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p HARMONIC MEASURE

IN SIMPLY CONNECTED DOMAINS REVISITED

JOHN L. LEWIS

Abstract. Let Ω be a bounded simply connected domain in the complex
plane, C. Let N be a neighborhood of ∂Ω, let p be fixed, 1 < p < ∞, and let û
be a positive weak solution to the p Laplace equation in Ω ∩N. Assume that
û has zero boundary values on ∂Ω in the Sobolev sense and extend û to N \Ω
by putting û ≡ 0 on N \ Ω. Then there exists a positive finite Borel measure
μ̂ on C with support contained in ∂Ω and such that∫

|∇û|p−2 〈∇û,∇φ〉 dA = −
∫

φdμ̂

whenever φ ∈ C∞
0 (N). In this paper we continue our studies by establishing

endpoint type results for the Hausdorff dimension of this measure in simply
connected domains. Our results are similar to the well known result of Makarov
concerning harmonic measure in simply connected domains.

1. Introduction

Let C denote the complex plane and let dA be Lebesgue measure on C. If O ⊂ C

is open and 1 ≤ q ≤ ∞, let W 1,q(O) be the Banach space of equivalence classes of
functions û with distributional gradient ∇û = (ûx, ûy), and norm

‖û‖1,q = ‖û‖q + ‖∇û‖q < ∞,

where ‖·‖q denotes the usual Lebesgue q norm in O. Denote infinitely differentiable

functions with compact support in O by C∞
0 (O) and let W 1,q

0 (O) be the closure
of C∞

0 (O) in the norm of W 1,q(O). Throughout this paper Ω ⊂ C is a bounded
simply connected domain. Let N be a neighborhood of ∂Ω, p fixed, 1 < p < ∞,
and suppose that û is a positive weak solution to the p Laplace equation in Ω∩N .
That is, û ∈ W 1,p(Ω ∩N) and

(1.1)

∫
|∇û|p−2 〈∇û,∇θ〉 dA = 0

whenever θ ∈ W 1,p
0 (Ω ∩ N). Equivalently we say that û is p harmonic in Ω ∩ N .

Observe that if û is smooth and ∇û �= 0 in Ω ∩ N, then ∇ · (|∇û|p−2 ∇û) ≡ 0,
in the classical sense, where ∇· denotes divergence. We assume that û has zero
boundary values on ∂Ω in the Sobolev sense. More specifically, if ζ ∈ C∞

0 (N),

then û ζ ∈ W 1,p
0 (Ω ∩ N). Extend û to N \ Ω by putting û ≡ 0 on N \ Ω. Then
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û ∈ W 1,p(N) and it follows from (1.1), as in [HKM93], that there exists a positive
finite Borel measure μ̂ on C with support contained in ∂Ω and the property that

(1.2)

∫
|∇û|p−2 〈∇û,∇φ〉 dA = −

∫
φ dμ̂

whenever φ ∈ C∞
0 (N).We note that if ∂Ω is smooth enough, then dμ̂ = |∇û|p−1 ds.

Also if p = 2 and if û is the Green function for Ω with pole at x ∈ Ω, then μ̂
coincides with harmonic measure at x. In this paper for fixed p, 1 < p < ∞, p �= 2,
we continue our study of the Hausdorff dimension of μ̂ (denoted H-dim μ̂) defined
by
(1.3)
H-dim μ̂=inf{α : there exists E Borel⊂∂Ω with Hα(E) = 0 and μ̂(E) = μ̂(∂Ω)},

where Hα(E), for α ∈ R+, is the α-dimensional Hausdorff measure of E defined
below. In order to state our results we shall need some more notation: Denote
points in the complex plan by z = x1+ ix2 and put B(z, r) = {w ∈ C : |w−z| < r}
whenever z ∈ C and r > 0. Let d(E,F ) denote the distance between the sets
E,F ⊂ C. If λ > 0 is a positive function on (0, r0) with limr→0 λ(r) = 0, define
Hλ Hausdorff measure on C as follows: For fixed 0 < δ < r0 and E ⊆ R2, let
L(δ) = {B(zi, ri)} be such that E ⊆

⋃
B(zi, ri) and 0 < ri < δ, i = 1, 2, . . . . Set

φλ
δ (E) = inf

L(δ)

∑
λ(ri).

Then

Hλ(E) = lim
δ→0

φλ
δ (E).

In case λ(r) = rα we write Hα for Hλ.
In [LNP11] we proved the following theorem which generalized earlier results in

[BL05], [L06].

Theorem A. Given p, 1 < p < ∞, p �= 2, let û, μ̂ be as in (1.1), (1.2), and suppose
Ω is simply connected. Put

λ̃(r) = r exp[A
√
log 1/r log log 1/r], 0 < r < 10−6.

Then the following are true:

(α) If p > 2, there exists A = A(p) ≤ −1 such that μ̂ is concentrated

on a set of σ finite H λ̃ measure.
(β) If 1 < p < 2, there exists A = A(p) ≥ 1, such that μ̂ is absolutely

continuous with respect to Hλ.

We note that Theorem A easily implies

(1.4) H-dim μ̂ ≤ 1 for p > 2, while H-dim μ̂ ≥ 1 when 1 < p < 2.

In this paper we improve the results in [LNP11] by proving:

Theorem 1. Given p, 1 < p < ∞, p �= 2, let û, μ̂ be as in (1.1), (1.2), and suppose
Ω is simply connected. Put

λ(r) = λ(r, A) = r exp[A
√
log 1/r log log log 1/r], 0 < r < 10−6.
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Then the following are true:

(a) If p > 2, then μ̂ is concentrated on a set of σ finite H1 measure.
(b) If 1 < p < 2, then μ̂ is absolutely continuous with respect to Hλ

provided A = A(p) ≥ 1 is large enough. Moreover A(p) is
bounded on (3/2, 2).

Remark. Makarov in [M85] (see also [M90], [P92], and [GM05]) essentially proved
Theorem 1 for harmonic measure with respect to a point in Ω (the p = 2 case).

Moreover, in this case it suffices in (b) to take A = 6
√
(
√
24− 3)/5; see [HK07].

We note that Makarov also showed that (b) is sharp for harmonic measure in the
sense that there exist simply connected domains Ω for which harmonic measure is
mutually singular with respect to Hλ provided A in the definition of λ is small
enough. We do not know if an analogous sharpness result holds when 1 < p < 2. In
fact the natural examples for p = 2, e.g., snowflakes, do not provide sharpness when
1 < p < 2. Indeed in [BL05], Theorem 1, we showed that for certain snowflakes, Ω,
fixed p, 1 < p < 2, and a corresponding û, μ̂, there exists κ = κ(Ω) > 1, with

(1.5) lim
r→0

log μ̂[B(z, r)]

log r
= κ for μ̂ almost every z ∈ ∂Ω.

From (1.5) and measure theoretic arguments we see that μ̂ is absolutely continuous
with respect to H1+ε measure provided ε < κ − 1. In particular (b) of Theorem 1
holds in this example whenever A > 0. Is it possible that μ̂ is absolutely continuous
with respect to H1 measure when 1 < p < 2?

To outline our proof of Theorem 1, we note that using translation and dilation
invariance of the p Laplace equation and arguing as in the display below (3.1) of
[LNP11] one can show that it suffices to prove Theorem 1 when

(1.6) 0 ∈ Ω and d(0, ∂Ω) = 4.

Thus throughout the proof of Theorem 1 we assume (1.6). Also from Lemma 2.4
in section 2 we deduce that it suffices to prove Theorem 1 for fixed p, 1 < p < ∞,
when u is the p capacitary function for D = Ω \ B̄(0, 1) and μ is the corresponding
capacitary measure. That is, u is p harmonic inD with continuous boundary values:
u ≡ 1 on ∂B(0, 1), while u ≡ 0 on ∂Ω. For this u we proved in [LNP11], Theorem
1.5, the fundamental inequality:

(1.7) c−1 u(z)

d(z, ∂Ω)
≤ |∇u(z)| ≤ c

u(z)

d(z, ∂Ω)

whenever z ∈ D, where c depends only on p. (1.7) was the main ingredient which
allowed us to generalize our results in [BL05] for quasi-circles to simply connected
domains. From (1.7) it follows (see Lemma 2.6 in section 2) that u is infinitely
differentiable in D ∩ Ω. Using this fact and integrating (1.1) by parts we see that
∇ ·

(
|∇u|p−2∇u

)
= 0 in D. Hence u is a strong solution to the p Laplace partial

differential equation in D. Differentiating this equation we obtain another key in-
gredient which is used in all our recent papers on the p Laplacian: If ζ = u or
ζ = uxi

, i = 1, 2, then ζ is a solution to

(1.8) Lζ(z) =
2∑

i,j=1

∂

∂xi
[ bij(z)ζxj

(z) ] = 0,
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at z ∈ D, where

(1.9) bij(z) = |∇u|p−4[(p− 2)uxi
uxj

+ δij |∇u|2](z), 1 ≤ i, j ≤ 2,

and δij is the Kronecker δ. Also at z ∈ D,

(1.10) min{p−1, 1}|ξ|2 |∇u(z)|p−2 ≤
n∑

i,j=1

bij ξiξj ≤ max{1, p−1}|∇u(z)|p−2 |ξ|2

whenever ξ ∈ Rn \{0}. Furthermore, if v = log |∇u|, then in [BL05] we showed that

(1.11) Lv = (p− 2)F in D,

where F ≡ 0 if p = 2, and if p �= 2, then for some c = c(p) ≥ 1, bounded for
p ∈ (3/2, 5/2), we have at z ∈ D,

(1.12) c−1F (z) ≤ |∇u|p−4
2∑

i,j=1

u2
xixj

≤ cF (z).

Next we mention that in [L06] we proved Theorem 1 when ∂Ω is a k quasi-circle
and k is small enough. In this case our strategy was to first show for k small that
|∇u|p−2 extends to an A2 weight in C. We could then use (1.8)-(1.10) and apply
results for a degenerate divergence form elliptic PDE whose degeneracy is given in
terms of an A2 weight from [FKS82], [FJK82], [FJK83]. Using results from these
papers involving Green’s functions, boundary Harnack inequalities, and Poisson
integral representation formulas we were able to make estimates on v similar to
those in [M85] (see also [P92], chapter 8, or [GM05], chapter 8, for these estimates),
only in D rather than the unit disk.

The emphasis in this paper is necessarily entirely different since Ω is an arbitrary
bounded simply connected domain and reflects a growing philosophy of the author
that to make estimates one should essentially only use integration by parts and the
fact that u is a solution to (1.8)-(1.10) while v is a subsolution (supersolution) to
these equations when p > 2 (1 < p < 2). In this respect our philosophy seems to us
more akin to the arguments in [M90] and in [JW88], [W93] for arbitrary domains
⊂ R

2. However the arguments in this paper also make heavy use of the fundamental
inequality in (1.7). The ultimate goal though is to do away with our reliance on
(1.7) in order to prove the following conjecture.

Conjecture. The conclusion of Theorem 1 (a) remains valid with H1 replaced by
Hn−1 when Ω is an arbitrary bounded domain ⊂ R

n and p ≥ n.

This conjecture is proved in [LNV] for domains Ω ⊂ Rn whose boundaries are
sufficiently flat in the Reifenberg sense. Once again however (1.7) plays a funda-
mental role in the arguments.

As for the plan of this paper, in Lemmas 2.1-2.4 of section 2 we list some ba-
sic properties of p harmonic functions as well as results from [BL05], [L06] for p
harmonic functions which vanish on a portion of ∂Ω. In Lemmas 2.5, 2.7 we state
some of the key results in [LNP11]. In Lemma 2.8 we give a slight generalization of
the results in Lemma 2.7. In section 3 we prove Theorem 1 (a), while in sections 4
and 5 we prove Theorem 1 (b). Finally in the appendix (section 6) we outline the
proofs of Lemma 2.2 when p > 2 and Lemma 2.8.
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2. Results for p harmonic functions

In the sequel c will denote a positive constant ≥ 1 (not necessarily the same
at each occurrence), which may depend only on p, unless otherwise stated. In
general, c(a1, . . . , an) denotes a positive constant ≥ 1, which may depend only on
p, a1, . . . , an, but not necessarily the same at each occurrence. A ≈ B means that
A/B is bounded above and below by positive constants depending only on p. In
this section, we will always assume that Ω is a bounded simply connected domain,
0 < r < diam ∂Ω and w ∈ ∂Ω. We begin by stating some interior and boundary
estimates for ũ, a positive weak solution to the p Laplacian in B(w, 4r) ∩ Ω with
ũ ≡ 0 in the Sobolev sense on ∂Ω ∩ B(w, 4r). That is, ũ ∈ W 1,p(B(w, 4r) ∩ Ω)

and (1.1) holds whenever θ ∈ W 1,p
0 (B(w, 4r) ∩ Ω). Also ζũ ∈ W 1,p

0 (B(w, 4r) ∩ Ω)
whenever ζ ∈ C∞

0 (B(w, 4r)). Extend ũ to B(w, 4r) by putting ũ ≡ 0 on B(w, 4r)\Ω.
Then there exists a locally finite positive Borel measure μ̃ with support ⊂ B(w, 4r)∩
∂Ω and for which (1.2) holds with û replaced by ũ and φ ∈ C∞

0 (B(w, 4r)). Let
maxB(z,s) ũ, minB(z,s) ũ be the essential supremum and infimum of ũ on B(z, s)
whenever B(z, s) ⊂ B(w, 4r). For references to proofs of Lemmas 2.1-2.3 see [BL05].
We have not been able to find a reference for Lemma 2.2 when p > 2. Thus we
will outline the proof of Lemma 2.2 when p > 2 in the appendix to this paper (see
section 6).

Lemma 2.1. Fix p, 1 < p < ∞, and let Ω, w, r, ũ, be as above. Then

c−1rp−2

∫
B(w,r/2)

|∇ũ|p dA ≤ max
B(w,r)

ũp ≤ c r−2

∫
B(w,2r)

ũp dA.

If B(z, 2s) ⊂ Ω, then
max
B(z,s)

ũ ≤ c min
B(z,s)

ũ.

Lemma 2.2. Let p,Ω, w, r, ũ, be as in Lemma 2.1. Then there exists α = α(p) ∈
(0, 1) with α > p−2

p−1 when p > 2 such that ũ has a Hölder α continuous representative

in B(w, r) (also denoted ũ). Moreover, if z1, z2 ∈ B(w, r), then

|ũ(z1)− ũ(z2)| ≤ c (|z1 − z2|/r)α max
B(w,2r)

ũ.

Lemma 2.3. Let p,Ω, w, r, ũ, be as in Lemma 2.1 and let μ̃ be the measure asso-
ciated with ũ as in (1.2). Then there exists c such that

c−1 rp−2 μ̃[B(w, r/2)] ≤ max
B(w,r)

ũp−1 ≤ c rp−2 μ̃[B(w, 2r)].

The next three lemmas are more formal statements of the discussion after (1.6).
For a proof of the following lemma, see Lemma 2.4 in [LNP11].

Lemma 2.4. Fix p, 1 < p < ∞, and let û,Ω be the positive p harmonic function
and bounded simply connected domain in Theorem 1. Assume (1.6) holds and that
u is the p capacitary function for D = Ω \ B̄(0, 1) defined below (1.6). Let μ, μ̂, be
the measures corresponding to u, û, respectively. Then μ, μ̂ are mutually absolutely
continuous. In particular, Theorem 1 is valid for μ̂ if and only if it is valid for μ.

The next lemma is Theorem 1.5 in [LNP11].

Lemma 2.5. Let p, u,Ω, D be as in Lemma 2.4. There exists c1 = c1(p) such that

c−1
1

u(z)

d(z, ∂Ω)
≤ |∇u(z)| ≤ c1

u(z)

d(z, ∂Ω)
whenever z ∈ D.
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Using Lemma 2.5 and Schauder type estimates one can prove the following lemma
(compare with Lemma 4.2 in [LNP11]).

Lemma 2.6. Let p, u,Ω, D be as in Lemma 2.4. Then u is real-analytic in D,
and u has a C∞ extension to Ω \ B̄(0, 3/4) (also denoted u). Moreover, Lemma
2.5 remains valid whenever z ∈ Ω \ B̄(0, 3/4), and if ∂ku denotes an arbitrary k
derivative of u, then for z ∈ Ω \ B̄(0, 3/4),

|∂ku(z)| ≤
c̃k u(z)

d(z, ∂Ω)k
, where c̃k depends only on k and p.

From Lemma 2.6 and the maximum principle for p harmonic functions we observe
that if Ω(t) = {z : u(z) > t}, t ∈ (0, 1), then B̄(0, 1) ⊂ Ω(t) and ∂Ω(t) is a real
analytic Jordan curve whenever t ∈ (0, 1). For the next lemma see section 4.1 in
[LNP11].

Lemma 2.7. Let p, u,Ω, D be as in Lemma 2.4. Given z1 ∈ Ω \ B(0, 2) suppose
u(z1) > t and ∂Ω(t) ∩ B̄(0, 2) = ∅ for some t ∈ (0, 1/2). There exists constants
ci = ci(p), 2 ≤ i ≤ 4, depending only on p and closed Jordan arcs γ, τ with the
following properties:

(α) γ joins z2 ∈ ∂Ω(t) to z3 ∈ ∂Ω(t)(z2 �= z3), γ \ {z2, z3} ⊂ Ω \ B̄(0, 3/2),
and z1 ∈ γ.

(β) H1(γ) ≤ c2d(z1, ∂Ω(t)) and u ≤ c2(u(z1)− t) on γ.

Let Ω1 be the Jordan domain ⊂ Ω(t) whose boundary consists of γ and the arc of
∂Ω(t) connecting z2 to z3 for which Ω1 ∩ B̄(0, 3/2) = ∅.
(γ) There is a z4 ∈ ∂Ω1 ∩ ∂Ω(t) with c3d(z4, γ) ≥ d(z1, ∂Ω(t)).
(δ) τ : [0.1]→Ω1 ∪ {z1, z4} joins z1 to z4 and satisfies the cigar condition,

min{H1(τ [0, s]), H1(τ [s, 1])}≤c4 min{d(z1, ∂Ω(t)), d(τ (s), ∂Ω(t))}, s∈ [0, 1].

We shall need the following extension of Lemma 2.7.

Lemma 2.8. Using the same notation as in Lemma 2.7, there also exists a Jordan
curve β : [0, 1]→Ω1 ∪ {z5, z6}, joining z5 to z6, where z5 lies on the open arc of
∂Ω1 with endpoints z2, z4 while z6 lies on the open arc of ∂Ω1 with endpoints z4, z3.
Moreover, there exist constants ci = ci(p), 5 ≤ i ≤ 7, with

(α′) d(z1, ∂Ω(t)) ≤ c5 min{d(γ, β), d(z4, β)} ≤ c5 max{d(γ, β), d(z4, β)}
≤ c25 d(z1, ∂Ω(t)),

(β′) min{H1(β[0, s]), H1(β[s, 1])} ≤ c6 min{d(z1, ∂Ω(t)), d(β(s), ∂Ω(t))},
s ∈ [0, 1],

(γ′) If s0 ∈ (0, 1) satisfies H1(β[0, s0]) = H1(β[s0, 1]), then
(u(β(t′))− t) ≤ c7(u(β(s))− t)for 0 ≤ t′ ≤ s ≤ s0, and
(u(β(t′))− t) ≤ c7(u(β(s))− t) for s0 ≤ s ≤ t′ ≤ 1.

Lemma 2.8 is a straightforward extension of Lemma 2.7. However, since Lemma
2.8 will play a fundamental role in our proof of Theorem 1 and for the reader’s
convenience we shall outline the proof of this lemma in the appendix (section 6).

3. Proof of Theorem 1(a)

To begin the proof of Theorem 1(a) we discuss the orthogonal trajectories to
the levels of u. Existence and properties of these trajectories can be deduced from
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standard ordinary differential equation theory. Another way is to construct a local
‘conjugate’, h to u defined by

(3.1) hx2
= |∇u|p−2 ux1

, hx1
= −|∇u|p−2 ux2

.

From Lemmas 2.5, 2.6 we see that u is a strong solution to the p Laplacian in D, so
the above differential equation is exact. Thus h exists locally and is unique up to
a constant. Also, it is easily checked that h is a solution to the p′ Laplacian, where
p′ = p/(p− 1). Using this fact, one gets (as in Lemma 2.6) that h is real analytic,
locally in D. Note that the levels of h are orthogonal to the levels of u and that the
mapping z = x1 + ix2→(u+ ih)(z) has Jacobian equal to |∇u|p(z).

Given t ∈ (0, 1], let μt denote the measure corresponding to u − t as in Lemma
2.3. From smoothness of u, ∂Ω(t), t ∈ (0, 1], we deduce that

(3.2) dμt = |∇u|p−1dH1|∂Ω(t) .

Moreover, from the divergence theorem and the fact that u is a solution to the p
Laplace equation in D we get

(3.3) μt(∂Ω(t)) =

∫
∂Ω(t)

|∇u|p−1dH1 = ξ �= 0,

where ξ is independent of t ∈ (0, 1]. Fix z1 ∈ D and let

F (z) = exp[(2π/ξ)(u(z) + ih(z))],

for z in a neighborhood of z1. If h(z1) = 0, then from our previous observation we see
that F can be continued uniquely throughout D to get a sense preserving function
mapping D→ {w : 1 < |w| < e2π/ξ}. Moreover, since h increases on ∂Ω(t), if this
curve is traversed clockwise as viewed from the origin, it follows that F is 1 - 1 and
onto the above annulus. Next choose t0 ∈ (0, 1/2] so small that ∂Ω(t0)∩B̄(0, 2) = ∅.
Given ẑ ∈ ∂Ω(t0), draw the ray from the origin through F (ẑ). Let l(F (ẑ), ·) be the
intersection of this ray with the above annulus. Set σ(ẑ, ·) = F−1(l(ẑ, ·)). Observe
that h is constant on σ(ẑ, ·) and ∇u is tangent to σ(ẑ, ·). Thus σ(ẑ, ·) is orthogonal
to ∂Ω(t) whenever t ∈ (0, 1). Since u is strictly decreasing along σ(ẑ, ·), we deduce
that σ(ẑ, ·) is a Jordan arc and can be parametrized by

(3.4) u(σ(ẑ, s)) = 1− s, for 0 < s < 1, ẑ ∈ ∂Ω(t0).

Also from Lemma 2.6 we see that σ(ẑ, 0) = limt→0 σ(ẑ, t) ∈ ∂B(0, 1), so (3.4) is
also valid when s = 0. From our construction and the implicit function theorem
we see that σ is infinitely differentiable in ẑ, s. Also, it is easily seen that for each
z ∈ D, there is a unique ẑ ∈ ∂Ω(t0) with z on σ(ẑ, ·). Next applying the coarea
theorem (see [EG92]) to a branch of h in Ω or using F−1 we find that

(3.5)

∫
∂Ω(t0)

H1(σ(ẑ, ·)) dμt0(ẑ) =

∫
Ω

|∇u|p−1dA ≤ C < ∞,

where C = C(p,Ω). Here the next-to-last inequality follows from Lemmas 2.1, 2.5.
From (3.5) and weak type estimates we deduce for given λ > 0 that if Θ(λ) =

{ẑ ∈ ∂Ω(to) : H
1(σ(ẑ, ·)) > λ}, then

(3.6) μt0(Θ(λ))→0 as λ→∞.

If Θ =
⋂

λ>0Θ(λ), then from (3.6) and basic measure theory we deduce that

(3.7) μt0(Θ) = 0.



1550 JOHN L. LEWIS

Also from the maximum principle for p harmonic functions and the definition of Θ
we see that

(3.8) lim
t→1

σ(ẑ, t) = ζ ∈ ∂Ω whenever ẑ ∈ ∂Ω(t0) \Θ.

If ẑ ∈ ∂Ω(t0) \ Θ we extend σ(ẑ, ·) continuously to [0,1] by defining σ(ẑ, 1) = ζ,
where ζ is as in (3.8).

For later use we also make the following observations. First note from Lemmas
2.1, 2.2, and the maximum principle for p harmonic functions that

(3.9) ĥ(∂Ω(t), ∂Ω)→0 as t→0,

where ĥ(E,F ) denotes the Hausdorff distance between the sets E,F defined by

ĥ(E,F ) = max(sup{d(y, E) : y ∈ F}, sup{d(y, F ) : y ∈ E}).

Second, using (3.9), the definitions of μ, μt, and once again Lemmas 2.1, 2.2, we
note that

(3.10) μt converges weakly to μ as t→0.

Third, if E is a Borel subset of ∂Ω(t0) and T (E, s)=
⋃
{z : z = σ(ẑ, 1− s), ẑ∈E},

then

(3.11) μt0(E) = μs(T (E, s)) for s ∈ (0, 1].

(3.11) follows easily from the divergence theorem and p harmonicity of u when E is
a union of open arcs. This special case and well known measure theoretic arguments
using the regularity of μs, s ∈ (0, 1), imply (3.11) for an arbitrary Borel set. The
mapping of sets from ∂Ω(t0) to ∂Ω(s) given by (3.11) is also easily seen to be onto.
To return to the proof of Theorem 1(a), we claim that it suffices to show

(3.12) μ(G) = 0, where G = {z ∈ ∂Ω : lim
ρ→0

ρ−1μ(B(z, ρ)) = 0}.

Indeed given m a positive integer, let Em be the subset of z ∈ ∂Ω \G for which

lim sup
r→0

μ(B(z, r))

r
> 1/m.

Using a well known covering lemma, we can choose a covering {B(zi, 5ri)} of Em

with zi ∈ Em, ri ≤ ε, {B(yi, ri)} pairwise disjoint and

(3.13) μ(B(yi, ri)) > ri/m.

Thus

(3.14)
∑
i

5ri < 5m
∑
i

μ(B(yi, ri)) ≤ 5mμ(∂Ω) < ∞

as we see from (3.13) and Lemma 2.3. Letting ε→0 and using the definition of H1

measure we conclude from (3.14) that H1(Em) < ∞. Hence ∂Ω \G is σ finite so it
suffices to prove (3.12).

The proof of (3.12) is by contradiction. If (3.12) is false, then μ(G) > 0, so from
regularity of μ, there is a compact set K ⊂ G with μ(K) > 0. Also, K can be
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chosen so that

(3.15)

(+) lim
ρ→0

μ(K∩B(z,ρ))
μ(B(z,ρ)) = 1 for μ almost every z ∈ K,

(++) lim inf
ρ→0

μ(B(z,10ρ))
μ(B(z,ρ)) < 1020 for μ almost every z ∈ K,

(+ + +) 0 < μ(B(z,ρ))
ρ →0 uniformly on K as ρ→0.

(3.15) (+) follows from differentiation theory while (3.15) (+++) is obtained from
an Egoroff type argument. For the proof of (3.15) (++), see [LNP11], display (2.1).
In view of (3.15) we can find a z0 ∈ K with the following properties: Given η > 0
small there is an r0 = r0(η) > 0 such that
(3.16)

(−) μ(B(z0,10r0)\K)
μ(B(z0,r0))

≤ η10,

( −−) μ(B(z0,10r0))
μ(B(z0,r0))

≤ 1020,

(−−−) μ(B(z,ρ))
ρ ≤ η10 whenever z ∈ K ∩B(z0, 10r0) and 0 < ρ ≤ 103r0.

Moreover, for given 0 < ε ≤ 1 we deduce from (3.15) (+ + +) that there exists
r′0(ε, η) > 0, with r′0(1, η) = r0(η), ε→r′0(ε, η), nondecreasing on (0, 1], and

(3.17) μ(B(z, ρ)) ≤ εp−1η10ρ whenever z ∈ K and 0 < ρ ≤ 103r′0(ε, η).

Finally from (3.7), (3.11), and another Egoroff type argument it follows that for
fixed ε, η, there exists t1 = t1(ε, η), 0 < t1 < t0, and a relatively open subset
U = U(t1) with Θ ⊂ U ⊂ ∂Ω(t0) and

(3.18)

(i) H1(σ(ẑ, [1− t1, 1))) ≤ η10r′0(ε, η) whenever ẑ ∈ ∂Ω(t0) \ U(t1),

(ii) μt(T (U(t1), t)) ≤ η10μ(B(z0, r0(η))), t ∈ (0, 1),

(iii) ĥ(∂Ω, ∂Ω(t1)) ≤ η10r′0(ε, η).

We assume as we may that for fixed η, ε→t1(ε, η) is nondecreasing on (0,1]. We
now prove a key lemma.

Lemma 3.19. For fixed ε, η, let U1(t1) denote the set of all points ẑ ∈ ∂Ω(t0)\U(t1)
with |∇u| ≥ ε at some point in σ(ẑ, [1− t1, 1)). There exists η0, independent of ε,
such that if 0 < η ≤ η0 ≤ 10−100, then

lim sup
t→0

μt(T (U1(t1(ε, η)), t) ∩B(z0, 5r0(η))) ≤ η5μ(B(z0, r0(η))).

Proof. Let Ũ1 = Ũ1(δ) be the set of all ẑ ∈ ∂Ω(t0) \ U(t1) with the property
that |∇u(z)| ≥ ε for some z ∈ σ(ẑ, [1 − t1(ε, η), 1)) with d(z, ∂Ω) ≥ δ. Note that

U1(t1(ε, η)) =
⋃

δ>0 Ũ1(δ), so by the usual measure theoretic arguments it suffices

to prove Lemma 3.19 for Ũ1(δ) and arbitrary small δ > 0. To do this we use a Vitali
type covering argument. Fix 0 < δ � η1000 min(t1, r

′
0) and let 0 < t2 ≤ δ be so

small that

(3.20) ĥ(∂Ω, ∂Ω(t2)) ≤ δ/100.
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Next let
(3.21)

J = {z : |∇u(z)| ≥ ε, d(z, ∂Ω) ≥ δ, and z ∈
⋃

ẑ∈Ũ1(δ)

σ(ẑ, [1− t1, 1)) ∩ B̄(z0, 6r0(η))}

and suppose that J �= ∅. Let w1 ∈ J be a point with maximum distance from ∂Ω.
The existence of w1 follows from a compactness argument. Let σ(ŵ1, ·), ŵ1 ∈ Ũ1(δ),
denote the trajectory through w1 and let w ∈ ∂Ω with ρ = |w − w1| = d(w1, ∂Ω).
We note from Lemmas 2.3-2.5 that

(3.22) ερ ≤ ρ|∇u(w1)| ≤ cu(w1) ≤ c[ρp−2μ(B(w, 2ρ))]1/(p−1).

Solving for μ(B(w, 2ρ)) in (3.22) we conclude that

(3.23) εp−1 ρ ≤ c′μ(B(w, 2ρ)), where c′ = c′(p).

Let K1 = K ∩ B̄(z0, 10r0(η)). We assert that

(3.24) ρ < η7d(w,K1).

Indeed, otherwise let r = 4max{d(w,K1), ρ} and observe from (3.18) (i) that ρ <
η10r′0(ε, η), so if (3.24) is false there exists w′ ∈ K1 with |w−w′| ≤ η3r′0(ε, η). Thus
by (3.17) we have

μ(B(w, 2ρ)) ≤ μ(B(w′, r)) ≤ εp−1η10r ≤ εp−1η2ρ.

This inequality contradicts (3.23) for η = η(p) > 0 small enough, so (3.24) is true.
We now apply Lemmas 2.7 and 2.8 with w1 = z1 and t = t2. Let γ, τ, β,Ω1

be as in these lemmas with zi replaced by w̃i, 2 ≤ i ≤ 6. Let φ̂ be the arc of

∂Ω1 ∩ ∂Ω with endpoints w̃5, w̃6. Note that w̃4 ∈ φ̂ and β ∪ φ̂ is the boundary of
a Jordan domain Ω′

1 ⊂ Ω1. Let t̂ ∈ (0, 1) be such that τ (t̂) ∈ Ω′
1 ∩ ∂B(w̃4, ρ̂/2),

where ρ̂ = 1
8 min{d(w̃4, β), ρ}. The existence of t̂ follows from Lemmas 2.7, 2.8 ,

and the local connectivity of a Jordan domain. Moreover, from Lemma 2.8 (α′),
Lemma 2.7 (δ), and (3.20) we deduce the existence of c = c(p) with ρ ≤ cρ̂ and
c(u(τ (t̂)) − t2) ≥ u(w1) − t2. Let u1 be the restriction of u − t2 to Ω′

1 and define
u1 ≡ 0 in B(w̃4, 2ρ̂) \ Ω′

1. Using the above notes, Lemma 2.7, and Lemma 2.3 for
u1 we find that

(3.25) u(w1)− t2 ≈ [ρ̂p−2μt2(∂Ω
′
1 ∩B(w̃4, ρ̂))]

1/(p−1).

In (3.25) ≈ means the ratio of the two quantities is bounded above and below by
constants depending only on p.

For the moment we assume that σ(ŵ1, 1− t2) �∈ ∂Ω′
1 ∩B(w̃4, ρ̂). In this case let

w′
1 be the last point of intersection of τ with σ(ŵ1, ·). Next let Ω̃1 = Ω̃(w1) ⊂ Ω(t2)

denote the Jordan domain with Ω̃(w1) ∩B(0, 2) = ∅, and whose boundary consists
of

(3.26)

(a′) the arc of σ(ŵ1, ·) with endpoints σ(ŵ1, 1− t2), w
′
1,

(b′) the arc of τ with endpoints w′
1, w̃4,

(c′) the arc of ∂Ω(t2) with endpoints w̃4, σ(ŵ1, 1− t2).

Let τ̂ denote the open arc in (3.26) (b′) and let γ̂ denote the open arc in (3.26) (c′).
We assert that

(3.27) μt2(γ̂) ≤ cμt2(∂Ω
′
1 ∩B(w̃4, ρ̂)).
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Indeed, using p harmonicity of u, the divergence theorem, and the fact that ∇u is
tangent to each orthogonal trajectory, it follows that

(3.28) μt2(γ̂) =

∫
γ̂

|∇u|p−1dH1 ≤
∫
τ̂

|∇u|p−1dH1.

To estimate the right hand integral let z ∈ τ̂ , r′ = 1
2d(z, ∂Ω(t2)). Using Lemmas

2.2, 2.5, (3.25), the cigar condition on τ, and Harnack’s inequality we find that if
α′ = α (p− 1)+ 2− p > 0 where α is as in Lemma 2.2, then for some c = c(p) ≥ 1,
(3.29)∫

τ̂∩B(z,r′)

|∇u|p−1dH1 ≤ c(u(z)− t2)
p−1 (r′)2−p

≤ c2(r′)2−p
(

r′

ρ̂

)α(p−1)

(u(w1)− t2)
p−1 ≤ c3

(
r′

ρ̂

)α′

μt2(∂Ω
′
1 ∩B(w̃4, ρ̂)).

To complete the proof of (3.27) we use a well known covering lemma to choose a
covering {B(zi, r

′
i)} of τ̂ , where r′i =

1
2d(zi, ∂Ω(t2)), in such a way that the balls

{B(zi,
1
10r

′
i)} are disjoint. From the cigar condition in Lemma 2.7 we observe for a

given nonnegative integer j that there are at most c = c(p) positive integers i with
2−j−1ρ̂ ≤ r′i ≤ 2−j ρ̂. Using this fact and (3.28)-(3.29) we get for c large enough
that

(3.30) μt2(γ̂) ≤
∑
i

∫
τ̂∩B(zi,r′i)

|∇u|p−1dH1 ≤ c(

∞∑
j=0

2−jα′
)μt2(∂Ω

′
1 ∩B(w̃4, ρ̂)).

Hence (3.27) is true.

We now drop the assumption that σ(ŵ1, 1−t2) �∈ ∂Ω′
1∩B(w̃4, ρ̂). Let θ̂ ⊂ ∂Ω(t2)

be the largest open arc containing σ(ŵ1, 1− t2) with the following property:
(3.31)

If z = σ(ẑ, 1− t2) ∈ θ̂, ẑ ∈ ∂Ω(t0), then σ(ẑ, ·) ∩B(w1,
1
2d(w1, ∂Ω(t2)) �= ∅.

From continuity of the mapping ẑ→σ(ẑ, 1− t2) we see that θ̂ exists. Also, joining

the trajectories through the endpoints of θ̂ by an arc of ∂B(w1,
1
2d(w1, ∂Ω(t2))) and

arguing as in the proof of (3.27) we deduce that

(3.32) μ(θ̂) ≤ cμ(∂Ω′
1 ∩B(w̃4, ρ̂)).

Moreover, using the divergence theorem, Lemmas 2.2, 2.5, Harnack’s inequality,
and Lemma 2.8, as in the proof of (3.27) we deduce that

(3.33) μt2(φ̂) ≤
∫
β

|∇u|p−1dH1 ≤ cμt2(∂Ω
′
1 ∩B(w̃4, ρ̂)).

We put I(w1) = φ̂ ∪ θ̂ ∪ γ̂ when σ(ŵ1, 1 − t2) �∈ ∂Ω′
1 ∩ B(w̃4, ρ̂) and otherwise set

I(w1) = φ̂ ∪ θ̂. Let ξ(w1) = ∂Ω′
1 ∩B(w̃4, ρ̂). We note that I(w1) is an open subarc

of ∂Ω(t2) with σ(ŵ1, 1 − t2) ∈ I(w1) and ξ(w1) ⊂ I(w1). Moreover, from (3.33),
(3.32), (3.27), and (3.24) we have

(3.34) μt2(I(w1)) ≤ cμt2(ξ(w1)) and δη−6 ≤ d(B̄(w̃4, ρ̂),K1).

Let J be as in (3.21) and suppose that whenever w ∈ J ∩ σ(ŵ, ·), we have
σ(ŵ, 1− t2) ∈ I(w1). In this case we quit. Otherwise from a compactness argument
we deduce the existence of w2 ∈ J with maximal distance from ∂Ω among all such
points w ∈ J with the property that if w ∈ σ(ŵ, ·), then σ(ŵ, 1−t2) is not in I(w1).
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In this case we use Lemma 2.7 with z1, replaced by w2, to get first Ω1(w2),Ω
′
1(w2),

and then ρ̂(w2), w̃4(w2), I(w2), ξ(w2). Then w2 ∈ I(w2), ξ(w2) ⊂ I(w2), and (3.34)
holds with w1 replaced by w2. Continuing by induction, if I(wk), ξ(wk), 1 ≤ k ≤ m,
have been constructed we proceed as follows. First, we quit the construction if
whenever w ∈ J ∩ σ(ŵ, ·), it is true that σ(ŵ, 1 − t2) ∈

⋃
k I(wk). Otherwise we

choose wm+1 ∈ J with maximal distance from ∂Ω among all such points w ∈ J with
the property that if w ∈ σ(ŵ, ·), then σ(ŵ, 1 − t2) is not in

⋃
k I(wk). Proceeding

as when m = 1 we get ρ̂m+1, w̃4(wm+1), I(wm+1), ξ(wm+1), with wm+1 ∈ I(wm+1)
and ξ(wm+1) ⊂ I(wm+1). Also (3.34) holds with w1 replaced by wm+1. By induction
we get {wk}N1 . We claim that N < ∞. To prove this claim note by construction

of θ̂(wm) that I(wm) contains all points σ(ẑ, 1 − t2), ẑ ∈ ∂Ω(t0), with σ(ẑ, ·) ∩
B(wm, 1

2d(wm, ∂Ω)) �= ∅. Moreover, d(wk, ∂Ω) ≥ δ and {B(wk,
1
10d(wk, ∂Ω))}m1 are

pairwise disjoint. Now to get Im+1 we essentially removed all trajectories from
consideration in Ω that intersect

⋃m
k=1B(wk,

1
2d(wk, ∂Ω)). Using these facts and a

volume type argument we conclude that N is finite.
Next we note that if three open arcs on ∂Ω(t2) have a point in common, then

the union of two of these arcs contains the other arc. Using this fact we choose a

subsequence I1, . . . , Il of {I(wm)}N1 with
⋃N

j=1 I(wj) ⊂
⋃l

j=1 Ij and such that each

point of
⋃l

j=1 Ij lies in at most two of {Ij}l1. Given 1 ≤ j ≤ l choose k = k(j) so

that Ij = I(wk). Let ξj = ξ(wk) for 1 ≤ j ≤ l. Then from (3.34) we have

(3.35) μt2

⎛
⎝ N⋃

j=1

I(wj)

⎞
⎠ ≤

l⋃
j=1

μt2(Ij) ≤ c

l⋃
j=1

μt2(ξj) ≤ 2cμt2

⎛
⎝ l⋃

j=1

ξj

⎞
⎠ .

Let W (s) = {z ∈ C : d(z,K1) > s}. Now from (3.34) and (3.18), (3.20), (3.21),
we see that

(3.36)
N⋃
j=1

B̄(w̃4(wj), ρ̂(wj)) ⊂ W (2δ) ∩B(z0, 7r0(η)) for η0 small enough.

Let 0 ≤ g ≤ 1 be a continuous real valued function on C with g ≡ 1 on W (2δ) ∩
B(z0, 7r0(η)) and compact support contained in W (δ)∩B(z0, 10r0(η)). Then from
(3.36) we see that

(3.37) μt2

⎛
⎝ l⋃

j=1

ξj

⎞
⎠ ≤ μt2(W (2δ) ∩B(z0, 7r0)) ≤

∫
gdμt2 .

Now if σ(ẑ, 1− t2) ∈ T (Ũ(δ), t2)∩B(z0, 5r0(η)), then from (3.18), (3.20), (3.21), we

see there exists z ∈ J ∩ σ(ẑ, ·). From our construction it follows that T (Ũ(δ), t2) ∩
B(z0, 5r0(η)) ⊂

⋃
k I(wk). Using this observation and (3.35)-(3.37) we conclude

that

(3.38) μt2

(
T (Ũ(δ), t2) ∩B(z0, 5r0(η))

)
≤ c̃

∫
gdμt2 ,



p HARMONIC MEASURE 1555

where c̃ depends only on p for η0 sufficiently small. Letting t2→0 it follows from
(3.38), (3.16) (−) that

(3.39)

lim sup
t2→0

μt2

(
T (Ũ(δ), t2) ∩B(z0, 5r0(η))

)
≤ c

∫
gdμ

≤ cμ(B(z0, 10r0(η)) \K) < η5μ(B(z0, r0(η)))

for η0 sufficiently small. Letting δ→0 we conclude from (3.39) and our earlier
remarks that Lemma 3.19 is true. �

3.1. Final proof of Theorem 1 (a). Armed with Lemma 3.19 we are now in
a position to prove Theorem 1. For this purpose fix ε > 0 small, put V =
U1(t1(1, η0)) ∪ U(t1(1, η0)) and choose a relatively open subset Λ̂ ⊂ ∂Ω(t0) with

V ⊂ Λ̂, Λ̂ \ V �= {∅}, and

μt0(Λ̂ \ V ) ≤ 1
4μ(B(z0, r0(η0))).

This inequality, (3.18), and Lemma 3.l9 imply the existence of t̃ = t̃(ε, η0) < t1(ε, η0)

such that if Λ = Λ̂ ∪ U1(t1(ε, η0)) ∪ U(t1(ε, η0)), then

(3.40) μt [T (Λ, t) ∩B(z0, 5r0(η0))] ≤ 1
2μ(B(z0, r0(η0))) for 0 < t ≤ t̃.

Let ẑ1 ∈ Λ̂\V and put D̃ = D\σ(ẑ1, [0, 1]). Then D̃ is simply connected so a single

valued branch of h in (3.1) can be defined in D̃. Subtracting a constant from h if
necessary we see from our earlier discussion that we may assume

f = u(z) + ih(z) maps D̃ one to one and onto S = {u+ ih : 0 < u < 1, 0 < h < ξ},

where ξ is as in (3.3). Given ẑ ∈ ∂Ω(t0) \ Θ, let f(σ(ẑ, 1)) = ih(σ(ẑ, 1)) =
limt→1 f(σ(ẑ, t)). The existence of the limit follows from the fact that h is con-
stant on each trajectory and continuity of u in D̄. We observe that ẑ→f(σ(ẑ, 1)) is

continuous on ∂Ω(t0) \ Λ̂ so

(3.41) F̂ = {f(σ(ẑ, 1)), ẑ ∈ ∂Ω(t0) \ Λ̂} is a compact subset of {is : 0 < s < ξ}.

If w = is, 0 < s < ξ, let

S(w, τ ) = {u+ ih : 0 < u < τ, |h− s| < u}

and observe from (3.41) that there exists t′1, independent of ε ∈ (0, 1], with

(3.42) 0 < t′1 ≤ t1(1, η0) and
⋃
w∈F̂

S̄(w, t′1) ⊂ S.

We claim there exists a constant c̃0 = c̃0(p) such that

(3.43) |∇u(z)| ≤ c̃0 whenever z ∈ f−1(S(w, t′1)) and w ∈ F̂ .

Indeed suppose z, w, are as in (3.43) and |∇u(z)| = A for some large A. Then from
Lemma 2.5 we have

(3.44) u(z) ≤ cAd(z, ∂Ω).

Let u0 = u(z), h0 = h(z), and let α be a parametrization of the largest arc contained
in B̄(z, 1

2d(z, ∂Ω)) ∩ {u = u0} with parameter interval [0,1] and h(α(0)) < h0 <
h(α(1)). Let αk, k = 0, 1, be the subarcs of α joining z to α(0), α(1), respectively.
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Using Lemma 2.5, Harnack’s inequality, (3.44), and basic geometry we get for some
c ≥ 1,
(3.45)

min{h(α(1))− h0, h0 − h(α(0))} = min
k=0,1

∫
αk

|∇h|dH1 = min
k=0,1

∫
αk

|∇u|p−1dH1

≥ c−1 Ap−1d(z, ∂Ω) ≥ c−2Ap−2u0.

Since u0 + ih0 ∈ S(w, t′1) there exists ẑ ∈ ∂Ω(t0) \ Λ̂ with w = f(σ(ẑ, 1)) and
z̃ ∈ σ(ẑ, [1− t′1, 1)) with u(z̃) = u0, while |h(z̃)−h0| ≤ u0. Then for A large enough
it follows from (3.45) that z̃ ∈ α. Since |∇u(z̃)| ≤ 1 we deduce from z̃ ∈ α and once
again Lemma 2.5 and Harnack’s inequality, that claim (3.43) is true.

Next fix t, 0 < t < min(t′1, t̃) and let

O = f−1

⎛
⎝ ⋃

w∈F̂

S(w, t′1) ∩ {u+ ih : u > t}

⎞
⎠ .

We note that if a = min{s : is ∈ F̂}, b = max{s : is ∈ F̂}, then
(3.46)

f(O) = {u+ ih : a− t′1 < h < b+ t′1, max(t, d(ih, F̂ )) < u < min(t′1, d(ih, F̂ ))}.

From (3.46) and smoothness of f−1 we deduce that the divergence theorem can be
used in O. Define L relative to u as in (1.8)-(1.10) and let v = log |∇u|. Then from
the divergence theorem, p harmonicity of u, and (1.11), (1.12), we find that
(3.47)

0 ≤
∫
O

(uLv − vLu)dA =

∫
∂O

∑
i,j=1,2

u bij νivxj
dH1 −

∫
∂O

∑
i,j=1,2

v bij νiuxj
dH1

= J1 + J2,

where the outer unit normal to ∂O, ν(z) = (ν1(z), ν2(z)) is defined H1 almost
everywhere on ∂O. To estimate the boundary integrals in (3.47) we write ∂O =
Q1 +Q2 +Q3 with

Q1 = ∂O ∩ {u = t′1}, Q2 = ∂O ∩ {t < u < t′1}, Q3 = ∂O ∩ {u = t}.

Then for k = 1, 2,

(3.48) Jk =

∫
Q1

· · ·+
∫
Q2

· · ·+
∫
Q3

· · · = Jk1 + Jk2 + Jk3.

On Q3 we have ν|∇u| = −∇u, H1 almost everywhere. Using this fact, (1.9), (1.10),
and Lemmas 2.5, 2.6 we obtain

(3.49)

J13 ≤ c

∫
Q3

u|∇u|p−3(
2∑

i,j=1

|uxixj
|)dH1 ≤ c2

∫
Q3

|∇u|p−1dH1

= − c2
∫
Q3

|∇u|p−2 uν dH
1.



p HARMONIC MEASURE 1557

Also, from (1.9) and the above fact we deduce first that

(3.50) −v
2∑

i,j=1

bij νiuxj
= (p− 1)v |∇u|p−1 on Q3,

and thereupon from the definition of Λ, (3.50), (3.43), and (3.40) that
(3.51)

J23 ≤ c

∫
Q3

|∇u|p−1 dH1 + (p− 1)

∫
T (∂Ω(t0)\Λ, t)∩B(z0,5r0(η0))

|∇u|p−1 v dH1

≤ −c2
∫
Q3

|∇u|p−2uν dH
1 + 1

2 (p− 1) log(ε)μ(B(z0, r0(η0))),

provided c = c(p) ≥ 1 is suitably large. To handle the boundary integrals over Q2

we note that f is an open sense preserving mapping but the angles can be badly
distorted. Also from (3.46) we see that H1 almost every point in f(Q2) lies on ex-
actly one open line segment l with slope ±1. If ∂f(O) is oriented counterclock-
wise, and l has slope 1, then the tangent vector at a point on l is given by
1√
2
(−1 − i), while the tangent vector is 1√

2
(1 − i) when l has slope −1. Let

τ = f−1(l). Then Q2 inherits a counterclockwise orientation from f(Q2) as seen
from points in components of O and on τ , u and h are both decreasing when l has
slope 1 while u is increasing, and h is decreasing on l when l has slope −1. Let
z ∈ τ and let λ be the unit tangent vector to τ at z. Then ∇u · λ = ±∇h · λ,
where · denotes the dot product, so if ∇u · λ = cosφ |∇u|, 0 < φ < π, then from
the definition of h we have ∇h · λ = −|∇u|p−1 sinφ. Also, if l has slope 1, then
π/2 < φ < π, while if l has slope −1, then 0 < φ < π/2. Since |∇u| ≤ c0 in O
it follows that | tanφ| = |∇u|2−p ≥ c−1 for some c = c(p). Intuitively, if |∇u| is
small, then λ has almost the same direction as −∇h, so from (3.1), ν = −iλ has
nearly the same direction as −∇u. Here ν is the outer unit normal to Q2. From
this analysis we have for some c = c(p) ≥ 1 that

(3.52) −
2∑

i,j=1

bijνiuxj
= −(p− 1)|∇u|p−2 ∇u · ν ≥ c−1|∇u|p−1

on Q2. Using (3.52), (3.43) and arguing as in the proof of (3.49), (3.51) we get

(3.53) J12 + J22 ≤ c

∫
Q2

|∇u|p−1dH1 ≤ −c2
∫
Q2

|∇u|p−2uνdH
1.

Next from Lemmas 2.3-2.6 we see that

(3.54) J11 + J21 ≤ A′,

where A′ depends on numerous quantities, e.g., u,Ω, μ, t′1, η0, but is independent of
ε. Combining (3.47), (3.49), (3.51), (3.53), (3.54), we have for some c = c(p) ≥ 1,

(3.55) 0 ≤ A′ − c

∫
Q2+Q3

|∇u|p−2uν dH
1 + 1

2 (p− 1) log ε μ(B(z0, r0(η0))).

Moreover, using p harmonicity of u and the divergence theorem, we see that∫
∂O

|∇u|p−2uνdH
1 = 0, so

(3.56) −
∫
Q2+Q3

|∇u|p−2uν dH
1 =

∫
Q1

|∇u|p−2uν dH
1 ≤ A′′,
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where A′′ has the same dependence as A′. In view of (3.56) we can further simplify
(3.55) to

(3.57) 0 ≤ Ã + 1
2 (p− 1) log ε μ(B(z0, r0(η0))),

where Ã is independent of ε. Letting ε→0 in (3.57) we get a contradiction to our
assumption that (3.12) is false. From this contradiction and our earlier remarks we
now obtain Theorem 1(a). �

4. Proof of Theorem 1(b)

We continue with the same notation as in section 3 unless otherwise stated. In
this section we state Proposition 4.15. This proposition is the cornerstone in our
proof of Theorem 1(b).We then indicate how Theorem 1(b) follows from Proposition
4.15.

Put ṽ(z) = max(log |∇u| − c, 0), z ∈ D, where c is chosen so large that ṽ ≡ 0
on B̄(0, 2) \ B(0, 1). The existence of c follows from Lemma 2.6. Extend ṽ to Ω
by defining ṽ ≡ 0 on B̄(0, 1). Let m be a positive integer and note that ṽ2m has
Lipschitz continuous partial derivatives. Define L relative to u as in (1.8)-(1.10)
and let ũ = u− t in Ω(t). From our note we find for H2 almost every z ∈ Ω(t) that

(4.1) L(ṽ2m) = (2m)(2m−1)ṽ2m−2
2∑

i,j=1

bij ṽxi
ṽxj

+(2m)(ṽ)2m−1Lṽ = P ′
2m−P ′′

2m.

Here we adopt the convention that ṽ0 = 1, even at points where ṽ = 0. Observe
that if m = 1 in (4.1) and ṽ(z) = 0 we still have L(ṽ2)(z) = 0, for H2 almost every
z ∈ Ω(t). If ṽ(z) �= 0, it follows from (1.10) and Lemma 2.6 that at z,

(4.2)

0 ≤ P ′
2m = (2m)(2m− 1)ṽ2m−2

2∑
i,j=1

bi,j ṽxi
ṽx2

≈ (2m)(2m− 1)ṽ2m−2|∇u|p−4

2∑
i,j=1

(uxixj
)2

≤ c (2m)(2m− 1)ṽ2m−2u2 d(z, ∂Ω)−4 |∇u|p−4,

where c depends only on p. Also from (1.11), (1.12), and Lemma 2.6 we deduce for
1 < p < 2 that at z,

(4.3)

0 ≤ P ′′
2m = −2mṽ2m−1Lṽ ≈ 2m(2− p) ṽ2m−1 |∇u|p−4

2∑
i,j=1

(uxixj
)2

≤ 2mc (2− p)ṽ2m−1 u2 d(z, ∂Ω)−4 |∇u|p−4,

where c = c(p) ≥ 1 can be chosen independent of p when p ∈ [3/2, 2]. Then from
the divergence theorem and p harmonicity of ũ we have
(4.4)

S =

∫
Ω(t)

[ũ L(ṽ2m)− ṽ2mLũ] dA = −
∫
∂Ω(t)

ṽ2m

⎛
⎝ 2∑

i,j=1

bij νi ũxj

⎞
⎠ dH1 = K ′

2m,
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where ν is the outer unit normal to ∂Ω(t). Using the notation in (4.1), (4.4), we
have

(4.5) S =

∫
Ω(t)

ũP ′
2mdA−

∫
Ω(t)

ũP ′′
2mdA = K ′

2m = (p−1)

∫
∂Ω(t)

ṽ2m|∇u|p−1dH1,

where P ′
2m, P ′′

2m ≥ 0.
Using (4.5) we show for 0 < t < 1 that

(4.6) K ′
2m = K ′

2m(t) = (p− 1)

∫
∂Ω(t)

ṽ2m|∇u|p−1dH1 ≤ c̃mm! logm(4/t),

where c̃ only depends on p. From (4.5), (4.2), we see that

(4.7)

K ′
2m(t) ≤

∫
Ω(t)

ũP ′
2m dA

≤ c(2m)(2m− 1)

∫
Ω(t)

ṽ2m−2u3 d(z, ∂Ω)−4|∇u|p−4dA = I2m(t).

Moreover, from Lemma 2.5 and the co-area theorem we have for m ≥ 2 a positive
integer,

(4.8)

I2m(t) ≤ c(2m)(2m− 1)

∫
Ω(t)

u−1 |∇u|p ṽ2m−2 dA

= c(2m)(2m− 1)

∫ 1

t

(∫
∂Ω(s)

|∇u|p−1ṽ2m−2dH1

)
s−1ds

= c(2m)(2m− 1)(p− 1)−1

∫ 1

t

K ′
2m−2(s) s

−1ds.

(4.6) follows easily from (4.7), (4.8) and induction. Indeed, from (3.3) and the same
argument as in (4.7), (4.8) we see that (4.6) is valid when m = 1. By induction
suppose (4.6) holds with m replaced by k when 1 ≤ k ≤ m − 1. Then using (4.7),
(4.8) once again and the induction hypothesis we get
(4.9)

K ′
2m(t) ≤ c′2m(2m− 1)c̃m−1(m− 1)!

∫ 1

t

logm−1(4/s)s−1ds ≤ c̃mm! logm(4/t),

provided c̃ = c̃(p) is large enough. From (4.9) and induction, we obtain (4.6).
From (4.7), (4.8) we also obtain

(4.10)

∫
Ω(t)

ũP ′
2m dA ≤ c̃m m! logm(4/t)

and thereupon from (4.5) that

(4.11)

∫
Ω(t)

ũP ′′
2m dA ≤ c̃m m! logm(4/t),

provided c̃ is chosen large enough. Next we introduce some more notation. If
z ∈ ∂Ω(t) and q : ∂Ω(t)→R is integrable with respect to μt, let

(4.12) Mtq(z) = sup
ζ

(
1

μt(ζ)

∫
ζ

q dμt

)
,
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where the supremum is taken over open arcs, ζ, with z ∈ ζ ⊂ ∂Ω(t). Mtq is called
the Hardy-Littlewood maximal function of q on ∂Ω(t) with respect to μt. Next if
T (α, t) = ζ for some α ⊂ ∂Ωt0 , set

(4.13)

G(ζ) =
⋃

t<τ<1 T (α, τ ),

g2m(z) = sup
ζ

(
1

μt(ζ)

∫
G(ζ)

ũ (P ′
2m + P ′′

2m) dA

)
,

where once again the supremum is taken over open arcs, ζ, with z ∈ ζ ⊂ ∂Ω(t).
Finally if z ∈ ∂Ω(t) and z = σ(ẑ, 1− t) for some ẑ ∈ ∂Ω(t0), let

(4.14) Ntθ̃(z) = sup
t≤τ<1

θ̃(σ(ẑ, 1− τ ))

whenever θ̃ is a continuous function defined on Ω̄(t). We note that Ntṽ
l = (Ntṽ)

l

whenever l is a positive number. Next we state a key proposition for our proof of
Theorem 1(b).

Proposition 4.15. Given m a positive integer, let m1 be the smallest postive inte-
ger such that 2(m−m1) ≤ m−1 and let P ′

2m, P ′′
2m be as in (4.1)-(4.3). If z ∈ ∂Ω(t),

then there exists c∗ = c∗(p) ≥ 1 such that

Ntṽ
2m(z) ≤ Y ′

2m(z) + Y ′′
2m(z) + Y ′′′

2m(z),

where

Y ′
2m(z) =

m1−1∑
k=0

ck+1
∗ logk(4/t) m!

(m−k)! [Mtṽ
2m−2k(z) + g2m−2k(z), ]

Y ′′
2m(z) =

m1∑
k=1

ck+1
∗ logk(4/t) m!

(m−k)! [Mt(Ntṽ
(m−1)/8)(z)]

16(m−k)
m−1 ,

Y ′′′
2m(z) =

m∑
k=m1

ck+1
∗ logk(4/t) m!

(m−k)!Mt(Ntṽ
2m−2k)(z).

We note that if m = 1, then m1 = 1 and the exponent in the definition of Y ′′
2m

on the term in brackets is interpreted as 16, while as earlier ṽ0 ≡ 1. The proof of
Proposition 4.15 is rather involved. Thus we reserve the proof of this proposition
until section 5 and indicate now how Proposition 4.15 implies Theorem 1(b).

4.1. Proof of Theorem 1(b) assuming Proposition 4.15. Let ẑ ∈ ∂Ω(t0), with
σ(ẑ, 1− t) = z. If t < t′ < 1, we note that ∇u(σ(ẑ, 1 − t′)) is tangent to σ(ẑ, ·) at
σ(ẑ, 1− t′). Using this note and the chain rule we get

(4.16)

∣∣∣∣dσ(ẑ, 1− t′)

dt′

∣∣∣∣ = 1

|∇u|(σ(ẑ, 1− t′))
.

From (4.16) and Lemmas 2.5, 2.6 we obtain for t < s < 1

(4.17) ṽ(σ(ẑ, 1− s)) ≤ c

∫ 1

t

|∇ṽ||dσ(ẑ,1−t′)
dt′ |dt′ ≤ c

∫ 1

t

dt′/t′ ≤ c log(4/t).



p HARMONIC MEASURE 1561

Let l be a positive integer. In the application of Proposition 4.15 we shall also need
the inequality

(4.18)

∫
∂Ω(t)

g
1/2
2l dμt ≤ c

(∫
Ω(t)

ũ(P ′
2l + P ′′

2l)dA

)1/2

≤ cl (l!)1/2 logl/2(4/t),

where c = c(p). To prove (4.18) observe for given η > 0 that if z ∈ {w ∈ ∂Ω(t) :
g2l(w) > η}, then from the definition of g2l, there is an arc ζ ⊂ ∂Ω(t) with z ∈ ζ
and

(4.19)

∫
G(ζ)

ũ (P ′
2l + P ′′

2l)dA > η μt(ζ).

Using the fact that if three arcs on ∂Ω(t) have a point in common, then two of the
arcs contain the other arc, we see there exists a collection of open Jordan arcs {ζj}
for which (4.19) holds with ζ replaced by ζj . Also

(4.20) {w : g2l(w) > η} ⊂
⋃

ζj

and each point of the union lies in at most two of the arcs {ζj}. From (4.19), (4.20),
we get
(4.21)

ημt({w ∈ ∂Ω(t) : g2l(w) > η}) ≤ η
∑
j

μt(ζj) <
∑
j

∫
G(ζj)

ũ (P ′
2l + P ′′

2l) dA

≤ 2

∫
Ω(t)

ũ (P ′
2l + P ′′

2l) dA = δ.

Here we have used the fact that each point of
⋃

j G(ζj) lies in at most two of

{G(ζj)}. (4.18) follows from (4.21) in a standard way. Indeed, writing the integral
as a Riemann-Stieltjes integral and then integrating by parts we get
(4.22)∫
∂Ω(t)

g
1/2
2l dμt ≤ c

∫ ∞

0

η−1/2μt({w ∈ ∂Ω(t) : g2l(w) > η})dη = c

∫ δ

0

· · ·+ c

∫ ∞

δ

. . . ,

where δ is as in (4.21). Using (3.3) in
∫ δ

0
and (4.21) in

∫∞
δ

. . . we obtain the middle
inequality in (4.18). The last inequality in (4.18) follows from (4.10), (4.11) with
m = l. Next, if q : ∂Ω(t)→R is integrable with respect to μt, then

(4.23)

∫
∂Ω(t)

(Mtq)
1/2dμt ≤ c

(∫
∂Ω(t)

|q|dμt

)1/2

,

which follows easily from weak type estimates for Mtq similar to (4.21), (4.22).
Using (4.23) with q = ṽ2l for l a positive integer and (4.6) with m = l we get

(4.24)

∫
∂Ω(t)

Mt(ṽ
2l)1/2dμt ≤ cl (l!)1/2 logl/2(4/t).

We also note from the Hardy-Littlewood Maximal Theorem that for 1 < θ < ∞,

(4.25)

∫
∂Ω(t)

(Mtq)
θdμt ≤ c(θ)

∫
∂Ω(t)

|q|θ dμt.
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Using Proposition 4.15 and (4.16)-(4.25) we show there exists c+ = c+(p) ≥ 1 such
that

(4.26)

∫
∂Ω(t)

Ntṽ
mdμt ≤ cm+ (m!)1/2 logm/2(4/t).

To this end observe from Proposition 4.15 that

(4.27)

∫
∂Ω(t)

(Ntṽ
2m)1/2dμt =

∫
∂Ω(t)

Ntṽ
mdμt ≤

∫
∂Ω(t)

(Y ′
2m)1/2dμt

+

∫
∂Ω(t)

(Y ′′
2m)1/2dμt +

∫
∂Ω(t)

(Y ′′′
2m)1/2dμt.

If m = 1, then m1 = 1, and from (4.18), (4.24), we find that∫
∂Ω(t)

(Y ′
2)

1/2dμt ≤ c log1/2(4/t).

Also from (3.3) it follows easily that this inequality holds with Y ′
2 replaced by

Y ′′
2 , Y ′′′

2 . We conclude from (4.27) that (4.26) holds for suitably large c+ when
m = 1. Assume that (4.26) holds with m replaced by l for 1 ≤ l ≤ m − 1. To
estimate the integral involving (Y ′

2m)1/2 we note that
(4.28)∫

∂Ω(t)

(Y ′
2m)1/2dμt

≤
∫
∂Ω(t)

m1−1∑
k=0

{
ck+1
∗ logk(4/t)

m!

(m− k)!

}1/2∫
∂Ω(t)

[(Mtṽ
2m−2k)1/2 + g

1/2
2m−2k]dμt.

Using (4.18), (4.24) with l = m− k, 0 ≤ k ≤ m1 − 1, we get
(4.29)∫

∂Ω(t)

[ (Mtṽ
2m−2k)1/2 + g

1/2
2m−2k ]dμt ≤ 2cm−k ((m− k)!)1/2 log(m−k)/2(4/t).

Inserting (4.29) into (4.28) we see for some c̄ = c̄(p) suitably large that

(4.30)

∫
∂Ω(t)

(Y ′
2m)1/2dμt ≤ c̄m (m!)1/2 logm/2(4/t).

To estimate the integral involving (Y ′′
2m)1/2 we note that

(4.31)

∫
∂Ω(t)

(Y ′′
2m)1/2dμt

≤
m1∑
k=1

{
ck+1
∗ logk(4/t)

m!

(m− k)!

}1/2 ∫
∂Ω(t)

[Mt(Ntṽ
(m−1)/8)]

8(m−k)
m−1 dμt.

Also observe that 2(m −m1) = (m − 2) when m is even and = m − 1 when m is
odd. Consequently

8 ≥ 8(m− k)/(m− 1) ≥ 4(m− 2)/(m− 1) ≥ 2 for m ≥ 3 and 1 ≤ k ≤ m1.
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Using this observation, (4.25), and the induction hypothesis we get for m ≥ 3 and
1 ≤ k ≤ m1 that
(4.32)∫

∂Ω(t)

[Mt(Ntṽ
(m−1)/8)]

8(m−k)
m−1 dμt ≤ c

∫
∂Ω(t)

Ntṽ
m−kdμt

≤ ccm−k
+ ((m− k)!)1/2 log(m−k)/2(4/t).

Using this inequality in (4.31) we get

(4.33)

∫
∂Ω(t)

(Y ′′
2m)1/2dμt ≤

(
m1∑
k=1

cc
(k+1)/2
∗ cm−k

+

)
(m!)1/2 logm/2(4/t)

≤ 1
3c

m
+ (m!)1/2 logm/2(4/t),

provided c+ = c+(p) is large enough. If m = 2, then m1 = 2 and the term in (4.31)
corresponding to k = 1 is estimated using (4.25) and the induction hypothesis as
in (4.32). Also the integrand in (4.31) corresponding to k = 2 is constant and so
needs no estimation. Using these facts we deduce that (4.33) is also valid when
m = 2.

To estimate the integral involving (Y ′′′
2m)1/2 we note that

(4.34)

∫
∂Ω(t)

(Y ′′′
2m)1/2dμt

≤
m∑

k=m1

{
ck+1
∗ logk(4/t)

m!

(m− k)!

}1/2 ∫
∂Ω(t)

Mt(Ntṽ
2m−2k)1/2dμt.

Also from (4.23), our choice of m1, and the induction hypothesis we get for m1 ≤
k ≤ m that

∫
∂Ω(t)

Mt(Ntṽ
2m−2k)1/2dμt ≤ c

(∫
∂Ω(t)

Ntṽ
2m−2kdμt

)1/2

≤ ccm−k
+ ((2m− 2k)!)1/4 log(m−k)/2(4/t)

≤ c(4c+)
m−k((m− k)!)1/2 log(m−k)/2(4/t).

(4.35)

Using (4.35) in (4.34) we find that

(4.36)

∫
∂Ω(t)

(Y ′′′
2m)1/2dμt ≤

(
m∑

m=m1

cc
(k+1)/2
∗ (4c+)

m−k

)
(m!)1/2 logm/2(4/t)

≤ 1
3c

m
+ (m!)1/2 logm/2(4/t)

for c+ large enough. To get the last inequality we have used the fact thatm1 ≥ m/2.
Combining (4.30), (4.33), (4.36) we conclude in view of (4.27) that (4.26) is true.
By induction we get (4.26) whenever m is a positive integer.

Let θ(t) = log(4/t), 0 < t ≤ t0, and put

ψ(z) = (u(z))−1 [θ ◦ u(z)]−1 [2− θ ◦ θ ◦ u(z)]−(1+2/m), z ∈ D.
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Note that ψ is constant on ∂Ω(t), whenever 0 < t < 1, so from (3.4) for ẑ ∈
∂Ω(t0), 0 < s < 1, we have

(4.37) m d
dt [2− (θ ◦ θ)(t)]−2/m = 2ψ(σ(ẑ, 1− t)).

Thus if ẑ ∈ ∂Ω(t0), then

(4.38)

∫ 1

0

ψ(σ(ẑ, 1− t)) dt ≤ cm.

Using (4.38), (4.26), and the change of variable or co-area formula as in section
3, we find that

(4.39)

I =

∫
Ω

|∇u|p(z)Ntṽ
m(z) θ(u(z))−m/2 ψ(z)dA

≤ cm+ (m!)1/2
∫ 1

0

ψ[σ(ẑ, 1− t)] dt ≤ cm (m!)1/2

if c = 2c+ and m is large enough. On the other hand, using the change of variables
formula, and the Tonelli theorem to interchange the order of integration, we see
that
(4.40)

I =

∫
∂Ω(t0)

|∇u|p−1(ẑ)

(∫ 1

0

Ntṽ
m(σ(ẑ, 1− t)) θ(t)−m/2 ψ(σ(ẑ, 1− t)) dt

)
dH1ẑ.

Let

(4.41) q(ẑ) =

∫ 1

0

Ntṽ
m[σ(ẑ, 1− t)] θ(t)−m/2 ψ[σ(ẑ, 1− t)] dt, ẑ ∈ ∂Ω(t0),

and let Em be the set of ẑ ∈ ∂Ω(t0) with

q(ẑ) ≥ c2m (m!)1/2,

where c is as in (4.39). From (4.40), (4.41), and weak type estimates we get

(4.42) μt0(Em) ≤ c−m for m large enough.

From (4.41) and the fact that

d
dt

(
[θ(t)]−m/2 · [2− (θ ◦ θ)(t)]−(1+2/m)

)
≤ cm [θ(t)]−m/2 ψ[σ(ẑ, 1− t)]

for τ ∈ (0, 1], ẑ ∈ ∂Ω(t0), we find

(4.43) Nτ ṽ
m(σ(ẑ, 1− τ ))

(
[θ(τ )]−m/2 · [2− (θ ◦ θ)(τ )]−(1+2/m)

)
≤ c′ mq(z).

Here we have also used the fact that t→Ntṽ
2m(σ(ẑ, 1 − t)) is nonincreasing as a

function of t. If ẑ �∈ Em, it follows from (4.43) that

(4.44) Nτ ṽ
m[σ(ẑ, 1− τ )]

(
[θ(τ )]−m/2 · [2− (θ ◦ θ)(τ )]−(1+2/m)

)
≤ c3m (m!)1/2

for m large enough and 0 < τ < 1.
Now suppose that

m ≥ log log[− log(τ )] = κ(τ ) > m− 1
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for τ near 0 and m is so large that (4.44) holds. Taking 1/m roots of the above
inequality, using m! ≤ mm, and doing some arithmetic, it follows that

(4.45)
ṽ[σ(ẑ, 1− τ )]√

θ(τ )κ(τ )
≤ ĉ,

where ĉ depends only on p and is bounded on (3/2, 2). We conclude from (4.45)
for ẑ �∈

⋃∞
m=l Em that

(4.46) lim sup
τ→0

(
ṽ[σ(ẑ, 1− τ )]√

− log(τ ) · log log[− log τ ]

)
≤ ĉ.

Since l is arbitrary we see from (4.42) that (4.46) holds μt0 almost everywhere.
Theorem 1(b) follows from (4.46). Indeed let

(4.47) λ(r) = r exp
[
A
√
log 1/r log log log 1/r

]
, 0 < r < 10−6,

and suppose F ⊂ ∂Ω is a Borel set with Hλ(F ) = 0. For the moment we allow
A ≥ 2 to vary but shall later fix it to be a large constant depending only on p
which is bounded in (3/2, 2). Fix p, 1 < p < 2, and let K ⊂ ∂Ω be a Borel set with
Hλ(K) = 0. Let K1 be the subset of all z ∈ K with

lim sup
r→0

μ(B(z, r))

λ(r)
< ∞.

Then from the definition of λ and a covering argument (see [Ma95], sec 6.9), it is
easily shown that μ(K1) = 0. Thus to prove μ(K) = 0, it suffices to show

(4.48) μ(U) = 0, where U =

{
z ∈ ∂Ω : lim sup

r→0

μ(B(z, r))

λ(r)
= ∞

}
.

Given 0 < r̂0 < 10−100 and a positive constant b ≥ 108 we first show for each z ∈ U
that there exists s = s(z), 0 < bs < r̂0, such that

(4.49) t−1 μ(B(z, t)) ≤ s−1μ(B(z, s)) and λ(t) ≤ (t/s)μ(B(z, s)) for s ≤ t ≤ bs.

In fact, let s be the first point starting from r̂0/b where

μ(B(z, s))

λ(s)
≥ 2 max

r∈[r̂0/b,r̂0]

{
μ(B(z, r))

λ(r)
, 1

}
.

From (4.48) we see that s exists. Using λ(r′) ≤ (r′/r)λ(r), r < r′, and our choice
of s we get

μ(B(z, t)) ≤ λ(t)μ(B(z, s))

λ(s)
≤ (t/s)μ(B(z, s)) for s ≤ t ≤ bs.

The last inequality in (4.49) follows in a similar manner. From (4.49) and a covering
argument, we get {B(zi, ri)} with zi ∈ U, 0 < bri < r̂0, and the property that

(4.50)

(a) (4.49) holds with z = zi, s = ri, for each i,

(b) U ⊂
⋃
i

B(zi, bri),

(c) B(zi, bri/10) ∩B(zj , brj/10) = ∅ when i �= j.
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We claim there exists wi ∈ Ω ∩B(zi, 5ri) with

(4.51)

(α) u(wi) = ti and d(wi, ∂Ω) ≈ ri,

(β) μ[B(zi, ri)]/ri ≈ [u(wi)/d(wi, ∂Ω)]
p−1 ≈ |∇u(w)|p−1

whenever w ∈ B(wi, d(wi, ∂Ω)/2).

To prove (4.51) choose wi ∈ ∂B(zi, 2ri) with u(wi) = maxB̄(zi,2ri)u. Then d(wi, ∂Ω)

≈ ri, since otherwise, it would follow from Lemma 2.2 that u(wi) is small in compar-
ison to maxB̄(zi,5ri)u. However from (4.50) (a) and Lemma 2.3, these two maximums

are proportional with constants depending only on p. Thus d(wi, ∂Ω) ≈ ri, where
all proportionality constants depend only on p and can be chosen independent of
p ∈ [3/2, 2]. Using this fact, Lemma 2.5, (4.50) (a), and Lemma 2.3, we get (4.51).
Also we have

(4.52) H1[B(wi, d(wi, ∂Ω)/2) ∩ {z : u(z) = ti}] ≥ d(wi, ∂Ω)/2,

as we see from the maximum principle for p harmonic functions, a connectivity
argument and basic geometry. Using (4.50)-(4.52) we find that

(4.53) μ[B(zi, ri)] ≤ c

∫
∂Ω(ti)∩B(wi,d(wi,∂Ω)/2)

|∇u|p−1 dH1.

Choose N a positive integer so large that

(4.54) μ

(⋃
i

B(zi, bri)

)
≤ 2μ

(
N⋃
i=1

B(zi, bri)

)
.

The existence of N is a consequence of (4.49), (4.50) (c), and finiteness of μ. Sum-
ming (4.53) and using (4.54), (4.50) (b), it follows that

(4.55)

μ(U) ≤ 2μ

(
N⋃
i=1

B(zi, bri)

)
≤ 2b

N∑
i=1

μ[B(zi, ri)]

≤ c b

N∑
i=1

∫
∂Ω(ti)∩B(wi,d(wi,∂Ω)/2)

|∇u|p−1dH1.

To estimate the last integral in (4.55) we note from (4.50), (4.51), that for some
c = c(p) ≥ 2,
(4.56)

v(z) = log |∇u(z)| ≥ (A/c)
√
− log ri · log log[− log ri] on B(wi, d(wi, ∂Ω)/2) .

Also, we can use (4.50) (a) and (4.51) (β) to estimate ti below in terms of ri
and Lemma 2.2 to estimate ti above in terms of ri. Doing this we find for some
a = a(p), 0 < a < 1, c̄ = c̄(p), that

(4.57) ri ≤ c̄ tai ≤ c̄2 ra
2

i .

From (4.56), (4.57) we conclude, for some c̃ = c̃(p) ≥ 2 bounded for p ∈ [3/2, 2],
that

(4.58) v(z) ≥ (A/c̃)
√
− log ti · log log[− log ti] on B(wi, d(wi, ∂Ω)/2),

provided r̂0 is small enough.
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Next choose 0 < t � min{ti : 1 ≤ i ≤ N} so that

(4.59) ĥ(∂Ω(t), ∂Ω) ≤ 10−8 d

(
∂Ω,

N⋃
i=1

∂Ω(ti)

)
,

where ĥ denotes Hausdorff distance. We show that there exist disjoint Borel sets
αi ⊂ ∂Ω(t0), 1 ≤ i ≤ N, b0 = b0(p), c

′ = c′(p) such that if b ≥ b0, then
(4.60)

(ă) T (αi, ti)
⋃
T (αi, t) ⊂ B(zi, bri/10),

(b̆) μti [∂Ω(ti) ∩B(wi, d(wi, ∂Ω)/2)] ≤ c′μt(T (αi, t)),

(c̆) if ẑ ∈ αi, A = A(p) is large enough, and r̂0 > 0 small enough, then

v(σ(ẑ, 1− ti)) ≥ 2ĉ
√
− log ti · log log[− log ti], where ĉ is in (4.46).

Also, c′, b0 can be chosen independent of p ∈ [3/2, 2]. For notational purposes we
prove (4.60) only when i = 1 and shall use much of the same notation as in displays
(3.25)-(3.33). Recall from (4.51) that u(w1) = t1 and choose ŵ1 ∈ ∂Ω(t0) with
w1 = σ(ŵ1, 1 − t1). As in the paragraph following (3.24) we apply Lemmas 2.7
and 2.8 with w1 = z1. Let γ, τ, β,Ω1, be as in these lemmas with zi replaced by

w̃i, 2 ≤ i ≤ 6, and define Ω′
1 as above (3.25). Let φ̂ be the arc of ∂Ω1 ∩ ∂Ω with

endpoints w̃5, w̃6. As in (3.31) let θ̂ ⊂ ∂Ω(t) be the largest open arc containing
σ(ŵ1, 1− t) with the following property:

(4.61) If z = σ(ẑ, 1− t) ∈ θ̂, ẑ ∈ ∂Ω(t0), then σ(ẑ, ·) ∩B(w1,
1
2d(w1, ∂Ω(t))) �= ∅.

Also if σ(ŵ1, 1−t) �∈ ∂Ω′
1∩B(w̃4, ρ̂), we let γ̂ denote the arc of ∂Ω(t) with endpoints

w̃4, σ(ŵ1, 1 − t), defined as in (3.36) (c′). Let I(w1) = φ̂ ∪ θ̂ ∪ γ̂ in this case and

otherwise let I(w1) = φ̂∪ θ̂. Set ξ(w1) = ∂Ω′
1∩B(w̃4, ρ̂), where ρ̂ = 1

8d(w̃4, β). Then
ξ(w1) ⊂ I(w1) and I(w1) is an open arc of ∂Ω(t) with z = σ(ŵ1, 1 − t) ∈ I(w1).
Moreover, as in (3.34) we have

(4.62) μt(I(w1)) ≤ cμt(ξ(w1)) ≈ tp−1
1 d(w1, ∂Ω(t))

2−p,

where the last inequality follows from Lemmas 2.3 and 2.7. All constants depend
only on p and can be chosen independent of p ∈ [3/2, 2). Choose the open arc α ⊂
∂Ω(t0), with T (α, t) = I(w1). Observe from the definition of θ̂ that w1 ∈ T (α, t1)
and ∂B(w1, d(w1, ∂Ω(t))/2) ∩T̄ (α, t1) �= ∅. We claim that

(4.63) H1(T (α, t1)) ≤ cd(w1, ∂Ω(t))

for some c = c(p) ≥ 1 bounded on [3/2, 2]. To prove this claim note that if
w ∈ T (α, t1), then from Lemmas 2.5, 2.6, and arguments akin to those used in
the proof of the implicit function theorem, we deduce the existence of c′′ = c′′(p)
satisfying
(4.64)

B(w, d(w, ∂Ω(t))/c′′)∩ {ζ : u(ζ) = t1} = G is contained in a graph and

H1(G) ≤ c′′d(w, ∂Ω(t)).

To prove (4.63) choose a covering {B(ζj , sj)} of T (α, t1) with sj = d(ζj , ∂Ω(t))/c
′′,

ζj ∈ T (α, t1), w1 ∈ B(ζ1, s1/10), and B(ζk, sk/10) ∩ B(ζl, sl/10) = ∅ when l �= k.
To keep the constant in (4.63) from blowing up as p→2 we consider two cases, say
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1 < p ≤ p0 and p0 < p < 2. To handle the case p0 < p < 2 we remark once again that
the constants in (4.62), (4.64), and Lemmas 2.1-2.5 can be chosen independent of
p ∈ [3/2, 2]. In fact, retracing the proofs one sees that the constants essentially only
depend on the Harnack constant and the boundary Hölder exponent of continuity
for u in Lemmas 2.1, 2.2. The latter constants are classical and so easily checked
(see [BL05] for references). From the previous remark, (4.64), Harnack’s inequality,
Lemma 2.5, and the argument following (4.52) we see for some c′ = c′(p) ≥ 1, that

(4.65)

H1(T (α, t1) ∩B(ζj , sj)) ≤ c′d(ζj , ∂Ω(t)) and

c′
∫
T (α,t1)∩B(ζj ,sj/10)

|∇u|p−1 dH1 ≥ tp−1
1 d(ζj , ∂Ω)

2−p ,

where c′ is independent of p ∈ [3/2, 2). Given a positive integer k we deduce from
properties of the distance function that either there are < k balls in {B(ζj , sj)} or
there exists a subsequence {B(ζ ′j , s

′
j)}k1 of this sequence with s′j > (100)−ks1 for

1 ≤ j ≤ k. In the latter case we get from the second display in (4.65) that

(4.66)

μt1(T (α, t1)) ≥
k∑

j=1

μt1(T (α, t1) ∩B(ζ ′j , s
′
j/10))

≥ c−1
0 tp−1

1 k(100)−k(2−p)d(w1, ∂Ω(t))
2−p,

where c0 is independent of p ∈ [3/2, 2). On the other hand, from (4.62) and (3.11)
we see that

(4.67) μt1(T (α, t1)) ≤ c′0t
p−1
1 d(w1, ∂Ω(t))

2−p,

where c′0 can be chosen independent of p ∈ [3/2, 2). Combining (4.66), (4.67), we
see that if p = p(k) is so near 2 that (100)−k(2−p) ≥ 1/2, then k ≤ c′′0 , where c′′0
is independent of p ∈ [3/2, 2). Since all steps are reversible it follows that there
exists p0 ∈ (1, 2) and a positive integer k0 such that the sequence {B(ζj , sj)} has
at most k0 members whenever p0 < p < 2. In this case we see from properties of
the distance function that

sj ≤ (100)k0s1 ≤ cd(w1, ∂Ω(t)).

Using this inequality and (4.65) we conclude that (4.63) is true when p0 < p < 2.
If 1 < p ≤ p0, then from (4.65) and the fact that 2− p < 1 we obtain

(4.68)

H1(T (α, t1))
2−p ≤ c

⎛
⎝∑

j

d(ζj , ∂Ω(t))

⎞
⎠

2−p

≤ c
∑
j

d(ζj , ∂Ω(t))
2−p ≤ c t1−p

1 μt1(T (α, t1)).

In view of (4.67), (4.68), we deduce that (4.63) holds for 1 < p ≤ p0.
Next choose α1 ⊂ α with T (α1, t) = ξ(w1) = ∂Ω′

1 ∩ B(w̃4, ρ̂). Then (4.60) (ă)
follows from (4.63), (4.59), and Lemmas 2.7, 2.8 for b0 large enough. To prove

(4.60)(b̆) we note from (4.64), (4.59), and a covering argument that

(4.69) H1[∂Ω(ti) ∩B(w1, d(w1, ∂Ω)/2)] ≤ c̃d(w1, ∂Ω(t)).
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Using (4.59), (4.69), Lemma 2.5, and (4.62) it follows that

(4.70) μt1 [∂Ω(t1) ∩B(w1, d(w1, ∂Ω)/2)] ≤ ctp−1
1 d(w1, ∂Ω(t))

2−p ≤ c2μt(T (α1, t)),

where the last inequality is a consequence of (4.62). To prove (4.60) (c̆) we point
out that if z ∈ T (α1, t1), then from (4.63) we have d(z, ∂Ω(t)) ≤ cd(w1, ∂Ω(t)).
From Lemma 2.5 it follows that |∇u(w1)| ≤ c∗|∇u(z)| for some c∗ = c∗(p). In view
of this observation and (4.57), (4.58), we see for A = A(p) large enough and r̂0 > 0
small enough that (4.60) (c̆) holds. Thus (4.60) is true. Finally we note from (4.50)
(c), and (4.60)(ă) that {T (αi, t)}, 1 ≤ i ≤ N, are pairwise disjoint. Consequently
αi, 1 ≤ i ≤ N , are also pairwise disjoint.

With A = A(p), b = b(p) now fixed and bounded on [3/2, 2) we complete the
estimate in (4.55) and get (4.48), Theorem 1(b) in the following way. Using (4.60)
and (4.50) (c), we deduce
(4.71)

N∑
i=1

∫
∂Ω(ti)∩B(wi,d(wi,∂Ω)/2)

|∇u|p−1dH1 ≤ c
N∑
i=1

μt(T (αi, t)) = cμt0

(
N⋃
i=1

αi

)
.

Also from (4.60) (c̆), (4.59), (4.46), and measure theoretic arguments we see that

(4.72) μt0

(
N⋃
i=1

αi

)
→0 as r̂0→0.

In view of (4.71), (4.72), and (4.55) we deduce that

μ(U)→0 as r̂0→0.

Since r̂0 can be arbitrarily small we conclude that (4.48) and Theorem 1(b) are
valid. �

5. Proof of Proposition 4.15

To begin the proof of Proposition 4.15 let z ∈ ∂Ω(t) and choose ẑ ∈ ∂Ω(t0) with
z = σ(ẑ, 1 − t). Also choose s ∈ [t, 1) with Ntṽ(z) = ṽ(σ(ẑ, 1 − s)). Observe from
(4.16), Lemma 2.5, and Harnack’s inequality for u as in (4.17) that if σ(ẑ, 1− s) ∈
B(z, 1

2d(z, ∂Ω)), then

Ntṽ
2m(z)− ṽ2m(z) ≤ cm

∫ s

t

ṽ2m−1(σ(ẑ, 1− t′))dt′/t′ ≤ cmNtṽ
2m−1(z) log(s/t)

≤ c2m log(4/t)Ntṽ
2m−2(z),

provided c=c(p)≥1 is large enough. Thus Proposition 4.15 is true when σ(ẑ, 1−s)
∈ B(z, 1

2d(z, ∂Ω)). Also this Proposition is trivially true when σ(ẑ, 1− s) ∈ B(0, 2)

since ṽ ≡ 0 on this disk. Hence we assume t < s < 1 and σ(ẑ, 1 − s) �∈ (B̄(0, 2) ∪
B(z, 1

2d(z, ∂Ω))). Then from (4.16), (4.52) with ti replaced by t, Lemma 2.5, and
Harnack’s inequality for u, we have for some c = c(p) ≥ 1, that

(5.1) s− t =

∫ s

t

|∇u||dσ(ẑ,·)dt′ |dt′ ≥ t/c.

As in the paragraph following (3.24) we apply Lemmas 2.7, 2.8, with z1 replaced
by w1 = σ(ẑ, 1 − s). Let γ, τ, β,Ω1, be as in these lemmas with zi replaced by

w̃i, 2 ≤ i ≤ 6. Moreover, we let φ̂ be the arc of ∂Ω1 ∩ ∂Ω(t) with endpoints w̃5, w̃6

(see (3.25)-(3.34)) and define Ω′
1 as above (3.25). Likewise (see (3.31)) let θ̂ ⊂ ∂Ω(t)
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be the largest arc with z = σ(ẑ, 1−t) ∈ θ̂ and the property that if σ(x̂, 1−t) ∈ θ̂ for
some x̂ ∈ ∂Ω(t0), then σ(x̂, 1− s) ∈ B(w1,

1
2d(w1, ∂Ω(t)). Also, if z = σ(ẑ, 1− t) �∈

∂Ω′
1 ∩B(w̃4, ρ̂), we let γ̂ denote the arc of ∂Ω(t) with endpoints w̃4, σ(ẑ, 1− t) = z

defined as in (3.26) (c′). Let I(w1) = φ̂∪ θ̂∪ γ̂ in this case and otherwise let I(w1) =

φ̂ ∪ θ̂. Set ξ(w1) = ∂Ω′
1 ∩ B(w̃4, ρ̂), where ρ̂ = 1

8d(w̃4, β). Then ξ(w1) ⊂ I(w1) and
I(w1) is an open arc of ∂Ω(t) with z = σ(ẑ, 1− t) ∈ I(w1). Moreover, as in (3.34)
and (4.62) we deduce that

(5.2) μt(I(w1)) ≤ cμt(ξ(w1)) ≈ sp−1d(w1, ∂Ω(t))
2−p.

Let α ⊂ ∂Ω(t0) be the arc with T (α, t) = I(w1). From (5.2) and (3.11) it follows
first that

(5.3) μs(T (α, s)) ≈ sp−1d(w1, ∂Ω(t))
2−p

and then as in the proof of (4.63) that

(5.4) H1(T (α, s)) ≈ d(w1, ∂Ω(t)),

where all proportionality constants depend on p and can be chosen to be bounded
(as a function of p) on (3/2, 2). As in the proof of (4.63) we will need to consider
two cases, 1 < p < p′0 and p′0 ≤ p < 2, in order to keep the constants in Proposition
4.15 from exploding as p→2. To this end we show that p′0 can be chosen so that if
ŷ ∈ α, and p′0 ≤ p < 2, then

(5.5)

∫ s

t

|∇u|p−1(σ(ŷ, 1− t′))dH1t′ ≤ csp−1d(w1, ∂Ω(t))
2−p,

where c = c(p) is bounded on [p′0, 2). To prove (5.5) let ζ ∈ σ(ŷ, (1− s, 1− t)), and
r = 1

100d(ζ, ∂Ω(t)). We note as in (5.1) that if ũ = u− t and 1 < p < ∞, then

(5.6) min
∂B(ζ,r)∩σ(ŷ,·)

ũ ≤ b ũ(ζ)

for some b = b(p) with 0 < b < 1, where 1 − b is bounded below by a positive
constant on [3/2, 2). Since ũ decreases along the arc from σ(ŷ, 1− s) to σ(ŷ, 1− t)
it follows from (5.6) that there exists a covering {B(ζj , ρj)} of σ(ŷ, [1 − s, 1 − t])
with ζ1 = σ(ŷ, 1− s), ρj =

1
10d(ζj , ∂Ω(t)), ζj+1 ∈ ∂B(ζj , ρj), j = 1, . . . , and

(5.7) ũ(ζj+1) ≤ bũ(ζj) ≤ bj s.

Using properties of the distance function we may also assume that

(5.8) d(ζj , ∂Ω(t)) ≤ 100j d(ζ1, ∂Ω(t)).

From (5.7), (5.8), (4.16), Lemma 2.5, and Harnack’s inequality, we see there
exists p′0 ∈ (1, 2) such that if p′0 ≤ p < 2, then
(5.9)∫

B(ζj ,ρj)∩σ(ŷ,·)
|∇ũ|p−1dH1 ≤ cũ(ζj)

p−1ρ2−p
j ≤ csp−1 bj(p−1)/2d(ζ1, ∂Ω(t))

2−p,

where c = c(p) is bounded on [3/2,2]. Summing this inequality we get (5.5) with
d(w1, ∂Ω(t)) replaced by d(ζ1, ∂Ω(t)) However, from (5.4) we have d(ζ1, ∂Ω(t)) ≤
cd(w1, ∂Ω(t)), so this inequality implies (5.5).

We do not know if (5.5) holds for all ŷ ∈ α when 1 < p < p′0. Given our lack
of this knowledge we will have to settle for showing (5.5) holds on a ‘large set’
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⊂ α when 1 < p < p′0. We begin by choosing ŷ1, ŷ2 ∈ ∂Ω(t0) with σ(ŷ1, 1 − t) =
w̃5, σ(ŷ2, 1− t) = w̃6. If 1 < p < p′0 we claim there exists c = c(p) ≥ 1, with

(5.10) |σ(ŷj , 1− t′)− w̃4| ≤ cd(w1, ∂Ω(t)) for j = 1, 2, and t ≤ t′ ≤ s.

We first prove (5.10) when j = 1 and t′ = u(β(ŝ)) for some ŝ ≤ s0 (s0 as in Lemma
2.8 (γ′)). Let O∗ be the open set with O∗ ∩ B(0, 2) = ∅ and whose boundary
consists of

(5.11)

(i) the arc of β joining w̃5 to β(ŝ),

(ii) the arc of {w : u(w) = t′} joining β(ŝ) to σ(ŷ1, 1− t′),

(iii) the arc σ(ŷ1, (1− t′, 1− t)) from σ(ŷ1, 1− t′) to σ(ŷ1, 1− t).

Let δ1, δ2, δ3, denote the arcs in (i), (ii), (iii), respectively. From the divergence
theorem and p harmonicity of u we see that

(5.12)

3∑
i=1

∫
δi

|∇u|p−2uν dH
1 = 0,

where ν is the outer unit normal to O∗. Since ∇u is tangent to σ(ŷ1, ·) we have

(5.13)

∫
δ3

|∇u|p−2uν dH
1 = 0.

Next, if ζ ∈ δ1, and r = 1
100d(ζ, ∂Ω(t)), then from Lemma 2.8 (β′), (γ′), and

Lemma 2.5, we get

(5.14)

∫
B(ζ,r)∩δ1

|∇ũ|p−1dH1 ≤ c ũ(ζ)p−1 r2−p ≤ c2ũ(β(ŝ))p−1 r2−p.

Summing (5.14) over a covering of δ1 and using the cigar condition on β we obtain

(5.15)∫
δ1

|∇u|p−1dH1 ≤ c (u(β(ŝ))−t)p−1 d(β(ŝ), ∂Ω(t))2−p ≤ c (t′)p−1d(β(ŝ), ∂Ω(t))2−p.

Putting (5.15) in (5.12) and using (5.13) we find that

(5.16)

∣∣∣∣
∫
δ2

|∇u|p−2uν dH
1

∣∣∣∣ = μt′(δ2) ≤ c (t′)p−1 d(β(ŝ), ∂Ω(t))2−p.

Using (5.16) we can now repeat the argument leading to (4.68) (since 1 < p < p′0).
We get

(5.17) H1(δ2)
2−p ≤ c (t′)1−pμt′(δ2).

In view of (5.17), (5.16), and Lemma 2.8 (α′), we conclude that

(5.18) H1(δ2) ≤ c d(β(ŝ), ∂Ω(t)) ≤ cd(w1, ∂Ω(t)) for 0 < ŝ ≤ s0 and 1 < p < p′0.

Thus (5.10) is valid when t′ = u(β(ŝ)), j = 1, and 0 ≤ ŝ ≤ s0.
Next we observe for some c̃ = c̃(p) that

(5.19) c̃(u(β(s0))− t) ≥ s = u(w1).

In fact, from the definition of s0 and the cigar condition on β we have

(5.20) cd(β(s0), ∂Ω(t)) ≥ d(w1, ∂Ω(t)).
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Also, if w′ ∈ τ ∩ β, then cd(w′, ∂Ω(t)) ≥ d(w1, ∂Ω(t)) as follows from Lemma 2.8
(α′) and Lemma 2.7 (δ). Using this fact, Harnack’s inequality for u − t, the cigar
condition on τ, β, and (5.1) we see there exists c = c(p) such that

s/c ≤ u(w1)− t = s− t ≤ c (u(w′)− t) ≤ c2(u(β(s0))− t),

which implies (5.19). From (5.19) and the earlier assumption on t′ we deduce that
it remains only to prove (5.10) for j = 1 when s/c̃ ≤ t′ ≤ s, where c̃ is as in (5.19).
From this observation and (5.6) we see that σ(ŷ1, [1 − s, 1 − s/c̃]) can be covered
by at most c = c(p) balls of the form B(ζ, 12d(ζ, ∂Ω(t))). Using properties of the
distance function and either (5.4) or our earlier work we deduce that (5.10) holds
for s/c̃ ≤ t′ ≤ s. Thus (5.10) is valid when j = 1. The proof of (5.10) when j = 2
is essentially the same, so we omit the details.

From (5.10) and (5.4) we see that if 1 < p < p′0, then there exists c∗, 1 ≤ c∗ ≤
c(p), with
(5.21)
c∗d(w1, ∂Ω) = sup{|ζ−w̃4| : either ζ ∈ σ(ŷi, [1−s, 1−t]), i = 1, 2, or ζ ∈ T (α, s)}.
Let α′ ⊂ ∂Ω(t0) satisfy

T (α′, t) = φ̂ = ∂Ω′
1 ∩ ∂Ω1

and put

U =
⋃

t<t′<s

T (α′, t′) .

Note from the definition of U that u ≤ s in U. In our proof of Proposition 4.15
for 1 < p < p′0 we shall need several more lemmas. The next lemma gives a decay
estimate for ũ = u− t far away from w̃4.

Lemma 5.22. Let 1 < p < p′0, w ∈ U, and c∗ as in (5.21). There exists c = c(p) ≥ 1
and γ = γ(p), 0 < γ < 1, such that if w ∈ U \B(w̃4, 2c∗d(w1, ∂Ω(t))), then

ũ(w) ≤ cs

(
|w − w̃4|

d(w1, ∂Ω(t))

) p−2−γ
p−1

.

Proof. We prove Lemma 5.22 by an iterative type argument. More specifically let
k be a positive integer, ρk = 2kc∗d(w1, ∂Ω(t)) and Uk = U \B(w̃4, ρk). Set

λkρ
(p−2)/(p−1)
k = max

Uk

ũ .

We show there exists η ∈ (0, 1) such that

(5.23) λk+1 ≤ (1− η)λk for k = 1, 2, . . . .

Iterating this inequality for k = 1, . . . , n and using s ≥ λ1ρ
(p−2)/(p−1)
1 we then get

max
Un+1

ũ ≤ 16s (1− η)n (ρn+1/ρ1)
(p−2)/(p−1)

for n = 1, 2, . . . , which is easily seen to imply Lemma 5.22. Therefore to complete
the proof of Lemma 5.22 we only need to prove (5.23). To this end let

g(w) = λk|w − w̃4|(p−2)/(p−1), w ∈ Uk,

q(w) = g(w)− ũ(w), w ∈ Uk,

Vk = Uk ∩ ∂B(w̃4, 2
1/2ρk ),
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for k = 1, 2, . . . To estimate q on Vk we consider two cases. First if w ∈ Vk, 0 < δ <
1/2, and

(5.24) d(w, ∂Uk) ≤ δρk,

then from Lemma 2.2 and the fact that ũ = 0 on ∂U ∩ ∂U1 we have

(5.25) ũ(w) ≤ cδαλkρ
(p−2)/(p−1)
k ≤ λk(1− ε)|w − w̃4|(p−2)/(p−1),

where 0 < ε ≤ 1/4 provided δ is chosen small enough. With δ now fixed we conclude
from (5.25) that

(5.26) q(w) ≥ ελk|w − w̃4|(p−2)/(p−1) for w ∈ Vk ∩ {w′ ∈ Uk : d(w′, ∂Uk) ≤ δρk} .
If w ∈ Vk and (5.24) is false, we note for j = 1, 2, and w′, ζ ′ ∈ C \ {0}, that
(5.27)

|ζ ′|p−2 ζ ′j − |w′|p−2 w′
j =

∫ 1

0

d
dθ{|θζ + (1− θ)w′|p−2 [θζ ′i + (1− θ)w′

j ]}dθ

=
2∑

l=1

(ζ ′ − w′)j

(∫ 1

0

alj [θζ
′ + (1− θ)w′]dθ

)
,

where, for 1 ≤ l, j ≤ 2, and ξ ∈ C \ {0},
(5.28) alj(ξ) = |ξ|p−4 [(p− 2)ξlξj + δlj |ξ|2].
In this display δlj denotes the Kronecker delta. Using (5.27), (5.28), and the fact
that g, ũ are p harmonic on Uk with nonvanishing gradients we see that if

Alj(w
′) =

∫ 1

0

alj [θ∇g(w′) + (1− θ)∇ũ(w′)] dθ,

whenever w′ ∈ Uk, and 1 ≤ l, j ≤ 2, then
(5.29)

L̃ q(w′) = ∇ ·
(
|∇g|p−2∇g − |∇ũ|p−2∇ũ

)
(w′) =

2∑
l,j=1

∂

∂w′
l

[Alj(w
′) qw′

j
] = 0 .

Next observe from (5.28), Lemma 2.5, as well as the definiton of Alj , that for
w′ ∈ Uk \ Uk+1 with d(w′, ∂Uk) ≥ δρk/8 and ξ ∈ C \ {0}, we have

(5.30)

(∗) c−1δ2−pλp−2
k ρ

(2−p)/(p−1)
k |ξ|2 ≤ (|∇g(w′)|+ |∇ũ(w′)|)p−2 |ξ|2

≤
2∑

l,j=1

Alj(w
′)ξiξj ,

(∗∗)
2∑

l,j=1

|Aij(w
′)| ≤ c(|∇g(w′)|+ |∇ũ(w′)|)p−2 ≤ c2λp−2

k ρ
(2−p)/(p−1)
k ,

where c depends only on p since δ is fixed. Dividing both inequalities by

λp−2
k ρ

(2−p)/(p−1)
k we conclude that q satisfies a uniformly elliptic equation with

uniformly bounded coefficients when w′ ∈ Uk \Uk+1 and d(w′, ∂Uk) ≥ δρk/8. It fol-
lows from this discussion and Harnack’s inequality for partial differential equations
as above that if w′ ∈ Vk and d(w′, ∂Uk) ≥ δρk/2, then

(5.31) 0 < max
B(w′,δρk/8)

q ≤ c min
B(w′,δρk/8)

q,
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where c ≥ 1 depends only on p. Using this fact we deduce that if (5.24) is false, then
w can be connected to a point w′′ in Vk ∩ {w′ : δρk/2 ≤ d(w′, ∂Uk) ≤ δρk} by a
Harnack chain of balls with radii ≥ δρk/8 and centers in {w′ : d(w′, ∂Uk) ≥ δρk/2}.
Applying (5.31) at most c/δ times beginning with w′′ we get for some ε1 = ε1(p) > 0
that

(5.32) q(w) ≥ ε1λk|w − w̃4|(p−2)/(p−1) on Vk ∩ {w : d(w, ∂Uk) ≥ δρk}.
If η = min(ε, ε1), then in view of (5.32), (5.26), we have

q(w) ≥ ηλk |w − w̃4|(p−2)/(p−1) for w ∈ Vk

or equivalently ũ ≤ (1 − η)g on Vk. From this equivalence, the fact that ũ = 0 on
∂U ∩∂U1, and the maximum principle for p harmonic functions we conclude (5.23).
The proof of Lemma 5.22 is now complete. �

Lemma 5.33. If 1 < p < p′0, then for some c = c(p),∫
U

|∇u|p−1

|w − w̃4|
dA ≤ c sp−1 d(w1, ∂Ω(t))

2−p.

Proof. Let Uk, k = 1, 2, . . . , be as in Lemma 5.22 and put

U ′
k = U ∩B(w̃4, 2

−kc∗d(w̃1, ∂Ω(t)), k = −2,−1, 0, 1, 2, . . . .

We write

(5.34)

∫
U

|∇u|p−1

|w − w̃4|
dA =

∫
U\U2

. . . dA+

∫
U2

. . . dA = I1 + I2 .

To estimate I1 we note that for c = c(p) large enough
(5.35)∫

U ′
k\U ′

k+1

|∇u|p−1

|w−w̃4| dA ≤ c

(∫
U ′

k\U ′
k+1

|∇u|p dA
)1−1/p

(2−kd(w1, ∂Ω(t)))
(2−p)/p

≤
(∫

U

|∇u|p dA
)1−1/p

(2−kd(w1, ∂Ω(t)))
(2−p)/p .

Now from the co-area theorem, the definition of U, and (5.3) we deduce that∫
U

|∇u|p dA =

∫ s

t

(∫
T (α′,t′)

|∇u|p−1dH1

)
dt′ ≤ csp d(w1, ∂Ω(t))

2−p.

Using this inequality in (5.35) and summing the resulting inequality from −2 to ∞
we find that

(5.36) I1 ≤ c sp−1 d(w1, ∂Ω(t))
2−p .

To estimate I2 we use Lemmas 2.1, 2.2 applied to ũ, Lemma 5.22, and the fact that
ũ ≡ 0 on ∂U ∩ ∂U1 to get for k = 2, 3, . . . ,
(5.37)∫

Uk\Uk+1

|∇u|p−1

|w−w̃4| dA ≤ c

(∫
Uk\Uk+1

|∇u|p dA
)1−1/p

[2kd(w1, ∂Ω(t))]
(2−p)/p

≤ c d(w1, ∂Ω(t))
2−p 2k(2−p)(max

Uk−1

ũ)p−1 ≤ c2 sp−1 d(w1, ∂Ω(t))
2−p 2−γk .
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Summing (5.37) from 1 to ∞ we obtain first (5.36) with I1 replaced by I2 and then
Lemma 5.33. �

Next we state

Lemma 5.38. Let z, α′ be as in the definition of U and fix p, 1 < p < 2. Then
there is a compact set E ⊂ α′ ⊂ ∂Ω(t0) and c = c(p) ≥ 1 such that

(a) 2μt(T (E, t)) ≥ μt(T (α
′, t)).

Also, if w ∈ T (E, t), then

(b) Ntṽ
(m−1)/8(w) ≤ cMt(Ntṽ

(m−1)/8)(z),

(c)

∫
σ(ŵ,[1−s,1−t])

|∇u|p−1 dH1 ≤ cμt(T (α
′, t)) ≈ sp−1d(w1, ∂Ω(t))

2−p .

Proof. Observe from the usual weak type estimates that for each a > 0,
(5.39)

a
μt({w ∈ T (α, t) : Ntṽ

(m−1)/8(w) > a})
μt(T (α, t))

≤

∫
T (α,t)

Ntṽ
(m−1)/8(w′)dμt(w

′)

μt(T (α, t))

≤ cMt(Ntṽ
(m−1)/8)(z)

since z ∈ I(w1) = T (α, t). Now α′ ⊂ α and from (5.2), (5.3), we see that μt(T (α, t))
≈ μt(T (α

′, t)). Using these facts and (5.39) we deduce the existence of a compact

set Ê1 ⊂ α′ with μt(T (Ê1, t)) ≥ 3
4μt(T (α

′, t)) and the property that Lemma 5.38

(b) holds for w ∈ T (Ê1, t), provided c is suitably large.
To prove (c) of Lemma 5.38 first suppose 1 < p < p′0. We observe from either

the co-area or the change of variables theorem, as in (3.5) and Lemma 5.33, that

(5.40)

∫
α′

(∫
σ(ŵ,[1−s,1−t))

|dσ/dt′(σ(ŵ,1−t′))|
|σ(ŵ,1−t′)−w̃4 | dt′

)
dμt0(ŵ) =

∫
U

|∇u|p−1

|w−w̃4| dA

≤ csp−1 d(w1, ∂Ω(t))
2−p ≈ μt(T (α

′, t)).

To estimate the first integral in (5.40) observe for a positive integer n > 1, that
(5.41)

c

∫
σ(ŵ,[1−s,1−t))∩U\Un

|dσ/dt′(σ(ŵ, 1− t′))|
|σ(ŵ, 1− t′)− w̃4 |

dt′ ≥ H1[σ(ŵ, [1− s, 1− t)) ∩ U \ Un]

2nd(w1, ∂Ω(t))
.

Also, if n is a large positive integer and α′′ = {x̂ ∈ α′ : σ(x̂, [1 − s, 1 − t)) ∩ Un �=
∅}, ŵ ∈ α′′, then for 1 ≤ k ≤ n,

(5.42)

∫
σ(ŵ,[1−s,1−t))∩Uk\Uk+1

|dσ/dt′(σ(ŵ, 1− t′))|
|σ(ŵ, 1− t′)− w̃4 |

dt′ ≥ 1/2.

Summing (5.42) from k = 1 to n it follows that

(5.43)

∫
σ(ŵ,[1−s,1−t))∩U\Un

|dσ/dt′(σ(ŵ, 1− t′))|
|σ(ŵ, 1− t′)− w̃4 |

dt′ ≥ n/2.

From (5.43), (5.40), and weak type estimates we deduce

μt0(α
′′) ≤ cn−1μt0(α

′)
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for 1 < p < p′0, and thereupon from (5.41) for n = n(p) large enough that there

exists a compact set Ê2 ⊂ α′ \ α′′ with
(5.44)

μt0(Ê2) ≥ 3μt0(α
′)/4 and H1[σ(ŵ, [1− s, 1− t))] ≤ cd(w1, ∂Ω(t)) for ŵ ∈ Ê2 .

We now prove (5.5) when 1 < p < p′0 and ŷ ∈ Ê2. Indeed let {B(ζj , ρj)} be the
covering of σ(ŷ, [1− s, 1− t)) defined above (5.7). In view of (5.44) we see for some
b = b(p), 0 < b < 1, and c = c(p) ≥ 1, that
(5.45)∫
B(ζj ,ρj)∩σ(ŷ,[1−s,1−t))

|∇ũ|p−1dH1≤cũ(ζj)
p−1ρ2−p

j ≤csp−1 bj(p−1) d(w1, ∂Ω(t))
2−p .

Summing this inequality we get (5.5) and Lemma 5.38 (c) when ŵ ∈ Ê2 and

1 < p < p′0. Lemma 5.38 (c) for p′0 ≤ p < 2, and ŵ ∈ Ê2 follows directly from

(5.5). Let E = Ê1∩ Ê2. Lemma 5.38 is a consequence of the above remarks, (5.44),

and the definition of Ê1 below (5.39). �

5.1. Proof of Proposition 4.15. To begin the proof of Proposition 4.15 let

z(t′), 0 ≤ t′ ≤ 1, be a parametrization of φ̂ = T (α′, t) with z(0) = w̃5, z(1) = w̃6.
Let

(5.46) t1 = min{t′ : z(t′) ∈ T (E, t)} and t2 = max{t′ : z(t′) ∈ T (E, t)}.
Choose x̂1, x̂2 ∈ E with σ(x̂j , 1 − t) = z(tj), j = 1, 2. Let α̃ ⊂ α′ ⊂ α be the arc
of ∂Ω(t0) containing E and with endpoints x̂1, x̂2. From Lemma 2.38 and (5.2) we
see that

(5.47) μt(T (α̃, t)) ≈ μt(T (α, t)) ≈ sp−1 d(w1, ∂Ω(t))
2−p.

From Lemma 2.5 we note that there exists c− = c−(p) ≥ 1 such that if

(5.48) c−d(w, ∂Ω(t)) ≤ d(w1, ∂Ω(t))

for all w ∈ T (α̃, s), then Ntṽ(z) = ṽ(w1) ≤ ṽ(w) for all w ∈ T (α̃, s) and

Ntṽ
2m(z)μs(T (α̃, s)) ≤

∫
T (α̃,s)

|∇u|p−1 ṽ2m(w)dH1w.

Otherwise we consider two cases. If (5.48) holds for some points in T (α̃, s) and
fails for other points on this arc, then by continuity of d(·, ∂Ω(t)) there exists
a point w′ in T (α̃, s) for which equality holds in (5.48) with w = w′. If w ∈
B(w′, d(w′, ∂Ω(t))/4) ∩ T (α̃, s) = Q we deduce from Lemma 2.5 and Harnack’s
inequality for ũ that

(5.49) Ntṽ(z) ≤ ṽ(w′) ≤ ṽ(w) + c for some c = c(p).

From basic geometry, Lemma 2.5, (3.11), and (5.47) we also have

(5.50) c2μs(Q) ≥ csp−1d(w1, ∂Ω(t))
2−p ≥ μs(T (α̃, s)).

Combining (5.49), (5.50), we find the existence of c̄ = c̄(p) ≥ 1 such that

(5.51) Ntṽ
2m(z)μs(T (α̃, s)) ≤ c̄

∫
T (α̃,s)

|∇u|p−1(ṽ + c̄)2m dH1.

If (5.48) is false for all w ∈ T (α̃, s) and w1 ∈ T̄ (α̃, s), we can argue as above with
w′ = w1 to obtain (5.51). If (5.48) is false and w1 �∈ T̄ (α̃, s), we let Γ ⊂ T (α, s)
denote the arc joining an endpoint of T (α̃, s) to w1 with T (α̃, s) ∩ Γ = ∅. Let w′
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be either the first point on Γ (proceeding from T (α̃, s)) where (5.48) holds with
equality or if no such point exists let w′ = w1. From (5.4) and falseness of (5.48)
we see that Γ∪ T (α̃, s) can be covered by a finite number (depending only on p) of
balls with radii ≈ d(w1, ∂Ω(t)). Using this fact and Lemma 2.5, as well as Harnack’s
inequality for ũ, we see that (5.49) is still valid whenever w ∈ T (α̃, s). Thus (5.51)
holds in this case also. We conclude from the above remarks that (5.51) is true in
general.

To estimate the integral in (5.51) we note from (4.17) that for some c′ = c′(p) ≥ 1,

(5.52) Ntṽ(z) ≤ c′ log(4/t) whenever z ∈ ∂Ω(t).

Thus (ṽ+ c)2(w) ≤ ṽ2(w)+ c′′ log(4/t) for some c′′ = c′′(p) ≥ 1 whenever w ∈ Ω(t).
Using this inequality and the binomial theorem we conclude for ĉ large enough that

(5.53)

c̄

∫
T (α̃,s)

|∇u|p−1 (ṽ + c̄)2mdH1

≤ m!
m∑

k=0

(ĉ)k+1

(m− k)!
logk(4/t)

∫
T (α̃,s)

|∇u|p−1ṽ2m−2kdH1.

Put Ũ =
⋃

t<t′<s T (α̃, t
′). Let

J2m−2k =

∫
T (α̃,s)

|∇u|p−1ṽ2m−2kdH1

for k a nonnegative integer, 0 ≤ k ≤ m, and definem1 relative tom as in Proposition
4.15. Now if m1 ≤ k ≤ m, then for some c̃ = c̃(p) we have

(5.54) J2m−2k ≤
∫
T (α,t)

|∇u|p−1Ntṽ
2m−2kdH1 ≤ c̃μs(T (α̃, s))Mt(Ntṽ

2m−2k)(z)

thanks to (5.47), (3.11), and z ∈ T (α, t). If 0 ≤ k < m1, we use the divergence
theorem as in (4.4), (4.5) with f = ṽ2m−2k to obtain

(5.55)

Ŝ =

∫
Ũ

[ũ Lf − f Lũ]dA =

∫
Ũ

ũ (P ′
2m−2k − P ′′

2m−2k)dA

= −
∫
∂Ũ

2∑
i,j=1

bij νif ũxj
dH1 +

∫
∂Ũ

2∑
i,j=1

bij νifxj
ũ dH1

= K+
2m−2k +K++

2m−2k,

where ν = (ν1, ν2) is the outer unit normal to ∂Ũ . Moreover,

(5.56) K+
2m−2k = (p− 1)

∫
T (α̃,t)

|∇u|p−1 f dH1 − (p− 1)

∫
T (α̃,s)

|∇u|p−1 f dH1 .

Here we have used the fact that ∇u(σ(·, 1 − t′)) is tangent to σ(·, 1 − t′). From
(5.56), (3.11), (5.47), and z ∈ T (α, t) we get for some c = c(p) that

(5.57) J2m−2k ≤ cμs(T (α̃, s))Mtf(z) + (p− 1)−1|K+
2m−2k|.
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Let φi, i = 1, 2, denote the arcs, σ(x̂i, 1− τ ), t < τ < s. Then
(5.58)

K++
2m−2k =

(∑2
i,j,l=1

∫
φl
ũ bij νi fxj

dH1
)
+
(∫

T (α̃,s)
ũ
∑2

i,j=1 bij νi fxj
dH1

)

= I ′2m−2k + I
′′

2m−2k.

From Lemmas 2.5, 2.6, (1.10), and (5.52) we find for some c = c(p) that
(5.59)

|I ′′

2m−2k| ≤ c(m− k)

∫
T (α̃,s)

|∇u|p−1ṽ2m−2k−1dH1 ≤ c2(m− k) log(4/t)J2m−2k−2.

Also arguing first as in (5.59) and then using Lemma 5.38, (3.11) we get for some
c = c(p) that
(5.60)

|I ′

2m−2k| ≤ c(m− k) log(4/t)

⎡
⎣∑
i=1,2

Ntṽ
2m−2k−2(σ(x̂i, 1− t)

∫
φi

|∇u|p−1dH1

⎤
⎦

≤ c2(m− k) log(4/t)μs(T (α̃, s))
(
Mt(Ntṽ

(m−1)/8)(z)
) 16(m−k−1)

m−1 .

Using (5.59), (5.60) in (5.58) we obtain for c = c(p) large enough that
(5.61)
|K++

2m−2k|

≤ c(m− k) log(4/t)

[
μs(T (α̃, s))

(
Mt(Ntṽ

(m−1)/8)(z)
) 16(m−k−1)

m−1 + J2m−2k−2

]
.

From (5.55) we also deduce that

(5.62)
|K̂+

2m−2k| ≤ |K̂++
2m−2k|+

∫
U
ũ(P ′

2m−2k + P ′′
2m−2k)dA

≤ |K̂++
2m−2k|+ μt(T (α, t))g2m−2k(z).

Using (5.61), (5.62) in (5.57) and (5.47), (3.11) we conclude for some c = c(p) ≥ 1
that
(5.63)
J2m−2k ≤ cμs(T (α̃, s))Mtf(z) + (p− 1)−1|K+

2m−2k|

≤ c2μs(T (α̃, s))(Mtṽ
2m−2k + g2m−2k)(z) + (p− 1)−1|K̂++

2m−2k|

≤ c3μs(T (α̃, s))(Mtṽ
2m−2k + g2m−2k)(z)

+ c3(m− k) log(4/t)

[
μs(T (α̃, s))

(
Mt(Ntṽ

(m−1)/8)(z)
) 16(m−k−1)

m−1 + J2m−2k−2

]
.

If k + 1 = m1 we replace J2m−2k−2 by μs(T (α̃, s))Mt(Ntṽ
2(m−m1))(z) in (5.63)

and quit. Otherwise we repeat the above argument with k replaced by k + 1 and
replace J2m−2k−2 by the resulting expression. If k+2 = m1 we replace J2m−2k−4 by
μs(T (α̃, s))Mt(Ntṽ

2(m−m1))(z) and quit. Otherwise we repeat the above argument
with k replaced by k+2. Continuing in this manner we eventually find (after division
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by μs(T (α̃, s)) that for some c = c(p),
(5.64)

J2m−2k

μs(T (α̃, s))
≤

m1−k−1∑
l=0

cl+1 (m−k)!
(m−k−l)! log

l(4/t)
[
Mtṽ

2m−2k−2l + g2m−2k−2l

]
(z)

+

m1−k∑
l=1

[
cl (m−k)!

(m−k−l)! log
l(4/t)

(
Mt(Ntṽ

(m−1)/8)
) 16(m−k−l)

m−1

]
(z)

+cm1−k logm1−k(4/t) (m−k)!
(m−m1)!

Mt(Ntṽ
2(m−m1))(z).

Using (5.64), (5.54), (5.53), in (5.51) it follows that

(5.65) Ntṽ
2m(z) ≤ Λ′

2m(z) + Λ′′
2m(z) + Λ′′′

2m(z),

where at z,
(5.66)

Λ′
2m ≤ m!

m1−1∑
k=0

ĉk+1 logk(4/t)

×
(

m1−k−1∑
l=0

cl+1 1

(m− k − l)!
logl(4/t)

[
Mtṽ

2m−2k−2l + g2m−2k−2l

])

≤
m1−1∑
j=0

cj+1
∗ logj(4/t) m!

(m−j)! [Mtṽ
2m−2j + g2m−2j ] = Y ′

2m

for c∗ large enough where the second line follows from the first line after putting
k + l = j, and rewriting the double sum in terms of a single sum with summation
index j, as well as a ballpark estimate. Also using the same strategy at z,
(5.67)
Λ′′
2m

≤ m!

m1−1∑
k=0

ĉk+1 logk(4/t)

m1−k∑
l=1

[
cl 1

(m−k−l)! log
l(4/t)

(
Mt(Ntṽ

(m−1)/8)
) 16(m−k−l)

m−1

]

≤ Y ′′
2m

and

(5.68)

Λ′′′
2m ≤ logm1(4/t) m!

(m−m1)!
cm1Mt(Ntṽ

2(m−m1))

(
m1−1∑
k=0

ĉk+1c−k

)

+ cm!

m∑
k=m1

(ĉ)k+1

(m−k)! log
k(4/t)Mt(Ntṽ

2m−2k) ≤ Y ′′′
2m.

Using (5.66)-(5.68) in (5.65) we conclude the validity of Proposition 4.15. �

The proof of Theorem 1(b) is now complete. �
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6. Appendix

In this section we sketch proofs of Lemma 2.2 when p > 2 and Lemma 2.8. We
begin with Lemma 2.2.

6.1. Proof of Lemma 2.2 when p > 2. Fix p > 2 and let Ω, ũ, r, w be as in
Lemma 2.2. The proof of Hölder continuity in Lemma 2.2 for p > 2 and some α > 0
is a consequence of Morrey’s lemma for Sobolev functions or classical theory for
partial differential equations. Classical theory shows in fact that minp∈(2,3) α(p) >
0. Also using Lemma 2.5 one can argue that it suffices to prove Hölder continuity of
ũ for some α > p−2 when one point lies in B(w, r)∩∂Ω. Finally, using an iterative
argument as in Lemma 5.22 one can further reduce the proof of Lemma 2.2 when
p > 2 to an inequality similar to (5.23). Thus if ρk = 2−kr and Bk = B(w, ρk)∩Ω,
then it suffices to show there exists η > 0 for k = 1, 2, . . . such that if

(6.1) λkρ
(p−2)/(p−1)
k = max

Bk

ũ, k = 1, 2, . . . , then λk+1 ≤ (1− η)λk.

To this end one defines as below (5.23)

g(z) = λk|z − w|(p−2)/(p−1), z ∈ Bk,

q(z) = g(z)− ũ(z), z ∈ Bk,

Vk = Bk ∩ ∂B(w, 2−1/2ρk ),

for k = 1, 2, . . . . To estimate q on Vk as in Lemma 5.22 one considers two cases.
First, if w′ ∈ Vk, 0 < δ < 1/2, and

(6.2) d(w′, ∂Ω) ≤ δρk,

then from the above remarks we deduce for ε > 0 small that

(6.3) ũ(w′) ≤ cδαλkρ
(p−2)/(p−1)
k ≤ λk(1− ε)|w′ − w|(p−2)/(p−1),

provided δ is chosen small enough and w′ ∈ Vk∩{w̄ : d(w̄, ∂Ω) ≤ δρk}. Equivalently

q(w′) ≥ εg(w′)

when w′ ∈ Vk ∩ {w̄ : d(w̄, ∂Ω) ≤ δρk}. Moreover, arguing as in (5.27)-(5.32) one
deduces that this inequality is valid with ε replaced by ε1 = ε1(p) > 0, whenever
w′ ∈ Vk \ {w̄ : d(w̄, ∂Ω) ≥ δρk}. Using the maximum principle for p harmonic
functions we deduce first that (6.3) holds when w′ ∈ Bk+1 with ε replaced by
sufficiently small η = η(p) > 0 and thereupon from (6.3) that (6.1) is valid. This
concludes our sketch of the proof of Lemma 2.2 when p > 2. �

6.2. Proof of Lemma 2.8. To outline the proof of Lemma 2.8 we first indicate
some results from [LNP11]. For this purpose let f be the Riemann mapping function
from H = {z = x1 + ix2 : x2 > 0} onto Ω(t) with f(i) = 0 andf(a) = z1, where
a = is for some 0 < s < 1. Then f extends continuously to H, since ∂Ω(t) is a
Jordan curve. If b = b1 + ib2 ∈ H, let I(b) = {x ∈ R : b1 − b2 ≤ x ≤ b1 + b2}. Next
we state Lemma 4.7 in [LNP11] using a slightly different notation.
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Lemma 6.4. If b ∈ H, then there exists a compact set K = K(b) ⊂ I(b) with
the following properties. If L ⊂ I(b) is an interval with H1(L) ≥ b2/100, then
H1(L ∩K) ≥ b2/1000 and if x ∈ L ∩K, then

(a)

∫ b2

0

|f ′(x+ iy)|dy ≤ ĉ1d(f(b), ∂Ω(t)) for some absolute ĉ1,

(b) if 0 < δ < 10−100, and δ∗ = exp[−ĉ21/δ], then∫ δ∗b2

0

|f ′(x+ iy)|dy ≤ δd(f(b), ∂Ω(t)),

(c) if {τ1, . . . , τm} is a set of points in I(b), then there exists τm+1 ∈ K ∩ L

with |f(τm+1)− f(τj)| ≥ d(f(b),∂Ω(t))
1010m2 , 1 ≤ j ≤ m.

To outline the proof of Lemmas 2.7 and Lemma 2.8 we first apply Lemma 6.4
with b = a = is, to deduce for given δ > 0, sufficiently small (depending only on
p), that there exists xi, 1 ≤ i ≤ 5, with −s < x1 < −4s/5, − 3

5s < x4 < − 2
5s,

− 1
5s < x3 < 1

5s,
2
5s < x5 < 3

5s,
4
5s < x2 < s, satisfying Lemma 6.4 (a), (b) with

x replaced by xj , 1 ≤ j ≤ 5. Moreover, (c) holds with m = 5 and τj replaced by
xj , 1 ≤ j ≤ 5. Let zj+1 = f(xi), j = 1, 2, and let ξ consist of the horizontal line
segment from x1 + is to x2 + is, together with the vertical line segments from xj

to xj + is, for j = 1, 2. Then λ = f(ξ). Also, τ = f(η) where η =
∑∞

k=1 ηk. If
ak = tk + isk, k = 0, 1, . . . , then ηk joins ak−1 to ak and consists of a horizontal
line segment followed by a vertical line segment pointing down. Here s0 = s, t0 =
0, t1 = x3 and sk = δ∗sk−1. {tk} is chosen inductively using Lemma 6.4 (b) so that
tk ∈ K(tk−1 + isk−1) with

(6.5) |tk − tk−1| ≤ sk−1/4 and

∫ sk

0

|f ′(tk + it)|dt ≤ δd(f(ak−1, ∂Ω(t)).

From (6.5) and the choice of {sk} one can show that limt→1 η(t) = x′
3 and |x′

3−x3| ≤
cδ∗, where c is an absolute constant. Then f(x′

3) = z4. This completes our outline
of the construction of λ, τ in Lemma 2.7.

The construction of β is similar. we write β = f(θ), where θ = θ0∪θ4∪θ5. Let θ0
be the horizontal line segment from x4+is/2 to x5+is/2. Next, let s′0 = s/2, t′4,0 =

x4, t
′
5,0 = x5, and s′k = δ∗s

′
k−1, for k = 1, 2, . . . . Then θj =

∑∞
k=1 θj,k, j = 4, 5,

where θj,k consists of a downward pointing vertical segment followed by a horizontal
segment joining a′j,k−1 = t′j,k−1 + is′k−1 to a′j,k for j = 4, 5, and k = 1, 2, . . . . Using

Lemma 6.4 one can choose t′j,k so that (6.5) is valid with {tk}, {sk} replaced by

{t′j,k}, {s′j,k} for j = 4, 5. Also, limt→1 θj(t) = x′
j , where |x′

j − xj | ≤ cδ∗ and

|f(x′
j)− f(xj)| ≤ cδd(f(a), ∂Ω(t)). Put zj+1 = f(x′

j) for j = 4, 5.

Finally to prove Lemma 2.8 (γ′) note from Lemma 2.7 (β), Harnack’s inequality,
and Lemma 2.8 (β′) that it suffices to consider the case when β(s) ∈ f(θj,k) for
j = 4, 5, and k ≥ 1. Suppose for example j = 4 and f(b) = β(s) with b = b1 + ib2.
Then from our construction the arc of θ4 from b to x′

4 is contained in the rectangle,
{(y1, y2) : 0 ≤ y2 ≤ b2, |b1 − y1| ≤ b2/2}. Using Lemma 6.4 it follows that there
exists b′1, b

′′
1 , b

′
1 < b1 < b′′1 ∈ K(b) with

3
4b2 < |b̄1 − b1| < b2 whenever b̄1 ∈ {b′1, b′′1}.
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Moreover,

min{|f(b′1)− f(b′′1)|, |f(b′′1)− f(b1)|, |f(b′1)− f(b1)|} ≥ c−1d(β(s), ∂Ω(t))

for some absolute c ≥ 1. Let b′ = b′1 + ib2, b
′′ = b′′1 + ib2 and let Q(b) ⊂ H be the

rectangle whose sides in H are a horizontal side from b′ to b′′ and vertical sides
joining b′, b′′ to b′1, b

′′
1 , respectively. Then Q(b) has the same properties as Q(a) in

[LNP11]. Thus we can apply the argument in section 5.2 of this paper to conclude
that u−t ≤ c(u(β(s))−t) in f(Q(b)) ⊃ β(0, s]. Hence Lemma 2.8 (γ′) is valid when
s ≤ s0. The proof for s > s0 is similar. This completes our sketch of the proof of
Lemma 2.8. �
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