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BLACK BOX EXCEPTIONAL GROUPS OF LIE TYPE

W. M. KANTOR AND K. MAGAARD

Abstract. If a black box group is known to be isomorphic to an exceptional
simple group of Lie type of (twisted) rank > 1, other than any 2F4(q), over a
field of known size, a Las Vegas algorithm is given to produce a constructive
isomorphism. In view of its timing, this algorithm yields an upgrade of all
known nearly linear time Monte Carlo permutation group algorithms to Las
Vegas algorithms when the input group has no composition factor isomorphic
to any group 2F4(q) or 2G2(q).

1. Introduction

In a number of algorithmic settings it is essential to take a permutation group
or matrix group that is known (probably) to be simple and to produce an explicit
isomorphism with an explicitly defined simple group, such as a group of matrices
([LG, KS1, Ka3] contain background on this and many related questions). This has
been accomplished for the much more general setting of black box classical groups
in [KS1, Br1, Br2, Br3, BrK1, BrK2, LMO] (starting with the groups PSL(d, 2) in
[CFL]). Black box alternating groups are dealt with in [BLNPS]. In this paper we
consider this identification question for black box exceptional groups of Lie type.
Note that the name of the group can be found quickly using Monte Carlo algorithms
in suitable settings [BKPS, KS3, KS4, LO].

The elements of a black box group G are assumed to be encoded by 0-1 strings
of uniform length, and G is specified as G = 〈S〉 for some set S of elements of G.
Our main result is as follows (where ε is 1 in general, and 3 for 3D4(q)):

Theorem 1.1. There is a Las Vegas algorithm which, when given a black box group
G = 〈S〉 isomorphic to a perfect central extension of a simple exceptional group of
Lie type of (twisted) rank > 1 and given field size q, other than any 2F4(q), finds
the following:

(i) The name of the simple group of Lie type to which G/Z(G) is isomorphic
and

(ii) A new set S∗ generating G, a generating set Ŝ of the universal cover Ĝ

of the simple group in (i) and an epimorphism Ψ: Ĝ → G, specified by the

requirement that ŜΨ = S∗.
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Moreover, the data structures underlying (ii) yield algorithms for each of the fol-
lowing:

(iii) Given g ∈ G, find ĝ ∈ Ĝ such that g = ĝΨ, and a straight-line program of
length1 O(log q) from S∗ to g and

(iv) Given ĝ ∈ Ĝ, find ĝΨ and a straight-line program of length O(log q) from

Ŝ to ĝ.

In addition, the following all hold.

(v) S∗ has size O(log q) and contains a generating set for G consisting of root
elements.

(vi) The algorithm for (ii) is an O(ξqε log q + μqε log2q)-time Las Vegas algo-
rithm succeeding with probability > 1/2, where μ is an upper bound on the
time required for each group operation in G and ξ ≥ μ is an upper bound
on the time requirement per element for the construction of independent,
(nearly) uniformly distributed random elements of G.

In additional O
(
|S| log |S|(ξqε log q + μqε log2q)

)
time it can be verified

that G is indeed isomorphic to a perfect central extension of the exceptional
group in (i).

(vii) The algorithm for (iii) is Las Vegas, running in O(ξqε log q + μqε log2q)
time and succeeding with probability > 1/2, while the algorithm for (iv) is
deterministic and runs in O(μ log q) time.

(viii) The center of G can be found in O(μ log q) time.

Parts (ii)–(iv) are the requirements for a constructive epimorphism Ψ: Ĝ → G.
The verification at the end of (vi) is omitted in some references, since G is assumed

to be an epimorphic image of a specific group Ĝ which, in turn, is isomorphic to
(a central extension of) an explicitly constructed subgroup G0 of G (cf. Proposi-
tion 2.33). In practice, it is hard to imagine that this test would be omitted since
it appears to be the only way to guarantee that the group G behaves as hypothe-
sized. We note that, in (iv), ĝ ∈ Ĝ might be given in standard Bruhat normal form
but alternatively might merely be given as an automorphism of the associated Lie
algebra (cf. Remark 2.40). It is also worth remarking that we use ε = 1 for groups
of type 2E6(q), since that is the case for its Levi factor SU(6, q) (Theorem 1.3).

The above algorithms do not run in polynomial time: the timing in (vi) and (vii)
have factors q. At present there are no polynomial-time algorithms for the type of
problem considered here, neither in the black box setting nor even in the matrix
group one. This was already evident for classical groups in [KS1] and, even earlier,
in [CLG]. A standard way around this obstacle involves a lovely idea in [CoLG]
(used in [BrK1, BrK2, Br2, Br3, LMO]): use suitable oracles. The preceding refer-
ences assume the availability of an oracle that constructively recognizes subgroups
SL(2, q). This was motivated by [CoLG], which deals with matrix groups and as-
sumes the availability of a Discrete Log oracle for F∗

q . In this matrix group setting,
[CoLG, CoLGO] provide a constructive Las Vegas algorithm for a group isomorphic
to a nontrivial homomorphic image of SL(2, q) in any irreducible representation in
characteristic dividing q, running in time that is polynomial in the input length,
assuming the availability of a Discrete Log oracle. In effect, this idea replaces an-
noying factors q by an oracle. This is discussed further in Section 4, Remarks 4–6,
making it clear that this will not be the last paper on this type of problem!

1All logarithms are to the base 2.
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A rough outline of the proof of the theorem is given in Section 1.2. The first part
resembles [KS1]: we find a long root element and then build a subgroup SL(3, q)
and also a subgroup Spin−8 (q) when the Lie rank is more than 2. We then use
pieces of these groups to obtain the centralizer of a subgroup SL(2, q) generated by
long root groups. However, there is no module to aim for that is as nice as in the
classical case. Hence, instead we proceed directly to obtain all of the root groups
corresponding to a root system, and then verify the standard commutator relations
that define these groups: the corresponding presentation guarantees the Las Vegas
nature of our algorithm.

Our proofs are divided into two parts, with rank > 2 and rank 2 in Sections 2 and
3, respectively. Section 4 contains remarks concerning improvements or variations
on the theorem and the algorithms.

In view of [KS2] (and [BrB]), we obtain the following immediate but significant
consequence of the above theorem:

Corollary 1.2. Given a permutation group G ≤ Sn with no composition factor
isomorphic to any group 2F4(q) or 2G2(q), all known nearly linear time Monte
Carlo algorithms dealing with G can be upgraded to Las Vegas algorithms.

The stated algorithms find |G| and a composition series of G, among many other
things (cf. [Ser]). In fact, it can be shown that the groups 2G2(q) do not need to
be excluded here; see Section 4, Remark 7.

1.1. Background. For background on groups of Lie type we refer to [Ca1, GLS].
For background on required aspects of black box groups, in particular for discussions
of the parameters ξ and μ in the theorem, see [KS1, 2.2.2]. Thus, we assume that
ξ ≥ μ|S| and μ ≥ N if N is the string length of the elements of our black box group
G. Moreover, N ≥ log |G| > C log q for some constant C, since we are dealing with
exceptional groups of Lie type over Fq.

We note that, as in [KS1, 2.2.4], we presuppose the availability of indepen-
dent (nearly) uniformly distributed random elements of G, a major result in [Bab]
(compare [CLMNO, Dix]).

Straight-line programs from S to elements of G = 〈S〉 are also defined and dis-
cussed in [KS1, 2.2.5]. For use in [KS2] (or in Corollary 1.2), part (iii) of the
theorem needs the stated straight-line program, not just the preimage ĝ.

In general the symbol ppd#(p;n) stands for some integer divisible by a prime r
(a primitive prime divisor) such that r

∣∣pn − 1 but r �
∣∣ pi − 1 for 1 ≤ i < n (cf. [Zs]).

The exceptions to this definition are: ppd#(p; 1) with p > 5 a Fermat prime, where

we require divisibility by 4; ppd#(p; 2) with p a Mersenne prime, where we require

divisibility by 4; and ppd#(2; 6), where we require divisibility by 21. It is easy to

test this property of an integer for a single ppd#(p;n) requirement ([NP, p. 578],

[KS1, Lemma 2.7]), and hence also for a product ppd#(p;n1) · · ·ppd#(p;nk) of a
bounded number of them (where n1 < · · · < nk). In those references, the time
requirement for such tests is far smaller than other aspects of our algorithms, and
hence will be ignored.

Notation. We always write q = pe, where p is the characteristic of G.
We will usually have available a field F = Fq obtained from subgroups of G, and

also an extension field F
′ of F of degree 1, 2 or 3. We choose an Fp–basis {f1, . . .}

of F′ such that f1 = 1 and {f1, . . . , fe} is a basis of F.
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In view of the discussion in [KS1, Sec. 2.3], we will always assume that field
operations can be carried out in constant time.

1.2. Outline. A very rough summary of our approach to Theorem 1.1(ii),(vi) is as
follows (with many details suppressed or ignored).

• Use random group elements and primitive prime divisors to find τ ∈ G
of special order, in particular such that some power z = τ l is a long root
element (cf. Sections 2.2, 2.5, 3.2). (In types E7 and E8 we need two such
elements τ of different specific orders.)

• Find three conjugates of z that generate a subgroup S = SL(3, q) (cf.
Sections 2.3, 2.7, 3.2), together with a subgroup R ∼= SL(2, q) of S also
generated by conjugates of z. Much of the algorithm depends heavily on
SL(2, q) and SL(3, q) subgroups.

• For rank > 2 use S and a conjugate of z to construct a G-conjugate of
R lying in L = CG(R) (cf. Section 2.8); this SL(2, q) and variants of the
element(s) τ are used to generate L (cf. Section 2.9). If the rank is 2, then
CS(R) and τ generate L (which this time is an SL(2, qε); cf. Section 3.3).

This heavily depends on the uniqueness of the triple (R,S, L) up to
conjugacy in G.

• Find a (maximally) split torus T normalizing L and S. Use it to construct
root systems of L and S with respect to the tori T ∩ L and T ∩ S. Use
commutators of root groups of S and L to find root groups and a root
system ΦG for G (cf. Sections 2.10, 3.3).

• The new generating set S∗ for G contains the union of sets of generators
of these root groups Xα, α ∈ ΦG. Verify a version of the Steinberg pre-
sentation [St] for the subgroup G0 generated by these subgroups Xα (cf.
Sections 2.12, 3.4).

• Show that each of the given generators for G is in G0, so that G0 = G (cf.
Sections 2.15, 3.6).

1.3. Recognition algorithms used. We will use existing algorithms for construc-
tive recognition of various black box groups. Since their timing is crucial for us, we
state the instances and timings in the next result, which refers to the counterparts
in our Theorem 1.1:

Theorem 1.3. Let G = 〈S〉 be a black box group that is isomorphic to a nontrivial
homomorphic image of SL(2, q), SL(3, q), Sp(6, q), SU(6, q), Spin−8 (q) or Spin

+
12(q).

Then there are algorithms for the natural analogues of Theorem 1.1(ii)-(iv), and
the following hold:

(i) Theorem 1.1(v) holds;

(ii) Theorem 1.1(ii) takes O(ξq log q+μq log2q) Las Vegas time, succeeding with
probability > 1/2;

(iii) Theorem 1.1(iii) is deterministic and takes O(μq log q) time, except in the
case SU(6, q), where it takes O(ξq log q+μq log q) Las Vegas time, succeeding
with probability > 1/2; and

(iv) Theorem 1.1(iv) is deterministic and takes O(μ log q) time.

Proof. This is contained in [KS1], except that the times in [KS1, 6.6.3] contain a
factor q3 for the group SU(6, q) (due to the treatment of SU(3, q)), which is avoided
as follows.
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It is noted in [BrK2, Sec. 5.3] that [KS1, 4.6.3] handles PΩ−(6, q) in the stated
times if modified using ideas in [BrK2]. This readily gives the stated result for
SU(4, q), which can then be used in [KS1, Sec. 6] for all larger-dimensional unitary
groups. In particular, this leads to the stated times for SU(6, q). �

The above times do not include verification of a presentation of the stated groups
(cf. Theorem 1.1(vi)); we will deal with that later in the context of of Theorem 1.1.
There are more recent versions of the above theorem that run in polynomial time,
assuming the availability of suitable oracles [BrK1, BrK2, Br2, Br3, LMO]. Sec-
tion 4 contains comments concerning possible similar improvements of Theorem 1.1.
We also note that [Br2, Br3] obtain better times than [KS1] by avoiding the recur-
sive call in the latter reference, but this has little effect on the present paper’s focus
on bounded rank groups.

Convention 1.4. The proof of Theorem 1.1(vi) uses the Las Vegas portion of
Theorem 1.3(iii) for SU(6, q) when G has type 2E6(q), and the Las Vegas Theo-
rem 1.1(vi) (more precisely, the Theorem 1.1(iii) portion) for type E7 when G has
type E8(q); otherwise all of our uses of Theorems 1.3(iii) and 1.1(iii) are determin-
istic. In the description of our algorithm, we will use deterministic language when
employing the aforementioned results. In each instance that is actually Las Vegas
(of which there are only O(log q)), up to 20 repetitions of the Las Vegas version can
be inserted in order to guarantee that the probability of failure is at most 1/220,
which is insignificant compared to other probabilities of failure that occur elsewhere
in our algorithms.

As in [KS1, KS3, KS4, BrK1, BrK2, Br2, Br3], we will use crude probability
estimates, making the number of repetitions of calls to previous routines (such as
those in Theorem 1.3(ii)) appear to be unreasonably large. The goal has been to
prove theorems rather than to obtain best estimates for each type of group.

As in [KS1, KS3, KS4, BrK1, BrK2, Br2, Br3], our algorithms contain statements
such as “Choose up to 10·212 pairs z′, y. . . ”. We could instead have used statements
such as “Choose O(1) pairs z′, y. . . ”; this would have eliminated some calculations,
suppressed some very annoying constants, and looked more elegant. However, it is
not clear how a computer would deal with such an O(1) requirement. By contrast,
“O(μ log q) time” merely refers to a property of an algorithm.

2. Groups of rank > 2

Throughout this section we will assume that

(2.1) Ĝ is the simply connected cover of F4(q), E6(q),
2E6(q), E7(q) or E8(q).

Here, Ĝ is a known copy of the group in question, as opposed to a black box
version we will eventually handle. There are only a few cases where Ĝ is not also
the universal cover of G (cf. [GLS, p. 313]), and we will always assume that q is large

enough to avoid these. Thus, Ĝ is precisely the group with that name appearing in
Theorem 1.1.

We will assume the availability of the Lie algebra of Ĝ. This will be used in
Lemma 2.32 (and the Appendix) and in Remark 2.40.
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Notation.

Φ the root system for Ĝ
Φ+ the set of positive roots
Δ a base of Φ

p the characteristic of Ĝ
F Fq, q = pe

F
′

Fqε′ , where ε′ = 1 except for 2E6(q), where ε′ = 2

{f1, . . . , fe} an Fp-basis of F, where f1 = 1

{f1, . . . , f2e} an Fp-basis of F
′ if Ĝ is 2E6(q)

The rank of Ĝ refers to the twisted rank (for example, 2E6(q) has rank 4).

2.1. Properties of Ĝ. We will use a standard type of presentation for the simply
connected cover Ĝ of the simple group of Lie type we are considering. This presen-
tation depends on the root system Φ and various integers Ci,j,α,β , εαβ , ηαβ , Aα,β ,
all of which we assume have been precomputed.

Presentation of the target group. We temporarily exclude groups of type 2E6.
The following is just a straightforward, shortened version of the standard Curtis-
Steinberg-Tits presentation [St, BGKLP]. Use generators X̂α(fk), α ∈ Φ, 1 ≤ k ≤
e, satisfying the following relations:

Given any t =
∑

k zkfk ∈ F with 0 ≤ zk < p, write(2.2)

X̂α(t) :=
∏
k

X̂α(fk)
zk ,

X̂α(fk)
p = 1 for α ∈ Φ, 1 ≤ k ≤ e,(2.3)

[X̂α(fk), X̂α(fl)] = 1 for α ∈ Φ, 1 ≤ k < l ≤ e, and(2.4)

[X̂α(fk), X̂β(fl)] =
∏
i,j>0

X̂iα+jβ(Ci,j,α,β f
i
kf

j
l ) for α, β ∈ Φ, α �= β,(2.5)

1 ≤ k, l ≤ e.

The right hand side of (2.5) is viewed as expanded, using (2.2), into an ex-

pression involving powers of the generators X̂γ(fm) for γ ∈ Φ, 1 ≤ m ≤ e. The
structure constants Ci,j,α,β are integers that are at most 2 in absolute value (since
we have rank > 2) and are given in [Ca1, Section 5.2]. The non-uniqueness of this
presentation is discussed at length in [Ca1, p. 58].

The right side of (2.5) has at most one nontrivial term when there is only one
root length (i.e., for types E6, E7, E8). In this case, there is a nontrivial term

X̂α+β(C1,2,α,β fkfl) precisely when α + β ∈ Φ. A more precise version of (2.5) for
groups of type F4 is in the paragraph following (2.6).

The above relations provide a presentation for the simply connected cover Ĝ.
An algorithm for finding the center of this group is given in [Ca1, p. 198] using

elementary linear algebra; every element of Z(Ĝ) is expressed as a word in our

generators. However, Z(Ĝ) can easily be found more directly for the groups studied
here.

We will need further relations (2.9)–(2.10) that are consequences of the preceding

ones and take into account the action of a split torus on the root groups X̂α :=
〈X̂α(fk) | 1 ≤ k ≤ e〉.
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The group 2E6(q). This time Ĝ is the simply connected central extension of
2E6(q), Φ is a root system of type F4 and Ĝ has generators X̂α(fk) with α ∈ Φ, and
1 ≤ k ≤ e for α long, while 1 ≤ k ≤ 2e for α short. We use the obvious analogues
of relations (2.2)–(2.4), along with the relations

(2.6)

[X̂α(fk), X̂β(fl)] = for:

1 α+ β /∈ Φ

X̂α+β(εαβ fkfl) α, β, α+ β all short or all long

X̂α+β

(
εαβ(fkf

q
l + fq

kfl)
)

α, β short, α+ β long

X̂α+β(εαβ fkfl)X̂α+2β(ε
′
αβ fkflf

q
l ) α, α+ 2β long, β, α+ β short

for all appropriate basis elements fk, fl. The right hand side of (2.6) is expanded
as above. The structure constants εαβ and ε′αβ are ±1, and as before we assume
that these have been obtained in advance.

The relations corresponding to (2.5) for F4(q) are just the relations (2.6) with
all field elements in F. In this case, the third relation in (2.6) involves a structure
constant Ci,j,α,β that is not 0 or ±1, and this is the only time this occurs for groups
of rank > 2.

We assume that the presentations (2.2)–(2.5) or (2.6) are given as part of the

data describing the target group Ĝ. Eventually we will find elements of our black
box group satisfying them.

The above presentations are essential for our algorithms. However, there are
“variants” [GKKL1, GKKL2] that may be more useful in practice: they only involve
a bounded number of relations for any q (fewer than 1000 in [GKKL1] or 50 in
[GKKL2]).

Additional relations in Ĝ; the subgroups TĜ and NĜ. Following [Ca1, p. 189],
if α ∈ Φ and t ∈ F

∗, let

(2.7) ĥα(t) := n̂α(t)n̂α(−1), where n̂α(t) := X̂α(t)X̂−α(−t−1)X̂α(t);

when Ĝ is of type 2E6 and α is short then we also allow t ∈ F
′∗. Define

(2.8) TĜ := 〈ĥα(t) | α ∈ Φ, t ∈ F
∗〉 and NĜ := 〈TĜ, n̂α(t) | α ∈ Δ, t ∈ F

∗〉;

in type 2E6 we again use t ∈ F
′∗ when α is short. If Ĝ is an untwisted group, then

TĜ is a maximal split torus of order (q−1)rank of G, and if Ĝ is 2Ê6(q), then TĜ is a
maximally split torus of order (q − 1)2(q2 − 1)2. Moreover, TĜ � NĜ, and NĜ/TĜ

is the Weyl group of Ĝ.
If α ∈ Φ, then X̂α is the set of all X̂α(t). The subgroups X̂α generate Ĝ.

By [Ca1, p. 194], the root groups X̂α are invariant under conjugation by TĜ:

(2.9)
ĥα(t)X̂β(u)ĥα(t)

−1=X̂β(t
Aα,βu) except for the next instance

ĥα(t)X̂β(u)ĥα(t)
−1=X̂β((tt

q)Aα,β/2u) in type 2E6, α short, β long,

where Aα,β := 2(α, β)/(α, α) for the Killing form ( , ) of the underlying Lie algebra.
By [Ca1, p. 190] we also have

(2.10) n̂α(t)X̂β(u)n̂α(t)
−1 = X̂wα(β)(ηα,βt

−Aα,βu),

where wα is the reflection in the Weyl group of Ĝ corresponding to the hyperplane
α⊥ and where ηα,β = ±1. Thus, each element of the Weyl group permutes the root

groups X̂β by conjugation.
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How elements of Ĝ are described. Elements of Ĝ are most conveniently given
in the form unu′, with n ∈ NĜ and u, u′ in the Sylow p-subgroup 〈X̂γ(t) | t ∈ F or
F
′, γ ∈ Φ+〉 (Bruhat decomposition [Ca1, Corollary 8.4.4] or [GLS, Theorem 2.3.5]).

In this paper we do not have a natural module as occurs in the classical group case
[CFL, KS1, Br1, Br2, Br3, BrK1, BrK2, LMO]. However, an element of Ĝ could
merely be given as an automorphism of the associated Lie algebra. See Remark 2.40
for further discussion.

Root groups and root elements. The Ĝ–conjugates of the X̂α are called root
groups: a long root group if α is long and a short root group if α is short. In case
all roots have equal length we call all root groups “long”. Context will determine
whether a discussion of long root groups will only be concerned with ones of the
form X̂α rather than arbitrary conjugates of these.

Nontrivial elements of long root groups are called long root elements. Each long
root element is in a uniquely determined long root group.

The following standard result is in [Coo, Lemma 2.2].

Lemma 2.11. For long root groups X1, X2, of Ĝ, one of the following holds:

(i) [X1, X2] = 1,
(ii) |〈X1, X2〉| = q3 and [X1, X2] = Z(〈X1, X2〉) is a long root group, or
(iii) 〈X1, X2〉 ∼= SL(2, q).

Two long root groups are opposite if they generate a subgroup isomorphic to
SL(2, q), called a long SL(2, q). Short SL(2, q)’s are defined similarly when there
are two root lengths. Two long root elements are opposite if they lie in opposite
long root groups. Note that, when q is even, two opposite long root elements will
merely generate a dihedral group. The preceding lemma provides a simple way to
test whether or not two long root elements are opposite:

(2.12) Long root elements a, b are opposite if and only if [[a, b], a] �= 1.

The group R̂, the highest root ν and the root ν′. Let

(2.13) R̂ := 〈X̂ν , X̂−ν〉 ∼= SL(2, q), where ν is the highest root of Φ.

Then ν is a long root, Δ∪{−ν} is the set of roots in the extended Dynkin diagram

of Ĝ [GLS, p. 10], and

(2.14) There is a unique long root ν′ ∈ Δ not orthogonal to −ν.

Moreover, ΔL̂ := Δ ∩ ν⊥ is a base of the subroot system ΦL̂ it generates, and

Δ = ΔL̂ ∪ {ν′}.

The subgroups L̂ and Q̂. Define

L̂ := 〈X̂α | α ∈ ΦL̂〉 and Q̂ := 〈X̂α | α ∈ Φ+ \ ΦL̂〉.
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If 1 �= z ∈ X̂ν then CĜ(z) = Q̂�L̂ = CĜ(X̂ν). The groups L̂ and Q̂ are as follows:

(2.15)

Ĝ F̂4(q) Ê6(q)
2Ê6(q) Ê7(q) Ê8(q)

L̂ Sp(6, q) SL(6, q) SU(6, q) Spin+12(q) Ê7(q)

Q̂ q1+14 
 q1+20 q1+20 q1+32 q1+56

T̂∗

q3 + 1
q6 − 1
q − 1

q6 − 1
q + 1 q6 − 1

q8 − 1
q − 1

q8 − 1

q2 − 1

q9 + 1

q2 − q + 1

where Êr(q) denotes the simply connected cover of Er(q), and Z(Q̂) = X̂ν except
where 
 indicates that this does not hold for F4(q) when q is even (cf. Lemma

2.18(iv)). We have also listed the orders of some cyclic maximal tori T̂∗ of L̂

containing Z(Ĝ) that will be used in Section 2.2. The orders in the E8 case come
from [DF, T30 and T24 in Table III].

Note that Q̂L̂ is the derived subgroup of a parabolic subgroup NĜ(X̂ν) for which

the unipotent radical is Q̂ and the derived group of a Levi factor is L̂. Also,

(2.16) Z(Ĝ) < CĜ(R̂) = L̂, and TĜ normalizes both R̂ and L̂.

Define

(2.17) TL̂ := 〈ĥα(t) | α ∈ ΦL̂, t ∈ F
∗〉 and NL̂ := 〈TL̂, n̂α(t) | α ∈ ΔL̂, t ∈ F

∗〉

with n̂α(t) in (2.7); in type 2E6, as in (2.8) use t ∈ F
′∗ when α is short, so that

L̂ = SU(6, q) and |TL̂| = (q− 1)(q2 − 1)2. In each case, TL̂ is a maximal torus of L̂,

TL̂ < TĜ, NL̂ < NĜ and NL̂/TL̂ is the Weyl group of L̂.

Let Ẑ := Xν .

Lemma 2.18. [CKS, pp. 16–18]

(i) For every root ν �= α ∈ Φ+ \ ΦL̂ there is a unique root β ∈ Φ+ \ ΦL̂ such
that α+ β = ν.

(ii) If Ĝ is not F4(q) with q even, then for each root group X̂α �= Ẑ in Q̂ there

is a unique root group X̂β in Q̂ that does not commute with X̂α (and then
α and β have the same length).

(iii) If Ĝ is F4(q) with q even, then for each long root group X̂α �= Ẑ in Q̂ there

is a unique long root group X̂β in Q̂ that does not commute with X̂α.

(iv) If Ĝ is F4(q) with q even, then Z(Q̂) = 〈Ẑ, X̂α | α short〉 has order q7 and

is the standard module for L̂ = Ω(7, q).

This follows from the commutator relations, which also provide more informa-
tion in the situation of this lemma: Q̂/[Q̂, Q̂] is an F-space of dimension 14, 20, 20,

32 and 56 in the respective cases (2.1); and it is an irreducible FL̂-module except

when q is even and Ĝ = F4(q) (producing the 
 in (2.15)), in which case Q̂/[Q̂, Q̂]

has an irreducible 6-dimensional FL̂-submodule modulo which it is irreducible (Sec-
tion 2.14 has computations based on this fact).

Long subgroups. We call any subgroup generated by (conjugates of) long root

groups a long subgroup. We will especially emphasize long subgroups such as R̂,
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L̂, long SL(3, q)-subgroups such as Ŝ in (2.19) below, and long subgroups Spin−8 (q)

such as Ĵ in Lemma 2.23 below.

The long subgroup Ŝ ∼= SL(3, q). Let

(2.19) Ŝ = 〈X̂ν , X̂−ν , X̂ν′ , X̂−ν′〉 ∼= SL(3, q), TŜ = TĜ ∩ Ŝ and NŜ = NĜ ∩ Ŝ.

The following are straightforward to check:

Lemma 2.20. (i) TĜ normalizes Ŝ.
(ii) NĜ = 〈NŜ , NL̂〉.
(iii) If q > 2 then TĜ = 〈TŜ, TL̂〉 and NĜ/TĜ is the Weyl group of Ĝ.
(iv) If q > 3 then NL̂ = NL̂(TL̂), NŜ = NŜ(TŜ) and NG = NĜ(TĜ).

Lemma 2.21. Let Ŝ1 be a long subgroup of Ĝ isomorphic to SL(3, q). Then

(i) Ŝ1 is conjugate to Ŝ,

(ii) if L̂1 ∈ LĜ centralizes a long SL(2, q) subgroup of Ŝ1, then the pair (Ŝ1, L̂1)

is conjugate in Ĝ to (Ŝ, L̂), and

(iii) if Ŝ1 contains X̂ν then Op

(
CŜ1

(X̂ν)
)
≤ Q̂.

Proof. (i) See [Coo] or [LS].

(ii) Ŝ is transitive on its long SL(2, q) subgroups.

(iii) Since the pair (Ŝ1, X̂ν) is conjugate in Ĝ to (Ŝ, X̂ν), we may assume that

Ŝ1 = Ŝ. Then Op

(
CŜ(X̂ν)

)
= X̂ν′X̂νX̂ν−ν′ ≤ Q̂. �

Lemma 2.22. Ĝ acts transitively by conjugation on the set of all 4-tuples (L̂1, Ŝ1,

TL̂1
, TŜ1

) with L̂1 ∈ L̂Ĝ, CĜ(L̂1)
′ < Ŝ1 ∈ ŜĜ, and TL̂1

and TŜ1
maximally split tori

of L̂1 and Ŝ1, respectively, containing Ŝ1 ∩ L̂1.
Moreover, L̂ and Ŝ ∩ L̂ uniquely determine Ŝ. Finally, if q > 3 then T :=

TL̂1
TŜ1

is a maximally split torus of Ĝ, and N/T ∼= W, where N = NĜ(T ) =

〈NL̂1
(TL̂1

),NŜ1
(TŜ1

)〉.

Proof. The preceding lemma already handles the pairs (L̂1, Ŝ1). Consider our sub-

groups L̂, Ŝ and the 1-dimensional torus Â := Ŝ ∩ L̂. Since CĜ(Â) is reductive, all

of its maximally split tori are conjugate and contain Â. Since TL̂ = L̂ ∩ TĜ, this

handles the triples (L̂1, Ŝ1, TL̂1
).

Clearly L̂ > CL̂(Â) = CĜ(ÂR̂) ≥ CĜ(Ŝ), where CĜ(Ŝ) is generated by Z(Ĝ)

and long root groups. If M̂ is the subgroup of CL̂(Â) generated by its long root

groups, by examining [Ka1, Coo, LS] we find that M̂Z(Ĝ) = CĜ(Ŝ). Thus, L̂ and

Â determine Ŝ = CĜ(M̂)′. (In fact, CĜ(M̂)′ = CĜ(M̂) using [LSS, Table 5.1].)

All maximal split tori of Ŝ containing Â are R̂-conjugate (as is seen by using a

basis of the 3-space underlying Ŝ with respect to which Â = CŜ(R̂) consists of all

matrices diag(λ, λ, λ−2)). Since R̂ normalizes L̂, Ŝ and TL̂, this proves the stated
transitivity.

The final statements follow from Lemma 2.20. �
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The long subgroups Ĵ ∼= Spin−8 (q).

Lemma 2.23. There are long subgroups Ĵ ∼= Spin−8 (q) containing Ŝ.

Proof. Each group Ĝ has a long subgroup F4(q) containing Ŝ. Then it suffices to

consider the case Ĝ = F4(q), where there is a root subsystem subgroup Spin9(q)

containing a conjugate of Ŝ that lies in a subgroup Spin−8 (q). �

2.2. Primitive prime divisors. When the rank is > 2, we will always assume
that q > 9 in order to avoid difficulties occurring in the next lemma for small fields.
Remark 1 in Section 4 discusses some of the omitted q.

Lemma 2.24. Let pl be as follows for the indicated types of Ĝ:

pl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ·ppd#(p; 2e)ppd#(p; 6e) F4

p ·ppd#(p; 2e)ppd#(p; 3e)ppd#(p; 6e) E6

p ·ppd#(p; e)ppd#(p; 3e)ppd#(p; 6e) 2E6

p ·ppd#(p; e)ppd#(p; 2e)ppd#(p; 3e)ppd#(p; 6e) E7

p ·ppd#(p; 4e)ppd#(p; 8e) E7

p ·ppd#(p; 2e)ppd#(p; 4e)ppd#(p; 8e) E8

p ·ppd#(p; 2e)ppd#(p; 18e) E8.

Let � = �(Ĝ) denote the p′-part of |Ĝ|.
(i) If τ ∈ Ĝ has order of the form pl, then τ� is a long root element or Ĝ has

type F4 and τ� is either a long or a short root element.
(ii) With probability ≥ 1/315q, an element τ ∈ Ĝ has order of the form pl and

τ� is a long root element.

Proof. We first construct elements τ of the stated orders. In (2.15) we provided

information concerning the centralizer of both a long root element and of R̂, a
long root SL(2, q), together with the orders of one or two maximal tori T̂∗ in that

centralizer. We will choose τ ∈ T̂∗R̂. The integers required in the definition of l
exist by [Zs] or the definition of ppd# in Section 1.1.

These tori are constructed as follows.

• In F̂4(q) a subgroup Sp(6, q) centralizing a long root group has a cyclic
maximal torus of order q3 + 1.

• In Ê6(q) or
2Ê6(q) a subgroup SL(6, q) or SU(6, q) centralizing a long root

group has a cyclic maximal torus of order (q6−1)/(q−1) or (q6−1)/(q+1),
respectively.

• In Ê7(q) a subgroup Spin+12(q) centralizing a long root group contains sub-
groups GL(6, q) and Spin−8 (q) ◦ Spin−4 (q), which produce the tori in (2.15).

• In Ê8(q) a subgroup Ê7(q) centralizing a long root group contains subgroups
of type SL(8, q) (more precisely, its quotient by a central subgroup of order

(2, q − 1)) and Zq+1 ◦ 2Ê6(q), producing the tori in (2.15).

(i) By the Borel-Tits Lemma [GLS, Theorem 3.1.3], τ lies in a parabolic subgroup

U�L of Ĝ, with U unipotent containing τ� and L a Levi factor containing Z(Ĝ).
Thus, we need to consider the possibility that a p′-element of L of order given in
the lemma centralizes a nontrivial element of U .
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An examination of the Levi factors that contain elements of order l produces
the following possibilities: the normalizer of a long root group; a parabolic of type
q7+8 : B̂3(q) in F̂4(q) (and then τ� is a short root element); a parabolic of type

q2+6+12 :
(
SL2(q) ◦ SL3(q

2)
)
in 2Ê6(q) (and then an element of order l fixes no

nontrivial element of the unipotent radical); a parabolic of type q7+35 : Â6(q) in

Ê7(q) (and then an element of order l fixes no nontrivial element of the unipotent

radical); and a parabolic of type q8+28+56 : Â7(q) in Ê8(q) (and then an element
of order l fixes no nontrivial element of the unipotent radical). Here we used [FJ]
in the last of these in order to verify the statements about τλ; references such as
[Shi, Sho, Ca2] can also be used for other cases.

(ii) We have CL̂(τ
p) = T̂∗ in the previous description of one type of τ . Also, we

have |NĜ(T̂∗R̂)|/|T̂∗||R̂| ≤ |NL̂(T̂∗) : CL̂(T̂∗)| ≤ 72 for each of the possible tori T̂∗.

Thus, there are |Ĝ : NĜ(T̂∗R̂)| ≥ |Ĝ|/72|T̂∗||R̂| conjugates of T̂∗R̂. Even in the

exceptional ppd# cases (Mersenne primes, Fermat primes and 26−1 in Section 1.1),

each such conjugate has at least |T̂∗|(1−1/2)(1−1/3)(1−1/5)(1−1/7) = |T̂∗|(8/35)
elements τp of the required p′-order (since l has at most four ppd-factors) and

|R̂|/q elements of order p. Thus, in each case the number of elements τ is at least

(|Ĝ|/72)(8/35)(1/q) = |Ĝ|/315q. �
The proof shows that the probability is better than stated. First of all, 2 is never

a primitive prime divisor, and in all but one case there are only two or three ppd-
factors rather than four. However, for simplicity we will use the estimate 1/315q.

Notation. If Ĝ is of type E7 or E8, then there are two choices for l in the above
lemma. We will call these l and l0.

Lemma 2.25. Let R̂1 be a long SL(2, q) contained in L̂, and let l (or l and l0) be
as in the preceding lemma.

(i) If Ĝ is not of type E7 or E8 and if g ∈ L̂ has order l, then L̂ = 〈R̂1, g〉.
(ii) If Ĝ is of type E7 or E8 and if g ∈ L̂ has order l and g0 ∈ L̂ has order l0,

then L̂ = 〈R̂1, g, g0〉.

Proof. Let K̂ := 〈R̂〈g〉
1 〉 (or 〈R̂〈g,g0〉

1 〉 in (ii)). Since K̂ is normalized by g (and g0), as

above the resulting ppd-factors of |NĜ(K̂)| and the Borel-Tits Lemma imply that

Op(K̂) = 1. Using |NĜ(K̂)| and the lists in [Ka1, Coo, LS], we see that K̂ = L̂. �
2.3. Probability and long root elements. Next we will study the probabilistic
behavior of some subgroups of Ĝ generated by 2, 3 or 4 long root elements or
groups. We assume that q > 9. Recall that Ẑ = X̂ν .

Lemma 2.26. If z is a long root element, then a randomly chosen long root element
z′ is opposite z with probability > 1/3. Moreover, with probability > 1/12, for a
randomly chosen long root element z′ either 〈z, z′〉 ∼= SL(2, q) or p = 2 and 〈z, z′〉
is dihedral of order 2ppd#(2e, p).

Proof. We may assume that z ∈ Ẑ. The unipotent radical Q̂ = Op

(
CĜ(Ẑ)

)
acts

regularly on the set of root groups opposite Ẑ. Then the total number of long root
elements opposite z is (q − 1)|Q̂|, while the total number of long root elements is

|Ĝ : CĜ(z)|. Hence, the desired probability is the ratio of these integers, and it is
straightforward to check the lower bound 1/3 in all cases.
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Table 1. Number of root SL(3, q) that contain a given long root SL(2, q)

Ĝ n(Ŝ, R̂) q-exponent

G2(q)
q(q + 1)

2
2

3D4(q)
q3(q3 + 1)

2
6

F4(q)
q6(q3 + 1)(q4 − 1)

2(q − 1)
12

E6(q)
q9(q3 + 1)(q2 + 1)(q5 − 1)

2(q − 1)
18

2E6(q)
q9(q + 1)(q3 + 1)(q5 + 1)

2
18

E7(q)
q15(q3 + 1)(q5 + 1)(q8 − 1)

2(q − 1)
30

E8(q)
q27(q9 + 1)(q5 + 1)(q14 − 1)

2(q − 1)
54

Each opposite pair z, z′ lies in a unique long SL(2, q). Two elements of order
p in that SL(2, q) generate the required type of subgroup with probability ≥ 1/4
[KS1, Lemma 3.8(iii)]. �

We next turn to generating the long root subgroups Ŝ = SL(3, q) and Ĵ =

Spin−8 (q) appearing in (2.19) and Lemma 2.23. Let R̂ be as in (2.13).

Let n(Ŝ, R̂) denote the number of conjugates of Ŝ containing R̂, and n(Ĵ , Ŝ)

the number of conjugates of Ĵ containing Ŝ. All members of R̂Ĝ lying in Ŝ are

Ŝ-conjugate, and all members of ŜĜ lying in Ĵ are Ĵ-conjugate. Therefore, the
numbers n(X,Y), (X,Y) = (Ŝ, R̂) or (Ĵ , Ŝ) can be obtained from Tables 1 and 2
by simplifying the obvious formula to

n(X,Y) =
|NĜ(Y)||X|

|NĜ(X)||NX(Y)| .

Lemma 2.27. Let R̂, Ŝ and Ĵ be as before.

(i) The probability is at least 1/3 that R̂, together with a conjugate of Ẑ opposite

Ẑ, generate a conjugate of Ŝ.
(ii) The probability is at least 1/3 that Ŝ, together with a conjugate of Ẑ, gen-

erate a conjugate of Ĵ .

Proof. For (X,Y)=(Ŝ, R̂) or (Ĵ , Ŝ), the desired probability is at least n(X,Y)β/|Q̂|,
where β is the number of conjugates Ẑ ′ of Ẑ insideX that are opposite Ẑ and satisfy
X = 〈Y, Ẑ ′〉 (recall that |Q̂| is the number of Ĝ-conjugates of Ẑ opposite Ẑ). From

Tables 1 and 2 we obtain n(Ŝ, R̂)/|Q̂| ≥ 4q−3/9 and n(Ĵ , Ŝ)/|Q̂| ≥ q−9(1−q−3)2/2.
It remains to estimate β in our two cases.
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Table 2. Number of root Spin−8 (q) that contain a given long root SL(3, q)

Ĝ n(Ĵ , Ŝ) q-exponent

F4(q)
q3(q3 − 1)

2
6

E6(q)
q6(q3 − 1)2

2
12

2E6(q)
q6(q3 + 1)2

2
12

E7(q)
q12(q6 − 1)(q5 − 1)(q3 − 1)

2(q2 − 1)
24

E8(q)
q24(q12 − 1)(q9 − 1)(q5 − 1)

2(q2 − 1)
48

(i) Let V be the natural module for Ŝ = SL(3, q). Then V = [V, R̂] ⊕ CV (R̂),

and the only maximal overgroups of R̂ in Ŝ are the parabolics NŜ([V, R̂]) and

NŜ

(
CV (R̂)

)
. If Ẑ ′ < Ŝ is a conjugate of Ẑ opposite Ẑ, then [V, R̂] �= CV (Ẑ

′) and

CV (R̂) �= [V, Ẑ ′].

Thus, if also Ŝ > 〈R̂, Ẑ ′〉, then either [V, R̂] > [V, Ẑ ′] or CV (R̂) < CV (Ẑ
′). There

are at most 2q2 such Ẑ ′ out of the q3 opposite Ẑ. Thus β ≥ q3−2q2, and the desired
probability is at least (4q−3/9)(q3 − 2q2) > 1/3.

(ii) Let V be the natural 8-dimensional module for Ω−(8, q); we will view all

subgroups of Ĵ as subgroups of Ω−(8, q). Then Ŝ splits V as V = V +
6 ⊥ V −

2 . Long

root groups Ẑ ′ correspond to totally singular 2-spaces T of V via T = [V, Ẑ ′]. If
V = 〈T, V +

6 〉 then T⊥ ∩ V −
2 = 0 (as otherwise T and V +

6 would lie in a 7-space).

Consequently, 〈Ŝ, Ẑ ′〉 is an irreducible subgroup of Ĵ generated by long root groups,

and hence is Ĵ [Ka1, LS].
Thus, we only need to estimate the number of totally singular 2-spaces not

spanning V together with V +
6 . Each such 2-space contains a point of V +

6 . Since
V +
6 has (q2 + q+1)(q2 +1) singular points and each is contained in (q3 +1)(q+1)

totally singular 2-spaces, there are at most (q2+ q+1)(q2+1)(q3+1)(q+1) < 3q8

totally singular 2-spaces meeting V +
6 (as q > 9). There are q9 long root groups in

Ĵ opposite Ẑ. It follows that β ≥ q9 − 3q8, so that the desired probability is at
least (q9 − 3q8) · q−9(1− q−3)2/2 ≥ 1/3. �

We will need variations on the previous arguments:

Lemma 2.28. (i) Suppose that D is a subgroup generated by opposite long
root elements z, z′ such that either D ∼= SL(2, q) or q is even and D is

dihedral of order 2ppd#(2e, 2). Then the probability is at least 1/4 that D,

together with a conjugate y of z opposite z, generate a conjugate of Ŝ.
(ii) The probability is at least 1/3 that CŜ(R̂) = Ŝ ∩ L̂ and a random conjugate

Ŝl, l ∈ L̂, generate a Ĝ-conjugate of Ĵ having an element normalizing R̂
and conjugating CŜ(R̂) into Ŝl.
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Proof. (i) By Lemma 2.27(i), with probability at least 1/3 the three root groups

containing z, z′ or y generate a conjugate of Ŝ. Thus, we only need a lower bound
on the conditional probability that Ŝ = 〈D, y〉 for a root element y ∈ Ŝ opposite z.

In view of the structure of D, the only maximal overgroups of D in Ŝ are
NŜ([V,D]) and NŜ(CV (D)) (compare [KS1, Lemma 3.7]). Define β as at the start
of the proof of Lemma 2.27. Then at least β(q − 1) of the q3(q − 1) root elements

in Ŝ opposite z generate Ŝ together with D, so that the desired probability is at
least (1/3)β(q − 1)/q3(q − 1) ≥ (q3 − 2q2)/3q3 > 1/4.

(ii) Somewhat as in Lemma 2.27(ii),

(2.29) Ŝ and Ŝl generate a long Spin−8 (q) subgroup with probability > 1/4.

For, the number of “good” conjugates Ŝl such that 〈Ŝ, Ŝl〉 ∈ Ĵ Ĝ is n(Ĵ , Ŝ)·γ, where
n(Ĵ , Ŝ) is in Table 2 and γ is the number of good Ŝl per Ĵ-conjugate containing Ŝ.

On the other hand, |ŜL̂| is just the number n(Ŝ, R̂) of conjugates of Ŝ containing

R̂ (by Lemma 2.21). Thus, the desired probability is n(Ĵ , Ŝ)γ/n(Ŝ, R̂). We will
provide a lower bound for γ, from which (2.29) will follow using Tables 1 and 2.

For this purpose, we restrict our attention to the 8–space V associated with Ĵ .
As for the preceding lemma, Ŝl is good if (and only if) 〈Ŝ, Ŝl〉 is irreducible on V .

If V +
6 := [V, Ŝ], then V +

6 = U3 ⊕ U∗
3 for totally singular Ŝ-invariant 3-spaces

U3, U
∗
3 . Also, [V, R̂] is a nondegenerate 4-space of type + meeting U3, U

∗
3 at 2-

spaces U2, U
∗
2 , respectively.

Since l centralizes R̂, the totally singular 3-spaces U l
3, U

∗
3
l meet [V, R̂] in totally

singular 2-spaces Ũ2 := U l
2, Ũ

∗
2 := U∗

2
l, lying in the same “half” of the set of totally

singular 2-spaces of [V, R̂] as U2, U
∗
2 (this “half” consists of q + 1 totally singular

2-spaces pairwise meeting in 0, all of which are R̂-invariant); there are (q+1)q such

ordered pairs Ũ2, Ũ
∗
2 of distinct 2-spaces. Each of the subspaces U l

3, U
∗
3
l meets the

4−-space [V, R̂]⊥ = 〈Ũ2, Ũ
∗
2 〉⊥ in a singular point; there are (q2+1)q2 ordered pairs

p1, p2 of distinct singular points in [V, R̂]⊥. Each such ordered pairs of 2-spaces

and of points determine a unique ordered pair 〈Ũ2, p1〉, 〈Ũ∗
2 , p2〉 of totally singular

3-spaces left invariant by a conjugate Ŝl, and each Ŝl arises this way exactly twice
(twice because the ordered pairs Ũ2, Ũ

∗
2 and p1, p2 determine the same conjugate

of Ŝ as the ordered pairs Ũ∗
2 , Ũ2 and p2, p1). Of the pairs p1, p2 of singular points,

q2 − 1 points p1 do not lie in V +
6 and at least q2 − 1 − (q − 1) points p2 do not

lie in 〈V +
6 , p1〉, in which case V = 〈V +

6 , p1, p2〉 = 〈U3, U
∗
3 , U

l
3, U

∗
3
l〉 and 〈Ŝ, Ŝl〉 is

irreducible. Thus, 2γ ≥ (q+ 1)q ·(q2 − 1)(q2 − q). Now Tables 1 and 2 yield (2.29).

Let Â := Ŝ ∩ L̂. It remains to show that 〈Ŝl, Â〉 ∼= Ĵ , l ∈ L, assuming that

〈Ŝ, Ŝl〉 ∼= Ĵ . Instead of this it will be more convenient to show that 〈Ŝ, Âl〉 = Ĵ ,

l ∈ L, assuming that 〈Ŝ, Ŝl〉 = Ĵ .

If 〈Ŝ, Âl〉 is irreducible on V then so is 〈Ŝ〈Ŝ,Âl〉〉, and then both of these groups are

Ĵ using [Ka1, LS]. Moreover, Ŝ and Ŝl are long SL(3, q)-subgroups of Ĵ containing

R̂, and hence are conjugate under NĴ(R̂) (cf. Lemma 2.21(ii)). Then Âlj < Ŝlj = Ŝ

for some j ∈ NĴ(R̂), as required in (ii).

We will assume that 〈Ŝ, Âl〉 is reducible and obtain a contradiction. A generator

of Âl = CŜl(R̂) acts on V by centralizing a 2−–space (hence with eigenvalue 1

there) while acting on V +
6

l with two invariant totally singular 3-spaces U l
3, U

∗
3
l and

eigenvalues on them of the form λ, λ, λ−2 and λ−1, λ−1, λ2, respectively, where λ



4910 W. M. KANTOR AND K. MAGAARD

has order q − 1. In particular, CV +
6

l(Âl) = 0 since q > 3, so that CV (Â
l) has no

singular points. Thus, the only totally singular 3-spaces left invariant by Âl are
contained in V +

6
l.

Any proper 〈Ŝ, Âl〉-invariant subspace W of smallest dimension must be totally

singular or nondegenerate. Clearly Ŝ and Âl have no fixed common nonzero vector
since CV (Ŝ

l) = CV (Â
l) and Ĵ = 〈Ŝ, Ŝl〉. Thus, W is U3 or U

∗
3 , and yet we have seen

that it must be contained in V +
6

l. Then the 6-spaces V +
6 = [V, Ŝ] and V +

6
l = [V, Âl]

both contain both W and the 4+-space [V, R̂], and those span at least a 5-space.

Thus, 〈[V, Ŝ], [V, Ŝl]〉 = 〈[V, Ŝ], [V, Âl]〉 < V and 〈Ŝ, Ŝl〉 is reducible. This is the
desired contradiction. �

2.4. Start of the proof of Theorem 1.1. We are given a black box group G
that is a nontrivial epimorphic image of the universal cover Ĝ of an exceptional
group of Lie type of rank > 2 over a field of order q > 9. Therefore Ĝ is the simply
connected cover [GLS, p. 313]. We start by using the Monte Carlo algorithm in
[BKPS] in order to (probably) find the type of group we are dealing with. Similarly,
every time we call an existing constructive recognition algorithm in Theorem 1.3
we assume that [BKPS] has first been used in order to make it likely that we are
testing a group having the desired structure: the algorithm in [BKPS] is far faster
than any constructive recognition algorithm (such as Theorem 1.3), although these
checks are not necessary for the proof of Theorem 1.1.

Eventually we will test that the group is, indeed, as expected: in Proposition 2.33
and Corollary 2.42 we will verify a presentation (2.2)–(2.5) or (2.6) for G. Such a
presentation is also crucial for uses of Theorem 1.1, such as those in [KS2, LG].

2.5. Finding a long root element. Choose up to 3150q elements τ ∈ G until one
is found such that |τ | = pl for l in Lemma 2.24. When we obtain τ of the desired
sort, Lemma 2.24(i) states that z := τ� is a long root element, or possibly a short
one when G has type F4. For the latter groups we proceed somewhat differently.

Suppose that G has type F4. If q is even, then the graph automorphism sends
short root elements to long ones, so we may assume that z is long. If q is odd,
then we run the algorithm up to 3200q times, from finding τ until the group L is
constructed and tested at the start of Section 2.9 (specifically, we find τ and then
find and test z′, y, S, S2, Z1, J and L).

Remark 2.30 (Correctness). There is no subgroup of F4(q), q odd, generated by
short root elements and isomorphic to Sp(6, q). For, F4(q) has exactly 2 classes
of involutions, with centralizers Spin9(q) and

(
SL(2, q) ◦ Sp(6, q)

)
· 2 (for a long

SL(2, q)) [Sho]; only the latter type has a subgroup Sp(6, q), and the long root
groups in Sp(6, q) are also long for G. Thus, if we obtain a subgroup L ∼= Sp(6, q),
then z is a long root element.

There are other ways to handle this odd case. For example, the group generated
by 4 conjugates of a long root element is isomorphic to Spin−8 (q) with probability
≥ 1/16, but the same is not true for short root elements, once again by using the
nature of the centralizers of the 2 classes of involutions noted above. In Section 4,
Remark 6, this ambiguity is avoided by using an entirely different approach that
finds the involution in R and then its centralizer in G.
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For the cases E7(q) and E8(q) there are two possibilities, l, l0, in Lemma 2.24,
and hence we also find a second element τ0 of order pl0. Then z0 := τ� is a long
root element.

Reliability:. ≥ 1 − 1/29 for τ and τ0 in all but the exceptional F4 case. For, all
τ fail to have the required order with probability ≤ (1 − 1/315q)3150q < 1/210, by
Lemma 2.24.

In the exceptional F4 case, for a given choice τ , if z is a long root element, then
we will succeed at showing this and finding the needed elements and subgroups with
probability ≥ 1− 1/28 (in view of the individual probabilities in the next sections).
Hence, we will succeed for a given τ with probability ≥ (1/315q)(1−1/28) > 1/320q.
All 3200q repetitions fail with probability < (1− 1/320q)3200q < 1/210.

Time:. O(q[ξ+μ log2q]) to choose elements τ (and τ0) and to test the order of each
of them using [KS1, Lemma 2.7], but O(ξq log q+μq log2q) if the F4 test is needed.

2.6. Matching up root elements. For the cases E7(q) and E8(q) we have two
elements τ and τ0, and we have powers z and z0 of them that are long root elements.
We need to arrange to have 〈z〉 = 〈z0〉.

Repeat up to 240 times: choose a conjugate z1 of z0, test whether z and z1 are
opposite and for odd q use Theorem 1.3(ii) to test whether 〈z, z1〉 ∼= SL(2, q) and,
if so, to obtain a constructive isomorphism SL(2, q) → 〈z, z1〉. If p = 2 then 〈z, z1〉
is dihedral of order dividing 2(q ± 1).

For each q it is now easy to conjugate 〈z〉 to 〈z1〉 and hence to 〈z0〉.
Thus, we can conjugate τ0 in order to arrange that 〈z〉 = 〈τ�〉 = 〈τ�0 〉 = 〈z0〉

(recall that � denotes the p′-part of |Ĝ|).
Reliability:. ≥ 1 − 1/210. For, by Lemma 2.26, z1 is opposite z with probability
> 1/3, and we use (2.12) to test this. If this occurs and q is even, then we are
merely conjugating within a dihedral group.

If q is odd, then 〈z, z1〉 ∼= SL(2, q) with probability ≥ 1/12 (by Lemma 2.26), in
which event Theorem 1.3 succeeds with probability > 1/2. Thus, all 240 repetitions
fail with probability < (1− 1/24)240 < 1/210.

Time:. O(ξq log q + μq log2q), dominated by the time to find the constructive iso-
morphism.

2.7. The subgroups R, Z, Z− and S. Choose up to 10 · 212 pairs z′, y of con-
jugates of z, and use (2.12) and Theorem 1.3(ii) in order to test whether both
are opposite z and S := 〈z, z′, y〉 and S2 := 〈z, z′τp

, y〉 are both isomorphic to

Ŝ = SL(3, q); and, if so, to find constructive isomorphisms ΨS : Ŝ → S and

ΨS2
: Ŝ → S2, together with generating sets SŜ and S∗

S of Ŝ and S, respectively,

such that SŜΨS = S∗
S . We may assume that Ŝ is the subgroup of Ĝ defined in

(2.19); we will use the notation in (2.13).

Find R := R̂ΨS < S, Z := X̂νΨS and Z− := X̂−νΨS using Theorem 1.3(iv).
Then R = 〈Z,Z−〉 ∼= SL(2, q).

Conjugate within Ŝ in order to have z ∈ Z and z′ ∈ Z−. Then τp centralizes Z
since it centralizes z ∈ Z. Find the root group Y < S containing y.

Use ΨS2
to find an element of Op

(
CS2

(Z)
)
conjugating (Z−)τ

p

to Y (recall that Z

and Y are opposite), and use ΨS to find an element of Op

(
CS(Z)

)
conjugating Y to

Z−. The product of these two elements is an element c ∈ Op

(
Cs2(Z)

)
Op

(
CS(Z)

)
⊆
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Q := Op

(
CG(Z)

)
such that (Z−)τ

pc = Z− (cf. Lemma 2.21(iii); of course we do
not yet have Q to work with). Then τpc and τp are elements of CG(Z) that agree
mod Q, so that l divides the order of τpc. Moreover, τpc normalizes Z− while
centralizing Z.

Thus, τpc centralizes R and has order divisible by l.
Recall from the preceding section that Z contains 〈z〉 = 〈z0〉 when G is of type

E7 or E8. In that case we have a second element τ0, and we obtain in the same
way a second element τp0 c0 of CG(R), this time of order divisible by l0.

Reliability:. ≥ 1 − 1/29. For, both members of a pair z′, y are opposite z, with
z′ behaving as in the second part of Lemma 2.26 and S, S2

∼= SL(3, q), with prob-
ability > (1/12)(1/3)(1/4)2 > 1/210 (by Lemmas 2.26 and 2.28(i)), in which case
Theorem 1.3(ii) succeeds for both S and S2 with probability > (1/2)2. Hence, all

10 ·212 repetitions fail with probability < (1−1/212)10·2
12

< 1/210. The probability
involved in repeating the above for τ0, if needed, is dealt with similarly.

Time:. O(ξq log q + μq log2q), dominated by finding ΨS and ΨS2
using Theorem

1.3(ii).

2.8. The long subgroups J and R1. Repeat up to 30 times: choose a conjugate
Z1 of Z, and use Theorem 1.3(ii) in order to test whether J := 〈S,Z1〉 ∼= Spin−8 (q);
and, if so, to obtain a constructive isomorphism ΨJ : Spin

−
8 (q) → J .

Find a long SL(2, q)-subgroup R1 < CJ (R) using ΨJ . Obtaining this long
SL(2, q) is the only use we have for J and ΨJ .

Reliability:. ≥ 1− 1/210 using Lemma 2.27(ii).

Time:. O(ξq log q + μq log2q), dominated by finding ΨJ using Theorem 1.3(ii).

2.9. The subgroups L, T and N . Let L := 〈R1, τ
pc〉 or 〈R1, τ

pc, τp0 c0〉 in the
cases F4, E6,

2E6 or E7, E8, respectively. The generators of L lie in CG(R) (cf.
Section 2.7). Hence, L = CG(R) by Lemma 2.25.

The subgroups S and L behave as in Lemma 2.21(ii), and hence the pair S,L
is uniquely determined up to conjugacy in G. In particular, we can use the infor-
mation in Section 2.1 to study G by means of constructive isomorphisms for these
subgroups. Note, however, that these isomorphisms might not match up properly,
which will make us (possibly) have to modify the pair (S,L) in Lemma 2.32.

Use up to 10 repetitions of Theorem 1.3(ii), or recursion if G = E8(q), in order

to find generating sets S∗
L of L and ŜL of L̂ and an isomorphism ΨL : L̂ → L such

that ŜLΨL = S∗
L. Also find the following subgroups of G using (2.17) and (2.19):

TL := TL̂ΨL, TS := TŜΨS , NL := NL̂ΨL and NS := NŜΨS .

(Recall that we already have a generating set S∗
S of S.) We will often use the fact

that ΨS and ΨL are isomorphisms even though the target epimorphism Ψ = ΨG

may not be bijective. In particular, Ψ−1
L always produces a unique element of Ĝ.

Reliability:. ≥ 1− 1/210.

Time:. O(ξq log q + μq log2q), dominated by finding ΨL.

Remark 2.31. A version of the presentation (2.2)–(2.5) or (2.6) is used for L as part
of Theorem 1.3(ii). Conceivably this is not a subpresentation of the presentation

(2.2)–(2.5) or (2.6) that we are using for Ĝ: the signs may not agree. We assume
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that, as part of the recursive call, the signs in the presentation (2.2)–(2.5) or (2.6)

for L̂ have been changed so as to coincide with the corresponding ones for Ĝ. Since
we are only dealing with presentations of groups of small (bounded) rank, there are
only a few sign changes required here.

2.10. Matching up TS and TL in order to obtain T . At this point it need
not be the case that 〈TS , TL〉 is a maximal torus of G. In order to guarantee this
property we need to arrange for the 1–dimensional torus S ∩L of both S and L to
lie in both of the tori TS and TL:

Lemma 2.32. There is an algorithm replacing the pair (S,L) by a conjugate pair in
order to have S ∩L = TS ∩ TL. This algorithm is deterministic and runs in O(μq)
time, except when G is E8(q), in which case it is Las Vegas, takes O(ξq log q +
μq log2q) time and succeeds with probability ≥ 1− 1/210.

Proof. Recall from Section 2.7 that Ŝ is the subgroup of Ĝ defined in (2.19). Since

R = R̂ΨS , we can find S ∩L = CS(R) =
(
CŜ(R̂)

)
ΨS using Theorem 1.3(iv). Since

TŜ normalizes the root groups X̂ν , X̂−ν of R̂, TŜ contains CŜ(R̂) (using a basis of

the 3-space for Ŝ as in the proof of Lemma 2.22). Thus, S ∩ L =
(
CŜ(R̂)

)
ΨS ≤

TŜΨS = TS .
We will provide two entirely different approaches to the remaining part of the

proof: arranging to have S∩L ≤ TL. The first is deterministic (as in the statement
of the lemma) and simpler for G not of type E8, while the second is more uniform.
The timing in the lemma refers to the first method. (For rank 2 groups in Section 3
we will use the first method.)

Method 1. We initially assume that G does not have type E8. Then L̂ is (essen-
tially) a classical group (cf. (2.15)); let V be its natural module. (It will not matter

that this module is not faithful when L̂ is a spin group.)

We have found the (cyclic) group S ∩ L using S. Find Â := (S ∩ L)Ψ−1
L using

Theorem 1.3(iii). Diagonalize Â on V using a hyperbolic basis that determines

a maximal split torus T̂ of L̂ containing Â. Find l̂ in the classical group L̂ such

that T̂ l̂ = TL̂ (this is just a basis change). Find l := l̂ΨL using Theorem 1.3(iv).

Replace S by Sl and TS by T l
S . (Correctness: We have Sl ∩ L = (S ∩ L)l =

Âl̂ΨL < T̂ l̂ΨL = TL̂ΨL, where the latter is TL by definition in Section 2.9. Then

Sl ∩ L = (S ∩ L)l ≤ T l
S ∩ TL ≤ Sl ∩ L since S ∩ L ≤ TS . Therefore, replacing S by

Sl and TS by T l
S gives the desired equality S ∩ L = TS ∩ TL.)

If G has type E8 we again find Â := (S∩L)Ψ−1
L , using up to 10 recursive calls to

Theorem 1.1(iii),(vii). Then the following are accomplished in the Appendix: find

the Lie algebra of L̂ ∼= Ê7(q), then find a Chevalley basis producing a split torus

of L̂ containing Â, and finally find l̂ ∈ L̂ conjugating this torus to the torus TL̂ in

(2.17). Find l := l̂ΨL using another recursive call to Theorem 1.1, and replace S
by Sl and TS by T l

S . (Correctness: Once again Sl ∩ L ≤ TL̂ΨL = TL, and our
replacement again gives S ∩ L = TS ∩ TL.)

Method 2. Find the subgroup A := (Ŝ ∩ L̂)ΨL of T̂L̂ΨL = TL using Theo-
rem 1.3(iii).
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Repeat up to 30 times: choose l ∈ L, use Theorem 1.3(a) to test whether
〈Sl, A〉 ∼= Spin−8 (q) and, if so, use the resulting constructive isomorphism Spin−

8 (q)
→ 〈Sl, A〉 in order to find j ∈ 〈Sl, A〉 that normalizes R and conjugates A into Sl.
Let m := lj−1. Replace S by Sm and TS by Tm

S .

Correctness: There is an epimorphism Ψ: Ĝ → G extending ΨL and hence send-
ing R̂ to R. Then ŜΨ contains R̂Ψ = R, and A = (Ŝ ∩ L̂)ΨL = (Ŝ ∩ L̂)Ψ =

ŜΨ ∩ L̂Ψ = CŜΨ(R) behaves as in Lemma 2.28(ii).

By that lemma, we may assume that 〈Sl, A〉 is isomorphic to Spin−8 (q) and has
an element normalizing R and conjugating A into Sl. With m ∈ NG(R) as above,

A ≤ Sm ∩ L, so that A = Sm ∩ L by Lemma 2.21(ii) since A = ŜΨ ∩ L. Then
A = (S ∩ L)m < Tm

S (by the start of the proof of this lemma), while A < TL by
definition. Thus, A ≤ Tm

S ∩ TL ≤ Sm ∩ L = A. Replacing S by Sm and TS by Tm
S

gives TS ∩ TL = S ∩ L.

Time:. Method 2 requires O(ξq log q + μq log2q) time, dominated by the test for
isomorphism with Spin−8 (q).

Method 1 uses Theorem 1.3(iii),(iv) for ΨL, and hence runs in O(μq log q) time
if G does not have type E8. However, in the E8 case it again takes O(ξq log q +
μq log2q) time since a constructive isomorphism is used in the Appendix. (N.B.–
The faster O(μq log q) time is significant, but it does not influence the overall time
for the algorithm in Theorem 1.1.)

Reliability:. ≥ 1 − 1/210 in Method 2, in view of Lemma 2.28(ii) and the 30
repetitions of Theorem 1.3(ii). The same probability can be obtained in the E8

case of Method 1. �

At this point we could also arrange to have ΨS |Ŝ∩L̂ = ΨL|Ŝ∩L̂, but we will not
need this.

The subgroups T , N and W . By Lemmas 2.22 and 2.32, T := 〈TS , TL〉 is a
maximal torus and W := N/T is the Weyl group of G, where N := 〈NS , NL〉.

2.11. The root groups Xα. Associated with W there is a root system Φ having
a subsystem ΦL corresponding to L. In Section 2.7 we already used the roots ν, ν′

appearing in (2.13), (2.14) since Ŝ was defined using (2.19). There is a base ΔL for
ΦL such that Δ := ΔL ∪ {ν′} is a base for Φ.

We next find the |Φ| root groups Xα, α ∈ Φ. We already have Xν = Z and
X−ν = Z−. Use the isomorphism ΨL and Theorem 1.3(iv) to find the TL-invariant
root groups Xα, α ∈ ΦL. Conjugate these using N in order to obtain all |Φ| ≤ 240
root groups Xα, α ∈ Φ.

Time:. O(μ log q) using ΨL (Theorem 1.3(iv)). For, we only need one nontrivial
root element in one root group Xα of each length, an element hα(t) generating the
corresponding 1-dimensional torus, and a “reflection” nβ(1) for each β ∈ ΔL, after
which we can conjugate using (2.9) and (2.10).

Note also that we only need coset representatives in N of the stabilizer in N
of the long root ν; this stabilizer is NLT . A similar remark holds for short roots,
if there are any. There are at most 240 such coset representatives for each type
of root, and these can be quickly found in O(1) time using standard permutation
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group algorithms for W [Ser, Ch. 4]. Alternatively, it is straightforward to write
coset representatives as explicit products of fundamental reflections in the Weyl
group.

2.12. The epimorphism Ψ: Ĝ → G0. Let G0 := 〈Xα | α ∈ Φ〉. We next show

that G0 is an epimorphic image of Ĝ. In Corollary 2.42 we will test whether each
member of the original generating set S of G lies in G0, thereby verifying that G0

is G.
The isomorphism ΨL lets us “coordinatize” each root groupXα, α ∈ ΦL: labeling

the elements of Xα as Xα(t), t ∈ F or F′, in a manner preserved by the conjugations
(2.10) for α ∈ ΦL and satisfying the relations (2.2)–(2.5) or (2.6). This was already
noted in Remark 2.31. We need to coordinatize each root group Xα, α ∈ Φ, in the
same manner:

Proposition 2.33. There is a deterministic O(μ log2q)-time algorithm that labels
any given element of any root group Xα, α ∈ Φ, as Xα(t) for some t in F or F

′, in

such a way that the map X̂α(fk) �→ Xα(fk) (for all appropriate α and k) extends

to an epimorphism Ψ: Ĝ → G0. Moreover, Ψ|L̂ = ΨL.

Proof. We have Ĝ and its presentation, and we have already coordinatized all
Xα(fk) = X̂α(fk)ΨL, α ∈ ΦL.

We also already have the long root ν′ in (2.14). By (2.9), NR̂(X̂ν′) centralizes

L̂ and is transitive on the nontrivial elements of X̂ν′ . Hence, we can choose any
nontrivial element of Xν′ and label it Xν′(1). We now show that all remaining
labels are uniquely determined.

Let δ ∈ ΔL be the long root not perpendicular to ν′. Using (2.9) for hδ(fk) we
can correctly label Xν′(fk) and hence any given element of Xν′ .

By(2.5), we have relations [X̂α(fk),X̂β(fl)]=X̂α+β(εα,βfkfl) in Ĝ whenever α ∈
ΦL, β and α+ β are long. Each subgroup Xα of L has already been coordinatized.
Starting with all root groups of L together with Xβ := Xν′ , by repeatedly using
these relations with hats removed we coordinatize all positive long root groups.
Alternatively, we could achieve this by using (2.10) for nβ(1), β ∈ ΦL.

We next coordinatize X−ν′ using α = ν − ν′ ∈ ΦL, β = −ν′ together with
the desired relation [Xν′+α(1), X−ν′(u)] = Xα(εν′+α,−ν′ u) in (2.5) or (2.6) (here
εν′+α,−ν′ := C1,1,ν′+α,−ν′ in (2.5)). First, find an Fp-basis for the elementary
abelian group X−ν′ (recall that this root group was obtained as a conjugate of
a root group of L). For each element x in this basis, find its coordinate u via
[Xν′+α(1), x] = Xα(εν′+α,−ν′ u) using linear algebra in Xα. This produces the
coordinates of a basis of X−ν′ and hence of any given element of X−ν′ .

Now coordinatize all negative long root groups as above.
This leaves us with the groups of type F4 or 2E6, where there are also short

roots to consider. Here we use the last relation in (2.6) as above in order to
coordinatize Xα+β whenever α, α + 2β are long and β ∈ ΦL, α + β are short.
Namely [Xα(1), Xβ(fl)] = Xα+β(εαβ fl)Xα+2β(ε

′
αβflf

q
l ), where we already know

Xα+2β(ε
′
αβflf

q
l ).

Finally, we verify all of the relations (2.2)–(2.5) or (2.6). This proves our asser-
tions concerning both Ψ and Ψ|L̂.

This algorithm is deterministic. The stated time includes verifying the relations
(cf. [KS1, 7.2.2]). �
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Note that this same commutator method could have been used to produce all of
the root groups Xα, not just to label them. This may, in fact, be more efficient in
practice. Also note that Ψ extends ΨL but not necessarily ΨS .

Remark 2.34. We have G0 = 〈S∗〉, where S∗ consists of all of the Xα(fk), α ∈ Φ.

Let Ŝ consist of the elements X̂α(fk) of Ĝ, so that ŜΨ=S∗ is the defining property
of Ψ.

Corollary 2.35. A random element of G0 can be constructed as a straight-line
program of length O(log q) in Ŝ in time O(μ log q).

Proof. Let Û :=
∏
α>0

X̂α and Ûw :=
∏

α>0>w(α)

X̂α for each w ∈ W = NĜ/TĜ (for a

suitable order of the factors). Also, let hδ be a generator of ĥδ(F
∗) (or of ĥδ(F

′∗) if
δ is short), for each δ ∈ Δ. Then TĜ is the direct product of the groups 〈hδ〉, δ ∈ Δ.
For w ∈ W choose nw ∈ NĜ such that w = nwTĜ.

By [Ca1, Corollary 8.4.4] or [GLS, Theorem 2.3.5], every element of Ĝ has the

unique Bruhat normal form unv with u ∈ Û , n ∈ NĜ, w := nTĜ ∈ W and v ∈ Ûw.

Hence, a random element of Ĝ is obtained by choosing w and hence nw, then
t ∈ TĜ and hence n := nwt, and finally letting u and v be products of randomly
chosen elements of the relevant root groups. By (2.2), each of the O(1) root group

elements appearing in the definition of Û or Ûw is a product of powers of elements
of Ŝ with exponents between 0 and p − 1, and hence can be obtained using a

straight-line program of length O(log q) from Ŝ. Similarly, t =
∏

δ∈Δ h
a(δ)
δ with

0 ≤ a(δ) < |hδ|, and (2.7) shows that t can also be obtained using a straight-line

program of length O(log q) from Ŝ. Thus, the required random root group elements
and t are obtained by randomly choosing w and all of the preceding exponents.

Finally, apply Ψ in order to obtain a random element of ĜΨ = G0. �

Note that this corollary involves the more classical notion of “random” element
rather than the more subtle version in [Bab] (cf. Section 1.1). In particular, the
parameter ξ is not involved.

2.13. Effective transitivity of Q. The set ZG of long root groups is far too large
to be managed effectively using standard permutation group methods (cf. [Ser]).
Nevertheless, as in [KS1, Br2, BrK1, BrK2, LMO], we need to circumvent this
difficulty when using the action of Q := 〈Xα | α ∈ Φ+ \ ΦL〉 on this set. As in the
above references, the following effective transitivity of Q will be crucial later (in
Section 2.15):

Lemma 2.36. There is an O(ξq log q+μq log2q)-time Las Vegas algorithm which,
with probability > 1 − 1/210, when given long root groups A and B opposite to Z,
finds the unique element u ∈ Q such that Au = B.

Proof. Each long root group opposite Z has the form Bv for a unique v ∈ Q. Repeat
up to 60 times: choose v ∈ Q, and test whether S(v) := 〈Z,A,Bv〉 ∼= SL(3, q) using
Theorem 1.3(ii); if so obtain a constructive isomorphism ΨS(v) : SL(3, q) → Y ,
and finally use ΨS(v) and Theorem 1.3(iii),(iv) in order to obtain an element of

Op

(
CS(v)(Z)

)
conjugating A to Bv. Since Op

(
CS(v)(Z)

)
is transitive on AQ∩S(v),

such an element exists, and it is in Q by Lemma 2.21(iii).
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Reliability:. ≥ 1 − 1/210, since 〈Z,A,Bv〉 ∼= SL(3, q) with probability ≥ 1/3 by
Lemma 2.27(i), and Theorem 1.3(ii) succeeds with probability > 1/2, so that all 60
repetitions fail with probability ≤ (1− 1/6)60 < 1/210.

Time:. O(ξq log q + μq log2q), dominated by finding ΨS(v). �

2.14. Linear algebra in Q/Z. We next address the problem of writing an element
g ∈ Q as a word in the generators Xα(t).

Fix an ordering of the roots for Q, with Z = Xν first. (For example, modify the
ordering in [Ca1, p.78] so that ν is first.) Then each g ∈ Q can be written as a
product g =

∏
α∈Φ+\ΦL

Xα(tα) in the chosen order, with each tα ∈ F or F′ written

as Fp-linear combinations of the given bases of F or F
′. We will call this product

the standard form of g.

Proposition 2.37. The standard form of any given g ∈ Q can be computed deter-
ministically in O(μ log q) time.

Proof. We first deal with the case in which G is not F4(q) with q even. (The
omitted case is handled in the following lemma.) We must find the standard form∏

α∈Φ+\ΦL
Xα(tα) of g. Let Xγ(tγ) be the rightmost nontrivial factor in the prod-

uct. By Lemma 2.18(ii) there is a unique root groupXβ in Q that does not commute
with Xγ . Then we can find tγ using linear algebra in Xν :

[g,Xβ(1)] = [Xγ(tγ), Xβ(1)] = Xν(Cγ,β,1,1tγ)

by (2.5) and (2.6), since Xβ commutes with g1 := gXγ(−tγ).
Now compute g1 and repeat O(1) times. The procedure ends with g ∈ Xν = Z

after we have processed O(1) roots in Φ+ \ ΦL.
This procedure is deterministic. The time takes into account the need to write

a given field element Cγ,β,1,1tγ in terms of the basis vectors fk.

The case F4(q) with q even. Here we will modify the above procedure using
explicit knowledge of the positive roots of the root system of type F4 together with
the explicit presentation (2.2)–(2.5) or (2.6).

Conventions:. The roots in our base Δ are ordered α1, α2, α3, α4, so that the high
root is ν = 2342, where we write α = abcd if α = aα1 + bα2 + cα3 + dα4.

The positive roots:
1000, 0100, 0010, 0001, 1100, 0110, 0011, 1110, 0120, 0111, 1120, 1111,
0121, 1220, 1121, 0122, 1221, 1122, 1231, 1222, 1232, 1242, 1342, 2342.
The roots for Q: those of the form 1bcd or 2342.
The short roots for L: ±0001, ±0011, ±0010, ±0110, ±0111, ±0121.
The long roots for L: ±0122, ±0120, ±0100.
The short roots for Q: 1232, 1231, 1221, 1121, 1111, 1110.
The long roots �= 2342 for Q: 1341, 1242, 1222, 1122, 1220, 1120, 1100, 1000.
The above lists of n = 6 or 8 roots in Q are listed so that the ith and (n− i+1)st

roots sum to the highest root. For example, 1231 + 1111 = 2342 and 1222 + 1120
= 2342. �

Lemma 2.38. Proposition 2.37 holds if G is F4(q) with q even.
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Proof. We must find the standard form
∏

α∈Φ+\ΦL
Xα(tα) of g. As all short root

groups of Q lie in the center of Q, we can move all long root factors of g to the end
(the right hand side) of the product, and then compute the long root “coordinates”
as above for the root groups �= Xν .

It remains to find the standard form of an element g ∈ Z(Q) = 〈X2342, X1232,
X1231, X1221, X1121, X1111, X1110〉. We repeatedly use (2.5) for these short root
groups.

Compute s0 :=[[g,Xα(1)], X−α4
(1)], where α = 0121. By (2.5), s0=X1232(t1110),

from which we find t1110.
Define s1 := gX1110(t1110) and compute [s1, X0111(t)] = X1232(t1121) in order to

find t1121.
Define s2 := s1X1121(t1121) and compute [s2, X0121(t)] = X1232(t1111) in order

to find t1111.
Define s3 := s2X1111(t1111) and compute [s3, X0011(t)] = X1232(t1221) in order

to find t1221.
Define s4 := s3X1221(t1221) and compute [s4, X0001(t)] = X1232(t1231) in order

to find t1231.
Define s5 := s4X1231(t1231) and compute [s5, X−0001(t)] = X1231(t1232) in order

to find t1232.
Finally, compute s5X1232(t1232) = X2342(t2342) ∈ Z = X2342 in order to find

t2342.
Once again this procedure is deterministic and the time is clear. �

2.15. Straight-line programs; testing that G = G0. We can now prove parts
(ii) and (iii) of Theorem 1.1. First of all we may need to slightly increase the set
S∗ in Remark 2.34 in order to use recursion. In Section 2.9 we used either Theo-
rem 1.3(ii), or a recursive call when G is E8(q), in order to find a new generating
set S∗

L for L. If necessary, increase S∗ by adjoining this set, in which case adjoin

ŜL = S∗
LΨ

−1
L to Ŝ (cf. Remark 2.34). Thus, Ŝ and S∗ still have size O(log q) and

ŜΨ = S∗. This takes O(μq log q) time by Theorem 1.3(iii).

Proposition 2.39. (i) There is a deterministic O(μ log q)-time algorithm which,

when given ĝ ∈ Ĝ, finds ĝΨ and a straight-line program of length O(log q)

from Ŝ to ĝ.

(ii) There is a deterministic O(μ log q)-time algorithm that finds a generator of

Z(Ĝ).
(iii) There is an O(ξq log q + μq log2q)-time Las Vegas algorithm which, with

probability ≥ 1 − 1/27, when given g ∈ G finds a preimage gΨ−1 and a
straight-line program of length O(log q) from S∗ to g.

Proof. (i) We have assumed the availability of the Lie algebra for Ĝ and the action

of Ĝ on that algebra. Use [CMT, Theorem 8.1] and [CHM] to write ĝ in the Bruhat

form unu′, with n ∈ NĜ and u, u′ in the Sylow p-subgroup 〈X̂γ(fk) | all appropriate
k and γ ∈ Φ+〉. Then use (2.2)–(2.5) or (2.6), together with (2.9)–(2.10), in order

to write u, u′ and n in terms of straight-line programs from Ŝ [Ri, CMT, CHM]
(compare Corollary 2.35). Apply Ψ in order to obtain a straight-line program from

ŜΨ to ĝΨ.
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(ii) There is an algorithm in [Ca1, pp. 198–199] for finding Z(Ĝ). However, for
each of the present small number of exceptional groups (2.1) one can instead readily

write the center of Ĝ in terms of the elements ĥαi
(t), and hence in terms of the

elements X̂±αi
(fk), in O(log q) time (cf. (2.7)). Now the center of G is obtained

using (i).

(iii) Use Corollary 2.35 to choose up to 30 elements y ∈ G0 in order to find one
such that [[zgy, z], z] �= 1, so that Z and Zgy are opposite by (2.12).

Find u ∈ Q such that Zgyu = Z− using Lemma 2.36; find a straight-line program
of length O(log q) from S∗ to u using Proposition 2.37. Now gyunν normalizes Z,
where nν := nν(1) is defined using (2.7) without the hats. It follows that the desired
result holds for g if it holds for gyunν .

Thus, we will replace g by gyunν so that g normalizes Z. Now Z−g is opposite
Z. Again use Lemma 2.36 and Proposition 2.37 in order to find u′ ∈ Q such that
Z−gu′

= Z−, as well as a straight-line program of length O(log q) from S∗ to u′.
Thus, we may now assume that g normalizes both Z and Z−.

Find h = hν′(t) acting on Z and Z− in the same manner as g by using (2.14)
and (2.9). Find a straight-line program of length O(log q) from S∗ to h−1 using
(2.7).

Now gh−1 ∈ CG(〈Z,Z−〉) = L (cf. (2.16)). Find a straight-line program of length
O(log q) from S∗

L to gh−1 using Theorem 1.3(iii). This produces the desired straight-
line program to g.

Reliability:. ≥ 1−1/28: we obtain y with probability > 1−1/210 by Lemma 2.26,
and both calls to Lemma 2.36 succeed with probability > 1− 2/210. (N. B.–Recall
that we are assuming that G0 = G, in which case Corollary 2.35 provides us with
a random element of G and hence a random conjugate Zgy of Z. We will test this
assumption in Corollary 2.42.)

Time:. O(ξq log q + μq log2q) in (iii), dominated by the time to find the elements
u and u′ using Lemma 2.36. (N.B.–It also takes O(μq) time to find h.) �

Remark 2.40. We have assumed in (i) that our element of Ĝ was given either in

terms of the Bruhat decomposition or as an automorphism of the Lie algebra for Ĝ.
In the latter situation, the input to the algorithm in [CMT, Theorem 8.1] or [CHM]
is a linear transformation and the algorithm carries out a form of row reduction
to get the Bruhat form. This is essential for our use in the Appendix and nicely
parallels the classical group situation [KS1]. In fact, [CMT, CHM] deal with the

same question for a variety of irreducible representations of Ĝ.
Alternatively, ĝ could just be given as a word in Ŝ. This possibility has already

been considered: in [Ri, pp. 44-45] and [CMT] there are deterministic algorithms

which, when given g as a word in Ŝ, uses the relations (2.2)–(2.5) or (2.6), together
with (2.9)–(2.10), in order to rewrite g as an element unu′ as above.

In (iii) an element of the black box group G is given as a string; it is not nec-
essarily given in terms of any available generating set. This is essential for uses of
Theorem 1.1 such as Corollary 1.2.

Remark 2.41. Alternative approach to (i) avoiding [CMT, CHM, Ri]: Apply the

algorithm in Proposition 2.39(iii) to the given element ĝ ∈ Ĝ (this uses Lemma 2.36

and Proposition 2.37 for Ĝ).
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Here ĝ might once again merely be known as an automorphism of the associated
Lie algebra. This routine has the disadvantage of requiring more time and being
probabilistic; its advantage is that it uses the present paper’s relatively standard
black-box methodology employed in (iii).

Corollary 2.42. There is an O
(
|S| log |S|(ξq log q + μq log2q)

)
-time Las Vegas

algorithm which, with probability ≥ 1− 1/26, checks that G = G0.

Proof. Recall that G is given as 〈S〉. In order to prove that Ψ is an epimorphism
we verify that every generator s ∈ S lies in G0 by applying Proposition 2.39(iii) to
each s up to �log |S|� times.

Reliability:. ≥ 1−1/26: the applications of Proposition 2.39(iii) for a single s ∈ S
all fail with probability < 1/27 log |S| ≤ 1/(26|S|), so that at least one of our tests
fails for some s ∈ S with probability < |S| ·1/(26|S|).

Time:. O
(
|S| log |S|(ξq log q + μq log2q)

)
using Proposition 2.39(iii) to obtain

straight-line programs from S∗ to each s ∈ S. �

The timing in the preceding result differs from [KS1, p. 145] since the membership
test used there is deterministic, unlike our Proposition 2.39(iii).

2.16. Proof of Theorem 1.1 for rank > 2. In Section 2.12 we produced a homo-
morphism Ψ: Ĝ → G with image G0. We consider the various parts of Theorem 1.1.

(i) We already used [BKPS].

(ii) See Sections 2.12 and 2.15.

(iii), (iv), (vii) See Proposition 2.39.

(v) This follows from Theorem 1.3(i) in view of the new generators Xα(fk) we
introduced in Sections 2.12 and 2.15.

(vi) The second part is Corollary 2.42.
The first part is the content of Sections 2.4–2.12. The probability of success is at

least 1/2, and the total time is as stated, due to all of the individual probabilities
and times obtained earlier.

(viii) Find Z(Ĝ) using Proposition 2.39(ii), and then find Z(G) = Z(Ĝ)Ψ using
Proposition 2.39(i). �

3. Rank 2 groups

We now turn to the groups G2(q) and
3D4(q). For the most part we will be able

to mimic and simplify the previous approach. However, there are differences, such
as the use of a subgroup L that does not contain any long root elements.

We assume that q > 9 in order to avoid some exceptional situations. In par-
ticular, we will always have Ĝ ∼= G [GLS, p. 313], where Ĝ will be known and
“concrete”, whereas G will be a black box group.

3.1. Background. In addition to F = Fq we need to consider F′ = Fqε , where ε is
1 for G2(q) and 3 for 3D4(q). We retain our notation from Section 2, except that
now F

′ is Fq or Fqε and {f1, . . . , fεe} is an Fp-basis of Fqε .
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Presentation. The groups G2(q) and
3D4(q) have a root system Φ of type G2.

First consider Ĝ = 3D4(q). We start with generators xα(t), where either α is long

and t ∈ F, or α is short and t ∈ F
′ = Fq3 . Define T:F′ → F by T(t) = t+ tq + tq

2

.
Then the Steinberg relations [St] become (2.2)–(2.4), where the field elements are
in F or F′ for α long or short, respectively, together with

(3.1)

[X̂α(fk), X̂β(fl)] = for

1 α+ β /∈ Φ

X̂α+β(εαβfkfl) α, β, α+ β long

X̂α+β

(
εαβT(fkfl)

)
α, β short, α+ β long

X̂α+β

(
εαβ(f

q
kf

q2

l + fq2

k fq
l )
)
X̂2α+β

(
ηαβT(fkf

q
kf

q2

l )
)

·X̂α+2β

(
δαβT(fkf

q
l f

q2

l )
)

α, β, α+ β short, 2α+ β, α+ 2β long

X̂α+β(εαβfkfl)X̂2α+β(ε
′
αβ f

q
kf

q2

k fl)X̂3α+β(ε
′′
αβfkf

q
kf

q2

k fl)

·X̂3α+2β(2ε
′′′
αβfkf

q
kf

q2

k f2
l )

α, α+ β, 2α+ β short, β, 3α+ β, 3α+ 2β long

for all basis elements fk, fl of F or F′ (as appropriate). Once again the coefficients
εαβ , ηαβ , δαβ, ε

′
αβ , ε

′′
αβ , ε

′′′
αβ are ±1 and depend only on α and β. Once again the

right hand sides are viewed as products of powers of generators X̂γ(fm) for the
roots γ appearing on the right side.

We again use (2.7), where t ∈ F
′∗ when α is short. Then the analogues of (2.9)

and (2.10) hold. For example:

(3.2)
ĥα(t)X̂β(u)ĥα(t)

−1 = X̂β(t
Aα,βu) except for the next instance

ĥα(t)X̂β(u)ĥα(t)
−1 = X̂β((tt

qtq
2

)Aα,β/3u) α short, β long.

For G2(q) we obtain the required presentation by restricting all of the above field
elements to F.

We include a sketch of a proof of the second line in (3.2) when Ĝ = 3D4(q). The
twisted root system for 3D4(q) has a base {α, β} arising from a base {α1, α2, α3, α4}
of a D4-root system, where β = α2 is the central node and α corresponds to
{α1, α3, α4}. We will follow [Ca1, pp. 233-237]. If u ∈ F and t ∈ Fq3 , then X̂β(u) =

X̂α2
(u) and ĥα(t) = ĥα1

(t)ĥα3
(tq)ĥα4

(tq
2

). Moreover,

ĥα(t)X̂β(u)ĥα(t)
−1 = ĥα1

(t)ĥα2
(tq)ĥα3

(tq
2

)X̂α2
(u)ĥα1

(t)−1ĥα2
(tq)−1ĥα3

(tq
2

)−1

= X̂β

(
tAα1,α2 (tq)Aα3,α2 (tq

2

)Aα4,α2u
)

with Aα1,εα2
= Aα3,εα2

= Aα4,εα2
= ε = Aα,εβ/3 for ε = ±1, which implies the

second assertion in (3.2).

The subgroup Ŝ. For both G2(q) and 3D4(q) the subgroup Ŝ generated by the

long root groups X̂α is isomorphic to SL(3, q).
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The subgroups Q̂ and L̂. If Ẑ is a long root subgroup of Ĝ and 1 �= z ∈ Ẑ, then
CĜ(z) = CĜ(Ẑ) = Q̂�L̂ with Q̂ and L̂ as follows:

Ĝ G2(q), q �= 3a G2(q), q = 3a 3D4(q)

L̂ SL(2, q) SL(2, q) SL(2, q3)

Q̂ q1+4 q1+(2+2) q1+8

T̂ Zq−1 × Zq−1 Zq−1 × Zq−1 Zq−1 × Zq3−1

TL̂ Zq−1 Zq−1 Zq3−1

where we have included the structure of maximal tori T̂ of Ĝ and TL̂ of L̂.

Lemma 3.3. (i) With probability ≥ 1/3q, an element τ ∈ G2(q) has order

p ·ppd#(p; 2e), and then τ q+1 is a long or short root element.

(ii) With probability ≥ 1/9q, an element τ ∈ 3D4(q) has order p ·ppd#(p; 6e),
and then τ q

3+1 is a long root element.

Proof. We first construct elements of the indicated orders. There is a central prod-
uct SL(2,F′) ◦ SL(2, q) of a short root SL(2,F′) and a long root SL(2, q), and this
contains elements of the desired order. As in Lemma 2.24, an element τ of the
stated order lies in a parabolic, hence in a central product as above, and hence
powers to a root element.

The probability estimates are obtained as in Lemma 2.24, but are simpler. �

Opposite long root elements and root groups are defined as in Section 2.1.

Lemma 3.4. Let z be a long root element.

(i) (2.12) holds.
(ii) Lemma 2.26 holds.
(iii) Lemma 2.28(i) holds.
(iv) All long subgroups isomorphic to SL(3, q) are conjugate.
(v) If p �= 3, then three short root elements of G2(q) never generate a group

isomorphic to SL(3, q).

Proof. (i) This follows from the analogue of Lemma 2.11.
(ii), (iii) These are proved exactly as in Section 2.3 (cf. Table 1).
(iv) See [Coo] or [Kl1, Kl2].
(v) See [Kl1]. �

Of course, the conclusion in (v) is false for p = 3 due to the graph automorphism
of G2(q).

3.2. Finding a root group Z and the subgroups Z−, R and S. As in Sec-
tion 2.4, we now consider a black box group G that is a nontrivial homomorphic
image of the universal cover Ĝ of G2(q) or 3D4(q). Since q > 4, Ĝ ∼= G [GLS,
p. 313]. Find the probable type of G using [BKPS].

We now imitate parts of Sections 2.5 and 2.7. Choose up to 90q elements τ in
order to find one of order pl = p · ppd#(p; 2εe); for z := τ q

ε+1 choose up to 120
pairs z′, y of conjugates of z; for each pair, test whether both are opposite z and
whether S := 〈z, z′, y〉 and S2 := 〈z, z′τp

, y〉 are both isomorphic to Ŝ = SL(3, q);

and, if so, find constructive isomorphisms ΨS : Ŝ → S and ΨS2
: Ŝ → S2, together

with generating sets SŜ and S∗
S of Ŝ and S, respectively, such that SŜΨS = S∗

S .
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Find the root groups Z and Z− in S such that z ∈ Z and z′ ∈ Z ′.
Let R := 〈Z,Z−〉 ∼= SL(2, q).
As in Section 2.7, find c ∈ Op

(
CS2

(Z)
)
Op

(
CS(Z)

)
⊆ Op

(
CG(Z)

)
such that τpc

centralizes R and has order divisible by l.
Correctness: By Lemma 3.3(ii), the element z just constructed is a long root

element if G is 3D4(q). If G is G2(q) and p = 3, it makes no difference whether
we are using long or short root elements, since these are conjugate in AutG, so we
may assume that z is long. If G is G2(q) and p �= 3, then we might have obtained
a short root element z, but then we will not obtain S ∼= SL(3, q) by Lemma 3.4(v).

Reliability:. ≥ 1 − 1/29. For, a choice τ has the correct order and produces
a long root element with probability ≥ 1/9q by Lemma 3.3(i), so that we fail
to obtain an element τ of the desired type with probability ≤ (1 − 1/9q)90q <
1/210. The tests involving a single choice z′, y, S, S2 all succeed with probability
≥ (1/12)(1/3)(1/4)2(1/2)2 > 1/212 (by Lemma 3.4(ii),(iii) and Theorem 1.3(ii)), so
that the tests for all 120 pairs z′, y all fail with probability < (1−1/212)120 < 1/210.

Time:. O(ξqe+ μq log2q), dominated by finding ΨS and ΨS2
.

3.3. The subgroups L, T and N . We will use additional subgroups analogous
to ones in Sections 2.5–2.11.

The group L := 〈CS(R), τpc〉 is a subgroup of CG(R) = SL(2, qε) of order divisible

by both |CS(R)| = q− 1 and |τpc|, which is a ppd#(p; 2εe). Then L = CG(R) since
SL(2, qε) has no such proper subgroup for q > 9 [Di, Sec. 260].

As in Lemma 2.21(ii), the pair (S,L) is uniquely determined up to conjugacy in G.
Use Theorem 1.3(ii) up to 10 times in order to obtain a constructive isomorphism

ΨL :L → SL(2,F′).

Reliability:. ≥ 1− 1/210.

Time:. O(ξ|F′| log q + μ|F′| log2q) to obtain ΨL.

The subgroups TS, TL, T and N . First note that Ĝ acts transitively by conjuga-

tion on the set of triples (Ŝ1, R̂1, TŜ1
) with TŜ1

a maximal split torus of Ŝ1 ∈ ŜĜ nor-

malizing R̂1 ∈ R̂Ĝ. Hence Ĝ is also transitive on the set of 4-tuples (L̂1, Ŝ1, TL̂1
, TŜ1

)

with TŜ1
a maximal split torus of Ŝ1 normalizing L̂1 = CĜ(R̂1) and centralizing

a (unique) maximal split torus TL̂1
of L̂1 (which must therefore contain the torus

CŜ1
(R̂1) = Ŝ1 ∩ L̂1). Then TŜ1

TL̂1
is a maximal torus of Ĝ and is normal in

〈NŜ1
(TŜ1

),NL̂1
(TL̂1

)〉 (compare Lemma 2.22).

With this in mind, use ΨS (and Theorem 1.3(iii),(iv)) to find a maximal split
torus TS of S normalizing R, Z and Z−. Then TS normalizes CG(R) = L, and
hence normalizes and so centralizes the unique maximal split torus TL ≥ S ∩ L of
L (by the preceding paragraph). Find TL using ΨL. (Compare Lemma 2.32 – but
here we are only working with a 2–dimensional vector space. Moreover, unlike in
the large rank case, the torus TL is uniquely determined by S ∩ L.)

Then T := TSTL is a maximal torus of G.
Find NS(TS) and NL(TL) using ΨS and ΨL. The above observations concerning

Ĝ imply that T � N := 〈NS(TS),NL(TL)〉 and N/T is the Weyl group of G.
From this point on we will no longer explicitly use S.
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3.4. Root groups. Let {α1, α2} be a base for a root system Φ associated with
the Weyl group N/T , with α1 long. Let ν = 2α1 + 3α2 be the highest root, and
label Z = Xν and Z− = X−ν .

Find the two (short!) root groups of L normalized by T using ΨL, pick one of
them and label it Xα2

, and then label the other one X−α2
. The N -conjugates of

X±ν and X±α2
are the 12 root groups of G normalized by T ; the action of N labels

each as Xα with α ∈ Φ.
Coordinatize L using ΨL, obtaining X±α2

(fk), nα2
(1) and hα2

(fk) for fk ∈ F
′.

Time:. O(μq log2 q), dominated by O(e) uses of Theorem 1.3(iii),(iv) for ΨL.

As in Section 2.12, we next show that Ĝ maps onto G0 := 〈Xα | α ∈ Φ〉:

Proposition 3.5. There is a deterministic O(μ log2q)-time algorithm that labels
any given element of any root group Xα, α ∈ Φ, as Xα(t) for some t ∈ F or F

′, in

such a way that the map X̂α(fk) �→ Xα(fk) (for all appropriate α and k) extends

to an epimorphism Ψ: Ĝ → G0.

Proof. By (3.2), T̂L acts transitively on the nontrivial elements of X̂α1
. Thus, we can

choose any nontrivial element Xα1
and label it Xα1

(1), after which the remaining
labels Xα1

(fk) are forced by (3.2). Namely, hα2
(t)−Aα2,α1

/3 conjugates Xα1
(1) to

Xα1
(ttqtq

2

). Applying this for distinct t = fk, fk + 1, afk + 1 in F gives us Xα1
(u)

for u = f3
k , (fk + 1)3 and (afk + 1)3. We may assume that p �= 3 (as otherwise the

elements f3
k span F). Since f1 = 1, it is easy to see that we now have obtained all

of the elements Xα1
(fk).

By the rank 2 analogues of (2.7) and (2.10), we can now coordinatize X
nα2

(1)
α1 =

X−α1−3α2
.

By (3.1), [[Xα2
(1), Xα1

(fk)], Xα1
(1)] = X2α1+3α2

(εα1+3α2,α1
ε′′α2,α1

fk) whenever
fk ∈ F, so we can coordinatize X2α1+3α2

.
For each element x in an Fp-basis of X−α1

, find its coordinate u via the rela-
tion [X2α1+3α2

(1), x] = Xα1+3α2
(ε2α1+3α2,−α1

u) in (3.1) by using linear algebra in
Xα1+3α2

. This produces the coordinates of a basis of X−α1
and hence of any given

element of X−α1
.

Use (2.7) and (2.10) to coordinatize all 〈nα1
(1), nα2

(1)〉-conjugates of Xα1
and

Xα2
, and hence of all root groups Xα.

Thus, we have obtained a map Ψ: X̂α(fk) �→ Xα(fk) (for all appropriate α

and k). Verify (3.1) in order to show that Ψ extends to an epimorphism Ĝ → G0.
As in the proof of Proposition 2.33, this algorithm is deterministic and runs in the
stated time. �
3.5. Linear algebra in Q/Z. Next we imitate Section 2.14.

Effective transitivity of the subgroup Q. Lemma 2.36 holds for Q := 〈Xα |
α ∈ Φ+〉, using the exact same proof, still requiring O(ξq log q+μq log2q) time and
still succeeding with probability > 1− 1/210.

Linear algebra in Q/Z. If we exclude G2(q) with p = 3, this is the same as in
Proposition 2.37. Namely, Q is still of “extraspecial type” (i.e., it behaves exactly
as in Lemma 2.18(ii)), and we can again peel off the root elements by commutations
as in the proof of Proposition 2.37.

However, since this “peeling” involves traces of field elements, we will be more
careful. List the positive roots 2α1 +3α2 = ν, α1 +3α2, α1 +2α2, α1 +α2, α2, α1.
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Our given g ∈ Q can be written g =
∏

γ∈Φ+\ΦL
Xγ(tγ) in this order, and we must

find the field elements tγ .
By (3.1), Xα1+3α2

commutes with the positive root groups other than Xα1
.

Since [g,Xα1+3α2
(1)] = X2α1+3α2

(εα1,α1+3α2
tα1

), as in Lemma 2.18(i) we deduce
tα1

using linear algebra in F.
Let g1 := gXα1

(tα1
)−1. By (3.1),

g′1 := [g1, Xα1+α2
(1)] = [Xα1+2α2

(tα1+2α2
), Xα1+α2

(1)][Xα2
(tα2

), Xα1+α2
(1)]

= Xα1+2α2

(
εα2,α1+α2

(t
q

α2
+ t

q2

α2
)
)
Xα1+3α2

(
ηα2,α1+α2

T(tα2
t
q

α2
)
)

·X2α1+3α2

(
δα2,α1+α2

T(tα2
)
)
X2α1+3α2

(
εα1+α2,α1+2α2

T (tα1+2α2
)
)
.

Then [g′1, Xα1
(εα1+3α2,α1

1)] = X2α1+3α2

(
ηα2,α1+α2

T(tα2
t
q

α2
)
)
gives us T(tα2

t
q

α2
).

Also,

[g′1, X−α1
(εα1+3α2,−α1

1)] = Xα1+3α2

(
δα2,α1+α2

T(tα2
)+εα1+α2,α1+2α2

T (tα1+2α2
)
)
,

g′1[g
′
1, Xα1

(εα1+3α2,α1
1)]−1[g′1, X−α1

(εα1+3α2,−α1
1)]−1

= Xα1+2α2

(
εα2,α1+α2

(t
q

α2
+ t

q2

α2
)
)
.

Hence, we deduce t
q

α2
+t

q2

α2
. The identity (t

q

α2
+t

q2

α2
)(t

q

α2
+t

q2

α2
)
q
= (t

q

α2
)2+T(tα2

t
q

α2
)

along with T(tα2
t
q

α2
) give us (t

q

α2
)2, and hence also t

q

α2
up to sign. Since we already

know t
q

α2
+ t

q2

α2
, we deduce t

q

α2
, and hence also tα2

.
The same procedure, with the roles of α2 and α1 + α2 reversed, yields tα1+α2

.
Let g2 := g1Xα2

(tα2
)−1Xα1+α2

(tα1+α2
)−1. As above,

[g2, Xα1
(εα1+3α2,α1

1)] = X2α1+3α2
(εα1+3α2,α1

tα1+3α2
)

yields tα1+3α2
. We obtain t2α1+3α2

and tα1+2α2
similarly.

As in Proposition 2.37, this linear algebra routine is deterministic and takes
O(μ log q) time.

3.6. Proof of Theorem 1.1 for rank 2. We can now complete the proof of
Theorem 1.1.

Straight-line programs. The analogue of Proposition 2.39 is proved in the same
manner as in that proposition. The timing for the analogue of Proposition 2.39(iii)
is O(ξ|F′| log q+ μ|F′| log q), dominated by finding the elements u and u′ occurring
in the proof of Proposition 2.39 and finding straight-line programs in L.

Completion of the proof. This is exactly as in Section 2.16, in view of Proposi-
tion 3.5 and the analogue of Proposition 2.39. As usual, (viii) is unnecessary since

Z(Ĝ) = 1. �

4. Concluding remarks

1. Small q. If q is bounded then so is |G|, and the questions dealt with in this
paper can be handled in constant time by brute force. Of course, our algorithm
can still be used in that case when q > 9.

When q ≤ 9, in place of Lemmas 2.24 or 3.3 we can simply find exact orders of
elements (replacing the stated l by l := |T̂ ∗| using (2.15)). We still need the fact that
q > 3 in order to have elements behaving as in the conclusions of Lemmas 2.24(i)
or 3.3(i). We also used the fact that q > 4 in order to avoid exceptional universal
covers.
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When q = 9, two opposite long root elements never generate an SL(2, 9), but
instead generate SL(2, 5). However, as in Lemma 2.28(i), inclusion of a third long
root element generates SL(3, 9) with high probability, after which the rest of our
algorithm goes through.

For q > 4, in rank > 2 the only other needed change is (possibly) to select more
elements in order to handle the fact that the probabilities in situations such as
Lemmas 2.24 and 2.26–2.28 are no longer as high as in those lemmas.

However, for rank 2 a different approach is needed when q is 5 or 7: in Section 3.3,
elements of CG(R) of order q − 1 and q + 1 need not generate CG(R). One way is
to use the fact that elements of the stated orders generate CG(R) with probability
> 1/2, while another proceeds as in Remark 6 below.

2. Speculations on implementation. We expect that versions of the algorithms will
be implemented. For rank > 2 we suspect that there is no need to find J . Instead,
〈CS(L), τ 〉 or 〈CS(L), τ, τ0〉 appears to be the desired group L when q > 2 (in
the notation of Section 2.9). For example, if G does not have type E8, then L is
essentially a classical group and 〈CS(L), τ 〉 or 〈CS(L), τ, τ0〉 acts irreducibly and
primitively on its natural module. Now the ppd-orders and [GPPS] can be used
to obtain a small list of possibilities to check, and presumably to rule out most of
them by careful examination of the elements τ and τ0.

3. The omitted groups 2F4(q). We expect that the groups 2F4(q) will eventually
be handled in a manner resembling Section 3. However, those groups involve more
intricate commutator relations than other groups of Lie type.

The natural representation of 2F4(q) is dealt with in [Baa4], assuming the cor-
rectness of a complicated conjecture concerning Fq = F22e+1 and of a conjecture
concerning the actions of elements of 2F4(q) on the natural module. Apparently this
approach does not work for other absolutely irreducible representations of 2F4(q)
in characteristic 2.

Remarks 4-6 concern variants of Theorem 1.1 that (almost) run in polynomial
time. However, these have yet to be carefully checked before there can be a sequel
to this paper.

4. The factor q and oracles: rank > 2. Our algorithm searched for a long root
element z ∈ G, and then 〈z, zg〉 (g ∈ G) is guaranteed to be a proper subgroup
of G. In fact, with high probability 〈z, zg, zh〉 ( g, h ∈ G) is a long root SL(3, q).
Unfortunately, the probability of finding by random search an element for which
some power is a long root element is unreasonably small for groups defined over
large fields. An alternative strategy is to search for semisimple elements closely
related to long root elements.

This was accomplished in a number of the papers cited following Theorem 1.3.
More significantly, the factor q in the timing of analogues of Theorem 1.1 was re-
moved by assuming the availability of an SL(2, q)-oracle to constructively recognize
SL(2, q) as well as a Discrete Log oracle for F

∗
q , and possibly also for Zq+1 (cf.

Section 1). Then suitable p′-elements were used to construct subgroups such as
SL(3, q), SU(3, q) or Sp(4, q).

Here we comment on the requirements in order for this approach to be used with
exceptional groups of rank > 2 when q > 4. Find and use an element τ of order
ppd#(p; e)l or ppd#(p; 2e)l in the notation of Lemma 2.24; such an element is
obtained as the product of elements of R = SL(2, q) and L = CG(R). The element
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τ needs to have two further properties: (a) τ l lies in a long SL(2, q), and (b) two
conjugates of τ l probably generate a subgroup containing long root groups (in which
case a long root group is obtained via constructive recognition of the subgroup).

Condition (a): As in Section 2.5, we obtain an element τ l of a long SL(2, q),
except perhaps in type F4 where this might belong to a short SL(2, q). In the latter
case, we obtain an element of order p of this SL(2, q) and then proceed exactly as
in Section 2.5 to distinguish long and short root elements in odd characteristic (or
use Remark 6 below).

There is a problem with the first element order |τ | = pl in Lemma 2.24 for E7(q).

This is the only instance with a factor ppd#(p; e)ppd#(p; 2e). One way around this

difficulty is to modify Lemma 2.25: use elements τ1 of order ppd#(p; e)ppd#(p; 9e)

and τ2 of order ppd#(p; 2e)ppd#(p; 18e) normalizing subgroups of type E6(q) and
2E6(q), respectively. Once conjugates of the powers τ

(q9−1)/(q3−1)
1 and τ

(q9+1)/(q3+1)
2

have been arranged (by conjugation) to generate a subgroup Spin+4 (q), we will have
two commuting long subgroups R ∼= R1

∼= SL(2, q); and once other conjugates of

τ
(q9−1)/(q3−1)
1 and τ

(q9+1)/(q3+1)
2 have been arranged to lie in that long subgroup

R = SL(2, q), then 〈R1, τ
q−1
1 , τ q+1

2 〉 will be L = CG(R).
Condition (b): If τ l lies in a long SL(2, q), then two of its conjugates lie in the

group generated by two such subgroups SL(2, q), and hence for rank > 2 everything
reverts to an orthogonal group setting [Ka2, Proposition 3.2], where the required
(probable) generation was proved in [BrK1, BrK2].

Starting from a long root element obtained by generating a suitable subgroup in
this manner, and by assuming the availability of suitable oracles, the remainder of
our algorithm goes through. These oracles are the aforementioned ones for SL(2, q)
and F

∗
q , and, in the 2E6 case, one for Discrete Logs in Zq+1 (cf. [Br2]).

5. Rank 2, even q. The method in the preceding remark also works for type G2 in
characteristic 2, using an element of order 3ppd#(p; δe) when Ĝ = G2(q) (where δ
is 2 if 3 | q − 1 and 1 if 3 | q + 1).

Unfortunately, when q is even 3D4(q) does not possess any class xG of semisimple
elements for which 〈x, xg〉 (g ∈ G) is a proper subgroup with high probability.
Therefore, our approach in Section 3 appears to be the only option for these groups.

6. Odd q and involution centralizers. There is a different way to handle part of
Theorem 1.1 that can produce a long SL(2, q) in polynomial time when q is odd,
assuming the availability of suitable oracles as in Remark 4. With high probability,
a random element has even order and a power is an involution t conjugate to the one
in R. (There may be other involutions encountered, but the desired conjugacy class
will occur with high probability.) Then CG(t) = R ◦ L can be found in polynomial
time with high probability [Bor, Br, HLORW, PW], after which it is easy to find
both R and L. As in Remark 4, given suitable oracles the rest of our algorithm
appears to go through. Note that, using this approach, we have already obtained
the crucial subgroup L, and hence there is no need for the subgroup J .

In rank 2, the 3D4(q) case appears to need oracles to constructively recognize
SL(2, q3) and for Discrete Logs in F

∗
q3 .

7. Rank 1 groups. An early version of this paper contained Las Vegas algo-
rithms for handling rank 1 exceptional groups – Suzuki groups Sz(q) = 2B2(q)
and Ree groups 2G2(q) – with timing that involved a factor q2 or q3, respectively,
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as well as use of a length O(q3 log2q) presentation for 2G2(q). (This result implies
that, in Corollary 1.2, there is no need to exclude 2G2(q) composition factors.)

However, that older approach now seems far less interesting. A lovely black box
Las Vegas algorithm for Sz(q) is in [BrB], with timing involving a factor q. An
alternative approach [Baa1, Baa2] deals with Sz(q) as a matrix group and avoids
any such factor but assumes the correctness of a complicated conjecture concerning
Fq = F22e+1 .

The Ree groups 2G2(q) were studied in [Baa3] as 7-dimensional matrix groups
using an involution centralizer and an SL(2, q) oracle (cf. Remarks 4 and 6), this
time assuming a complicated conjecture concerning the field Fq = F32e+1 . There is
some hope that a different use of an involution centralizer (together with suitable
oracles) can handle the black box setting without a need for any such conjecture
or any factor q in the timing.

Appendix: The group Ê7(q) and its Lie algebra

The proof of Lemma 2.32 required finding ĝ∈ L̂ = Ê7(q) such that
(
(S ∩ L)Ψ−1

L

)ĝ
= Ŝ ∩ L̂. Since Â := (S ∩ L)Ψ−1

L and Ŝ ∩ L̂ are conjugate in L̂, we can use the
behavior of the latter group in order to deduce properties of the former one.

The group CĜ(Ŝ) = Ê6(q) acts on the Lie algebra L
(
Ê7(q)

)
of L̂, decomposing

it as 133 = 78 ⊕ 27 ⊕ 27∗ ⊕ 1, where 78 is the Lie algebra L
(
Ê6(q)

)
of CĜ(Ŝ),

the 27s are the usual dual pair of irreducible CĜ(Ŝ)-modules of that dimension,

and the 1-space is centralized. The torus Ŝ ∩ L̂ centralizes CĜ(Ŝ) = Ê6(q); each

of its elements acts as a scalar ρ on 27 and ρ−1 on its dual 27∗, so that Ŝ ∩ L̂ is
nontrivial on both of those subspaces (since q > 2); and each of its elements is 1

on L
(
Ê6(q)

)
since each is both an automorphism of that algebra and a scalar by

Schur’s Lemma. Then Ŝ∩ L̂ centralizes 78⊕1, so that 78 is the derived Lie algebra
CL(Ê7(q))

(Ŝ ∩ L̂)′ ∼= L
(
Ê6(q)

)
.

With this background we proceed as follows. Find CL(Ê7(q))
(Â) and then

CL(Ê7(q))
(Â)′ ∼= L

(
Ê6(q)

)
, using elementary linear algebra.

Find a Chevalley basis {eα, e−α, hα | α ∈ Φ6} of CL(Ê7(q))
(Â)′ using [CM, CR].

Let Δ6 be a base for Φ6.
Find the linear transformations Eα(t) = adte−α and E−α(t) = adte−α for α ∈

Δ6 and t = fk or −f−1
k in F; and then also hα(fk) as in (2.7). Then 〈hα(F

∗) | α ∈
Δ6〉 is a maximal split torus of a group (isomorphic to Ê6(q)) of automorphisms of

CL(Ê7(q))
(Â)′.

We saw above that Â is 1 on the 78-space CL(Ê7(q))
(Â)′. It follows that T7 :=

〈hα(fk), Â | α ∈ Δ6, 1 ≤ k ≤ e〉 is the direct product 〈hα(fk) |α ∈ Δ6, 1 ≤ k ≤ e〉 ×
〈Â〉, and hence has the correct order (q − 1)6(q − 1) to be a maximal torus of L̂.

We can now obtain a Chevalley basis of L
(
Ê7(q)

)
: diagonalize the action of T7

on L(Ê7(q)) and normalize the basis as in [Ca1, Sec. 4.2].

We now have two Chevalley bases of L(Ê7(q)): the one we started with (which

was implicitly used to write the generators of Ê7(q) in the presentation (2.2)–(2.5))
and the one just constructed. Let ĝ be the linear transformation effecting the
corresponding base change. It is in Ê7(q), so we can use our E7(q) algorithm for
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Theorem 1.1(iv) (a recursive call) to write it using a straight-line program in the

generators of L̂, as required.
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