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OPTIMAL TRANSPORTATION

WITH CAPACITY CONSTRAINTS

JONATHAN KORMAN AND ROBERT J. MCCANN

Abstract. The classical problem of optimal transportation can be formulated
as a linear optimization problem on a convex domain: among all joint measures
with fixed marginals find the optimal one, where optimality is measured against
a cost function. Here we consider a natural but largely unexplored variant
of this problem by imposing a pointwise constraint on the joint (absolutely
continuous) measures: among all joint densities with fixed marginals and which
are dominated by a given density, find the optimal one. For this variant, we
show that local non-degeneracy of the cost function implies every minimizer is
extremal in the convex set of competitors, hence unique. An appendix develops
rudiments of a duality theory for this problem, which allows us to compute
several suggestive examples.

1. Introduction

The optimal transportation problem of Monge [Mo81] and Kantorovich [K42]
has attracted much attention in recent years; see the surveys [AG11], [MG10],
[V03], [V09]. However, there is a variant of the problem which is almost as natural
but remains unexplored outside the discrete setting. This variant, tackled below,
involves imposing capacity constraints which limit the amount transported between
any given source and its corresponding sink.

Let L1
c(R

n) denote the space of L1(Rn)-functions with compact support, where
L1 is with respect to Lebesgue measure. In this paper functions typically represent
mass densities. Given densities 0 ≤ f, g ∈ L1

c(R
d) with same total mass

∫
f =

∫
g,

let Γ(f, g) denote the set of joint densities 0 ≤ h ∈ L1
c(R

d×R
d) which have f and g

as their marginals: f(x) =
∫
Rd h(x, y)dy and g(y) =

∫
Rd h(x, y)dx. The set Γ(f, g)

is a convex set.
A cost function c(x, y) represents the cost per unit mass for transporting material

from x ∈ R
d to y ∈ R

d. Given densities 0 ≤ f, g ∈ L1
c(R

d) with same total
mass, and a cost c(x, y), the problem of optimal transportation is to minimize the
transportation cost

Ic(h) :=

∫
Rd×Rd

c(x, y)h(x, y)dxdy(1)
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among joint densities h in Γ(f, g), to obtain the optimal cost

inf
h∈Γ(f,g)

Ic(h).(2)

In the context of transportation, a joint density h ∈ Γ(f, g) can be thought of as
representing a transportation plan.

In this paper we will sometimes refer to the traditional optimal transportation
problem as the unconstrained optimal transportation problem.

Given 0 ≤ h ∈ L∞(Rd × R
d) of compact support, we let Γ(f, g)h denote the

set of all h ∈ Γ(f, g) dominated by h, that is, h ≤ h almost everywhere. The set

Γ(f, g)h is a convex set.
The optimization problem we will be concerned with in this paper—the optimal

transportation with capacity constraints—is to minimize the transportation cost (1)

among joint densities h in Γ(f, g)h to obtain the optimal cost under the capacity
constraint h,

inf
h∈Γ(f,g)h

Ic(h).(3)

Interpretation. As an example of an optimal transportation problem in the dis-
crete case [V09, Chapter 3], consider a large number of bakeries producing loaves
of bread that should be transported (by donkeys) to cafés. The problem is to
find where each unit of bread should go so as to minimize the transportation cost.
The unconstrained optimal transportation problem assumes ideal donkeys that can
transport any amount of bread. The constrained version discussed here takes into
account the capacity limitations of the donkeys — assuming of course that each
(cafe, bakery) pair has a donkey at its disposal, and that no donkey services more
than one cafe and one bakery.

(a) h (b) h

Figure 1.

Example 1.1 (Constrained optimal solution concentrates on ‘diagonal tiles in a
2 × 2 checker board’ in response to an integer constraint). Let I be the closed
interval [− 1

2 ,
1
2 ] ⊂ R

1 and let f = g = 1I have constant density 1 on I (here 1I is

the characteristic function of the set I). Let h = 2 · 1I2 have constant density 2
on I2 (Figure 1(B)). Note that 0 ≤ f, g ∈ L1

c(I) have same total mass 1, and that

Γ(f, g)h �= ∅ since it contains 1I2 . Let c(x, y) = 1
2 |x − y|2. Then, as explained in

the appendix, Ic(·) attains its minimal value on Γ(f, g)h at (see Figure 1(A))

h(x, y) :=

{
2 on [− 1

2 , 0]× [− 1
2 , 0] ∪ [0, 1

2 ]× [0, 1
2 ],

0 otherwise.
(4)
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(a) h (b) h

(c) Δh

Figure 2.

Other examples can be derived from this one (see Remark 5.3). Lest such exam-
ples seem obvious, we also pose the following open problem.

Example 1.2 (Open problem). Let I, f, g and c be as in Example 1.1. Let h = 4·1I2

have constant density 4 on I2 (Figure 2(B)). After considering Example 1.1 it is

natural to guess that Ic(·) attains its minimal value on Γ(f, g)h at (see Figure 2(A))

h(x, y) :=

{
4 on S,
0 otherwise,

(5)

where S := [− 1
2 ,−

1
4 ]× [− 1

2 ,−
1
4 ] ∪ [− 1

4 , 0]× [− 1
4 , 0] ∪ [0, 1

4 ]× [0, 1
4 ] ∪ [ 14 ,

1
2 ]× [ 14 ,

1
2 ].

Surprisingly, this is not the case. The perturbation Δh in Figure 2(C) reduces the
total cost of h. Here ‘+’ represents adding δ mass and ‘−’ subtracting δ mass. Since
adding/subtracting mass near the diagonal has negligible cost, the net contribution
of Δh is dominated by the four minuses near the four points (− 1

4 , 0), (0,−
1
4 ), (0,

1
4 )

and ( 14 , 0). So Δh strictly reduces the total cost of h. We don’t know the true
optimizer for this example.

Example 1.3 (Constrained optimal solution with respect to periodic cost concen-
trates on ‘diagonal strip’). Let R2/Z2 be the periodic unit square (that is, R2 where
(x, y) is identified with (x′, y′) whenever x − x′, y − y′ ∈ Z), and put the periodic
cost function c(x, y) = infn∈Z |x − y − n|2 on it. Two fundamental domains are R
(see Figure 3(B)), and R′ (see Figure 3(A)).

The coordinate change x′ := y+ x, y′ := y− x maps R bijectively onto a square
of side-length

√
2, which can be identified with R′. The cost becomes c(x′, y′) =

infn∈Z |y′−n|2, which on R′ is just c(x′, y′) = y′2. Note that in the x′, y′ coordinates,
the cost is constant along lines parallel to x′. Given total mass 1 and constant
capacity bound h ≥ 1 on the periodic square, let

h0(x, y) :=

{
h on S,
0 otherwise,

(6)
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(a) R′
(b) R

Figure 3.

where S is a diagonal strip in R′ of width w = 1
h
√
2
and length

√
2 centered about

the diagonal x′ (see shaded strip in Figure 3(A)). From the simple form of the
cost in the x′, y′ coordinates it can be easily seen that h0 is the optimal way to
fit mass 1 into R′ while respecting the bound h: h0 = argmin h ≤ h

mass(h) = 1

∫
R′ ch. In

particular, h0 = argminh∈Γ(1I ,1I)h

∫
R′ ch, where 1I is equal to the marginals of h0.

As a function on R, h0 is supported on the shaded region in Figure 3(B).
Note that the uniqueness result, Theorem 8.1, still applies to this cost, since

it is C2 and non-degenerate outside of two diagonal line segments on the periodic
square.

Motivation. The thing to note from Example 1.1 is that at almost every point
of the underlying space, the density h of the optimal solution is either equal to 0
or to h, the density of the capacity bound. In the language developed below h is
geometrically extreme.

This example is special since the densities involved are both locally constant. It
is easy to see that when h and h are both constant in a neighbourhood of a point
(x0, y0), h(x0, y0) must either equal 0 or h(x0, y0): if 0 < h(x0, y0) < h(x0, y0), then
a standard perturbation argument (see proof of Lemma 6.1) shows that h cannot
be optimal.

In general h and h are not locally constant. But, one of the main insights we
exploit in this paper is that at an infinitesimal level they become constant: if we
blow up h and h at a (Lebesgue) point, the blow-ups have constant densities (see
(b) of Claim 4.2). In effect, blowing up allows us to reduce the general case to the
special case of locally constant densities, as is the case in Example 1.1.

Main result: Existence and uniqueness. Proving that solutions to the capac-
ity-constrained problem exist (Theorem 3.1) requires very minor modifications of
the direct argument familiar from the unconstrained case. The main result of this
paper is therefore the uniqueness theorem (Theorem 8.1). It says that under mild
assumptions on the cost and capacity bound, a solution to the capacity-constrained
problem is unique.

Strategy. Recall that a point of a convex set Γ is called an extreme point if it is

not an interior point of any line segment lying in Γ. A density h in Γ(f, g)h will be
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called geometrically extreme (see Definition 6.2) if there exists a (measurable) set
W ⊂ R

2d such that h(x, y) = h(x, y)1W (x, y) for almost every (x, y) ∈ R
2d. (Such a

density might be called ‘bang-bang’ in the optimal control context.) Observe that

a density is an extreme point of Γ(f, g)h if and only if it is geometrically extreme
(with respect to h).

It is well-known in the theory of linear programming that every continuous linear
functional on a compact convex set attains its minimum at an extreme point. Our
strategy for proving uniqueness in the problem at hand (Theorem 8.1) will be to
show that every optimizer is geometrically extreme (Theorem 7.2), hence is an

extreme point of Γ(f, g)h. Since any convex combination of optimizers is again
optimal (but fails to be geometrically extreme), it follows that no more than one
optimizer exists.

Remark. Once a solution is known to be geometrically extreme, the entire problem
is reduced to identifying the geometry of its support W . Example 1.1 shows the
boundary of W cannot generally be expected to be smooth. It is natural to wonder
how to characterize W , and what kind of geometric and analytic properties ∂W
will generally possess.

Main assumptions. The main two assumptions for the uniqueness result are that
the capacity constraint h is uniformly bounded, and that the cost c(x, y) is non-
degenerate (in the sense that detD2

xyc(x, y) �= 0 in equation (7)). Sufficiency of a
local condition for uniqueness is somewhat of a surprise; cf. the cylindrical exam-
ple of [MPW10, p. 10], which suggests that — except in one dimension — no local
hypothesis on the cost function is sufficient to guarantee uniqueness of minimizer
in the unconstrained case.

Remark. Although capacity constraints are quite standard in the discrete case, they
do not seem to have been much considered in the continuum setting. On the other
hand, the work of Brenier [B87], [B91] marks a turning point in our understanding
of unconstrained transportation in the continuum setting, and we were surprised
to discover that many of the insights gained in that context do not seem to adapt
easily to the capacity-constrained problem.

2. Notation, conventions, and assumptions

For a differentiable map T : Rn → R
m let DT denote the derivative of T , that

is, the Jacobian matrix of all partial derivatives
(

∂Ti

∂xj

)
1≤i≤m,1≤j≤n

.

Let D2c(x, y) denote the Hessian of c at the point (x, y), that is, the 2d × 2d
matrix of second order partial derivatives of the function c at (x, y). Let D2

xyc(x, y)
denote the d × d matrix of mixed second order partial derivatives of c at (x, y),

that is,
(

∂2c
∂xi∂yj

(x, y)
)
1≤i,j≤d

. Note that D2
xyc(x, y) is a submatrix of the Hessian

matrix:

D2c(x, y) =

(
D2

xxc(x, y) D2
xyc(x, y)

D2
yxc(x, y) D2

yyc(x, y)

)
.(7)

The n-dimensional Lebesgue measure on R
n will be denoted by Ln.
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Let πX : Rd × R
d −→ R

d : (x, y) �→ x and πY : Rd × R
d −→ R

d : (x, y) �→ y
be the canonical projections. For a density function h ∈ L1(Rd × R

d) denote its
marginals by hX and hY : hX(x) :=

∫
Rd h(x, y)dy and hY (y) :=

∫
Rd h(x, y)dx.

2.1. Assumptions on the cost. Consider the following assumptions on the cost:

(C1) c(x, y) is bounded,
(C2) there is a Lebesgue negligible closed set Z ⊂ R

d × R
d such that c(x, y) ∈

C2(Rd × R
d \ Z), and

(C3) c(x, y) is non-degenerate: detD2
xyc(x, y) �= 0 for all (x, y) ∈ R

d × R
d \ Z.

2.2. Assumptions on the capacity constraint. In section 3 and from section 5
onwards, we will always assume that h is measurable and non-negative, has compact
support, and is bounded on R

d × R
d = R

2d.
Given marginal densities 0 ≤ f, g ∈ L1

c(R
d) with the same total mass, to avoid

talking about the trivial case, we will always assume that a feasible solution exists:

Γ(f, g)h �= ∅.

Remark 2.1. To guarantee that the transportation cost Ic(h) is finite we require
h to have compact support: since the cost c is always assumed continuous and
bounded, h having compact support makes sure that Ic(h) ≤ Ic(h) < ∞ for all

h ≤ h. Note that when h has compact support, so will any density in Γ(f, g)h, as
well as f and g.

3. Existence

For simplicity we prove existence only in the case when h has compact support.

Theorem 3.1 (Existence). Assume that the cost c is continuous and bounded.
Take 0 ≤ h ∈ L∞(Rd × R

d) of compact support and let 0 ≤ f, g ∈ L1
c(R

d) be

marginal densities for which Γ(f, g)h �= ∅. Then the corresponding problem of
optimal transportation with capacity constraints (3) has a solution. That is, Ic(·)
attains its minimum value on Γ(f, g)h.

Proof. Let X,Y ⊂ R
d be compact subsets such that spt(h) ⊂ X × Y . Note that

the support of any h ∈ Γ(f, g)h is also contained in X × Y , and that spt(f) ⊂ X,
spt(g) ⊂ Y .

Since h is bounded and has compact support, h ∈ Lp(X × Y ) for all 1 ≤ p ≤ ∞;

in particular, h ∈ L2(X × Y ). Consequently Γ(f, g)h ⊂ L2(X × Y ).

We shall now specify a topology on L2(X×Y ) for which Γ(f, g)h is compact and
Ic(·) continuous. Existence then follows from the general fact that a continuous
function attains it minimum on a compact set. For X and Y compact, it is conve-
nient to use the weak-∗ topology, as in the unconstrained transportation problem
(e.g. [V03]). Since L2 is reflexive, the weak-∗ topology is the same as the weak
topology. For the sake of completeness, we outline the direct argument despite its
standard nature.

Give L2(X×Y ) the weak topology. By the Banach-Alaoglu Theorem any closed
ball Br(0) of radius r < ∞ in L2(X × Y ) is weak-∗, hence weak, compact. Note

that any h with 0 ≤ h ≤ h satisfies ||h||2 ≤ ||h||2 =: R < ∞. Hence Γ(g, h)h is

contained in BR(0). So in order to show that Γ(f, g)h is compact, it is enough to
show that it is closed.



OPTIMAL TRANSPORTATION WITH CAPACITY CONSTRAINTS 1507

Let hn be a sequence in Γ(f, g)h which converges weakly to h∞ ∈ BR(0). We

want to show h∞ ∈ Γ(f, g)h, that is, that h∞ is dominated by h almost everywhere
and has f and g as marginals.

Weak convergence means that for all ψ ∈ L2(X × Y ),

(8) lim
n→∞

∫
X×Y

hn(x, y)ψ(x, y) =

∫
X×Y

h∞(x, y)ψ(x, y).

Since hn ≤ h,
∫
hnψ ≤

∫
hψ for all non-negative ψ ∈ L2. Letting n → ∞,∫

h∞ψ ≤
∫
hψ for all non-negative ψ ∈ L2, hence h∞ ≤ h almost everywhere.

It is easy to see that (h∞)X = f by using the definition of weak convergence
(8) with ψ(x, y) := ψ(x)1Y (y), where ψ ∈ L2(X). A similar calculation shows that

(h∞)Y = g. It follows that Γ(f, g)h is weakly closed.

To see Ic(·) : Γ(f, g)h → R is continuous with respect to the weak topology, use
equation (8) with ψ(x, y) := c(x, y)1X×Y (x, y), which is in L2(X × Y ) since c is
assumed bounded, to conclude that

Ic(h∞) =

∫
h∞c = lim

n→∞

∫
hnc = lim

n→∞
Ic(hn).

Existence in the constrained case follows. �

4. Blowing up a density near a Lebesgue point

When 0 ≤ h is dominated by h ∈ L∞ it is also bounded. Even when h is
continuous, h ∈ L1 may not be continuous; as we have seen in Example 1.1; however,
it is necessarily measurable, belonging to L1. The notion of a Lebesgue point is a
substitute for the notion of a point of continuity in the measure theoretic context.
In this section we study the behaviour of h near its Lebesgue points.

Given a Lebesgue point (x0, y0) ∈ R
d ×R

d of 0 ≤ k ∈ L1
c(R

d ×R
d), consider the

constant function k∞(x, y) := k(x0, y0) defined on the unit cube Q := [− 1
2 ,

1
2 ]

d ×
[− 1

2 ,
1
2 ]

d. We call k∞ the blow-up of k at (x0, y0).

Let Qn = Qn(x0, y0) := (x0, y0) + [− 1
2n ,

1
2n ]

d × [− 1
2n ,

1
2n ]

d denote small cubical

neighbourhoods of volume ( 1n )
2d centered at (x0, y0) ∈ R

d × R
d.

Let ϕn : Q → Qn ⊂ R
d × R

d be given by ϕn(x, y) = (x0, y0) +
1
n (x, y). Let

kn : Q → R be defined by

(9) kn := k ◦ ϕn.

It will follow from Claim 4.2 that kn converges to k∞ strongly in L1(Q).

Definition 4.1. We call kn the blow-up sequence of k at (x0, y0). We call its limit
k∞, the blow-up of k at (x0, y0).

We recall some basic facts about Lebesgue points from [Ru87].
Let f ∈ L1(Rn). Any x ∈ R

n for which it is true that

lim
r→0

1

Ln[Br(x)]

∫
Br(x)

|f(y)− f(x)|dy = 0

is called a Lebesgue point of f . Here Br(x) denotes the open ball with center x and
radius r > 0. At a Lebesgue point x, an L1-function f has a well-defined value:

f(x) = lim
r→0

1

Ln[Rr(x)]

∫
Rr(x)

f(y)dy.
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Here {Rr(x)} is any sequence of sets which ‘shrink nicely’ to x (e.g. cubes, spheres).
If x is a point of continuity of f , then x is a Lebesgue point of f . In particular,

for a continuous function, every point is a Lebesgue point. Given f ∈ L1(Rn),
Lebesgue’s Theorem says that almost every point in R

n is a Lebesgue point of f .

Claim 4.2. Let (x0, y0) be a Lebesgue point of 0 ≤ k ∈ L1
c(R

d×R
d). Let kn denote

the blow-up sequence of k at (x0, y0) and let k∞ denote the blow-up of k at (x0, y0).
Then:

(a) kn → k∞ strongly in L1(Q), i.e. ||kn − k∞||L1(Q) → 0,

(b) kn(x, y) = k( 1
nx+ x0,

1
ny + y0) on Q.

Proof. (a) Letting ϕn denote the dilation from (9) yields∫
Q

|kn − k∞|dxdy =

∫
Q

|(k − k(x0, y0)) ◦ ϕn|dxdy

=
1

L2d[Qn]

∫
Q

|(k − k(x0, y0)) ◦ ϕn||detDϕn|dxdy

=
1

L2d[Qn]

∫
Qn

|(k(x, y)− k(x0, y0))|dxdy → 0,

as n → ∞. The first equality is the definition of kn, and the second equality uses

|detDϕn(x, y)| =
∣∣∣∣ 1

nd 0
0 1

nd

∣∣∣∣ = 1
n2d = L2d[Qn]. The last equality follows from the

change of variable formula, and the limit at the end follows from (x0, y0) being a
Lebesgue point of k.

(b) follows immediately from the definition of ϕn. �

For later use we record the following immediate consequence of the above claim.

Remark 4.3. Let 0 ≤ h ∈ L∞(Rd × R
d) have compact support. Suppose that

0 ≤ h ≤ h and that (x0, y0) is a common Lebesgue point of h and h. Then, letting
hn and h̄n denote the blow-up sequences of h and h̄ at (x0, y0),

(a) h∞(x, y) = h(x0, y0) on Q and ||hn − h∞||L1(Q) → 0, and

(b) h∞(x, y) = h(x0, y0) on Q and ||hn − h∞||L1(Q) → 0.

The following proposition clarifies the nature of convergence of hn on Q. It says

that (for a subsequence n(i)) Q can be partitioned into a ‘good’ set, F̃n, and a ‘bad’

set, Ẽn. On the good sets hn converges ‘uniformly’ to h(x0, y0), while on the bad
sets it is uniformly bounded; the good sets are large and the bad are small. Recall
that the function h is assumed to be bounded and that Q1 is compact.

Proposition 4.4. Let 0 ≤ h ∈ L1 ∩ L∞(Rd × R
d). Suppose that 0 ≤ h ≤ h

almost everywhere, and let hn denote the blow-up sequence of h at a Lebesgue point
(x0, y0). For some subsequence indexed by n ∈ N0 = {n1 < n2 < · · · } there exist

non-negative real numbers αn → 0, and Borel subsets Ẽn and F̃n := Q \ Ẽn of Q,
such that

(a) 0 ≤ L2d[Ẽn] ≤ αn,
(b) ||hn(x, y)− h(x0, y0)||L∞( ˜Fn)

≤ αn,

(c) |hn(x, y)| ≤ ‖h‖L∞(Q1) for almost every (x, y) ∈ Q.
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Proof of (a)-(b). By Remark 4.3, hk → h∞ = h(x0, y0) strongly in L1(Q), i.e.
||hk − h∞||L1(Q) → 0. It follows that a subsequence hki

converges pointwise to

h∞ almost everywhere on Q; for example, choosing ||hki
− hki+1

||L1(Q) ≤ 1
2i is

known to assure this [LL01, Theorem 2.7]. By Egoroff’s Theorem, for any natural

number m, there exists an open subset Ẽm ⊂ Q such that 0 ≤ L2d[Ẽm] ≤ 1
m and

||hki
− h∞||L∞( ˜Fm) → 0 as i → ∞, where F̃m := Q \ Ẽm. Hence, for i = im large

enough,

(10) ||hkim
− h∞||L∞( ˜Fm) <

1

m
.

Note that without loss of generality we can assume that ki1 < ki2 < ki3 < · · · .
Let N0 := {kim |m ∈ N}. Relabeling indices by n ∈ N0, n := kim , Ẽn := Ẽm, and
letting αn := 1

m , the above equation becomes, for all n ∈ N0,

(11) ||hn − h∞||L∞( ˜Fn)
< αn.

Proof of (c). For almost every (x, y) ∈ Q and all n ∈ N we have by (b) of Claim 4.2:
hn(x, y) = h( 1nx+ x0,

1
ny + y0) ≤ h( 1nx+ x0,

1
ny + y0) ≤ ‖h‖L∞(Q1). �

We also need a similar but more delicate result concerning convergence of the
marginals of hn. Recall that Q = [− 1

2 ,
1
2 ]

d × [− 1
2 ,

1
2 ]

d.

Proposition 4.5. Let hn be the blow-up sequence of 0 ≤ h ∈ L1∩L∞(Rd×R
d) at a

Lebesgue point (x0, y0), and let fn := (hn)X and gn := (hn)Y be the corresponding
marginals. Taking N0 (see Proposition 4.4) smaller if necessary yields a further

subsequence indexed by n ∈ N0, with Borel subsets X̃bad
n , Ỹ bad

n ⊂ [− 1
2 ,

1
2 ]

d and

X̃good
n := [− 1

2 ,
1
2 ]

d \ X̃bad
n and Ỹ good

n := [− 1
2 ,

1
2 ]

d \ Ỹ bad
n such that:

(a) limn→∞ Ld[X̃bad
n ] = 0 and limn→∞ Ld[Ỹ bad

n ] = 0;
(b) limn→∞ ‖fn−h(x0, y0)‖L∞( ˜Xgood

n ) = 0 = limn→∞ ‖gn−h(x0, y0)‖L∞(˜Y good
n );

(c) if 0 ≤ h ≤ h as in Proposition 4.4, then fn ≤ ‖h‖L∞(Q1) and gn ≤
‖h‖L∞(Q1) on [− 1

2 ,
1
2 ]

d.

Proof of (a)-(b). Let us start with the subsequence hn from Proposition 4.4. Its
marginals fn and f∞ are given by fn(x) :=

∫
[− 1

2 ,
1
2 ]

d hn(x, y)dy and f∞(x) :=∫
[− 1

2 ,
1
2 ]

d h∞(x, y)dy = h(x0, y0). The marginals gn and g∞ are defined similarly.

By (a) of Claim 4.2, ||hk−h∞||L1(Q) → 0. It follows that ||fk−f∞||L1([− 1
2 ,

1
2 ]

d) →
0 and ||gk − g∞||L1([− 1

2 ,
1
2 ]

d) → 0. Let fki
and gki

be subsequences satisfying

||fki
− fki+1

||L1([− 1
2 ,

1
2 ]

d) ≤ 1
2i and ||gki

− gki+1
||L1([− 1

2 ,
1
2 ]

d) ≤ 1
2i .

As in the proof of Proposition 4.4, Theorem 2.7 of [LL01] and Egoroff’s

Theorem imply existence of open subsets X̃bad
m , Ỹ bad

m ⊂ [− 1
2 ,

1
2 ]

d (m ∈ N)

satisfying 0 ≤ L2d[X̃bad
m ],L2d[Ỹ bad

m ] ≤ 1
m , such that for i = im large enough,

||fkim
− f∞||L∞( ˜Xgood

m ), ||gkim
− g∞||L∞(˜Y good

m ) <
1
m . By relabeling indices, as in the

proof of Proposition 4.4, we get for all n in an index setN0: 0 ≤ L2d[X̃bad
n ],L2d[Ỹ bad

n ]
≤ αn and ||fn − f∞||L∞( ˜Xgood

n ), ||gn − g∞||L∞(˜Y good
n ) < αn. (a) and (b) follow since

αn → 0 as n → ∞.

Proof of (c). Follows immediately from (c) of Proposition 4.4 and the formula
fn(x) =

∫
[− 1

2 ,
1
2 ]

d hn(x, y)dy. �
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5. Optimality is inherited by the blow-up sequence

When h is optimal among densities which share its marginals and which are
dominated by h, i.e. h ∈ argmink∈Γ(hX ,hY )h Ic(k), we show that hn is (almost)

optimal among densities which share its marginals and which are dominated by hn,
i.e. hn ∈ argmink∈Γ((hn)X ,(hn)Y )hn Ic̃(k).

We first record what conditions (C2)− (C3) of subsection 2.1 on the cost imply
about the Taylor expansion of c. Suppose the first and second derivatives of c(x, y)
exist at (x0, y0) and consider the 2nd-order Taylor expansion of c near (x0, y0):

c(x0 +
x

n
, y0 +

y

n
) = c(x0, y0) +

d∑
i=1

∂c

∂xi
(x0, y0)

xi

n
+

d∑
i=1

∂c

∂yi
(x0, y0)

yi
n

+
1

n2
{1
2
xTD2

xxc(x0, y0)x+
1

2
yTD2

yyc(x0, y0)y(12)

+ xTD2
xyc(x0, y0)y +R2(

x

n
,
y

n
)}.

Here R2 is n2 times the 2nd-order Lagrange remainder R′
2(

x
n ,

y
n ) which satisfies

‖R′
2(

x
n ,

y
n )‖L∞(Q) = o( 1

n2 ) (e.g. see [Sp80, Theorem 19.1] for the 1-dimensional
case). Hence ‖R2(

x
n ,

y
n )‖L∞(Q) = o(1) as n → ∞.

When D2
xyc(x0, y0) is non-degenerate, changing the y coordinates by ynew =

D2
xyc(x0, y0)yold gives, without loss of generality, that D2

xyc(x0, y0) = I. Hence

without loss of generality we can assume that xTD2
xyc(x0, y0)y, the mixed 2nd-

order term in equation (12), is equal to c̃(x, y) := x · y. In other words, after an
appropriate change of coordinates equation (12) assumes the form

c(x0 +
x

n
, y0 +

y

n
) = constant term + terms involving x alone(13)

+ terms involving y alone +
1

n2
{c̃(x, y) + R̃2(

x

n
,
y

n
)}.

For c̃n(x, y) := c̃(x, y) + R̃2(
x
n ,

y
n ) let Ic̃n(k) denote

∫
Q
c̃n(x, y)k(x, y), and for

c̃(x, y) = x · y let Ic̃(k) denote
∫
Q
c̃(x, y)k(x, y). Note that Ic̃n(k) =

∫
Q
c̃k+

∫
Q
R̃2k

and |
∫
Q
R̃2k| ≤

∫
Q
|R̃2||k| ≤ ‖R̃2‖L∞(Q)‖k‖L1(Q). Hence given a fixed constant

M > 0, we have for all k ∈ L1(Q) whose total mass ‖k‖L1(Q) ≤ M ,

(14) Ic̃n(k) = Ic̃(k) + o(1).

Remark 5.1. Note that when the cost satisfies (C2) − (C3) of subsection 2.1, for
every (x0, y0) ∈ R

d × R
d \ Z the first and second derivatives of c(x, y) exist at

(x0, y0) and D2
xyc(x0, y0) is non-degenerate.

In [V09, Theorem 4.6] it is shown that unconstrained optimality is inherited by
restriction to (measurable) subsets: if the restricted plan is not optimal, then it
can be improved, but any improvement in the restricted plan carries over to an
improvement in the original optimal plan, which is not possible. In the constrained
context, optimality is not necessarily inherited by an arbitrary restriction. To see
this, recall Example 1.1, where the optimal constrained solution is given by h in
equation (4). Note that the restriction of h to [0, 1

4 ] × [ 14 ,
1
2 ] ∪ [ 14 ,

1
2 ] × [0, 1

4 ] is not

optimal: restricting h to [0, 1
4 ]× [0, 1

4 ] ∪ [ 14 ,
1
2 ] × [ 14 ,

1
2 ] has the same marginals but

lower cost.
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The following lemma says that in the constrained case, optimality is inherited
when the restriction is to a rectangular set. This is used in the proof of Proposi-
tion 5.4.

Lemma 5.2. Let 0 ≤ h ∈ L1
c(R

d × R
d) be optimal among densities in Γ(hX , hY )

h

with respect to a cost function c. Consider a rectangular neighbourhood A × B ⊂
R

d × R
d where A and B are Borel subsets of R

d, and let h̃ denote h|A×B, the

restriction of h to A × B. Then h̃ is optimal among densities in Γ(h̃X , h̃Y )
h with

respect to the same cost c.

Proof. If h̃ is not optimal, then there exists a plan h̃′ ∈ Γ(h̃X , h̃Y )
h improving h̃.

Note that h̃ and h̃′ are both supported on the rectangular neighbourhood A × B.

Now consider the plan h− h̃+ h̃′ which improves h. Since h̃ and h̃′ have the same

marginals, h− h̃+ h̃′ ∈ Γ(hX , hY ). Note that

h− h̃+ h̃′ =

{
h̃′ on A×B,
h otherwise,

and that h− h̃+ h̃′ ≤ h. It follows that the improved plan h− h̃+ h̃′ ∈ Γ(hX , hY )
h,

contradicting optimality of h. �

Remark 5.3. By the above lemma, restricting the optimal density of Example 1.1
to rectangular sets gives more examples of optimal densities.

Proposition 5.4. Let the cost c(x, y) satisfy conditions (C1) − (C3) of subsec-
tion 2.1. Let 0 ≤ h ∈ L∞(Rd × R

d) have compact support and suppose that

Γ(f, g)h �= ∅. Make a linear change of coordinates if necessary so that (13) holds.

Take h ∈ Γ(f, g)h and let (x0, y0) ∈ R
d × R

d \ Z be a Lebesgue point of h. Con-
sider the blow-up sequence hn of h at (x0, y0). Then h c-optimal implies that hn is

c̃n-optimal, where c̃n(x, y) = c̃(x, y) + R̃2(
x
n ,

y
n ):

h ∈ argmin
k∈Γ(hX ,hY )h

Ic(k) =⇒ hn ∈ argmin
k∈Γ((hn)X ,(hn)Y )hn

Ic̃n(k).

Proof. Let Qn = Qn(x0, y0) and consider the blow-up process as being done in two
steps: restriction (h′

n := h|Qn
) and dilation (hn := h′

n ◦ϕn). In the restriction stage
h is restricted to the rectangular neighbourhood Qn; hence by Lemma 5.2 h′

n is
optimal:

h ∈ argmin
k∈Γ(hX ,hY )h

∫
Rd×Rd

c(x, y)k(x, y)

=⇒ h′
n ∈ argmin

k∈Γ((h′
n)X ,(h′

n)Y )h
′
n

∫
Qn

c(x, y)k(x, y).

In the dilation stage h′
n is composed with the linear map ϕn : Q → Qn : (x, y) �→

( 1nx + x0,
1
ny + y0). Note that detDϕn(x, y) = 1

n2d . By the change of variables
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formula, ∫
Qn

c(x, y)h′
n(x, y) =

∫
Qn

c(x, y)(hn ◦ ϕ−1
n )(x, y)

=

∫
Q

c(ϕn(x, y))hn(x, y)|detDϕn(x, y)|

=
1

n2d

∫
Q

c(x0 +
x

n
, y0 +

y

n
)hn(x, y),

and so,

argmin
k∈Γ((h′

n)X ,(h′
n)Y )h

′
n

∫
Qn

c(x, y)k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

1

n2d

∫
Q

c(x0 +
x

n
, y0 +

y

n
)k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

1

n2(d+1)

∫
Q

{c̃(x, y) + R̃2(
x

n
,
y

n
)}k(x, y)

= argmin
k∈Γ((hn)X ,(hn)Y )hn

∫
Q

c̃n(x, y)k(x, y).

For the second equality above, note that those terms of the Taylor expansion
(13) which are constant, are functions of x alone, or are functions of y alone give
the same value when integrated against any density k in Γ((hn)X , (hn)Y ) since the
marginals are fixed. Hence for the variational problem at hand only the mixed
2nd-order terms in the Taylor series, namely c̃(x, y), and the remainder, R2(

x
n ,

y
n ),

matter. For the last equality above, recall that argmin
∫
· = argmin 1

m

∫
· for any

positive constant m. �

6. Is optimality inherited by blow-ups?

It is natural to ask whether the blow-up h∞ of an optimal h is also optimal
(among densities which share its marginals and which are dominated by the blow-
up h∞ of h). For our purposes we do not need to have a complete answer to this
question. Instead, we derive a necessary condition for h∞ to be (almost) optimal.
In section 7 we show this condition is satisfied when h is optimal.

Lemma 6.1. Let the cost c(x, y) satisfy conditions (C2)− (C3) of subsection 2.1.

Let 0 ≤ h ∈ L∞(Rd × R
d) have compact support and suppose that Γ(μ, ν)h �= ∅.

Take h ∈ Γ(f, g)h and let (x0, y0) ∈ R
d × R

d \ Z be a common Lebesgue point
of h and h. Let h∞, h∞ ∈ L1(Q) be the blow-ups of h, h at (x0, y0). If 0 <

h(x0, y0) < h(x0, y0), then h∞ ∈ Γ(f∞, g∞)h∞ can be improved: for any δ which

satisfies 0 < δ < min(h(x0, y0), h(x0, y0)−h(x0, y0)) there exists h
δ
∞ ∈ Γ(f∞, g∞)h∞

such that Ic̃(h
δ
∞) < Ic̃(h∞). Furthermore, h(x0, y0)− δ ≤ hδ

∞ ≤ h(x0, y0)+ δ on Q.

Proof. Suppose that 0 < h(x0, y0) < h(x0, y0) at (x0, y0). By Remark 4.3, h∞ is
equal to the constant function r = h(x0, y0) almost everywhere on Q. Its marginals
f∞ = (h∞)X and g∞ = (h∞)Y are both equal to r almost everywhere on [− 1

2 ,
1
2 ]

d.

Also by Remark 4.3, h∞ is equal to the constant function R = h(x0, y0) almost
everywhere on Q. By our assumption 0 < r < R.
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We next recall a standard perturbation argument (e.g. [GM96, proof of Theorem
2.3]) to show that r is not optimal among densities k ∈ Γ(r, r) constrained by R,
where optimality is measured against c̃(x, y) = x · y. Pick two points (x1, y1) and
(x2, y2) in Q such that c̃(x1, y1) + c̃(x2, y2) < c̃(x1, y2) + c̃(x2, y1). Since c̃(x, y) is
continuous, there exist (compact) neighbourhoods Uj ⊂ [− 1

2 ,
1
2 ]

d of xj and Vj ⊂
[− 1

2 ,
1
2 ]

d of yj such that c̃(u1, v1)+ c̃(u2, v2) < c̃(u1, v2)+ c̃(u2, v1) whenever uj ∈ Uj

and vj ∈ Vj . It follows that U1∩U2 �= ∅ and V1∩V2 �= ∅. Take 0 < δ < min(r, R−r)
and consider the density Δh which is equal to δ on U1 × V1, U2 × V2, to −δ on
U1 × V2, U2 × V1 and to 0 everywhere else. Note that h∞ = r and hδ

∞ := r +Δh
have the same marginals, and that 0 < r − δ ≤ hδ

∞ ≤ r + δ < R by choice of δ, so

hδ
∞ ∈ Γ(f∞, g∞)h∞ . By the choice of the points (x1, y1) and (x2, y2), h

δ
∞ = r+Δh

has lower cost than h∞ = r: Ic̃(h
δ
∞) < Ic̃(h∞). �

Definition 6.2 (Geometrically extreme). Let h be bounded. A density h in

Γ(f, g)h will be called geometrically extreme if there exists a (L2d-measurable) set
W ⊂ R

2d such that h(x, y) = h(x, y)1W (x, y) for almost every (x, y) ∈ R
2d. Here

1W is the characteristic function of the set W .

Corollary 6.3 (A necessary condition for optimality of h∞). Let the cost c(x, y)
satisfy conditions (C1) − (C3) of subsection 2.1. Let 0 ≤ h ∈ L∞(Rd × R

d) have

compact support and assume that Γ(f, g)h �= ∅. Take h ∈ Γ(f, g)h. If h∞ is c̃-
optimal at almost every (x0, y0), i.e. h∞ ∈ argmink∈Γ(f∞,g∞)h∞ Ic̃(k), then h is

geometrically extreme.

Proof. LetN:={(x, y)∈R
d×Rd\Z | (x, y) is a common Lebesgue point of h and h},

where Z is the Lebesgue negligible set of subsection 2.1. Recall that almost every
point in R

d × R
d is in N . Being c̃-optimal, h∞ cannot be improved. Hence by

Lemma 6.1, h(x0, y0) is either equal to 0 or equal to h(x0, y0) at each point (x0, y0) ∈
N . In other words, h is geometrically extreme. �

7. Optimality implies being geometrically extreme

The following lemma will be used in the proof of Theorem 7.2. Given two not
necessarily positive marginal densities f, g ∈ L1 with the same total mass

∫
f =

∫
g,

we would like to produce a joint density h which is controlled by f and g. Since f
and g are not necessarily positive, it is possible for their total mass to be zero even
when the densities themselves are not identically zero. In such a case the product
f(x)g(y) does not necessarily have f and g as its marginals. The following lemma
addresses this issue.

Let φ[Z] :=
∫
Z
φ(z)dz denote the total mass of the function φ on the set Z.

Lemma 7.1. Let X,Y be Borel subsets of [− 1
2 ,

1
2 ]

d whose Ld-measure is strictly

positive. Let f ∈ L1(X), g ∈ L1(Y ) have same total mass m := f [X] = g[Y ] ∈ R.
Suppose ||f ||L∞(X), ||g||L∞(Y ) < ε. Then there exists a joint density h ∈ L1(X×Y )

with marginals f and g such that ||h||L∞(X×Y ) < 3ε( 1
Ld[X]

+ 1
Ld[Y ]

).

Proof. Let f0 := 1
Ld[X]

∈ L1(X) and g0 := 1
Ld[Y ]

∈ L1(Y ). Note that f0 and g0
have total mass 1. We first deal with the case m = 0. Note that (f ·g0)X = f , while
(f · g0)Y = 0. Similarly, (f0 · g)X = 0, while (f0 · g)Y = g. Let h := f · g0 + f0 · g.
Since the maps (·)X and (·)Y are linear, we get that hX = f , and hY = g.



1514 JONATHAN KORMAN AND ROBERT J. MCCANN

More generally, suppose the total mass m = f [X] = g[Y ] is not necessarily 0.
Let h := f · g0 + f0 · g − mf0 · g0 = (f − mf0) · g0 + f0 · (g − mg0) + mf0 · g0.
Since the total mass of f − mf0 and g − mg0 is 0, we conclude by above that
hX = (f − mf0) + 0 + mf0 = f and hY = 0 + (g − mg0) + mg0 = g. For
(x, y) ∈ X × Y the density h satisfies:

|h(x, y)| ≤ |(f −mf0)(x)||g0(y)|+ |f0(x)||(g −mg0)(y)|
+|m||f0(x)||g0(y)|

≤ (|f(x)|+ |m||f0(x)|)|g0(y)|
+(|g(y)|+ |m||g0(y)|)|f0(x)|
+|m||f0(x)||g0(y)|

≤ 1

Ld[Y ]
(|f(x)|+ |m|

Ld[X]
)

+
1

Ld[X]
(|g(y)|+ |m|

Ld[Y ]
) +

|m|
Ld[X]Ld[Y ]

≤ 2ε

Ld[Y ]
+

2ε

Ld[X]
+

ε

Ld[X]

< 3ε(
1

Ld[X]
+

1

Ld[Y ]
).

The penultimate inequality above uses that |m| = |
∫
X
f(x)dx| ≤

∫
X
|f(x)|dx ≤

εLd[X], and |m| = |
∫
Y
g(y)dy| ≤

∫
Y
|g(y)|dy ≤ εLd[Y ]. �

Theorem 7.2. Let the cost c(x, y) satisfy conditions (C1)−(C3) of subsection 2.1.
Let 0 ≤ h ∈ L∞(Rd × R

d) have compact support and take 0 ≤ f, g ∈ L1
c(R

d × R
d)

such that Γ(f, g)h �= ∅. If h ∈ Γ(f, g)h is optimal, i.e. h ∈ argmink∈Γ(f,g)h Ic(k),

then h is geometrically extreme.

Proof. LetN:={(x, y)∈R
d×Rd\Z | (x, y) is a common Lebesgue point of h and h},

where Z be the Lebesgue negligible set of subsection 2.1. Note that almost every
point in R

d × R
d is in N .

Fix (x0, y0) ∈ N and let hn and hn be the blow-up sequences of h and h at
(x0, y0), with h∞ and h∞ their respective limits in L1. Suppose by contradiction
that 0 < h(x0, y0) < h(x0, y0).

Let R := ‖h‖L∞(Q1), R := h(x0, y0), and r := h(x0, y0). By Lemma 6.1, for

0 < δ < min(r, R−r), there exists hδ
∞ ∈ Γ(f∞, g∞)h∞ such that r−δ ≤ hδ

∞ ≤ r+δ
and

(15) Ic̃(h
δ
∞) < Ic̃(h∞).

Assume for now (argued below) that there exists a sequence of non-negative den-
sities hδ

n ∈ L1(Q) (n ∈ N0, where the index set N0 is the set of natural numbers
defined in Propositions 4.4–4.5), with the following properties for large enough n:

(P1) hδ
n ≤ hn on Z̃good

n , where Z̃good
n ⊂Q is a rectangular set satisfying L2d[Z̃good

n ]
→ 1 as n → ∞,

(P2) hδ
n|˜Zgood

n
and hn|˜Zgood

n
have the same marginals,

(P3) hδ
n is bounded by a constant (R+1)3

r2 independent of n on Q \ Z̃good
n ,

(P4) Ic̃n(h
δ
n) −→ Ic̃(h

δ
∞) as n → ∞.
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By Lemma 5.2 constrained optimality is inherited by restriction to rectangular
sets. Hence since, by Proposition 5.4, hn is c̃n-optimal among all densities which
share its marginals and which are dominated by hn, its restriction, hn|˜Zgood

n
, remains

c̃n-optimal among all densities which share its marginals and which are dominated
by hn. In particular, by (P1)–(P2), Ic̃n(h

δ
n|˜Zgood

n
) ≥ Ic̃n(hn|˜Zgood

n
). Hence,

Ic̃n(h
δ
n) = Ic̃n(h

δ
n|˜Zgood

n
) + Ic̃n(h

δ
n|Q\ ˜Zgood

n
)

≥ Ic̃n(hn|˜Zgood
n

) + Ic̃n(h
δ
n|Q\ ˜Zgood

n
)

= Ic̃(hn|˜Zgood
n

) + Ic̃(h
δ
n|Q\ ˜Zgood

n
) + o(1)(16)

= Ic̃(hn)− Ic̃(hn|Q\˜Zgood
n

) + Ic̃(h
δ
n|Q\˜Zgood

n
) + o(1),

where we have used equation (14) to go from the second line to the third.
Note that since |x ·y| ≤ d/4 on Q, for any k ∈ L1(Q): |Ic̃(k)| ≤

∫
Q
|x ·y|k(x, y) ≤

d
4k[Q]. Hence, rearranging equation (16) we get

Ic̃(hn)− Ic̃n(h
δ
n) + o(1) ≤ Ic̃(hn|Q\˜Zgood

n
)− Ic̃(h

δ
n|Q\˜Zgood

n
)

≤ |Ic̃(hn|Q\ ˜Zgood
n

)|+ |Ic̃(hδ
n|Q\˜Zgood

n
)|

≤ d

4
(hn[Q \ Z̃good

n ] + hδ
n[Q \ Z̃good

n ])

≤ d

4
(R+

(R+ 1)3

r2
)L2d[Q \ Z̃good

n ],

where the last inequality above follows from (c) of Proposition 4.4 and property
(P3). Letting n → ∞ above, and using properties (P1) and (P4) as well as the
continuity of the linear functional Ic̃(·), we get that Ic̃(hδ

∞) ≥ Ic̃(h∞), contradicting
equation (15). Hence for every (x0, y0) ∈ N either 0 = h(x0, y0) or h(x0, y0) =
h(x0, y0). In other words, h is geometrically extreme.

In the rest of this proof we demonstrate the existence of a sequence hδ
n with

properties (P1)–(P4). We do this in several steps. For ease of reference, we record
the following chain of inequalities when 0 < δ < min(r, R− r):

0 <
r − δ

2
< r − δ ≤ hδ

∞ ≤ r + δ <
R+ r + δ

2
<

3R+ r + δ

4
< R.

Recall we are supposing by contradiction that 0 < h(x0, y0) < h(x0, y0).

Step (1): Construction of densities ĥδ
n. Let fn := (hn)X , gn := (hn)Y , f∞ :=

(h∞)X , and g∞ := (h∞)Y . Note that fn and gn have the same total mass, and
that f∞ and g∞ have the same total mass. Since fn and f∞ may not have the same

total mass, we will work with normalized copies f ′
n := h∞[Q]

hn[Q] fn and g′n := h∞[Q]
hn[Q] gn.

It follows from Remark 4.3 that hn[Q] → h∞[Q] > 0; hence f ′
n and g′n are well-

defined, at least for large enough n which is all we will use. Note that for large
enough n, f ′

n, g
′
n, f∞ and g∞ all have the same total mass. Since h is bounded and

of compact support, so is h, hence so are fn, gn, f
′
n, g

′
n ∈ L1([− 1

2 ,
1
2 ]

d), as well as

f∞, g∞ ∈ L1([− 1
2 ,

1
2 ]

d).

Let Sn : [− 1
2 ,

1
2 ]

d → [− 1
2 ,

1
2 ]

d be the unique measure preserving map between
f∞ and f ′

n (see [GM95]) minimizing the cost c̃(x, y) = x · y. Similarly let Tn :
[− 1

2 ,
1
2 ]

d → [− 1
2 ,

1
2 ]

d be the unique measure preserving map between g∞ and g′n
minimizing c̃(x, y). Note that Sn and Tn are essentially bijections (see [GM96]).
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Recall (e.g. [GM95]) that a measure preserving map s between two L1-functions
f and g is a Borel map which satisfies the change of variables formula

(17)

∫
Rd

h(y)g(y)dy =

∫
Rd

h(s(x))f(x)dx,

for all h continuous on R
d. Given f ∈ L1(Rd) and a Borel map s : Rd → R

d,
there is a unique function g ∈ L1(Rd) satisfying equation (17). Call this g the push
forward of f by s, denoted s#f . Note that s is measure preserving between f and
s#f . Whenever s is a diffeomorphism, equation (17) implies

(18) g(s(x))|detDs(x)| = f(x).

From [M97], if s fails to be a diffeomorphism but is given by the gradient of a
convex function, equation (18) continues to hold f -a.e.

Recall [B91, M95] that for the cost c̃(x, y) = x · y, the optimal maps Sn(x)
and Tn(y) have the form x �→ ∇ψ(x) and y �→ ∇φ(y), where ψ and φ are convex
functions. By Alexandrov’s Theorem a convex function has second order derivatives
almost everywhere. Hence it makes sense to talk about the derivatives DSn and
DTn almost everywhere.

We note that (Sn × Tn)#k ∈ Γ(f ′
n, g

′
n) for any k ∈ Γ(f∞, g∞). It is straightfor-

ward to see this: we check that ((Sn×Tn)#k)X = f ′
n (checking ((Sn×Tn)#k)Y = g′n

is similar). For any h ∈ C([− 1
2 ,

1
2 ]

d):∫
h(x)((Sn × Tn)#k)X(x) =

∫ ∫
h(x)((Sn × Tn)#k)(x, y)

=

∫ ∫
h(Sn(x))k(x, y) =

∫
h(Sn(x))f∞(x) =

∫
h(x)f ′

n(x).

Let ĥδ
n := hn[Q]

h∞[Q] (Sn × Tn)#h
δ
∞. By the above, ĥδ

n ∈ Γ(fn, gn) for all n, that is,

ĥδ
n has the same marginals as hn.

Step (2): We next show that ĥδ
n, where n ∈ N0, satisfies property (P1). Recall the

notation of Proposition 4.5. Denoting X
good

n := S−1
n (X̃good

n ) (respectively Y
good

n :=

T−1
n (Ỹ good

n )), we have that Ld[X
good

n ] → 1 (respectively that Ld[Y
good

n ] → 1).

By (b) of Proposition 4.5, fn → h(x0, y0) = r ‘uniformly’ on X̃good
n . By (c) of

Proposition 4.5, fn ≤ ‖h‖L∞(Q1) = R on [− 1
2 ,

1
2 ]

d. Since Sn is a convex gradient,
equation (18) applies to give

1

|det(DSn)(x)|
=

f ′
n(Sn(x))

f∞(x)
=

h∞[Q]

hn[Q]

fn(Sn(x))

r
−→ 1

‘uniformly’ on X
good

n , while on [− 1
2 ,

1
2 ]

d, 1
|det(DSn)| ≤ R

r
h∞[Q]
hn[Q] < R+1

r for large

enough n.
Similarly, by Proposition 4.5 and equation (18),

1

|det(DTn)(y)|
=

g′n(Tn(y))

g∞(y)
=

h∞[Q]

hn[Q]

gn(Tn(y))

r
−→ 1

‘uniformly’ on Y
good

n , while on [− 1
2 ,

1
2 ]

d, 1
|det(DTn)| ≤ R

r
h∞[Q]
hn[Q] < R+1

r for large

enough n.
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Hence,

1

|det(D(Sn × Tn))(x, y)|
=

1

|det(DSn)(x)||det(DTn)(y)|
−→ 1

‘uniformly’ on Z
good

n := X
good

n × Y
good

n , while on Q, 1
|det(D(Sn×Tn))| < (R+1

r )2 for

large enough n.
Note that the optimal map from (f∞, g∞) to (f ′

n, g
′
n) is given by (x, y) →

(Sn(x), Tn(y)) = ∇(ψ(x) + φ(y)), a gradient of a convex function. So equation

(18) applies to give ĥδ
n((Sn × Tn)(x, y))

h∞[Q]
hn[Q] =

hδ
∞(x,y)

|det(D(Sn×Tn))(x,y)| . It follows that

for large enough n,

(19) 0 <
r − δ

2
< ĥδ

n((Sn × Tn)(x, y)) <
R + r + δ

2
< R,

for almost every (x, y) ∈ Z
good

n , while on Q and for large enough n,

(20) ĥδ
n < (

R+ 1

r
)2R ≤ (R+ 1)3

r2
.

Recall that by (b) of Remark 4.3, hn → R uniformly on Q. It follows, using

equation (19), that for large enough n, ĥδ
n|˜Zgood

n
≤ hn|˜Zgood

n
.

Step (3): Note that even though ĥδ
n and hn have the same marginals on Q, the

marginals of ĥδ
n|˜Zgood

n
and hn|˜Zgood

n
may not be the same. In Step (4) ĥδ

n will be

perturbed by a density h̃δ
n so that (ĥδ

n + h̃δ
n)|˜Zgood

n
and hn|˜Zgood

n
have the same

marginals. The perturbation will be chosen to preserve the capacity bound on

Z̃good
n : (ĥδ

n + h̃δ
n)|˜Zgood

n
≤ hn|˜Zgood

n
. In this step we construct h̃δ

n.

Let f̃δ
n = ((hn − ĥδ

n)|˜Zgood
n

)X ∈ L1(X̃good
n ) and g̃δn = ((hn − ĥδ

n)|˜Zgood
n

)|Y ∈
L1(Ỹ good

n ) be the marginals of (hn − ĥδ
n)|˜Zgood

n
. Since hn and ĥδ

n have the same

marginals on Q,
∫

˜Y good
n

(hn − ĥδ
n)(x, y)dy +

∫
˜Y bad
n

(hn − ĥδ
n)(x, y)dy = 0.

Hence, by (c) of Proposition 4.4 and equation (20),

|f̃δ
n(x)| = |

∫
˜Y good
n

(hn − ĥδ
n)(x, y)dy| = |

∫
˜Y bad
n

(hn − ĥδ
n)(x, y)dy|

≤
∫

˜Y bad
n

|hn − ĥδ
n|(x, y)dy ≤

∫
˜Y bad
n

(|hn|+ |ĥδ
n|)(x, y)dy

≤ (R+
(R+ 1)3

r2
)Ld[Ỹ bad

n ].

Similarly |g̃δn(y)| ≤ (R + (R+1)3

r2 )Ld[X̃bad
n ]. It follows from Lemma 7.1 that there

exist a joint density h̃δ
n ∈ M(X̃good

n × Ỹ good
n ) with marginals f̃δ

n and g̃δn such that

(21) |h̃δ
n(x, y)| < 3(R+

(R+ 1)3

r2
)(Ld[X̃bad

n ] +Ld[Ỹ bad
n ])(

1

Ld[X̃good
n ]

+
1

Ld[Ỹ good
n ]

).

Since the right hand side of equation (21) tends to 0 as n → ∞, by choosing n

large enough, we can make sure the densities h̃δ
n are as close to 0 as we like. In

particular, for large enough n,

(22) |(h̃δ
n)(x, y)| < min{R− (r + δ)

4
,
r − δ

4
}.
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Step (4): Establishing properties (P1)–(P4) for the densities hδ
n. Let h

δ
n := ĥδ

n+h̃δ
n.

Note that although h̃δ
n could be negative, hδ

n is non-negative: from equations (19)

and (22) we have that hδ
n = ĥδ

n + h̃δ
n > r−δ

2 − r−δ
4 = r−δ

4 > 0. Since the marginals

of h̃δ
n are f̃δ

n = ((hn − ĥδ
n)|˜Zgood

n
)|X and g̃δn = ((hn − ĥδ

n)|˜Zgood
n

)|Y , hδ
n and hn have

the same marginals on Z̃good
n . This establishes property (P2).

By (b) of Remark 4.3, hn → R uniformly on Q. Hence, since R > 3R+r+δ
4 , for

large enough n, hn > 3R+r+δ
4 on Q. On the other hand by equations (19) and (22),

for large enough n, hδ
n = ĥδ

n + h̃δ
n < R+r+δ

2 + R−(r+δ)
4 = 3R+r+δ

4 < hn on Z̃good
n .

This establishes property (P1).

Since the perturbation h̃δ
n is supported on Z̃good

n , hδ
n = ĥδ

n on Q \ Z̃good
n . Hence,

using equation (20), hδ
n = ĥδ

n < (R+1)3

r2 on Q \ Z̃good
n . This established property

(P3).

To establish property (P4) we need to show that Ic̃n(h
δ
n) = Ic̃n(ĥ

δ
n + h̃δ

n) →
Ic̃(h

δ
∞) as n → ∞. Note that by equation (21) h̃δ

n → 0 uniformly on Q. Hence by

equation (14) and Lebesgue’s Dominated Convergence Theorem, Ic̃n(h̃
δ
n) = Ic̃(h̃

δ
n)+

o(1) → 0 as n → ∞. So we need only show Ic̃n(ĥ
δ
n) → Ic̃(h

δ
∞) as n → ∞.

Stability of the transport map [V09, Corollary 5.23] implies that Sn, Tn con-
verge in measure to −id|[− 1

2 ,
1
2 ]

d , minus the identity map on [− 1
2 ,

1
2 ]

d. By ex-

tracting a subsequence if necessary we can assume [Ro68, Proposition 4.17] that
Sn, Tn converge to −id|[− 1

2 ,
1
2 ]

d almost everywhere on [− 1
2 ,

1
2 ]

d. Since c̃(·, ·) is con-

tinuous, it follows that c̃(Sn(x), Tn(y)) converges to c̃(x, y) almost everywhere on
Q = [− 1

2 ,
1
2 ]

d × [− 1
2 ,

1
2 ]

d.

Note that |c̃(Sn(x), Tn(y))h
δ
∞(x, y)| is bounded above on Q, e.g. by ‖c̃‖L∞(Q)R.

Hence, since L2d[Q] < ∞, we can apply the Dominated Convergence Theorem to
concluded that as n → ∞,

Ic̃n(ĥ
δ
n) =

∫
Q

c̃(x, y)ĥδ
n(x, y) + o(1)

=
hn[Q]

h∞[Q]

∫
Q

c̃(Sn(x), Tn(y))h
δ
∞(x, y) + o(1)

→
∫
Q

c̃(x, y)hδ
∞(x, y) = Ic̃(h

δ
∞).

This establishes property (P4) and completes the proof. �

8. Optimal solution to the constrained problem is unique

We now show that, given a capacity constraint h, the corresponding constrained
optimization problem has a unique solution. In the unconstrained optimization
setup, a characteristic property of optimal solutions is c-cyclical monotonicity. This
property can be used to prove a solution is unique [GM96, Theorem 3.7]. The
property of optimal solutions in the constrained setup that is used here to prove
uniqueness is that of being geometrically extreme (see Definition 6.2). Note that
in the unconstrained case, c-cyclical monotonicity is in fact necessary and sufficient
for optimality, whereas in the constrained case geometric extremality is merely
necessary.
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Theorem 8.1 (Uniqueness). Let the cost c(x, y) satisfy conditions (C1)− (C3) of
subsection 2.1. Let the capacity bound 0 ≤ h ∈ L∞(Rd×R

d) have compact support.

Take 0 ≤ f, g ∈ L1
c(R

d × R
d) such that Γ(f, g)h �= ∅. Then an optimal solution to

the constrained problem (3) is unique (as an element of L1(Rd × R
d)).

Proof. Suppose h1, h2 are two optimal plans: h1, h2 ∈ argmink∈Γ(f,g)h Ic(k). We

show h1 = h2 almost everywhere. Since Γ(f, g)h is convex, 1
2h1 +

1
2h2 ∈ Γ(f, g)h.

Since Ic(·) is linear, the plan 1
2h1 +

1
2h2 is also optimal.

Hence, by Theorem 7.2, h1, h2,
1
2h1 + 1

2h2 are all geometrically extreme. In

particular, hi = h1Wi
almost everywhere on R

d × R
d for i = 1, 2. Let Δ :=

(W1 \W2) ∪ (W2 \W1) be the symmetric difference of the sets W1 and W2. Either
L2d(Δ) = 0, in which case h1 = h2 almost everywhere, or else for almost every
(x, y) ∈ Δ, 0 < ( 12h1 +

1
2h2)(x, y) < h(x, y), contradicting Theorem 7.2. �

9. Appendix: Duality and examples

In this appendix we sketch how the analog of Kantorovich duality [K42] would
look for the constrained problem, following the minimax heuristics in [AG11],
[MG10]. One of the virtues of such a duality is that it makes it easy to check
whether a conjectured optimizer is actually optimal. Defering the elaboration of a
full duality theory to a future manuscript [KMS13], below we develop just enough
theory to confirm the claims made in Example 1.1.

Suppose f and g have total mass 1 on R
d and recall the Duality Theorem from

linear programming (e.g. [V03]). In the unconstrained context the primal problem
is (2) and the dual problem is

(23) sup
(u,v)∈Lipc

−
∫
Rd

u(x)f(x)dx−
∫
Rd

v(y)g(y)dy,

where Lipc := {(u, v) ∈ L1(Rd)× L1(Rd) | c(x, y) + u(x) + v(y) ≥ 0 for all (x, y) ∈
R

d × R
d}. We now formulate a dual problem in the constrained context. For the

primal problem (3) we consider the dual problem

(24) sup
(u,v,w)∈Lipc

−
∫
Rd

u(x)f(x)dx−
∫
Rd

v(y)g(y)dy +

∫
Rd×Rd

w(x, y)h(x, y)dxdy,

where Lipc := {(u, v, w) ∈ L1(Rd)×L1(Rd)×L1(Rd ×R
d) | c(x, y) + u(x) + v(y)−

w(x, y) ≥ 0 and w(x, y) ≤ 0 for all (x, y) ∈ R
d×R

d}. It follows from the definition
of (u, v, w) ∈ Lipc, by integrating c(x, y) ≥ −u(x) − v(y) + w(x, y) against h ∈
Γ(f, g)h, that∫

Rd×Rd

c(x, y)h(x, y) ≥
∫
Rd×Rd

{−u(x)− v(y) + w(x, y)}h(x, y)

≥ −
∫
Rd

u(x)f(x)−
∫
Rd

v(y)g(y) +

∫
Rd×Rd

w(x, y)h(x, y).

Hence when ∫
Rd×Rd

ch = −
∫
Rd

uf −
∫
Rd

vg +

∫
Rd×Rd

wh(25)

we conclude that h ∈ Γ(f, g)h is a minimizer of (3) and (u, v, w) ∈ Lipc is a
maximizer of (24).
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We now discuss Example 1.1 where c(x, y) = 1
2 |x − y|2, f = g = 1|[− 1

2 ,
1
2 ]
, and

h = 2 · 1|[− 1
2 ,

1
2 ]

2 (Figure 1(B)).

Let u(x) := − 1
2x

2 and v(y) := − 1
2y

2. Let S := {(x, y) ∈ R
2 | c(x, y) + u(x) +

v(y) ≤ 0} = {(x, y) ∈ R
2 |xy ≥ 0}. Note that S ∩ [− 1

2 ,
1
2 ]

2 = [− 1
2 , 0] × [− 1

2 , 0] ∪
[0, 12 ]× [0, 12 ]. Now let h := h|S∩[− 1

2 ,
1
2 ]

2 ∈ Γ(f, g)h (see Figure 1(A)) and let

w(x, y) :=

{
c(x, y) + u(x) + v(y) on S,

0 on R
2 \ S.

Since w(x, y) ≤ 0 on R
2, c(x, y) + u(x) + v(y)− w(x, y) is = 0 on S, and is > 0

on R
2 \ S, (u, v, w) ∈ Lipc. Integrating w against h we get∫

R×R

c(x, y)h(x, y) +

∫
R

u(x)f(x) +

∫
R

v(y)g(y)

=

∫
R×R

{c(x, y) + u(x) + v(y)}h(x, y) =
∫
S∩[− 1

2 ,
1
2 ]

2

w(x, y)h(x, y)

=

∫
S∩[− 1

2 ,
1
2 ]

2

w(x, y)h(x, y) =

∫
R×R

w(x, y)h(x, y).

That is, the given h, u, v, and w satisfy equation (25). Hence hminimizes the primal
problem, and so is optimal, while (u, v, w) maximizes the dual problem.
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