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MENNICKE SYMBOLS, K-COHOMOLOGY

AND A BASS-KUBOTA THEOREM

J. FASEL

Abstract. If A is a smooth algebra of dimension d ≥ 3 over a perfect field
k of characteristic different from 2, then we show that the universal Mennicke
symbol MSd+1(A) is isomorphic to the K-cohomology group Hd(A,Kd+1).
We then prove an analogue of the Bass-Kubota theorem for smooth affine
surfaces over the algebraic closure of a finite field.

Introduction

As its title indicates, this paper mainly deals with Mennicke symbols. These
symbols were extensively studied, for instance, in the solution of the congruence
subgroup problem ([5]), the relations between Milnor K-theory and Quillen K-
theory ([33]) and the computation of orbit sets of unimodular rows ([35]). One
of the goals of this article is to show that if A is a smooth algebra of dimension
d ≥ 3 over a perfect field k of characteristic different from 2, then the universal
Mennicke symbol MSd+1(A) has a cohomological interpretation. More precisely, it
is isomorphic to the K-cohomology group Hd(A,Kd+1) (here it doesn’t matter if we
consider Milnor or Quillen K-groups). In this sense, this paper is a sequel of [16],
where it was shown that the universal weak Mennicke symbol has a cohomological
interpretation in the situation above. Weak Mennicke symbols were introduced by
W. van der Kallen in order to understand orbit sets of unimodular rows, and it
is clear by construction that there is a surjective homomorphism from the univer-
sal weak Mennicke symbol to the universal Mennicke symbol. Our cohomological
approach allows us to compare these two symbols and derive some results on presta-
bilization in K1. We are also able to compute the universal Mennicke symbol in
some situations, for instance in the case of smooth rational real algebras, as well as
to show that this symbol can be big over fields of small cohomological dimension.
The methods we use can be seen as an extension of the methods used in [17] to
prove that stably free modules of rank d− 1 are free over smooth affine algebras of
dimension d over an algebraically closed field.

In the second part of the paper, we also study the Mennicke symbols of length
2. We use Grothendieck-Witt groups to prove that if S is a smooth surface over an
algebraically closed field k, then SL2(S)∩ESp4(S) = SL2(S)∩E3(S). This allows
us to deduce that for a smooth surface S over the algebraic closure of a finite field,

MS2(S) = Um2(S)/SL2(S) ∩E3(S) = Um2(S)/SL2(S) ∩ESp4(S) = MSp2(S),
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which is an analogue of the Bass-Kubota theorem for Dedekind rings (see [20] for
instance).

The organization of the paper is as follows. In Section 1, we first recall the
definitions of a Mennicke symbol and of a weak Mennicke symbol of length n ≥ 3
associated to a unimodular row of length n ≥ 3. We then recall the definitions of
the sheaves we will need for the comparison theorem. In particular, we introduce
the K-cohomology groups Hi(X,Kj) associated to a regular scheme X. We then
state and prove the comparison theorem, which says that if A is a smooth algebra
of dimension d ≥ 3 over a perfect field k with char(k) �= 2, then the universal
Mennicke symbol of length d + 1 is isomorphic to Hd(A,Kd+1). The proof is an
easy consequence of the description of the universal weak Mennicke symbol obtained
in [16, Theorem 4.9].

In Section 2, we use cohomological methods to compare the universal weak Men-
nicke symbol of length d + 1 with the universal Mennicke symbol of length d + 1
over a smooth algebra of dimension d. We also obtain divisibility results for uni-
versal Mennicke symbols. We then perform the computation of MSd+1(A) when
A is a smooth rational real algebra of dimension d before focusing on stabilization
questions. We finally prove that over smooth algebras of odd dimension d over a
field, MSd+1(A) is sufficient to understand the stably free modules of rank d.

The proof that SL2(S) ∩ ESp4(S) = SL2(S) ∩ E3(S) for a smooth surface
S over an algebraically closed field takes place in Section 3. We start with a
quick reminder of basic results on higher Grothendieck-Witt groups, including the
definitions. These groups are used to prove that if S is a smooth surface over an
algebraically closed field of characteristic different from 2, then K1Sp(S) injects
into SK1(S), yielding the result. We then introduce stable Mennicke symbols of
length 2 before proving the Bass-Kubota theorem.

Conventions. The fields considered are of characteristic different from 2. If X
is a scheme over a field k and xp ∈ X(p), we denote by mp the maximal ideal in
OX,xp

and by k(xp) its residue field. Finally ωxp
will denote the k(xp)-vector space

ExtpOX,xp
(k(xp),OX,xp

) (which is one-dimensional if X is regular at xp).

1. Symbols and cohomology

In this section, we recall the definitions of Mennicke symbols and weak Mennicke
symbols. We then explore their links to the cohomology groups of some sheaves.
The main result is the comparison theorem, which says that for a smooth affine
algebra A of dimension d ≥ 3 over some perfect field k (with char(k) �= 2), the
universal Mennicke symbol of length d is isomorphic to the K-cohomology group
Hd(A,Kd+1).

1.1. Unimodular rows. Let R be a ring. A unimodular row of length n ≥ 2
is a row a = (a1, . . . , an) with ai ∈ R such that there exist b1, . . . , bn ∈ R with∑

aibi = 1. We denote by Umn(R) the set of unimodular rows of length n and
consider it as a pointed set with base point e1 := (1, 0, . . . , 0). If M ∈ GLn(R)
and a ∈ Umn(R), then aM is also unimodular, and thus Umn(R) is endowed with
a right action of GLn(R). Of course, any subgroup of GLn(R) acts, and one is
classically interested in the (pointed) orbit set Umn(R)/SLn(R), which classifies
up to isomorphism projective modules such that P⊕R � Rn, and Umn(R)/En(R),
which classifies unimodular rows up to elementary homotopies and is endowed with
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an abelian group structure when n is reasonable compared to the Krull dimension
d of R ([36, Theorem 4.1]). A way to understand unimodular rows is through
symbols, as explained in the next two sections.

1.2. Mennicke symbols. A Mennicke symbol of length n ≥ 3 is a pair (φ,G)
where G is a group and

φ : Umn(R) → G

is a map such that the two following properties are satisfied:

ms1. φ(1, 0, . . . , 0) = 1 and φ(v) = φ(wM) if M ∈ En(R).
ms2. φ(a, a2, . . . , an) · φ(b, a2, . . . , an) = φ(ab, a2, . . . , an) for any unimodular rows

(a, a2, . . . , an) and (b, a2, . . . , an).

It is clear from the definition that a universal Mennicke symbol (ms,MSn(R))
exists.

1.3. Weak Mennicke symbols. A weak Mennicke symbol of length n ≥ 3 is a
pair (φ,G) where G is a group and

φ : Umn(R) → G

is a map such that the two following properties are satisfied:

wms1. φ(1, 0, . . . , 0) = 1 and φ(v) = φ(wM) if M ∈ En(R).
wms2. φ(a, a2, . . . , an) · φ(1 − a, a2, . . . , an) = φ(a(1 − a), a2, . . . , an) for any uni-

modular row (a, a2, . . . , an) such that (1− a, a2, . . . , an) is also unimodular.

The definition of a weak Mennicke symbol, due to W. van der Kallen ([36, §1.3]),
was originally more complicated. However, van der Kallen could show that in most
of the situations the original definition is the same as the definition given above
([37, Theorem 3.3]).

Again, it is clear that a universal weak Mennicke symbol (wms,WMSn(R))
exists. Since a Mennicke symbol of length n is obviously a weak Mennicke symbol
of length n, there is a unique homomorphism F : WMSn(R) → MSn(R) such that
the diagram

Umn(R)
wms ��

ms
����

���
���

��
WMSn(R)

f

��

MSn(R)

commutes. Observe that f is surjective by definition.

1.4. Cohomology. Let F be a field. For any n ∈ N, we denote by Kn(F ) the n-th
Milnor K-theory group of F . We also denote by W (F ) the Witt ring of F , and for
any n ∈ Z by In(F ) the n-th power of the fundamental ideal in W (F ) (with the
convention that In(F ) = W (F ) when n ≤ 0). If L is an F -vector space of dimension
1, then we can also consider the twisted Witt group W (F,L) (classifying vector
spaces V endowed with symmetric anisotropic isomorphisms V → HomF (V, L)).
Choosing a generator of L yields an isomorphism W (F ) → W (F,L) under which
we can consider the images of In(F ). The resulting subgroups In(F,L) ⊂ W (F,L)
are independent of the choice of the generator of L ([14, Lemma E.1.2]).

By definition, In+1(F,L) ⊂ In(F,L) for any n, and it turns out that the quotient

is canonically isomorphic to In(F )/In+1(F ) := I
n
(F ) ([14, Lemma E.1.3]). There
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is a homomorphism sn : Kn(F ) → I
n
(F ) defined on symbols by ([23, Theorem

4.1])

sn({a1, . . . , an}) = 〈−1, a1〉 ⊗ . . .⊗ 〈−1, an〉.
Note that sn induces an isomorphism Kn(F )/2Kn(F ) → I

n
(F ) by [41] and [25].

We define Gn(F,L) following [4, §1] as the fibre product

Gn(F,L) ��

��

In(F,L)

��

Kn(F ) sn
�� I

n
(F )

Observe that Gn(F,L) coincides with the (twisted) Milnor-Witt K-group
KMW

n (F,L) defined in [24, Definition 5.1] (see [24, Theorem 5.3]).
Let X be a regular connected scheme over k. If U ⊂ X is an open subset we can

consider the kernel of the residue homomorphism ([23, Lemma 2.1]):

Kn(k(U))
dK ��

⊕
x∈U(1) Kn−1(k(x)) .

This defines a presheaf on X, whose associated sheaf we denote by Kn. For the
properties of the cohomology groups of this sheaf, we refer the reader to [19] or
[27].

Similarly, we can consider for any U ⊂ X the kernel of the residue homomorphism
([14, Chapter 7] and [14, Lemma 9.2.3])

In(k(U))
dI ��

⊕
x∈U(1) In−1(k(x), ωx) .

We denote by In the sheaf associated to this presheaf and by I
n

the quotient
In/In+1. Since dK and dI are compatible ([14, Theorem 10.2.6]), we also get
a residue homomorphism on Gn(k(U)) and a sheaf Gn on X. Observe that by
definition there is an exact sequence of sheaves on X:

0 �� In+1 �� Gn �� Kn
�� 0.

For the properties of the sheaves In+1 and Gn, we refer the reader to [14, §9.3,
§10.4] and [13].

The homomorphisms sn : Kn(F ) → I
n
(F ) induce a homomorphism of sheaves

Kn/2Kn → I
n
, which is an isomorphism (again by [41] and [25]). These two sheaves

are yet isomorphic to a third one: For any U ⊂ X and any prime number l, consider
the kernel of the residue homomorphism

Hn
et(k(U), μ⊗n

l ) ��
⊕

x∈U(1) H
n−1
et (k(x), μ⊗n−1

l )

defined for instance in [27]. We denote by Hn(l) the sheaf associated to this
presheaf. There is a natural homomorphism Kn → Hn(l) ([23, Lemma 6.1]), which
yields a homomorphism Kn/l → Hn(l). This is an isomorphism by Voevodsky’s
work [41] and [25] when l = 2, by Merkurjev and Suslin when n = 2 ([21]), and
by Voevodsky-Suslin-Rost with Weibel’s patch when l �= 2 and n ≥ 3 ([42]). One
of the features of the sheaf Hn(l) is the Bloch-Ogus spectral sequence ([9]). This
spectral sequence is defined at page 2 by Ep,q

2 := Hp
Zar(X,Hq(l)) and converges to

Hp+q
et (X,μl).
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1.5. Comparison theorems. Let A be a smooth algebra of dimension d over a
field k. Recall from [16, Theorem 2.1] that Umd+1(A)/Ed+1(A) can be identified
with morphisms of schemes Spec(A) → A

d+1 − {0} up to naive homotopies. A
straightforward computation shows that Hd(Ad+1 − {0}, Gd+1) = GW (k), where
the latter is the Grothendieck-Witt group of k ([16, §3.3]). We obtain in this way
a map

φ : Umd+1(A)/Ed+1(A) → Hd(A,Gd+1)

defined by v �→ v∗(〈1〉), where v : Spec(A) → Ad+1 − {0} is a unimodular row and
v∗ : Hd(Ad+1−{0}, Gd+1) → Hd(A,Gd+1) is the pull-back homomorphism defined
in [13, Definition 7.1]. It turns out that φ is a weak Mennicke symbol and therefore
induces a homomorphism ([16, Theorem 4.1])

Φ : WMSd+1(A) → Hd(A,Gd+1).

Theorem 1.1. Let A be a smooth algebra of dimension d ≥ 3 over a perfect field
k with char(k) �= 2. Then the homomorphism

Φ : WMSd+1(A) → Hd(A,Gd+1)

is an isomorphism.

Proof. See [16, Theorem 4.9]. �
Remark 1.2. In [16], we could only prove that WMSd+1(A) → Hd(A,Gd+1) was
an isomorphism for d ≥ 3. However, this result is also true for d = 2, as we will
show in further work.

We will now prove that the universal Mennicke symbol MSd+1(A) is isomorphic
to Hd(A,Kd+1) under the same hypotheses as in Theorem 1.1. We first define a
map

ψ : Umd+1(A)/Ed+1(A) → Hd(A,Kd+1)

as the composition

Umd+1(A)/Ed+1(A)
φ

�� Hd(A,Gd+1) �� Hd(A,Kd+1) ,

where the right homomorphism is the homomorphism induced by the map of sheaves
Gd+1 → Kd+1.

Lemma 1.3. The map ψ induces a homomorphism

Ψ : MSd+1(A) → Hd(A,Kd+1).

Proof. It suffices to prove that ψ satisfies relation ms2. We can follow [16, proof of
Theorem 4.1] with Kd+1 instead of Gd+1 to get the result. �
Theorem 1.4. Let A be a smooth algebra of dimension d ≥ 3 over a perfect field
k of characteristic different from 2. Then Ψ : MSd+1(R) → Hd(A,Kd+1) is an
isomorphism.

Proof. Observe first that the following diagram is commutative:

WMSd+1(A)
Φ ��

f

��

Hd(A,Gd+1)

��

MSd+1(A)
Ψ

�� Hd(A,Kd+1)
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Indeed, Hd(A,Kd+1) being a Mennicke symbol, it is also a weak Mennicke symbol.
There is then a unique homomorphism WMSd+1(A) → Hd(A,Kd+1) extending ψ.
Since both compositions in the diagram do the job, they are equal.

Consider now the following commutative diagram:

0 �� C ��

��
�
�
� WMSd+1(A)

f
��

Φ

��

MSd+1(A) ��

Ψ

��

0

0 �� C ′ �� Hd(A,Gd+1) �� Hd(A,Kd+1) �� 0

where C and C ′ are the kernels of the horizontal homomorphisms. Since Φ is an
isomorphism by Theorem 1.1, it suffices to prove that the induced homomorphism
C → C ′ is surjective to conclude. Using the exact sequence of sheaves

0 �� Id+2 �� Gd+1 �� KM
d+1

�� 0,

we get a surjective homomorphism Hd(A, Id+2) → C ′.
Let m be a maximal ideal of A. Arguing as in [7, Corollary 2.4], we see that

there exists a regular sequence (v1, . . . , vd) ⊂ A such that

A/(v1, . . . , vd) = A/m×A/M1 × . . .×A/Mr,

where the Mi are mi-primary ideals for some distinct maximal ideals m1, . . . ,mr

(also distinct of m). Let

ψv1,...,vd : A/(v1, . . . , vd) → ExtdA(A/(v1, . . . , vd), A)

be the isomorphism defined by ψv1,...,vd(1) = Kos(v1, . . . , vd), where the latter is
the Koszul complex associated to the regular sequence (v1, . . . , vd). Using the same
argument as in [16, §4.1], we see that I2(A/m, ωm) is generated by elements of
the form 〈−1, a〉 ⊗ 〈−1, b〉 · ψv1,...,vd with (a, v1, . . . , vd) and (b, v1, . . . , vd) unimod-
ular. Doing the same for all maximal ideals m ⊂ A, we get a set of generators of
Hd(A, Id+2). The image in C ′ of such a generator is of the form

(ab, 〈−1, ab〉 · ψv1,...,vd)− (a, 〈−1, a〉 · ψv1,...,vd)− (b, 〈−1, b〉 · ψv1,...,vd).

This is precisely the image of

wms(ab, v1, . . . , vd)− wms(a, v1, . . . , vd)− wms(b, v1, . . . , vd)

under the homomorphism Φ : WMSd+1(A) → Hd(A,Gd+1). Now by definition
the element wms(ab, v1, . . . , vd)− wms(a, v1, . . . , vd)− wms(b, v1, . . . , vd) vanishes
in MSd+1(A), whence the result. �

This cohomological description allows us to perform some computations of the
universal Mennicke symbol of length d+ 1, as we will see in the next section.

2. Prestabilization and stably free modules

2.1. Preliminary computations. As in the previous section, A is a smooth al-
gebra of dimension d ≥ 3 over a perfect field k with char(k) �= 2.

Theorem 2.1. Let k be a perfect field such that c.d.2(k) ≤ 2 and let A be a smooth
affine algebra of dimension d ≥ 3 over k. Then the homomorphism

WMSd+1(A) → MSd+1(A)

is an isomorphism.
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Proof. In view of Theorem 1.4, it suffices to show that the homomorphism

Hd(A,Gd+1) → Hd(A,Kd+1)

is an isomorphism. Using the exact sequence of sheaves

0 �� Id+2 �� Gd+1 �� KM
d+1

�� 0,

we see that it suffices to prove that Hd(A, Id+2) = 0. Observe that the group
Hd(A, Id+2) can be computed by using a flasque resolution of Id+2, the (filtered)
Gersten-Witt complex of A ([13, Theorem 3.11]):

Id+2(k(X)) �� . . . ��
⊕

xd−1∈X(d−1) I3(k(xd−1), ωxd−1
) ��

⊕
xd∈X(d) I2(k(xd), ωxd

),

where X = Spec(A).
If xi ∈ X(i), then k(xi) is of cohomological dimension c.d.2(k(xi)) ≤ d + 2 − i

by [31, §4.2, Proposition 11]. It follows that Hd+3−i
et (k(xi), μ2) = 0 and then

Id+3−i(k(xi))/I
d+4−i(k(xi)) = 0 by [25, Theorem 4.1] and [41, Theorem 7.4].

The Arason-Pfister Hauptsatz ([1]) then shows that Id+3−i(k(xi)) = 0. There-

fore Hi(A, Id+2) = Hi(A, I
d+2

) for any i ∈ N and Hi(A, I
j
) = 0 for any i ∈ N and

j ≥ d + 3. Now Hi(A, I
j
) � Hi(A,Hj(2)) (as seen in Section 1.4), and inspec-

tion of the Bloch-Ogus spectral sequence shows that Hd(A, I
d+2

) � H2d+2
et (A, μ2).

The latter is trivial since A is affine of dimension d over a field of cohomological
dimension at most 2 ([22, Chapter VI, Theorem 7.2] and [22, Chapter III, Theorem
2.20]). �

Following the arguments of [17, Proposition 6.1], we can also prove the following
theorem.

Theorem 2.2. Let A be a smooth algebra of dimension d ≥ 3 over a perfect field k
with c.d.(k) ≤ 1. Then MSd+1(A) is uniquely divisible prime to the characteristic
of k.

Proof. Let l be a prime number with l �= char(k). We consider the exact sequences
of sheaves (see [8, proof of Corollary 1.11] for instance) given by the multiplication
by l on sheaves

0 ��
lKd+1

�� Kd+1
�� lKd+1

�� 0

and

0 �� lKd+1
�� Kd+1

�� Kd+1/l �� 0.

The second sequence yields a long exact sequence in cohomology which ends with

Hd−1(A,Kd+1/l) �� Hd(A, lKd+1) �� Hd(A,Kd+1) �� Hd(A,Kd+1/l) �� 0.

Now the groups Hi(A,Kd+1/l) are isomorphic to Hi(A,Hd+1(l)) (see Section 1.4).
As in the above proof, k(xi) is of cohomological dimension c.d.2(k(xi)) ≤ d +
1 − i by [31, §4.2, Proposition 11] when xi ∈ X(i). Then inspecting the Bloch-
Ogus spectral sequence, we get an epimorphism H2d

et (A, μl) → Hd−1(A,Kd+1/l)

and an isomorphism Hd(A,Kd+1/l) � H2d+1
et (A, μl). Since A is affine, both étale

cohomology groups are trivial by [22, Chapter VI, Theorem 7.2] and [22, Chapter
III, Theorem 2.20]. It then follows that Hd(A, lKd+1) � Hd(A,Kd+1).
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We next use the first exact sequence of sheaves. This yields

Hd−1(A, lKd+1) �� Hd(A, lKd+1) �� Hd(A,Kd+1) �� Hd(A, lKd+1) �� 0.

Using our result in the previous paragraph, this sequence becomes

Hd−1(A, lKd+1) �� Hd(A, lKd+1) �� Hd(A,Kd+1)
·l �� Hd(A,Kd+1) �� 0.

It then suffices to prove that the left homomorphism is surjective to conclude.
The second exact sequence of sheaves yields a homomorphism Hd−2(A,Kd+1/l) →
Hd−1(A, lKd+1) and we consider the diagram

Hd−2(A,Kd+1/l)

��

f

���
������

Hd−1(A, lKd+1) �� Hd(A, lKd+1)

Suppose that k contains a primitive l-th root of unity ξ. For any field k ⊂ F and
any n ≥ 1, there is a homomorphism Kn−1(F )/l → lKn(F ) defined on symbols
by {a1, . . . , an−1} �→ {ξ, a1, . . . , an−1}. It is not hard to see that this induces a
morphism of sheaves Kd/l → lKd+1. It follows from [34, Theorem 1.8] that this
morphism of sheaves induces an isomorphism Hd(A,Kd/l) → Hd(A, lKd+1). If
we denote by Epq

2 the terms at page 2 in the Bloch-Ogus spectral sequence, the
homomorphism f then reads as

f : Ed−2,d+1
2 → Ed,d

2

and is precisely the differential at page 2 by [2, Proposition 7.5]. Now Ed,d
3 injects

in H2d
et (A, μl), and we have seen above that the right hand term is trivial. Therefore

f is surjective and
·l : Hd(A,Kd+1) → Hd(A,Kd+1)

is an isomorphism.
If k doesn’t contain a primitive l-th root of unity, it is enough to show that

f : Hd−2(A,Kd+1/l) → Hd(A, lKd+1) is still surjective to conclude. There exists
a finite separable extension k ⊂ L of degree prime to l such that L contains a
primitive l-th root of unity. If we denote by AL the algebra A⊗k L, we see that the
morphism g : Spec(AL) → Spec(A) is finite and étale. A simple computation shows
that the composition g∗g

∗ : Hd(A, lKd+1) → Hd(A, lKd+1) is the multiplication by
[L : k] and is therefore surjective. It follows that g∗ is surjective, and we can
conclude from the commutative diagram

Hd−2(AL,Kd+1/l)
f

��

g∗

��

Hd(AL, lKd+1)

g∗

��

Hd−2(A,Kd+1/l)
f

�� Hd(A, lKd+1)

that the lower f is surjective. �

When the base field is of cohomological dimension greater than 2, then Theorem
2.1 is no longer true. As a simple illustration of this fact, we consider varieties over
R. Recall that a smooth connected variety X of dimension d over R is rational if
X × Spec(C) is birational to Pd

C
. We begin with the computation of MSd+1.
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Theorem 2.3. Let A be a smooth rational R-algebra of dimension d ≥ 3. Then

MSd+1(A) � Hd(X(R),Z/2),

where X = Spec(A) and the right hand term denotes the singular cohomology of
the real manifold X(R).

Proof. First recall from [16, Proposition 5.4] that there is an exact sequence

Hd(X × Spec(C),Kd+1)
f∗ �� Hd(X,Kd+1) �� Hd(X,Kd+1/2Kd+1) �� 0

where f∗ is the push-forward associated to the (finite) morphism X×Spec(C) → X.
Since A is rational, Hd(X × Spec(C),Kd+1) = 0 by [16, Proposition 5.6]. Now
Hd(X,Kd+1/2Kd+1) � Hd(X,Hd+1(2)) by Section 1.4 and we get an isomorphism
Hd(X,Kd+1) � Hd(X,Hd+1(2)). Finally, Hd(X,Hd+1(2)) � Hd(X(R),Z/2) by
[28, (19.5.1)]. �

In [16, Theorem 5.7], the group WMSd+1(A) is computed when A has a trivial
canonical bundle. We have WMSd+1(A) � Hd(X(R),Z) for d ≥ 3. It follows that
the homomorphism WMSd+1(A) → MSd+1(A) is in general not injective.

2.2. Prestabilization. Let A be a smooth algebra of dimension d over a field k.
The natural homomorphism SLd+1(A) → SK1(A) is then surjective, and its kernel
is SLd+1(A)∩Ed+2(A) by [38]. A matrix in SLd+1(A)∩Ed+2(A) is called 1-stably
elementary of size d+ 1. Our goal in this section is to understand this kernel in a
cohomological way when the dimension d of A is odd.

Recall from [36, Theorem 5.3 (ii)] that the map r : SLd+1(A) → WMSd+1(A)
sending a matrix to its first row is a well defined homomorphism. Moreover, when
d is odd, we can interpret [36, Theorem 6.1(ii)] by saying that there is an exact
sequence

SLd+1(A) ∩ Ed+2(A)
r �� WMSd+1(A) �� MSd+1(A) �� 0.

It follows that the kernel K of the map WMSd+1(A) → MSd+1(A) computes ex-
actly the 1-stably elementary matrices of size d+1 whose first row is not completable
in an elementary matrix. When A is of odd dimension d over R and oriented (i.e.∧d ΩA/R � A), there are a lot of these matrices.

Theorem 2.4. Let A be a smooth affine algebra of odd dimension d ≥ 3 over R

and let X = Spec(A). Suppose that A is rational and oriented. Let C be the set of
compact components of X(R). Then K �

⊕
C∈C Z.

Proof. First observe that Hd(A, Ij) �
⊕

C∈C Z for any j ≥ d ([16, Proposition

5.1]). Moreover, the natural homomorphism Hd(A, Ij+1) → Hd(A, Ij) is multipli-
cation by 2 on any compact component of A(R) (and hence is injective). Now the
homomorphism Hd(A,Gj) → Hd(A, Ij) is an isomorphism for j ≥ d ([16, Theorem
5.7]). We can now conclude that the sequence

Hd(A, Id+2) �� Hd(A,Gd+1) �� Hd(A,Kd+1) �� 0

is also exact on the left. Hence K � Hd(A, Id+2) �
⊕

C∈C Z. �
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Example 2.5. If A = R[x1, . . . , xd+1]/(
∑

x2
i − 1) is an algebraic real sphere of

dimension d ≥ 3, then [16, proof of Corollary 5.12] shows that WMSd+1(A) is
generated by [x1, . . . , xd+1]. If d = 3, then (x1, . . . , x4) is the first row of the
symplectic matrix (see [15, Theorem 6.11])⎛

⎜⎜⎝
x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

⎞
⎟⎟⎠ .

The first row of the square of this matrix⎛
⎜⎜⎝
2x2

1 − 1 2x1x2 2x1x3 2x1x4

−2x1x2 2x2
1 − 1 −2x1x4 2x1x3

−2x1x3 2x1x4 2x2
1 − 1 −2x1x2

−2x1x4 −2x1x3 2x1x2 2x2
1 − 1

⎞
⎟⎟⎠

represents 2[x1, . . . , x4] in WMS4(A). Hence its first row is not the first row of an
elementary matrix. However,⎛

⎜⎜⎜⎜⎝

2x2
1 − 1 2x1x2 2x1x3 2x1x4 0

−2x1x2 1− 2x2
2 −2x2x3 −2x2x4 0

−2x1x3 −2x2x3 1− 2x2
3 −2x3x4 0

−2x1x4 −2x2x4 −2x3x4 1− 2x2
4 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

is elementary by [40, Lemma 2.2] (with μ =
(
x1 x2 x3 x4

)
and ν = −2

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠).

In contrast, we have:

Theorem 2.6. Let k be a perfect field such that c.d.2(k) ≤ 2 and let A be a
smooth affine algebra of dimension d ≥ 3 over k. Then the first row of any 1-stably
elementary matrix of size d+ 1 is completable in an elementary matrix.

Proof. If d is odd, then it is a straightforward consequence of Theorem 2.1. If d is
even, this is [39, §6, Theorem 10]. �

Remark 2.7. If c.d.2(k) ≤ 1 and (d+ 1)! ∈ k×, then a stronger result is proved in
[26].

2.3. About stably free modules. Recall from Section 1.1 that the pointed set
Umn(R)/SLn(R) computes the set of isomorphism classes of projective R-modules
P such that P ⊕R � Rn. A consequence of Theorem 1.4 is that we get a cohomo-
logical description of Umd+1(A)/SLd+1(A)∩Ed+2(A) when A is a smooth algebra
of odd dimension d ≥ 3.

Proposition 2.8. Let A be a smooth algebra of odd dimension d ≥ 3 over a perfect
field k with char(k) �= 2. Then Umd+1(A)/SLd+1(A) ∩Ed+2(A) � Hd(A,Kd+1).

Proof. This is an easy consequence of [36, Theorem 6.1(ii)]. �
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In view of Theorem 2.3, we get the following corollary.

Corollary 2.9. Let A be a smooth algebra of odd dimension d ≥ 3 over R. Suppose
moreover that A is rational and let X = Spec(A). Then

Umd+1(A)/SLd+1(A) ∩Ed+2(A) � Hd(X(R),Z/2).

Using the homomorphism r : SLd+1(A) → WMSd+1(A) sending a matrix to its
first row, we get a description of Umd+1(A)/SLd+1(A) over any perfect field.

Theorem 2.10. Let A be a smooth affine algebra of odd dimension d ≥ 3 over a
perfect field k. Then Umd+1(A)/SLd+1(A) � Hd(A,Kd+1)/SLd+1(A).

Remark 2.11. This result is wrong when the dimension d is even. For example,
when A is the real algebraic sphere of dimension 2, then Um3(A)/SL3(A) = Z by
[16, Corollary 5.12]. On the other hand, H2(X,K3) = Z/2.

Remark 2.12. Under the assumptions of the theorem, we have the stabilization
isomorphism SLd+1(A)/SLd+1(A) ∩ Ed+2(A) � SK1(A). The first row homomor-
phism then yields a homomorphism

r : SK1(A) → Hd(A,Kd+1)

whose cokernel is precisely Umd+1(A)/SLd+1(A).

3. The Bass-Kubota theorem for surfaces

3.1. Grothendieck-Witt groups. In this section, we briefly recall some basic
facts about Grothendieck-Witt groups. The reader is referred to [29, §8] for more
information. If X is a scheme over k and L is a line bundle over X, then there
are abelian groups GW j

i (X,L) for any i ∈ Z and j ∈ Z/4 generalizing the classical
Grothendieck-Witt group GW (X). If X = Spec(R), then GW 0

i (R) = KiO(R)
while GW 2

i (R) = KiSp(R). The other groups correspond with Karoubi’s U and V
groups ([30, §3.6]). To compare Quillen K-theory and higher Grothendieck-Witt
groups, there are two functors

f : GW j
i (X,L) → Ki(X)

and

H : Ki(X) → GW j
i (X,L)

respectively called a forgetful functor and a hyperbolic functor. In this setting,
Karoubi periodicity reads as a long exact sequence

. . . �� GW j
i (X,L)

f
�� Ki(X)

H �� GW j+1
i (X,L)

η
�� GW j

i−1(X,L)
f
�� Ki−1(X) �� . . . .

A basic tool to study Grothendieck-Witt groups is the Gersten-Grothendieck-Witt
spectral sequence ([12, Theorem 25] or [18, Theorem 1.7]). Namely, for any regular
scheme X and any n ∈ Z there exists a spectral sequence E(n)pq converging to
GWn

n−p−q(X) whose terms at page 1 are

E(n)pq1 :=
⊕

xp∈X(p)

GWn−p
n−p−q(k(xp), ωxp

).

By construction, the hyperbolic and forgetful functors induce a morphism of spec-
tral sequences H : Epq → E(n)pq and f : E(n)pq → Epq, where Epq is the Brown-
Gersten-Quillen spectral sequence in K-theory ([32, Theorem 5.20]).
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For our purpose we will need only the following two results, the first one being
an easy lemma.

Lemma 3.1. Let F be a field. For 0 ≤ n ≤ 2, the image of the homomorphism
η : GWn

n (F ) → GWn−1
n−1 (F ) is equal to In(F ) and the diagram

GWn
n (F )

η
��

f

��

In(F )

��

Kn(F )
sn

�� I
n
(F )

is a fibre product, where f : GWn
n (F ) → Kn(F ) is the forgetful homomorphism.

Proof. For n = 0, this is obvious. For GW 1
1 , see [3, Corollary 4.5.1.5] and see

[34, Corollary 6.4] for GW 2
2 . �

Proposition 3.2. Let S be a smooth affine surface over an algebraically closed
field. Then the forgetful homomorphism f : K1Sp(S) → K1(S) is split injective.

Proof. We may assume that S is connected. Recall first that K1Sp(S) = GW 2
1 (S).

We use the Gersten-Grothendieck-Witt spectral sequence E(2) to compute this
group. Since S is a surface, the information is concentrated on the lines q = −1, 0, 1.
The line q = 1 is trivial by [12, Lemma 2.2], while the line q = −1 is as follows:

GW 2
3 (k(x0)) ��

⊕
x1∈X(1)

GW 1
2 (k(x1)) ��

⊕
x2∈X(2)

GW 0
1 (k(x2)).

The forgetful functor f induces a commutative diagram

GW 2
3 (k(x0)) ��

f

��

⊕
x1∈X(1)

GW 1
2 (k(x1)) ��

f

��

⊕
x2∈X(2)

GW 0
1 (k(x2))

f

��

K3(k(x0)) ��
⊕

x1∈X(1)

K2(k(x1)) ��
⊕

x2∈X(2)

K1(k(x2))

By [12, Lemma 2.4], the forgetful functor f : GW i−1
i (F ) → Ki(F ) factors through

the 2-torsion and induces a surjective map f : GW i−1
i (F ) → {2}Ki(F ) for any

i = 1, 2 and any field F . Moreover, if F is algebraically closed, then the map
f : GW 0

1 (F ) → {2}K1(F ) is an isomorphism. It follows that the cokernel of

⊕
x1∈X(1)

GW 1
2 (k(x1)) ��

⊕
x2∈X(2)

GW 0
1 (k(x2))

is isomorphic to CH2(S)/2, which is trivial by [11, Lemma 1.2]. This proves that

the spectral sequence induces an isomorphism K1Sp(S) � E(2)1,02 . Explicitly,
K1Sp(S) is isomorphic to the homology of the complex

GW 2
2 (k(x0)) ��

⊕
x1∈X(1)

GW 1
1 (k(x1)) ��

⊕
x2∈X(2)

GW (k(x2)).
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Arguing as in the proof of Theorem 2.1, we see that Id+1−j(k(xj)) = 0 for any

x ∈ X(j). Lemma 3.1 then shows that the forgetful functor induces an isomorphism
of complexes

GW 2
2 (k(x0)) ��

f

��

⊕
x1∈X(1)

GW 1
1 (k(x1)) ��

f

��

⊕
x2∈X(2)

GW 0
0 (k(x2))

f

��

K2(k(x0)) ��
⊕

x1∈X(1)

K1(k(x1)) ��
⊕

x2∈X(2)

K0(k(x2))

Therefore the forgetful functor f : K1Sp(S) → K1(S) induces an isomorphism
K1Sp(S) � H1(S,K2). Now using the Brown-Gersten-Quillen spectral sequence
Ep,q converging to the K-theory of S, we see that E1,−2

∞ = H1(S,K2) and that
f in fact induces an isomorphism K1Sp(S) → E1,−2

∞ . It follows that f is split
injective. �

We now have all the tools in hand to discuss the analogue of the Bass-Kubota
theorem for surfaces over an algebraically closed field. This is the object of the
following subsection.

3.2. Mennicke symbols of length 2. Let R be a ring. It is well known that
in general E2(R) is not a normal subgroup of SL2(R) (see [10] for instance). Our
purpose being the description of the group SK1(R) in special cases, we will have to
consider slightly modified Mennicke symbols that we call stable Mennicke symbols of
rank 2. The definition below is different from the original definition of [5, Definition
2.5] (compare also with [40, (4.3), (4.4)]).

A stable Mennicke symbol of length 2 is a map ms : Um2(R) → G, where G is
a group, such that:

ms1. ms(1, 0) = 1 and ms(v) = ms(wM) if M ∈ SL2(R) ∩E(R).
ms2. ms(a, c) ·ms(b, c) = ms(ab, c) for any unimodular rows (a, c) and (b, c).

We write MS2(R) for the universal stable Mennicke symbol. It follows from [40, §4]
that the map

Φ : Um2(R) → SK1(R)

defined by Φ(a, b) =

(
a b
f e

)
, where e, f are any elements in R such that ae−bf = 1,

is a stable Mennicke symbol of length 2.
A symplectic stable Mennicke symbol is a map msp : Um2(R) → G, where G is

a group, such that:

msp 1. msp(1, 0) = 1 and msp(v) = msp(wM) if M ∈ SL2(R) ∩ ESp(R).
msp 2. msp(a, b) ·msp(a, c2) = msp(a, bc2) for any (a, b), (a, c2) ∈ Um2(R).

We denote by MSp2(R) the universal symplectic stable Mennicke symbol. By
[40, §4] again, the map Φ above factorizes through K1Sp(R), yielding a map

Ψ : Um2(R) → K1Sp(R)

which is a symplectic stable Mennicke symbol. If R is of dimension 2, then
Um4(R) = e1E4(R) = e1ESp4(R) by [40, §4]. It follows that Ψ induces a sur-
jective homomorphism MSp2(R) → K1Sp(R).
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Lemma 3.3. Let S be a smooth affine surface over an algebraically closed field of
characteristic different from 2, 3. Then

SL2(S) ∩E(S) = SL2(S) ∩E3(S) = SL2(S) ∩ESp4(S) = SL2(S) ∩ ESp(S).

Proof. The diagram

0 �� SL2(S) ∩ ESp(S) ��

��
�
�
�

SL2(S) �� K1Sp(S)

f

��

0 �� SL2(S) ∩E(S) �� SL2(S) �� K1(S)

and Proposition 3.2 show that SL2(S) ∩ ESp(S) = SL2(S) ∩ E(S). Now

SL2(S) ∩ ESp(S) = SL2(S) ∩ ESp4(S)

by [6, Theorem 2] and SL2(S) ∩ E(S) = SL2(S) ∩ E3(S) by [26, §3]. �

It follows from this lemma that MS2(S) is a symplectic stable Mennicke symbol.
Therefore:

Corollary 3.4. Let S be a smooth affine surface over an algebraically closed field
of characteristic different from 2, 3. Then there is a unique homomorphism

α : MSp2(S) → MS2(S)

such that the diagram

Um2(S)
msp

��

ms
����

���
���

��
MSp2(S)

α

��

MS2(S)

commutes.

In order to prove the analogue of Bass-Kubota theorem for surfaces over the
algebraic closure of a finite field, we will need a few preparatory results:

Lemma 3.5 (Mennicke-Newman lemma). Let S be an affine surface over the al-
gebraic closure k of a finite field. Given unimodular rows (a, b) and (c, d), there
exist elementary matrices M1,M2 ∈ E2(S) such that if (a′, b′) := (a, b)M1 and
(c′, d′) := (c, d)M2, we have (a′, c′) unimodular.

Proof. Consider the unimodular row (a, c, bd) ∈ Um3(S). By Vaserstein’s theorem
[40, Corollary 17.3], there exists e ∈ S such that (a+ ebd, c + ebd) ∈ Um2(S). We

set M1 =

(
1 0
ed 1

)
and M2 =

(
1 0
eb 1

)
. �

Lemma 3.6. Let R be a ring and (a, b), (c, d) ∈ Um2(R) such that (a, c) ∈ Um2(R).
Then

ms(a, b) ·ms(c, d) = ms((a, b) ·
(
c d
e f

)
)

in MS2(R) for any e, f ∈ R such that cf − de = 1.
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Proof. First observe that there exists e, f ∈ R such that cf − de = 1 and (a, f)
is unimodular. Indeed, since (c, ad) ∈ Um2(R) there exists λ, μ ∈ R such that
λc+ μad = 1. It suffices to choose f = λ and e = −μa.

Given such e, f ∈ R, let α := ms(ac + be, ad + bf) ·ms(−f, d) ·ms(f, a). Since(
−1 0
0 −1

)
∈ E2(R), we have

α = ms(ac+ be, ad+ bf) ·ms(−f, d) ·ms(−f,−a)

= ms(ac+ be, ad+ bf) ·ms(−f,−ad)

= ms(ac+ be, ad+ bf) ·ms(f, ad)

= ms(ac+ be, ad+ bf) ·ms(f, ad+ bf)

= ms(f(ac+ be), ad+ bf)

= ms(f(ac+ be)− e(ad+ bf), ad+ bf)

= ms(a, ad+ bf)

= ms(a, bf).

As

(
0 −1
1 0

)
∈ E2(R), we get

ms(a, b) ·ms(c, d) ·ms(−f, d) ·ms(f, a) = ms(a, b) ·ms(f, a)

= ms(a, b) ·ms(a,−f)

= ms(a,−bf).

It suffices therefore to prove that ms(a, bf) = ms(a,−bf) to conclude. Using again

that

(
−1 0
0 −1

)
is in E2(R), we obtain

ms(a, bf) = ms(a, b) ·ms(a, f) = ms(−a,−b) ·ms(−a,−f)

= ms(−a, bf) = ms(a,−bf).

�

Corollary 3.7. Let S be a smooth affine surface over the algebraic closure of
a finite field of characteristic different from 2 and 3. Then the stable Mennicke
symbol Φ : Um2(S) → SK1(S) is universal and the map ms : Um2(S) → MS2(S)
induces a bijection

Um2(S)/SL2(S) ∩E3(S) � MS2(S).

Proof. It follows from Lemmas 3.5 and 3.6 that the map ms : Um2(S) → MS2(S)
is surjective. By Lemma 3.3, we obtain a surjective map

ms : Um2(S)/SL2(S) ∩ E3(S) → MS2(S).

Now Φ : Um2(S) → SK1(S) induces an injective map

Φ : Um2(S)/SL2(S) ∩E3(S) → SK1(S)

which is also surjective by [40, Corollary 7.3]. Finally, Φ is a stable Mennicke
symbol, and therefore there exists a homomorphism f : MS2(S) → SK1(S) such
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that the diagram

Um2(S)/SL2(S) ∩ E3(S)
ms ��

Φ
����

����
����

����
MS2(S)

f

��

SK1(S)

commutes. It follows that ms is also injective and that f is an isomorphism. �
Remark 3.8. In a previous version of this paper, we asserted that the map

Um2(S)/SL2(S) ∩ E3(S) → MS2(S)

was a bijection for any algebraically closed field of characteristic different from 2 and
3. However, as pointed out by the referee, the Mennicke-Newman lemma doesn’t
hold in this generality and it is not clear that the map is surjective.

To conclude, we bring the universal symplectic stable Mennicke symbol in the
picture.

Theorem 3.9. Let S be a smooth affine surface over the algebraic closure of a
finite field of characteristic different from 2 and 3. Then the maps in the diagram

Um2(S)/SL2(S) ∩ E3(S)
msp

��

ms
�����

����
����

���
MSp2(S)

α

��

MS2(S)

are bijections.

Proof. In view of Corollary 3.7, it suffices to show that msp is surjective. Consider
the map

θ : Um2(S) → MSp2(S)

defined by θ(a, b) = msp(a2, b). It is not hard to check that θ satisfies rules ms1.
and ms2. and therefore it induces a homomorphism f : MS2(S) → MSp2(S)
such that f(ms(a, b)) = msp(a, b2). Using Corollary 3.7, we see that it suffices
to prove that f is surjective to deduce the surjectivity of msp. To do this, it
suffices to show that given (a, b) ∈ Um2(S) there exists (c, d) ∈ Um2(S) such that
msp(a, b) = msp(c, d2).

Now Um2(S)/SL2(S) ∩ ESp4(S) � MS2(S) = SK1(S) and it suffices to prove
that SK1(S) is 2-divisible to conclude. We use the Brown-Gersten-Quillen spectral

sequence Ep,q to compute SK1(S). By definition, E2,−3
2 = H2(S,K3). Lemma

1.3 yields a homomorphism MS3(S) → H2(S,K3) which is surjective by [16, proof
of Proposition 4.3]. Since Um3(S)/E3(S) = 0 by [40, Corollary 17.3], we get
SK1(S) = E1,−2

∞ = H1(S,K2). The proof of Theorem 2.2 applies to prove that this
group is divisible (not uniquely though). �
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