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CENTRO–AFFINE CURVATURE FLOWS

ON CENTRALLY SYMMETRIC CONVEX CURVES

MOHAMMAD N. IVAKI

Abstract. We consider two types of p-centro-affine flows on smooth, cen-
trally symmetric, closed convex planar curves: p-contracting and p-expanding.
Here p is an arbitrary real number greater than 1. We show that, under
any p-contracting flow, the evolving curves shrink to a point in finite time
and the only homothetic solutions of the flow are ellipses centered at the ori-
gin. Furthermore, the normalized curves with enclosed area π converge, in the
Hausdorff metric, to the unit circle modulo SL(2). As a p-expanding flow is, in
a certain way, dual to a contracting one, we prove that, under any p-expanding
flow, curves expand to infinity in finite time, while the only homothetic solu-

tions of the flow are ellipses centered at the origin. If the curves are normalized
to enclose constant area π, they display the same asymptotic behavior as the
first type flow and converge, in the Hausdorff metric, and up to SL(2) trans-
formations, to the unit circle. At the end of the paper, we present a new proof
of the p-affine isoperimetric inequality, p ≥ 1, for smooth, centrally symmetric
convex bodies in R2.

1. Introduction

The affine normal flow is a widely recognized evolution equation for hypersurfaces
in which each point moves with velocity given by the affine normal vector. This
evolution equation is the simplest affine invariant flow in differential geometry and
it arises naturally if one considers families of δ-convex floating bodies of a convex
body [5, 30]. On the applicability aspect, the affine normal flow appears in image
processing as a fundamental smoothing tool [23,24,26]. It also provides a nice proof
of the Santaló inequality for convex hypersurfaces and, respectively, for the classical
affine isoperimetric inequality, both due to Andrews [2]. The affine normal evolution
has also been implicitly deployed by Stancu in [29, 30] for a breakthrough towards
the homothety conjecture for convex floating bodies by Schütt-Werner [28]. In this
paper, we consider an extension of the affine normal flow, namely the p-centro-affine
flow introduced by Stancu [31], and we investigate its behavior. The p-centro-affine
flows are natural generalizations of the affine normal flow in a way which will be
explained below.

Let K be a compact, centrally symmetric, strictly convex body, smoothly em-
bedded in R

2. We denote the space of such convex bodies by Ksym. Let

xK : S1 → R
2

be the Gauss parametrization of ∂K, the boundary of K ∈ Ksym, where the origin
of the plane is chosen to coincide with the center of symmetry of the body. The
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support function of ∂K is defined by

s∂K(z) := 〈xK(z), z〉

for each z ∈ S
1. We denote the curvature of ∂K by κ and, furthermore, the radius

of curvature of the curve ∂K by r, both as functions on the unit circle. The latter
is related to the support function by

r[s](z) :=
∂2

∂θ2
s(z) + s(z),

where θ is the angle parameter on S
1. Let K0 ∈ Ksym. We consider a family

{Kt}t ∈ Ksym given by the smooth map x : S1 × [0, T ) → R
2, which is evolving

according to the p-centro-affine flow, namely,

(1.1)
∂

∂t
x := −

( κ

s3

) p
p+2−

1
3

κ
1
3 z, x(·, 0) = xK0

(·)

for a fixed p ≥ 1.
The flow (1.1) without the assumption of symmetry was defined in [31], in all

dimensions in the class of C2
+ convex bodies having origin in their interiors, for

the purpose of finding new global centro-affine invariants of smooth convex bod-
ies. Stancu obtains many interesting isoperimetric type inequalities via short time
existence of the flow. Furthermore, her p-flow approach led to a geometric interpre-
tation of the Lφ surface area recently introduced by Ludwig and Reitzner [12]. The
case p = 1, the well-known affine normal flow, was already addressed by Andrews [2]
in arbitrary dimension, by Sapiro and Tannenbaum [25] for convex planar curves,
and by Angenent, Sapiro, and Tannenbaum [6] for non-convex curves. In [25], it
was proved that the flow evolves any initial strictly convex curve, not necessarily
symmetric, until it shrinks to an elliptical point. Andrews, in [2], investigated com-
pletely affine normal flow of hypersurfaces of any dimension and showed that the
normalized flow evolves any initial strictly convex hypersurface exponentially fast,
in the C∞ topology, to an ellipsoid. He also proves, in [5], that any convex initial
bounded open set shrinks to a point in finite time under the affine normal flow. In
[6], the authors prove convergence to a point under the affine normal flow starting
from any C2 planar curve, not necessarily convex, despite the fact that affine differ-
ential geometry is not defined for non-convex curves or hypersurfaces. In another
direction, interesting results for the affine normal flow have been obtained in [11]
by Loftin and Tsui regarding ancient solutions, and existence and regularity of so-
lutions on non-compact strictly convex hypersurfaces. It is necessary to point out
that the case p = 1, in contrast to the case p > 1, is the only instance when the flow
(1.1) is no longer anisotropic. Moreover, the main difference between p = 1 and the
other cases is that for p > 1 the flow is sensitive to the origin (as the name p-centro
affine suggests) meaning that Euclidean translations of an initial curve will lead to
different solutions, since translations affect the support function of the convex body
which appears in (1.1). The translation invariancy of a flow is a main ingredient
to prove the convergence to a point [1–3, 5]. We overcome these issues, and other
difficulties in the study of the asymptotic behavior of this flow, by restricting it to
Ksym and implementing the p-affine isoperimetric inequalities developed by Lutwak
[13]. This approach emphasizes the usefulness of the p-affine surface area and the
p-affine isoperimetric inequalities which have also been successfully employed by
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Lutwak and Oliker in [14] for obtaining regularity of the solutions to a generaliza-
tion of the Minkowski problem. See [7,15–19,32,33] for more applications of these
invaluable tools.

We will now give a description of (1.1) in terms of SL(2)-invariant quantities.
Although it relies on introducing new notation, it provides an alternate view in
which (1.1) is naturally an affine invariant flow. Equation (1.1) is precisely

∂

∂t
x := κ

p
p+2

0 n0,

where n0 denotes the centro-affine normal vector field along ∂K, and, in every
direction, κ0 = κ

s3 is the centro-affine curvature along the boundary. The centro-
affine normal vector field is, pointwise, a multiple of the affine normal vector field
n which is known to be transversal to the boundary of K, but not necessarily

orthogonal to it. More precisely, n0 = κ
− 1

3
0 n. In this paper, we choose to work

with the flow’s definition as a time-dependent anisotropic flow by powers of the
Euclidean curvature and we will resort to the affine differential setting only for a
technical step in the study of the normalized evolution.

Finally, note that the solution of (1.1) remains in Ksym, as s and κ are symmetric
in the sense

∀θ : s(θ + π) = s(θ), κ(θ + π) = κ(θ).

Here and hereafter, we identify z = (cos θ, sin θ) with the normal angle θ itself. We
will give a proof of the fact that Kt ∈ Ksym as long as the flow exists in Lemma
2.3.

We can rewrite the evolution equation (1.1) as a scalar parabolic equation for
the support functions on the unit circle:

s : S1 × [0, T ) → R
+,

(1.2)
∂

∂t
s = −s1−

3p
p+2 r

− p
p+2 , s(·, 0) = s∂K(·), s(·, t) = s∂Kt

(·),

leading, in general, to an anisotropic planar evolution. As in [3], it can be shown
that there is a one-to-one correspondence between the solutions of (1.1) and those
of (1.2).

The convex body K◦, dual to the convex body K ∈ Ksym, is defined by

K◦ = {y ∈ R
2; |〈y, x〉| ≤ 1 for every x ∈ K}.

In [31], the following expanding p-centro-affine flow was defined in connection to
(1.1):

(1.3)
∂

∂t
x := s

( κ

s3

)− p
p+2

z, x(·, 0) = xK◦
0
(·).

It is easy to check as Kt evolves according to (1.1), then K◦
t evolves according to

(1.3). Equivalently, the support function of ∂K◦
t , s∂K◦

t
, evolves according to

(1.4)
∂

∂t
s = s1+

3p
p+2 r

p
p+2 , p ≥ 1,

with the initial condition s(·, 0) = sK◦
0
(·); see Lemma 5.1.

At a point x of ∂K, the centro-affine curvature mentioned earlier is inversely
proportional to the square of the area of the centered osculating ellipse at x. The
centro-affine curvature is thus constant along ellipses centered at the origin which
are, therefore, evolving homothetically by (1.2), respectively (1.4). Coupled with
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the fact that these flows increase the product Area(K) ·Area(K◦), which is known
to reach the maximum for ellipses centered at the origin (Santaló inequality), and
the applications of p-flow stated above it was natural to investigate the asymptotic
behavior of the flows which a priori suggests convergence to ellipses. While this was
the first objective of the paper, in the process we obtained sharp affine isoperimetric
type inequalities. The latter is related to the p-affine surface area introduced by
Lutwak in [13] which has been the subject of intense research since then; see [12]
for a recent, outreaching work which motivates even the present work. Finally, to
the best of our knowledge, this is the first study of an anisotropic curvature flow
with time-dependent weight. We regard as weight, as well as anisotropic factor,
a power of the support function of the evolving body. In this paper we prove the
following two theorems:

Theorem 1.1. Let p > 1. Let xK0
: S

1 → R
2 be a smooth, strictly convex

parametrization of K0 ∈ Ksym. Then there exists a unique solution x : S1× [0, T ) →
R

2 of equation (1.1) with the initial data xK0
. The solution remains smooth and

strictly convex on [0, T ) for a finite time T and it converges to the origin of the

plane. The rescaled curves given by
√

π
At

x(θ, t) converge in the Hausdorff metric

to the unit circle modulo SL(2).

Theorem 1.2. Let p > 1. Let xK0
: S

1 → R
2 be a smooth, strictly convex

parametrization of K0 ∈ Ksym. Then there exists a unique solution x : S1× [0, T ) →
R

2 of equation (1.3) with the initial data xK0
. The solution remains smooth and

strictly convex on [0, T ) for a finite time T and it expands in all directions to infin-

ity. The rescaled curves given by
√

π
At

x(θ, t) converge in the Hausdorff metric to

the unit circle modulo SL(2).

The paper is structured as follows. The next section focuses on the p-contracting
affine flow. We show that the evolving curves shrink to a point in finite time.
To study the convergence of solutions, we resort to affine differential geometry
in the third section. In the third section, we will obtain sharp affine isoperimetric
inequalities along the flow. In the fourth section, we obtain a crucial result about the
constant asymptotic value of the centro-affine curvature of any solution. It is here
where we conclude the convergence of solutions to a circle modulo SL(2). In the fifth
section, we present the relation between the contracting and the expanding flows.
Consequently, we deduce an analogous asymptotic behavior for the p-expanding
affine flow. Finally, in the last section, we present a new proof of the p-affine
isoperimetric inequality, p ≥ 1, for smooth, centrally symmetric convex bodies in
R

2.

2. Convergence to a point and homothetic solutions

This section is devoted to the contracting p-centro-affine curvature flow. In what
follows, by evolving curves we mean the curves that enclose the evolving convex
bodies inKsym.We start by recalling two results from [31] whose proofs are obtained
by standard methods employed for geometric PDEs.

Proposition 2.1 (Short-term existence and uniqueness). Let K0 be a convex body
belonging to Ksym and let p ≥ 1. Then there exists a time T > 0 for which equation
(1.1) has a unique solution starting from K0.
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Proposition 2.2 (Containment principle). If Kin and Kout are the two convex
bodies in Ksym such that Kint ⊂ Kout and p ≥ 1, then Kin(t) ⊆ Kout(t) for as long
as the solutions Kin(t) and Kout(t) of (1.1) (with given initial data Kin(0) = Kin,
Kout(0) = Kout) exist in Ksym.

Lemma 2.3. Let {Kt}t be a solution of (1.1) where K0 ∈ Ksym. Then, Kt ∈ Ksym

as long as the flow exists.

Proof. Note that both −x(· + π, t) and x(·, t) satisfy (1.1) with initial data
−x(·+ π, 0) and x(·, 0), respectively. At time t = 0 we have −x(·+ π, 0) = x(·, 0).
Therefore, by Proposition 2.1 we conclude that −x(·+ π, t) = x(·, t) as long as the
flow exists. �

The following evolution equations can be derived by a direct computation.

Lemma 2.4. Under the flow (1.2), one has

(2.1)
∂

∂t
r = − ∂2

∂θ2

(
s1−

3p
p+2 r

− p
p+2

)
− s1−

3p
p+2 r

− p
p+2 ,

(2.2)
d

dt
A(t) = −Ωp(t),

where A(t) := A(Kt) =
1
2

∫
S1

s
κ dθ is the area enclosed by the evolving curve, hence

the area of Kt, and Ωp(t) := Ωp(Kt) =
∫
S1

s
κ

(
κ
s3

) p
p+2 dθ is the p-affine length of

∂Kt.

In trying to prove the convergence of the evolving curves to a point, the main
obstacle was that, except for the case p = 1, we could not find a uniform lower
bound on the curvature of evolving curves. However, we could show, with several
fruitful consequences, that there exists an entire family of increasing quantities

related to the speed of the flow, s1−
3p

p+2 r
− p

p+2 .

Proposition 2.5. For 1 ≤ q ≤ 2p
p+1 , or q = 0, the flow (1.2) increases in time:

min
θ∈S1

(
sq

( κ

s3

) p
p+2

)
(θ, t).

Proof. Using the evolution equations (1.2) and (2.1), we obtain

∂

∂t

(
sq−

3p
p+2 r

− p
p+2

)
=

(
∂

∂t
sq−

3p
p+2

)
r
− p

p+2 + sq−
3p

p+2
∂

∂t
r
− p

p+2

= −
(
q − 3p

p+ 2

)
sq−

3p
p+2−1

r
− p

p+2

(
s1−

3p
p+2 r

− p
p+2

)
(2.3)

+
p

p+ 2
r
− p

p+2−1sq−
3p

p+2

[(
s1−

3p
p+2 r

− p
p+2

)
θθ

+ s1−
3p

p+2 r
− p

p+2

]

=

(
3p

p+ 2
− q

)
sq−

6p
p+2 r

− 2p
p+2 +

p

p+ 2
sq−

6p
p+2+1

r
− 2p

p+2−1

+
p

p+ 2
r
− p

p+2−1sq−
3p

p+2

(
s1−

3p
p+2 r

− p
p+2

)
θθ

.
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To apply the maximum principle, we need to bound the right-hand side of (2.3)
from below:(

s1−
3p

p+2 r
− p

p+2

)
θθ

=
(
sq−

3p
p+2 r

− p
p+2 s1−q

)
θθ

(2.4)

= s1−q
(
sq−

3p
p+2 r

− p
p+2

)
θθ

+ sq−
3p

p+2 r
− p

p+2
(
s1−q

)
θθ

+ 2
(
s1−q

)
θ

(
sq−

3p
p+2 r

− p
p+2

)
θ
.

At the point where the minimum of sq−
3p

p+2 r
− p

p+2 occurs, we have(
sq−

3p
p+2 r

− p
p+2

)
θθ

≥ 0,

and (
sq−

3p
p+2 r

− p
p+2

)
θ
= 0.

Therefore, by equation (2.4), we obtain that, at that point,(
s1−

3p
p+2 r

− p
p+2

)
θθ

≥ sq−
3p

p+2 r
− p

p+2
(
s1−q

)
θθ

= sq−
3p

p+2 r
− p

p+2
[
(1− q) s−qsθθ − (1− q) q

(
s−1−q

)
s2θ

]
≥ sq−

3p
p+2 r

− p
p+2

[
(1− q) s−qsθθ

]
(2.5)

= sq−
3p

p+2 r
− p

p+2
[
(1− q) s−q(r− s)

]
= (1− q)s−

3p
p+2 r

− p
p+2+1 − (1− q)s−

3p
p+2+1

r
− p

p+2 ,

where, to pass from the second to the third line, we assumed that either q = 0
or q ≥ 1. Combining (2.3), (2.4), and (2.5), at the point where the minimum of

s1−
3p

p+2 r
− p

p+2 occurs, we have

∂

∂t

(
sq−

3p
p+2 r

− p
p+2

)
≥

(
3p

p+ 2
− q

)
sq−

6p
p+2 r

− 2p
p+2 +

p

p+ 2
sq−

6p
p+2+1

r
− 2p

p+2−1

+
p(1− q)

p+ 2
sq−

6p
p+2 r

− 2p
p+2 − p(1− q)

p+ 2
sq−

6p
p+2+1

r
− 2p

p+2−1

=

(
3p

p+ 2
− q +

p(1− q)

p+ 2

)
sq−

6p
p+2 r

− 2p
p+2

+
pq

p+ 2
sq−

6p
p+2+1

r
− 2p

p+2−1.

Since
3p

p+ 2
− q +

p(1− q)

p+ 2

is non-negative for q ≤ 2p
p+1 , the claim follows. �

Consequently, we have that

Corollary 2.6. Convexity of the evolving curves is preserved as long as the flow
exists.

Proof. By Proposition 2.5, setting q = 0, we have that, as long as the flow exists,

min
θ∈S1

( κ

s3

)
(θ, t) ≥ min

θ∈S1

( κ

s3

)
(θ, 0).
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This inequality implies

κ(θ, t) ≥ s3(θ, t) min
θ∈S1

( κ

s3

)
(θ, 0) > 0,

which is precisely the claim of the corollary. �

Following an idea from [34], we consider the evolution of the function s
1− 3p

p+2 r
− p

p+2

s−ρ ,

for some appropriate ρ, to obtain an upper bound on the speed of the flow as long
as the inradii of the evolving curves are uniformly bounded from below.

Lemma 2.7. If there exists an r > 0 such that s ≥ r on [0, T ), then κ is uniformly
bounded from above on [0, T ).

Proof. Define Ψ(x, t) := s
1− 3p

p+2 r
− p

p+2

s−ρ , where ρ = 1
2r. For convenience, we set

α := 1− 3p
p+2 and β := − p

p+2 . At the point where the maximum of Ψ occurs, we

have

Ψθ = 0, Ψθθ ≤ 0,

hence we obtain

(2.6)
(
sαrβ

)
θθ

+ sαrβ ≤ −ρsαrβ − sαrβ+1

s− ρ
.

Calculating
∂Ψ

∂t
=

sα

s− ρ

∂rβ

∂t
+

rβ

s− ρ

∂sα

∂t
− sαrβ

(s− ρ)2
∂s

∂t

and using equation (2.1) and inequality (2.6), we infer that, at the point where the
maximum of Ψ is reached, we have

0 ≤ ∂

∂t
Ψ ≤ 1

s− ρ

[
−βsαrβ−1

(
−ρsαrβ − sαrβ+1

s− ρ

)
+ r

β ∂

∂t
sα +

(s2αr2β)

s− ρ

]
.

This last inequality gives

βρκ− β − α+ αρ
1

s
+ 1 ≥ 0.

Neglecting the non-positive term αρ
1

s
, we obtain

βρκ− β − α+ 1 ≥ 0.

Note that α + β − 1 = − 4p

p+ 2
, therefore 0 ≤ κ ≤ 4

ρ
, consequently implying the

lemma. �

Lemma 2.8. Let T be the maximal time of existence of the solution to the flow
(1.2) with a fixed initial body K0 ∈ Ksym. Then T is finite and the area of Kt,
A(t), tends to zero as t approaches T .

Proof. Suppose that S0 is a circle which, at time zero, encloses K0. It is clear
that, by applying the p-flow to S0, the evolving circles St converge to a point in
finite time. By Proposition 2.2, Kt remains in the closure of St, therefore T must
be finite. Suppose now that A(t) does not tend to zero. Then we must have
s ≥ r, for some r > 0 on [0, T ). By Corollary 2.6 and Lemma 2.7, the curvature
of the solution remains bounded on [0, T ) from below and above. Consequently
the evolution equation (1.2) is uniformly parabolic on [0, T ), and bounds on higher
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derivatives of the support function follows by [10] and Schauder theory. Hence, we
can extend the solution after time T , contradicting its definition. �
Lemma 2.9. Assume 1 ≤ l < 2. Then any solution of the flow (1.2) satisfies
limt→T Ωl(t) = 0.

Proof. From the p-affine isoperimetric inequality in R
2 [13], we have

0 ≤ Ω2+l
l (t) ≤ 22+lπ2lA2−l(t)

for any l ≥ 1. Therefore, the result is a direct consequence of Lemma 2.8. �
Proposition 2.10. Let L(t) be the length of ∂Kt as Kt is evolving under (1.2). If
p ≥ 1, then limt→T L(t) = 0.

Proof. We first seek an l with the following simultaneous properties:

(1) 1 ≤ l < 2,
(2) 1 ≤ p

p+2
l+2
l ≤ 2p

p+1 .

Note that, by Lemma 2.9, condition (1) implies limt→T Ωl(t) = 0. Condition (2)
implies that

min
θ∈S1

(
s
( κ

s3

) l
l+2

)
(θ, t)

is increasing. Indeed(
min
θ∈S1

s
( κ

s3

) l
l+2

(θ, t)

) p
p+2

l+2
l

= min
θ∈S1

(
s

p
p+2

l+2
l

( κ

s3

) p
p+2

)
(θ, t),

therefore the claim follows from Proposition 2.5.
We now proceed to prove the existence of such an l. Solving p

p+2
l+2
l ≤ 2p

p+1

implies l ≥ 2p+2
p+3 . Let

l :=
2p+ 2

p+ 3

and note that it satisfies both conditions (1) and (2). We further remark that

(2.7) min
θ∈S1

(
s
( κ

s3

) l
2+l

)
(θ, t)

∫
S1

1

κ
dθ ≤ Ωl(t) =

∫
S1

s

κ

( κ

s3

) l
2+l

dθ.

Thus, by taking the limit as t → T on both sides of inequality (2.7), we obtain

lim
t→T

L(t) = lim
t→T

∫
S1

1

κ
dθ = 0. �

Proposition 2.11. Centered ellipses are the only homothetic solutions to (1.2).

Proof. DenoteA◦(t) := A(K◦
t ) and observe thatA(t)A◦(t) is scale-invariant. There-

fore for homothetic solutions this area product remains constant along the flow.
Moreover, Proposition 2.2 in [31] states, in a larger generality, that, as long as the
flow exists, the p-affine flow does not decrease the area product A(t)A◦(t) and it re-
mains constant if and only if the evolving curves are ellipses centered at the origin.
The result follows now from the existence of solutions until the extinction time of
evolving convex bodies which are centrally symmetric with the center of symmetry
placed at the origin.

Alternately, one can argue that having a homothetic solution to (1.2) is equiva-
lent to κ

s3 being constant along the boundary of Kt. Then Petty’s lemma [21] shows
that the latter is equivalent to Kt being an ellipse centered at the origin. �
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3. Affine differential setting

In what follows, we work in the affine setting to obtain a sharp affine isoperimetric
inequality along the p-flow, Theorem 3.3. We will now recall several definitions from
affine differential geometry. Let γ : S1 → R

2 be an embedded strictly convex curve
with the curve parameter θ. Define g(θ) := [γθ, γθθ]

1/3, where, for two vectors u, v
in R

2, [u, v] denotes the determinant of the matrix with rows u and v. The affine
arc-length is then given by

(3.1) s(θ) :=

∫ θ

0

g(ξ)dξ.

Furthermore, the affine tangent vector t, the affine normal vector n, and the affine
curvature are defined, in this order, as follows:

t := γs, n := γss, μ := [γss, γsss].

In the affine coordinate s, the following relations hold:

[γs, γss] = 1,

[γs, γsss] = 0,(3.2)

[γssss, γs] = μ.

Moreover, it can be easily verified that κ0 = [γθ,γθθ ]
[γ,γθ ]3

= [γs,γss]
[γ,γs]3

. Since [γs, γss] = 1,

we conclude that κ0 = 1
[γ,γs]3

. The affine support function is defined by σ := κ
−1/3
0 ;

see [4, 20].
Let K0 ∈ Ksym. We consider a family {Kt}t ∈ Ksym given by the smooth map

x : S1 × [0, T ) → R
2, which is evolving according to

(3.3)
∂

∂t
x := σ1− 3p

p+2 n, x(·, 0) = xK0
(·)

for a fixed p ≥ 1. Observe that up to diffeomorphisms the flow defined in (3.3) is
equivalent to the flow defined by (1.1).

Lemma 3.1. Let γ(t) := ∂Kt be the boundary of the convex body Kt evolving under
the flow (3.3). Then the following evolution equations hold:

(1) ∂
∂tg = − 2

3gσ
1− 3p

p+2μ+ 1
3g

(
σ1− 3p

p+2

)
ss
,

(2) ∂
∂t t =

[
− 1

3σ
1− 3p

p+2μ− 1
3

(
σ1− 3p

p+2

)
ss

]
t+

(
σ1− 3p

p+2

)
s
n,

(3) ∂
∂tσ = σ1− 3p

p+2

[
− 4

3 +
(

p
p+2 + 1

) (
1− 3p

p+2

)
σ2
s

σ + p
p+2σss

]
,

(4) d
dtΩp(t) =

2(p−2)
p+2

∫
γ
σ1− 6p

p+2 ds+ 18p2

(p+2)3

∫
γ
σ− 6p

p+2 σ2
sds.

Proof. To prove the lemma we will repeatedly use equations (3.2) without further
mention:

∂

∂t
g3 =

∂

∂t
[γθ, γθθ] = [

∂

∂t
γθ, γθθ] + [γθ,

∂

∂t
γθθ].
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We have that [
∂

∂t
γθ, γθθ

]
=

[
∂

∂θ

(
σ1− 3p

p+2 γss

)
, γθθ

]

=

[
g
∂

∂s

(
σ1− 3p

p+2 γss

)
, γθθ

]

= g

[(
σ1− 3p

p+2

)
s
γss + σ1− 3p

p+2 γsss, γθθ

]
.

Since ∂2

∂θ2 = ggs
∂
∂s + g2 ∂2

∂s2 , we further have γθθ = g2γss + ggsγs and, therefore,

[
∂

∂t
γθ, γθθ

]
= g

[(
σ1− 3p

p+2

)
s
γss + σ1− 3p

p+2 γsss, g
2γss + ggsγs

]
= −g2gs

(
σ1− 3p

p+2

)
s
− g3σ1− 3p

p+2μ.

On the other hand, we have[
γθ,

∂

∂t
γθθ

]
=

[
gγs,

∂2

∂θ2

(
σ1− 3p

p+2 γss

)]

=

[
gγs, ggs

∂

∂s

(
σ1− 3p

p+2 γss

)
+ g2

∂2

∂s2

(
σ1− 3p

p+2 γss

)]

= g2gs

(
σ1− 3p

p+2

)
s
+ g3

(
σ1− 3p

p+2

)
ss

− g3σ1− 3p
p+2μ.

Hence, we conclude that

∂

∂t
g
3 = g

3
(
σ1− 3p

p+2

)
ss

− 2g3σ1− 3p
p+2μ,

which verifies our first claim.
To prove the second claim, we observe that

(3.4)
∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
− 1

g

∂g

∂t

∂

∂s
.

By (3.4), we get

∂

∂t
t =

∂

∂t

∂

∂s
γ

=
∂

∂s

(
σ1− 3p

p+2 γss

)
+

(
2

3
σ1− 3p

p+2μ− 1

3

(
σ1− 3p

p+2

)
ss

)
t

=
(
σ1− 3p

p+2

)
s
n+ σ1− 3p

p+2 γsss +

(
2

3
σ1− 3p

p+2μ− 1

3

(
σ1− 3p

p+2

)
ss

)
t.

We note that γsss = −μγs ending the proof of the second claim.
We now proceed to prove the third claim with

∂

∂t
σ =

∂

∂t
[γ, γs] =

[
∂

∂t
γ, γs

]
+

[
γ,

∂

∂t
γs

]
.
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By the evolution equation (3.3), the evolution equation for t, and the identities
σ = [γ, γs] and σs = [γ, γss], we get that

∂

∂t
σ =

[
σ1− 3p

p+2 γss, γs

]
+

[
γ,

(
−1

3
σ1− 3p

p+2μ− 1

3

(
σ1− 3p

p+2

)
ss

)
γs +

(
σ1− 3p

p+2

)
s
γss

]

= −σ1− 3p
p+2 − 1

3
σ2− 3p

p+2μ− 1

3

(
σ1− 3p

p+2

)
ss
σ +

(
σ1− 3p

p+2

)
s
σs

= −σ1− 3p
p+2 − 1

3
σ2− 3p

p+2μ+

(
−1

3
+

p

p+ 2

)
σ1− 3p

p+2 σss

+

(
1− 3p

p+ 2

)
p

p+ 2
σ− 3p

p+2 σ2
s +

(
σ1− 3p

p+2

)
s
σs.

Observe that σss + σμ = 1, and apply it to the second and third terms of the last
sum to obtain

∂

∂t
σ = −4

3
σ1− 3p

p+2 +
p

p+ 2
σ1− 3p

p+2 σss+
p

p+ 2

(
1− 3p

p+ 2

)
σ− 3p

p+2 σ2
s+

(
σ1− 3p

p+2

)
s
σs

= −4

3
σ1− 3p

p+2 +

(
p

p+ 2
+ 1

) (
1− 3p

p+ 2

)
σ− 3p

p+2 σ2
s +

p

p+ 2

(
σ1− 3p

p+2

)
σss,

as claimed.
For the last claim of the lemma, consider

d

dt
Ωp(t) =

∂

∂t

∫
γ

σ1− 3p
p+2 ds

=

∫
γ

∂

∂t

(
σ1− 3p

p+2

)
ds+

∫
γ

σ1− 3p
p+2

∂

∂t
ds.

Using part (3) of the lemma and integration by parts, we obtain∫
γ

∂

∂t

(
σ1− 3p

p+2

)
ds

=

(
4p

p+ 2
− 4

3

) ∫
γ

σ1− 6p
p+2 ds+

(
p

p+ 2
+ 1

) (
1− 3p

p+ 2

)2 ∫
γ

σ− 6p
p+2 σ2

sds

+
p

p+ 2

(
1− 3p

p+ 2

) ∫
γ

σ1− 6p
p+2 σssds

=

(
4p

p+ 2
− 4

3

) ∫
γ

σ1− 6p
p+2 ds+

(
p

p+ 2
+ 1

) (
1− 3p

p+ 2

)2 ∫
γ

σ− 6p
p+2 σ2

sds

+
p

p+ 2

(
1− 3p

p+ 2

) (
6p

p+ 2
− 1

) ∫
γ

σ− 6p
p+2 σ2

sds.

On the other hand, (3.1) gives

ds = gdθ;

thus, by part (1), we get

∂

∂t
ds =

[
−2

3
σ1− 3p

p+2μ+
1

3

(
σ1− 3p

p+2

)
ss

]
ds.
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This implies∫
γ

σ1− 3p
p+2

∂

∂t
ds

=

∫
γ

σ1− 3p
p+2

[
−2

3
σ1− 3p

p+2μ+
1

3

(
σ1− 3p

p+2

)
ss

]
ds

= −2

3

∫
γ

σ1− 6p
p+2 (1− σss)ds−

1

3

(
1− 3p

p+ 2

)2 ∫
γ

σ− 6p
p+2 σ2

sds

= −2

3

∫
γ

σ1− 6p
p+2 ds+

[
2

3

(
6p

p+ 2
− 1

)
− 1

3

(
1− 3p

p+ 2

)2
] ∫

γ

σ− 6p
p+2 σ2

sds.

Setting

Q : =

(
p

p+ 2
+ 1

) (
1− 3p

p+ 2

)2

− p

p+ 2

(
3p

p+ 2
− 1

)(
6p

p+ 2
− 1

)

+
2

3

(
6p

p+ 2
− 1

)
− 1

3

(
1− 3p

p+ 2

)2

=
18p2

(p+ 2)3

and combining the above equations, we finally acquire that

d

dt
Ωp(t) =

2(p− 2)

p+ 2

∫
γ

σ1− 6p
p+2 ds+Q

∫
γ

σ− 6p
p+2 σ2

sds. �

Now, we proceed to strengthen inequality (3.6). Let K and L be two convex
bodies with support functions s and h, respectively. Then the mixed volume of K
and L is defined by

V [s, h] =

∫
S1

sr[h]dθ =

∫
S1

hr[s]dθ.

By Minkowski’s mixed volume inequality [27], we have

(3.5) V 2[h, s] ≥ V [s, s]V [h, h].

More interestingly, inequality (3.5) still holds if h is an arbitrary function in C2(S1).
Indeed, assuming that h is not the support function of some convex body, for a large
positive constant c, the sum h+ cs is a support function and we obtain, due to the
linearity of mixed volumes,

0 ≤ V 2[h+ cs, s]− V [h+ cs, h+ cs]V [s, s] = V 2[h, s]− V [h, h]V [s, s].

The following proposition, stated here only for n = 2, is proved in [31] for all
dimensions. Using our method in this section, we prove a stronger version of the
planar inequality in Theorem 3.3.

Proposition 3.2. Let p ≥ 1, as Kt evolves under (1.2). Then we have

(3.6)
d

dt
Ωp(t) ≥

p− 2

p+ 2

Ω2
p(t)

A(t)
,

with equality if and only if Kt is an origin centered ellipse.

Theorem 3.3. The following strong affine isoperimetric inequalities hold. If 1 ≤
p ≤ 2, then

d

dt
Ωp(t) ≥

p− 2

p+ 2

Ω2
p

A
+

18(p− 1)p2

(p+ 2)3

∫
γ

σ− 6p
p+2 σ2

sds,(3.7)
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while, if p ≥ 2, we then have

d

dt
Ωp(t) ≥

p− 2

p+ 2

Ω2
p

A
+

18p2

(p+ 2)3

∫
γ

σ− 6p
p+2 σ2

sds.(3.8)

Proof. To prove the second statement, we note that Hölder’s inequality gives

∫
γ

σ1− 6p
p+2 ds =

∫
S1

s

κ

( κ

s3

) 2p
p+2

dθ ≥
Ω2

p

2A

and, thus, part (4) of Lemma 3.1 implies the affine isoperimetric inequality for
p ≥ 2. We now proceed to prove the first inequality. By Minkowski’s mixed volume
inequality (3.5), we have

V

[
s
( κ

s3

) p
p+2

, s
( κ

s3

) p
p+2

]
≤

V
[
s
(

κ
s3

) p
p+2 , s

]2
V [s, s]

.(3.9)

Note that the right-hand side of the inequality is precisely
Ω2

p

2A . Using the identity
(see [4])

r

[
s
(

κ
s3

) p
p+2

]
r[s]

=
s

κ
1
3

( κ

s3

) p
p+2

μ+

(
s

κ
1
3

( κ

s3

) p
p+2

)
ss

= σ1− 3p
p+2μ+

(
σ1− 3p

p+2

)
ss
,

we can rewrite the left-hand side of (3.9) as follows:

V

[
s
( κ

s3

) p
p+2

, s
( κ

s3

) p
p+2

]
=

∫
S1

s
( κ

s3

) p
p+2

r

[
s
( κ

s3

) p
p+2

]
dθ

=

∫
γ

s

κ
1
3

( κ

s3

) p
p+2

r

[
s
(

κ
s3

) p
p+2

]
r

ds

=

∫
γ

σ1− 3p
p+2

(
σ1− 3p

p+2μ+
(
σ1− 3p

p+2

)
ss

)
ds

=

∫
γ

σ2− 6p
p+2μds−

(
1− 3p

p+ 2

)2 ∫
γ

σ− 6p
p+2 σ2

sds.(3.10)

Hence, combining equation (3.10) and inequality (3.9), we conclude that

∫
γ

σ2− 6p
p+2μds ≤

Ω2
p

2A
+

(
1− 3p

p+ 2

)2 ∫
γ

σ− 6p
p+2 σ2

sds.(3.11)
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Inequality (3.11) is a special case of the affine-geometric Wirtinger inequality [4,
Lemma 6]. To finish the proof note also that

d

dt
Ωp(t) =

2(p− 2)

p+ 2

∫
γ

σ1− 6p
p+2 ds+

18p2

(p+ 2)3

∫
γ

σ− 6p
p+2 σ2

sds

=
2(p− 2)

p+ 2

∫
γ

σ2− 6p
p+2

(
1

σ
− σss

σ

)
ds

+
2(p− 2)

p+ 2

∫
γ

σ2− 6p
p+2

σss

σ
ds+

18p2

(p+ 2)3

∫
γ

σ− 6p
p+2 σ2

sds

=
2(p− 2)

p+ 2

∫
γ

σ2− 6p
p+2μds

+

[
2(p− 2)

p+ 2

(
6p

p+ 2
− 1

)
+

18p2

(p+ 2)3

] ∫
γ

σ− 6p
p+2 σ2

sds,

which, by inequality (3.11), implies

d

dt
Ωp(t) ≥

p− 2

p+ 2

Ω2
p

A
+

[
2(p− 2)

p+ 2

(
1− 3p

p+ 2

)2

+
2(p− 2)

p+ 2

(
6p

p+ 2
− 1

)
+

18p2

(p+ 2)3

] ∫
γ

σ− 6p
p+2 σ2

sds

=
p− 2

p+ 2

Ω2
p

A
+

18(p− 1)p2

(p+ 2)3

∫
γ

σ− 6p
p+2 σ2

sds. �

Lemma 3.4. The p-affine isoperimetric ratio,
Ω2+p

p (t)

A2−p(t) , is non-decreasing along the

flow (1.2) and remains constant if and only if Kt is an origin centered ellipse.

Proof.

d

dt

Ω2+p
p (t)

A2−p(t)
=

(2 + p)Ωp+1
p (t)A2−p(t) d

dtΩp(t) + (2− p)A1−p(t)Ω3+p
p (t)

A2(2−p)(t)
(3.12)

=
Ω1+p

p (t)

A2−p(t)

(
(2 + p)

d

dt
Ωp(t)− (p− 2)

Ω2
p(t)

A(t)

)
≥ 0,

where we used inequality (3.6) on the last line. �

Corollary 3.5. If Kt evolves by (1.2) with extinction time T , the following limit
holds:

(3.13) lim inf
t→T

Ωp
p(t)

A1−p(t)

[
(2 + p)

d

dt
Ωp(t)− (p− 2)

Ω2
p(t)

A(t)

]
= 0.

Proof. By equations (2.2) and (3.12)

d

dt

Ω2+p
p (t)

A2−p(t)
= − d

dt
ln(A(t))

(
Ωp

p(t)

A1−p(t)

[
(2 + p)

d

dt
Ωp(t)− (p− 2)

Ω2
p(t)

A(t)

])
.

If
Ωp

p(t)

A1−p(t)

[
(2 + p)

d

dt
Ωp(t)− (p− 2)

Ω2
p(t)

A(t)

]
≥ ε
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in a neighborhood of T , then

d

dt

Ω2+p
p (t)

A2−p(t)
≥ −ε

d

dt
ln(A(t)).

Thus,
Ω2+p

p

A2−p
(t) ≥

Ω2+p
p

A2−p
(t1) + ε ln(A(t1))− ε ln(A(t)),

where the right-hand side goes to infinity as A(t) goes to zero. This contradicts that
the left-hand side is bounded from above by the p-affine isoperimetric inequality. �

4. Normalized flow

In this section we study the normalized flows corresponding to the evolution de-
scribed by (1.2). We consider the conventional rescaling such that the area enclosed
by the normalized curves is π by taking

s̃t :=

√
π

A(t)
st, κ̃t :=

√
A(t)

π
κt.

One can also define a new time parameter

τ =

∫ t

0

(
π

A(Kt)(ξ)

) 2p
p+2

dξ

and can easily verify that

(4.1)
∂

∂τ
s̃ = −s̃

(
κ̃

s̃3

) p
p+2

+
s̃

2π
Ω̃p,

where Ω̃p stands for the p-affine length of ∂K̃t having support function s̃t. More
precisely,

Ω̃p(τ ) := Ωp(K̃τ ) =

∫
S1

s̃

κ̃

(
κ̃

s̃3

) p
p+2

dθ.

However, even in the normalized case, we prefer to work on the finite time interval
[0, T ).

Corollary 4.1. Let p > 1, and let {tk}k be the sequence of times realizing the limit
(3.13) in Corollary 3.5. Then along the normalized contracting p-flow, we have

lim
tk→T

σ̃(tk) = 1.

Proof. Since
1(

3p
p+2 − 1

)2

∫
γ

(
σ1− 3p

p+2

)2

s
ds =

∫
γ

σ− 6p
p+2 σ2

sds,

by Theorem 3.3 and Corollary 3.5, we have

0 = lim
tk→T

Ωp
p

A1−p

[
d

dt
Ωp(t)−

p− 2

p+ 2

Ω2
p

A

]
≥ lim

tk→T

Ωp
p

A1−p

(
φ(p)

∫
γ

(
σ1− 3p

p+2

)2

s
ds

)
≥ 0,

where φ(p) :=

{
9p2

2(p+2)(p−1) , if 1 < p ≤ 2,
9p2

2(p+2)(p−1)2 , if p ≥ 2.
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As, by Lemma 3.4, the p-affine length Ω̃p is increasing along the normalized flow,
we conclude that, for any p > 1,

lim
tk→T

∫
γ̃

(
σ̃1− 3p

p+2

)2

s̃
ds̃ = 0.

We note that, for any θ1, θ2 ∈ S
1,∣∣∣∣∣

∫ θ2

θ1

(
σ̃1− 3p

p+2

)
θ
dθ

∣∣∣∣∣
≤

∫
S1

∣∣∣(σ̃1− 3p
p+2

)
θ

∣∣∣ dθ =

∫
γ̃

∣∣∣(σ̃1− 3p
p+2

)
s̃

∣∣∣ ds̃ ≤ (∫
γ̃

(
σ̃1− 3p

p+2

)2

s̃
ds̃

)1/2

Ω̃
1/2
1 .

Take θ1 and θ2 to be two points where σ̃ reaches its extremal values. It is known
that, for a smooth, simple curve with enclosed area π, minS1 σ ≤ 1 and maxS1 σ ≥ 1;
see Lemma 10 in [4]. Hence, as Ω̃1 is bounded from above by the classical affine
isoperimetric inequality [13], we infer that limtk→T σ̃(tk) = 1. �

Lemma 4.2 ([8]). Suppose that K is a convex body in Ksym. Denote the curvature
and the support function of ∂K respectively by κ and s. If, for all θ: m ≤ κ

s3 (θ) ≤ M
for some positive numbers m and M , then there exist two ellipses Ein and Eout such
that Ein ⊆ K ⊆ Eout and

κ

s3
(Ein) = M,

κ

s3
(Eout) = m.

Proof. We present here the argument for the inner ellipse, the case of the outer one
being similar. Recall that

κ0 =
[γ̇, γ̈]

[γ, γ̇]3
,

where t �→ γ(t) is any counter-clockwise parametrization of the boundary curve.
For an ellipse, this is a constant inverse proportional to the square of its area. So,
we have to prove that the maximum-area ellipse contained in K has κ0 ≤ M. Let
Ein be the maximum-area ellipse contained in K. Since the problem is centro-affine
invariant, we may assume that Ein is the unit circle. We will prove that M ≥ 1. The
result will then follow by shrinking the circle Ein until its centro-affine curvature is
exactly M and re-denoting it, for simplicity, the same way.

Consider the points where ∂K touch Ein; one easily sees that there are at least
four intersection points between ∂K and Ein, otherwise Ein could be made larger.
Thus, at least two of the intervals on the circle corresponding to the polar angle of
the intersection points are not greater than π/2. In fact, due to the symmetry of K,
there exist at least two diametrically opposite such intervals. Choose coordinates
so that one of the intersection points is (1, 0) and another intersection point is of
the form (cos θ, sin θ) for some 0 < θ ≤ π/2. Observe that the arc of ∂K between
these touch points is contained in the square [0, 1]× [0, 1].

Parameterize ∂K by the spanned area, i.e., by a curve p �→ γ(p) such that
[γ, γ̇] = 1. Therefore we have [γ, γ̈] = 0, hence γ̈(p) = −κ0(p)γ(p), for all p,
where κ0(p) is precisely the centro-affine curvature along the boundary of K. Let
γ(p) = (x(p), y(p)); then ẍ(p) = −κ0(p)x(p) and ÿ(p) = −κ0(p)y(p). Suppose that
M = supκ0(p) < 1. Since x(0) = 1, ẋ(0) = 0, y(0) = 0, and ẏ(0) = 1, a standard
comparison theorem for equations of the form ẍ = −a2x implies that x(p) > cos p
and y(p) > sin p for all p ∈ (0, π/2]. Therefore, x(p)2+y(p)2 > 1 for all p ∈ (0, π/2].
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This means that γ leaves the square [0, 1] × [0, 1] before it has a chance to touch
the circle again, contradicting our assumption. �

Theorem 4.3. Suppose that s̃t is a solution of the normalized flow (4.1) for some
initial convex body in Ksym and that {tk}k is the sequence of times realizing the
limit (3.13) in Corollary 3.5. Then there exist two families of centered ellipses
{Ein(tk)} and {Eout(tk)} such that

(4.2) Ein(tk) ⊆ K̃tk ⊆ Eout(tk).
Furthermore, the sequence of curves ∂K̃tk converge, in the Hausdorff metric, to the
unit circle modulo SL(2).

Proof. By Corollary 4.1, we have

(4.3) lim
tk→T

(
κ̃

s̃3

)
(θ, tk) = 1.

Thus, the first half of the claim follows from Lemma 4.2.
Now we proceed to prove the second half of the claim. Evidently we can find an

appropriate family of special linear transformations {Ltk}tk such that Ltk(Eout(tk))
is a circle at each time tk. Each such area preserving linear transformation Ltk

minimizes the Euclidean length of the ellipse Eout(tk) at time tk.
Thus, the construction of Eout(tk), Ein(tk) implies

lim
tk→T

Ltk(∂Eout(tk)) = lim
tk→T

Ltk(∂Ein(tk)) = S
1

in the Hausdorff metric.
Recall, from Lemma 4.2, that

min
θ∈S1

(
κ̃

s̃3

)
(θ, tk) =

κ

s3
(Eout(tk)).

Since κ
s3 is invariant under SL(2), we have κ

s3 (Eout(tk)) =
κ
s3 (Ltk(Eout(tk))), there-

fore limtk→T
κ
s3 (Ltk(Eout(tk))) = 1. This implies limtk→T Ltk(∂Eout(tk)) = S

1 in
the Hausdorff metric. Similarly, from the choice of Ein(tk) in Lemma 4.2, we have
that

max
θ∈S1

(
κ̃

s̃3

)
(θ, tk) =

κ

s3
(Ein(tk)),

therefore limtk→T
κ
s3 (Ltk(Ein(tk))) = 1. This implies limtk→T A(Ltk(Ein(tk))) = π.

As Ltk(Ein(tk)) ⊆ Ltk(Eout(tk)), we conclude that limtk→T Ltk(∂Ein(tk)) = S
1 in

the Hausdorff metric.
Now, applying {Ltk}tk to the inclusions (4.2), we obtain that Ltk(K̃tk) converges

to the unit disk in the Hausdorff metric. �

Corollary 4.4. Along the flow (4.1) with an arbitrary initial condition in Ksym,
we have

lim
t→T

A(Kt)A(K◦
t ) = π2

for p > 1.

Proof. Recall that the area product A(Kt)A(K◦
t ) is invariant under the general

linear group, GL(2), and increasing along any p-flow, unless the boundaries of
the evolving convex bodies are centered ellipses. Moreover, as the convex bodies
are centrally symmetric with the center of symmetry at the origin, the Santaló



5688 M. N. IVAKI

inequality gives A(t)A◦(t) ≤ π2 with equality if and only if the boundary curves
are ellipses centered at the origin [22]. Consequently, Theorem 4.3 implies the
claim. �

Before stating our main theorems let us recall the following frequently used fact
in both convex geometry and analysis of PDEs which is due to Fritz John 1948.

Theorem 4.5 (John’s Inclusion [9]). Suppose K is a convex body in R
n. Then

there is a unique ellipse EJ of maximal volume contained in K. Furthermore, if K
is origin symmetric, then

EJ ⊆ K ⊆
√
nEJ .

Theorem 4.5 immediately implies if K is an origin symmetric convex body whose
volume is ωn, the volume of the unit ball in R

n, then there is an affine transforma-
tion L such that r+(LK) ≤

√
n and r−(LK) ≥ 1√

n
, where r+(LK) and r−(LK)

are the inner radius and outer radius of LK respectively. Now, we are ready to
prove one of the main theorems:

Theorem 4.6. Let p > 1. Suppose K̃t is a solution of the normalized flow (4.1)
for some initial convex body in Ksym. Then there exists a family of special linear

transformations {Lt}t∈[0,T ) ⊂ SL(2) such that Lt(∂K̃t) converges to S
1 in the

Hausdorff metric.

Proof. At each time t, we apply a special linear transformation Lt such that the
Euclidean length of ∂K̃t is minimized. Let {ti}i be a sequence of times converging
to T . John’s Inclusion or Proposition 8 of [4] implies the compactness of the set

of convex bodies Lti(K̃ti). By Corollary 4.4 and the Blaschke Selection Theorem,

each subsequence of Lti(∂K̃ti) has a subsequence Ltij
(∂K̃tij

) such that Ltij
(∂K̃tij

)

converges, in the Hausdorff metric, to an ellipse of enclosed area π. Thus, the length
minimization condition rules out the degeneracy of the limit ellipse and, in fact, it
implies that Ltij

(∂K̃tij
) converges to the unit circle in the Hausdorff metric. �

5. Expanding p-flow

Lemma 5.1. As Kt evolves by the centro-affine curvature flow (1.2), its dual K◦
t

evolves under the flow

(5.1)
∂

∂t
s = s

( κ

s3

)− p
p+2

, s(·, t) = s∂K◦
t
(·), s(·, 0) = s∂K◦

0
(·).

Proof. The proof of Lemma 5.1 is given in [31], but for completeness we will present
it here. Recall that A(K◦) = 1

2

∫
S1

1
s2 dθ and that, under sufficient regularity as-

sumptions on ∂K which are satisfied here, Ωq(K) = Ω 4
q
(K◦) for any q 
= −n,

in which case the q-affine length is not defined. Therefore, as Kt evolves by the
centro-affine curvature flow (1.2), the volume of the dual body K◦

t changes by

d

dt
A◦(t) = Ω◦

− p
p+1

(t),

where the notation stands for Ω− p
p+1

(K◦
t ). Compared with the rate of change of

the area of a convex body L whose boundary is deformed by a normal vector field
with speed v, which is d

dtA(L) =
∫
S1
v 1
κL

dθ, we infer that while Kt evolve, up

to diffeomorphisms, by (1.2), their duals K◦
t evolve, up to diffeomorphisms, by

(5.1). �
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Similar to Propositions 2.1 and 2.2 of [31], we have

Proposition 5.2. Let K0 be a convex body belonging to Ksym and let p ≥ 1. Then
there exists a time T > 0 for which equation (5.1) has a unique solution starting
from K0.

Proposition 5.3 (Containment principle). If Kin and Kout are the two convex
bodies in Ksym such that Kint ⊂ Kout, and p ≥ 1, then Kin(t) ⊆ Kout(t) for as
long as the solutions Kin(t) and Kout(t) (with given initial data Kin(0) = Kin,
Kout(0) = Kout) of (5.1) exist in Ksym.

Similar to Lemma 2.3 we have

Lemma 5.4. Let {Kt}t be a solution of (5.1) where K0 ∈ Ksym. Then Kt ∈ Ksym

as long as the flow exists.

Combining Proposition 2.10, Lemma 5.1, and Propositions 5.2 and 5.3 we obtain

Proposition 5.5. Suppose Kt is a family of convex bodies such that it evolves
under the flow

∂

∂t
s(·, t) = s

( κ

s3

)− p
p+2

(·, t)
with p ≥ 1. Then

∀ θ : lim
t→T

s(θ, t) = ∞.

Proposition 5.6. Ellipses centered at the origin are the only homothetic solutions
to (5.1).

Proof. The proof follows from the duality between the two flows and Proposition
2.11. �

Furthermore, we obtain:

Theorem 5.7. Let p > 1. Suppose K̃t is a solution of the normalized flow derived
from (5.1) for some initial convex body in Ksym. Then there exists a family of

linear transformations {Lt}t∈[0,T ) ⊂ SL(2) such that Lt(∂K̃t) converge to S
1 in the

Hausdorff metric.

Proof. Let {Lt}t∈[0,T ) be the family of length minimizing special linear transfor-

mations that we defined in the proof of Theorem 4.6. Since (Lt(K̃t))
◦ = L−t

t (K̃◦
t ),

where L−t
t is the inverse transpose of Lt, the claim follows. �

6. A proof of the p-affine isoperimetric inequality

In this section we aim to provide a new proof of the p-affine isoperimetric in-
equality, p ≥ 1, for a convex body K ∈ Ksym. Since our proofs of Theorems 4.6 and
5.7 are dependent on the p-affine isoperimetric inequalities, we cannot apply our
results on p-affine flows to obtain the p-affine isoperimetric inequalities. Instead we
employ the affine normal flow to reach our goal; see [5].

We state the following general evolution equation for Ωl under the contracting
p-affine flow for any l ∈ R :

(6.1)
d

dt
Ωl(t) =

2(l − 2)

l + 2

∫
γ

σ1− 3p
p+2−

3l
l+2 ds+

18pl

(l + 2)2(p+ 2)

∫
γ

σ− 3p
p+2−

3l
l+2 σ2

sds.

Proof of this equation is parallel to the one in part (4) of Lemma 3.1.
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Lemma 6.1. The following sharp affine isoperimetric inequalities hold along the
affine normal flow. If 1 ≤ l ≤ 2, then

d

dt
Ωl(t) ≥

l − 2

l + 2

ΩlΩ1

A
+

2(l − 1)(4l2 + 3l + 2)

(l + 2)3

∫
γ

σ−1− 3l
l+2 σ2

sds,

while, if l ≥ 2, we then have

d

dt
Ωl(t) ≥

l − 2

l + 2

ΩlΩ1

A
+

6l

(l + 2)2

∫
γ

σ−1− 3l
l+2 σ2

sds.

Proof. Before presenting a proof of the second claim let us to state the following
generalized Hölder inequality developed by Andrews [3]. IfM is a compact manifold
with a volume form dω, g is a continues function on M , and F is a decreasing real,
positive function, then ∫

M
gF (g)dω∫

M
F (g)dω

≤
∫
M

gdω∫
M

dω
.

If F is strictly decreasing, then equality occurs if and only if g is constant.

Define dω = σds, g = σ, and F (x) := x− 3l
l+2 . Furthermore, observe that for a

convex body K in R
2 we have 2A =

∫
∂K

σds. This implies∫
∂K

σ− 3l
l+2 ds ≥ ΩlΩ1

2A
,

hence the second claim follows by this last inequality and the evolution equation
(6.1) for p = 1. To prove the first inequality, one can proceed similarly as in the proof
of inequality (3.7), and use the affine-geometric Wirtinger inequality developed by
Andrews [4, Lemma 6]. �

Lemma 6.2. Let l ≥ 1. Then the l-affine isoperimetric ratio,
Ω2+l

l (t)

A2−l(t)
, is non-

decreasing along the affine normal flow and remains constant if and only if Kt is
an origin centered ellipse.

Proof.

d

dt

Ω2+l
l (t)

A2−l(t)
=

(2 + l)Ωl+1
l (t)A2−l(t) d

dtΩl + (2− l)A1−l(t)Ω2+l
l (t)Ωp(t)

A2(2−l)(t)

=
Ωl+1

l (t)

A2−l(t)

(
(2 + l)

d

dt
Ωl − (l − 2)

Ωl(t)Ω1(t)

A(t)

)
≥ 0,

where we used Lemma 6.1 in the last line. �

Theorem 6.3. Let l ≥ 1. Then the following l-affine isoperimetric inequality holds
for a convex body K ∈ Ksym:

Ω2+l
l (K)

A2−l(K)
≤ 2l+2π2l;

moreover, equality holds if and only if for centered ellipses at origin.

Proof. The claim is an immediate consequence of the weak convergence of the
solutions of the normalized affine normal flow to a centered ellipse and Lemma
6.2. �
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