 0 such that,
for all ¢ sufficiently large,

J

IVEs; z; - m(t)| 1Dy, = cTEE

The condition on the remainder R obtained in Theorem then implies, for
some constant ¢ > 0 and for all ¢ large enough, that
lu(t) — e ugllpp > ct> o2

with » > 0, 1 < p < oo such as r + % < 4. It remains to prove that, when

r+ % < min{a, 4}, we have

(6.12) e ugl| e = o252, for t — oo.

Recall that we assumed a > 2. When 2 < a < 3, we can simply use inequality (G.10]).
When a = 3 there is nothing to prove because we reduce to the previous case by
picking o/, with 7 + % < a’ < 3. So, now consider 3 < a < 4. In this case

up is integrable and [uo = 0 by the divergence-free condition. Then, for ¢ > 1,
et A2 lug|(x) (1 + |z|)” < C(1 + |z[)~@="). Thus,

(6.13) e uoll e < llgeyz * (141 1)~ @],

When a — r < 3 we can apply the Young inequality in the same way as before and
still obtain estimate (G.I0). When a — r > 3, the above quantity is bounded by
ct 2 (and by Cnf%(%73+") for all n > 0 when a —3 = 3). In any case, (G.12)
holds true. This establishes estimates (2Z24]). O

Theorem has another interesting consequence that clarifies the importance
of the restriction r + 3/p < 3 in our previous statements.

Corollary 6.4. Let (0,u) be a solution as in part (a) of Theorem 6. We assume,
in addition, that [ 0y # 0 and that the initial velocity satisfies |ug(x)| < C(1+|z|)~¢,
for some a > 3. Then for all

3
'FZO7 1§p<007 T+_237
p
and for all t > 0 we have
(6.14) [u(®)[rz = oo

Proof. Indeed, Eq, .,(x) is a homogeneous function of degree 3, smooth outside
the origin. Then we can find an open conic set I' C R? such that |E, 4, (z)] >

Clz|™® > 0forall x € T, z # 0, for some C > 0. Indeed, by @I7), for |z| > AVt
with A > 0 large enough and z € I'; and ¢ > 0, we have

C
o0l = S| [0

This implies that u; has an infinite || - || .z(p , Ar) -norm. O

|2
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7. ADDITIONAL REMARKS AND COMMENTS

In this section we collect a few technical remarks on the main results. These are
essentially small variants of our statements that can be easily proved with minor
modifications to the proofs.

Remark 7.1 (on Theorem 22). Part (b) of Theorem can be strengthened as
follows. Under the same assumptions as 6y and replacing the assumption ug €
L2 N L?/? with the weaker condition [|e'®ug||? < C(14t)~*, for some s > 0 (when
uog € L2 N L3/2, this holds with s = 1/2), we have

(7.1) lu(®)]| < C(L+t)~",  with s* = min(s, 1/2).

A

The above decay condition on et“ug could also be restated in terms of Besov spaces.

Remark 7.2 (on Theorem [Z6]). The second term on the RHS of (ZT19)) is bounded

by C|z|~%t. If one is interested in studying the asymptotic behavior of u only as
|z]

N (with ¢t > 0 not necessarily large), then an additional term on the RHS
of (2I9)) should be added:

(72) V| [ ) dyas

(the : notation means that the 3, ; symbol has been omitted). Such a term

is bounded by C |x\_4t1/ 2. thus justifying its inclusion inside the remainder when
|z| > v/t > 1. With this additional term, the condition of the remainder can be

simplified into lim 2l o0 7] ifif = 0.

Remark 7.3 (on Corollary 2.8]). The restriction r—i—% < a in part (a) of Corollary 2.8

is natural beacause the decay assumption on uy guarantees that e?®ug € LP exactly
for those r, p satisfying such a restriction. However, estimates (223 remain valid
in the whole range 0 < r + % < 3 (and under the conditions of part (b) even for

0<r< % < 4 if we want to estimate ||u(t) — e"®ugl|z» instead of |lu(t)||r» in that
expression).
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